JP7398898B2 - Motor core structure and its formation method - Google Patents

Motor core structure and its formation method Download PDF

Info

Publication number
JP7398898B2
JP7398898B2 JP2019144982A JP2019144982A JP7398898B2 JP 7398898 B2 JP7398898 B2 JP 7398898B2 JP 2019144982 A JP2019144982 A JP 2019144982A JP 2019144982 A JP2019144982 A JP 2019144982A JP 7398898 B2 JP7398898 B2 JP 7398898B2
Authority
JP
Japan
Prior art keywords
core member
motor frame
iron core
motor
bonding layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019144982A
Other languages
Japanese (ja)
Other versions
JP2021027733A (en
Inventor
創 木下
修 中崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP2019144982A priority Critical patent/JP7398898B2/en
Publication of JP2021027733A publication Critical patent/JP2021027733A/en
Application granted granted Critical
Publication of JP7398898B2 publication Critical patent/JP7398898B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Manufacture Of Motors, Generators (AREA)

Description

本発明は、モータの鉄心構造体及びその形成方法に関する。 The present invention relates to a motor core structure and a method for forming the same.

モータコアなどの鉄心部材は、電磁鋼板を所定形状に打ち抜いた後に積層し、クランプ等により固着させることで形成される。
そして、鉄心部材は、巻き線処理が施された後に、焼き嵌めでモータフレーム(ハウジング)が装着されている(例えば、特許文献1参照)。
Iron core members such as motor cores are formed by punching electromagnetic steel plates into a predetermined shape, stacking them, and fixing them with clamps or the like.
After the iron core member is subjected to a wire winding process, a motor frame (housing) is attached to the core member by shrink fitting (see, for example, Patent Document 1).

国際公開第2018/167853号International Publication No. 2018/167853

図8は鉄心材料に複数の異なる応力を加えた場合の磁束密度-鉄損の関係を示した線図、図9は鉄心材料に複数の異なる応力を加えた場合の磁束密度-透磁率の関係を示した線図である。なお、図8及び図9において、0~100[MPa]は引っ張り応力を加えた場合を示し、-20~-90[MPa]は圧縮応力を加えた場合を示す。
鉄心部材に焼き嵌めでモータフレームを装着すると、鉄心部材に対して周方向に圧縮応力が発生する。図8及び図9に示すように、圧縮応力が大きくなるにつれて鉄損は大きくなり、透磁率は低下する。このように、圧縮応力は、鉄心部材の磁気特性を悪化させて、モータの効率を低下させる。
このモータの効率低下を抑制するためには、焼きばめの際には、鉄心部材に対するモータフレームの締め代を小さくすれば良いが、その場合には、モータフレームによる鉄心部材の拘束力が低下するので、モータの駆動時に鉄心部材に回転が生じるおそれがあった。
Figure 8 is a diagram showing the relationship between magnetic flux density and iron loss when multiple different stresses are applied to the iron core material, and Figure 9 is a diagram showing the relationship between magnetic flux density and magnetic permeability when multiple different stresses are applied to the iron core material. FIG. In FIGS. 8 and 9, 0 to 100 [MPa] indicates the case where tensile stress is applied, and -20 to -90 [MPa] indicates the case where compressive stress is applied.
When the motor frame is attached to the core member by shrink fitting, compressive stress is generated in the circumferential direction of the core member. As shown in FIGS. 8 and 9, as compressive stress increases, iron loss increases and magnetic permeability decreases. Thus, compressive stress deteriorates the magnetic properties of the iron core member and reduces the efficiency of the motor.
In order to suppress this decrease in motor efficiency, it is possible to reduce the interference between the motor frame and the core member during shrink fitting, but in that case, the restraining force of the motor frame on the core member decreases. Therefore, there was a risk that the iron core member would rotate when the motor was driven.

本発明は、モータフレーム鉄心部材とを適正に固定することを目的とする。 An object of the present invention is to properly fix a motor frame core member.

本発明に係るモータの鉄心構造体は、
円筒状の鉄心部材と、
前記鉄心部材の外周に設けられた円筒状のモータフレームと、
前記鉄心部材と前記モータフレームとの境界で全周に渡ってこれらを固定するために設けられた接合層とを備え、
前記接合層が、塑性流動を生じた前記鉄心部材の金属材料及び前記モータフレームの金属材料を有する構成とする。
The motor core structure according to the present invention includes:
a cylindrical iron core member,
a cylindrical motor frame provided on the outer periphery of the iron core member;
a bonding layer provided at the boundary between the iron core member and the motor frame to fix them over the entire circumference ;
The bonding layer includes a metal material of the iron core member and a metal material of the motor frame that undergo plastic flow.

本発明に係るモータの鉄心構造体の形成方法は、
円筒状の鉄心部材の外周に円筒状のモータフレームを設け、
前記鉄心部材の金属材料と前記モータフレームの金属材料との境界で全周に渡ってこれらの塑性流動により接合層を形成して前記鉄心部材と前記モータフレームとの間を接合する構成となっている。
A method for forming a motor core structure according to the present invention includes:
A cylindrical motor frame is provided around the outer periphery of a cylindrical iron core member,
The metal material of the iron core member and the metal material of the motor frame are configured to form a bonding layer over the entire circumference at the boundary between the metal material and the metal material of the motor frame, thereby bonding the iron core member and the motor frame. There is.

本発明によれば、モータフレームから鉄心部材に加わる圧縮応力を低減しつつ、モータフレームと鉄心部材とを適正に固定することができる。 According to the present invention, the motor frame and the core member can be properly fixed while reducing the compressive stress applied from the motor frame to the core member.

本実施形態に係る鉄心構造体の斜視図である。FIG. 1 is a perspective view of an iron core structure according to the present embodiment. 鉄心構造体の一部を示した平面図である。It is a top view showing a part of iron core structure. 摩擦攪拌接合を行う際の鉄心構造体の平面図である。It is a top view of the iron core structure at the time of performing friction stir welding. 摩擦攪拌接合の際に使用される工具の斜視図である。FIG. 2 is a perspective view of a tool used during friction stir welding. 鉄心部材とモータフレームの境界線に対して工具の突起部がモータフレーム側にオフセットした状態を示す平面図である。FIG. 3 is a plan view showing a state in which the protrusion of the tool is offset toward the motor frame with respect to the boundary line between the iron core member and the motor frame. 図6(A)は超音波接合を行う前の鉄心構造体の軸方向の部分断面図、図6(B)は超音波接合後の鉄心構造体の軸方向の部分断面図である。FIG. 6(A) is a partial axial cross-sectional view of the core structure before ultrasonic bonding, and FIG. 6(B) is a partial axial cross-sectional view of the core structure after ultrasonic bonding. 超音波接合の接合位置を示した斜視図を示した斜視図である。It is a perspective view showing a perspective view showing a joining position of ultrasonic joining. 鉄心材料に複数の異なる圧縮応力を加えた場合の磁束密度-鉄損の関係を示した線図である。FIG. 2 is a diagram showing the relationship between magnetic flux density and iron loss when a plurality of different compressive stresses are applied to the iron core material. 鉄心材料に複数の異なる圧縮応力を加えた場合の磁束密度-透磁率の関係を示した線図である。FIG. 3 is a diagram showing the relationship between magnetic flux density and magnetic permeability when a plurality of different compressive stresses are applied to the iron core material.

以下、本発明の実施形態について、図面を参照して詳細に説明する。 Embodiments of the present invention will be described in detail below with reference to the drawings.

[鉄心構造体]
まず、本実施形態に係る鉄心構造体10について説明する。
図1は本実施形態に係る鉄心構造体10の斜視図、図2は鉄心構造体10の一部を示した平面図である。鉄心構造体10は、円筒状の鉄心部材20と、鉄心部材20の外周に設けられたモータフレーム30と、鉄心部材20とモータフレーム30とを接合する接合層40とを備えている。
[Iron core structure]
First, the core structure 10 according to this embodiment will be explained.
FIG. 1 is a perspective view of a core structure 10 according to this embodiment, and FIG. 2 is a plan view showing a part of the core structure 10. The core structure 10 includes a cylindrical core member 20, a motor frame 30 provided on the outer periphery of the core member 20, and a bonding layer 40 that joins the core member 20 and the motor frame 30.

モータフレーム30は、金属、例えば、アルミニウム又はその合金からなる略円筒の部材である。そして、軸方向における両端部の外周には、半径方向の外側に向かって矩形に延出された四つの延出部31が周方向に均一な間隔で形成されている。そして、これらの延出部31には、鉄心構造体10を外部に固定するため或いは当該鉄心構造体10にフランジ等の他の部材を取り付けるための貫通孔32が軸方向に貫通形成されている。
また、モータフレーム30の外周面上には、放熱フィン等の放熱構造を設けてもよい。
The motor frame 30 is a substantially cylindrical member made of metal, for example, aluminum or an alloy thereof. On the outer periphery of both end portions in the axial direction, four rectangular extending portions 31 extending outward in the radial direction are formed at uniform intervals in the circumferential direction. These extensions 31 are formed with through holes 32 extending in the axial direction for fixing the core structure 10 to the outside or for attaching other members such as flanges to the core structure 10. .
Further, a heat radiation structure such as a heat radiation fin may be provided on the outer peripheral surface of the motor frame 30.

鉄心部材20は、モータ用のステータコアであり、ヨーク21と、複数のティース22と、複数のティース22の間に形成される複数のスロット23とを有する。ヨーク21は、略円筒状に形成されている。複数のティース22は、ヨーク21の内周部において周方向に均一間隔で形成されると共に、ヨーク21の内周部からその径方向内側に向かって突出(延出)している。そして、隣り合うティース22間のスロット23は、内径側が開口したオープンスロットとなっている。鉄心部材20は、ヨーク21の中心軸に沿った方向において略一様な断面形状に形成されている。
なお、以下の説明では、鉄心構造体10の中心軸(円筒の中心軸)に沿った方向を「軸方向」、当該中心軸に垂直な方向を「径方向」、当該中心軸を中心とする回転方向を「周方向」という。
The iron core member 20 is a stator core for a motor, and includes a yoke 21, a plurality of teeth 22, and a plurality of slots 23 formed between the plurality of teeth 22. The yoke 21 is formed into a substantially cylindrical shape. The plurality of teeth 22 are formed at uniform intervals in the circumferential direction on the inner circumference of the yoke 21, and protrude (extend) from the inner circumference of the yoke 21 toward the inside in the radial direction. The slots 23 between adjacent teeth 22 are open slots with the inner diameter side open. The iron core member 20 is formed to have a substantially uniform cross-sectional shape in the direction along the central axis of the yoke 21.
In the following description, the direction along the central axis of the core structure 10 (the central axis of the cylinder) is referred to as the "axial direction", the direction perpendicular to the central axis is referred to as the "radial direction", and the direction centered on the central axis is referred to as the "radial direction". The direction of rotation is called the "circumferential direction."

この鉄心部材20は、ヨーク21及び複数のティース22を有する平面視形状に打ち抜いた薄板の電磁鋼板(本実施形態では無方向性電磁鋼板)を、所定の軸方向厚さに積層させた後、クランプや溶接、カシメ等により固着させた状態のものである。ただし、この鉄心部材20の製造工程は特に限定されず、例えば打ち抜きに代えてワイヤカットを用いるなどしてもよい。
なお、各ティース22には巻き線処理が施されてコイルが形成されるが、ここではコイルの図示は省略する。
This iron core member 20 is made by laminating thin electromagnetic steel plates (non-oriented electromagnetic steel plates in this embodiment) punched into a planar shape having a yoke 21 and a plurality of teeth 22 to a predetermined axial thickness. It is fixed by clamping, welding, caulking, etc. However, the manufacturing process of this iron core member 20 is not particularly limited, and for example, wire cutting may be used instead of punching.
Note that each tooth 22 is subjected to a winding process to form a coil, but illustration of the coil is omitted here.

接合層40は、鉄心部材20とモータフレーム30との境界において、摩擦攪拌接合による塑性流動を生じた鉄心部材20の金属材料である鉄合金及びモータフレーム30の金属材料であるアルミ合金から形成されている。なお、摩擦攪拌接合については後述する。 The bonding layer 40 is formed of an iron alloy, which is the metal material of the iron core member 20, and an aluminum alloy, which is the metal material of the motor frame 30, which have undergone plastic flow due to friction stir welding at the boundary between the iron core member 20 and the motor frame 30. ing. Note that friction stir welding will be described later.

[鉄心構造体の形成方法(1)]
続いて、鉄心構造体10の形成方法について説明する。
鉄心構造体10の形成の際には、まず、モータフレーム30の内側に鉄心部材20を中間ばめ又は締まりばめで嵌め込みを行う。具体的には、モータフレーム30を加熱して焼きばめにより鉄心部材20に装着を行う。なお、締まりばめの際には、締め代は極力強小さい値とする。これにより、モータフレーム30により鉄心部材20の圧縮応力を小さくする。
[Method for forming iron core structure (1)]
Next, a method for forming the core structure 10 will be explained.
When forming the core structure 10, first, the core member 20 is fitted inside the motor frame 30 by an intermediate fit or an interference fit. Specifically, the motor frame 30 is heated and attached to the iron core member 20 by shrink fitting. When performing an interference fit, the interference should be as strong and small as possible. Thereby, the compressive stress of the iron core member 20 is reduced by the motor frame 30.

そして、鉄心部材20の金属材料とモータフレーム30の金属材料とに、塑性流動を生じさせて鉄心部材20とモータフレーム30との間を接合する。鉄心部材20の金属材料とモータフレーム30の金属材料との塑性流動は、摩擦攪拌接合により生じさせる。 Then, plastic flow is caused in the metal material of the core member 20 and the metal material of the motor frame 30 to join the core member 20 and the motor frame 30 together. Plastic flow between the metal material of the iron core member 20 and the metal material of the motor frame 30 is caused by friction stir welding.

図3は摩擦攪拌接合を行う際の鉄心構造体10の平面図、図4は摩擦攪拌接合の際に使用される工具100の斜視図である。
摩擦攪拌接合とは、鉄心部材20とモータフレーム30の境界において、工具100の回転と回転軸方向への押し付け力により摩擦熱を発生させて鉄心部材20の金属材料とモータフレーム30の金属材料とを軟化させるとともに、工具100の回転力によって接合部周辺を塑性流動させて練り混ぜることで鉄心部材20及びモータフレーム30を一体化させる接合法である。
上記摩擦攪拌接合により、ろう付けや接着等の場合と異なり、接合層40は、主に、鉄心部材20の金属材料とモータフレーム30の金属材料のみから構成される。
FIG. 3 is a plan view of the core structure 10 when performing friction stir welding, and FIG. 4 is a perspective view of a tool 100 used during friction stir welding.
Friction stir welding refers to friction stir welding in which the metal material of the core member 20 and the metal material of the motor frame 30 are bonded by generating frictional heat at the boundary between the core member 20 and the motor frame 30 by the rotation of the tool 100 and the pressing force in the direction of the rotation axis. This is a joining method in which the iron core member 20 and the motor frame 30 are integrated by softening the iron core member 20 and the motor frame 30 by causing plastic flow around the joint part by the rotational force of the tool 100 and mixing.
Due to the friction stir welding described above, the bonding layer 40 is mainly composed of only the metal material of the iron core member 20 and the metal material of the motor frame 30, unlike in the case of brazing, adhesion, etc.

工具100は、略円筒状であって、その円形の先端面101の中心には突起部102が設けられている。接合の際には、軟化した鉄心部材20及びモータフレーム30の境界に突起部102を貫入させて突起部102の周囲の先端面101を押し当てた状態で鉄心部材20及びモータフレーム30を塑性流動により練り混ぜて接合層40が形成される。 The tool 100 has a substantially cylindrical shape, and a protrusion 102 is provided at the center of a circular tip surface 101. At the time of joining, the protrusion 102 is inserted into the softened boundary between the core member 20 and the motor frame 30, and the core member 20 and the motor frame 30 are subjected to plastic flow while pressing the tip surface 101 around the protrusion 102. The bonding layer 40 is formed by kneading and mixing.

鉄心部材20及びモータフレーム30の軸方向の一端面は、面一となっており、図3に示すように、接合層40は、面一となっている一端面上に形成される。
摩擦攪拌接合の際には、モータフレーム30の延出部31に形成された貫通孔32がスタートポイント及びエンドポイントとして利用される。即ち、摩擦攪拌接合の開始時に、いずれかの貫通孔32に工具100の突起部102が遊挿され、回転状態の工具100の先端面101にモータフレーム30の一端面を圧接させながら接合を開始する。そして、貫通孔32から鉄心部材20とモータフレーム30の境界に向かい、境界に沿って一周し、再び、スタートポイントの貫通孔32に戻る経路で工具100が相対移動して摩擦攪拌接合が行われる。
One end surface of the iron core member 20 and the motor frame 30 in the axial direction is flush with each other, and as shown in FIG. 3, the bonding layer 40 is formed on the one end surface that is flush with each other.
During friction stir welding, the through hole 32 formed in the extending portion 31 of the motor frame 30 is used as a start point and an end point. That is, at the start of friction stir welding, the protrusion 102 of the tool 100 is loosely inserted into one of the through holes 32, and welding is started while pressing one end surface of the motor frame 30 against the tip surface 101 of the rotating tool 100. do. Then, the tool 100 moves relatively from the through hole 32 toward the boundary between the core member 20 and the motor frame 30, goes around the boundary, and returns to the starting point of the through hole 32 again, and friction stir welding is performed. .

また、図5に示すように、鉄心部材20とモータフレーム30の境界に沿って相対的に工具100が周回移動する際には、鉄心部材20とモータフレーム30の境界線に対して、工具100の突起部102が、形成材料が低融点となるモータフレーム30側にオフセットした状態で摩擦攪拌接合が行われる。
これにより、鉄心部材20及びモータフレーム30における温度上昇を抑制し、それぞれの金属材料の溶融を極力回避し、塑性流動が生じた状態で接合が行われる。
Further, as shown in FIG. 5, when the tool 100 moves around relatively along the boundary between the iron core member 20 and the motor frame 30, the tool 100 Friction stir welding is performed with the protrusion 102 offset toward the motor frame 30, where the forming material has a low melting point.
Thereby, temperature rise in the iron core member 20 and the motor frame 30 is suppressed, melting of the respective metal materials is avoided as much as possible, and joining is performed in a state where plastic flow occurs.

[鉄心構造体の形成方法(2)]
また、鉄心部材20とモータフレーム30の接合は摩擦攪拌接合ではなく超音波接合を選択することもできる。
鉄心構造体10の形成の際に、モータフレーム30の内側に鉄心部材20を中間ばめ又は締まりばめで嵌め込みを行う点は前述した摩擦攪拌接合の場合と同じである。
[Method for forming iron core structure (2)]
Furthermore, ultrasonic welding may be selected for joining the iron core member 20 and the motor frame 30 instead of friction stir welding.
When forming the core structure 10, the core member 20 is fitted inside the motor frame 30 by an intermediate fit or an interference fit, as in the case of friction stir welding described above.

図6は超音波接合を行う際の鉄心構造体10の軸方向の部分断面図、図7は超音波接合の接合位置を示した斜視図である。
超音波接合とは、鉄心部材20及びモータフレーム30に超音波振動子により超音波振動を印加して(図6(A))、鉄心部材20及びモータフレーム30の境界面が互いに擦れ合うことで露出した清浄な金属面を加圧による塑性流動により固相状態で接合する接合法である(図6(B))。図6(B)の符号Sは接合箇所を示している。
上記超音波接合の場合も、ろう付けや接着等の場合と異なり、接合層40は、主に、鉄心部材20の金属材料とモータフレーム30の金属材料のみから構成される。
FIG. 6 is a partial sectional view in the axial direction of the core structure 10 when performing ultrasonic bonding, and FIG. 7 is a perspective view showing the joining position of ultrasonic bonding.
Ultrasonic bonding refers to applying ultrasonic vibration to the core member 20 and the motor frame 30 using an ultrasonic vibrator (FIG. 6(A)), so that the interface between the core member 20 and the motor frame 30 rubs against each other and is exposed. This is a joining method in which clean metal surfaces are joined in a solid state by plastic flow under pressure (Figure 6(B)). The symbol S in FIG. 6(B) indicates a joint location.
Also in the case of the ultrasonic bonding described above, the bonding layer 40 is mainly composed of only the metal material of the iron core member 20 and the metal material of the motor frame 30, unlike in the case of brazing, adhesion, etc.

上記超音波接合では、超音波振動子の超音波振動を増幅させるホーン110の先端部を、モータフレーム30の外周面に押し当てた状態で、鉄心部材20及びモータフレーム30の境界面に超音波振動を印加して接合が行われる。
図7に示すように、モータフレーム30の外周面に対して、少なくとも、軸方向の中間位置を一周するように接合を行う。
In the above ultrasonic bonding, the tip of the horn 110 that amplifies the ultrasonic vibrations of the ultrasonic vibrator is pressed against the outer peripheral surface of the motor frame 30, and ultrasonic waves are applied to the interface between the iron core member 20 and the motor frame 30. Bonding is performed by applying vibration.
As shown in FIG. 7, the joint is made around the outer peripheral surface of the motor frame 30 at least around an intermediate position in the axial direction.

[本実施形態の技術的効果]
以上のように、本実施形態によれば、鉄心部材20とモータフレーム30とを、塑性流動を生じた鉄心部材20の金属材料及びモータフレーム30の金属材料を有する接合層40で接合しているので、鉄心部材20に対するモータフレーム30による締め代を小さくしても相互間の接合強度を十分に確保することが可能である。従って、鉄心構造体10をモータに組み込んだ場合に、モータフレーム30に対する鉄心部材20の回転の発生を効果的に低減することが可能となる。
そして、モータフレーム30による締め代を小さく出来るので、鉄心部材20に生じる圧縮応力を低減することが可能となり、鉄損を小さくし、透磁率を高めて、鉄心部材20の磁気特性を向上させることが可能となる。これにより、鉄心構造体10を使用するモータの効率を向上させることが可能となる。
なお、接合層40の形成の際には、鉄心部材20とモータフレーム30が相互に一時的に保持できれば良いので、これらを仮止めできる他の方法を利用しても良く、締まりばめや中間ばめのように締め付けを生じる固定方法を利用しなくとも良い。その場合、鉄心部材20に生じる圧縮応力をさらに低減することができる。
[Technical effects of this embodiment]
As described above, according to the present embodiment, the core member 20 and the motor frame 30 are joined by the bonding layer 40 having the metal material of the core member 20 and the metal material of the motor frame 30 that have undergone plastic flow. Therefore, even if the interference of the motor frame 30 with respect to the iron core member 20 is made small, it is possible to ensure sufficient joint strength between them. Therefore, when the core structure 10 is incorporated into a motor, it is possible to effectively reduce the occurrence of rotation of the core member 20 with respect to the motor frame 30.
Since the interference by the motor frame 30 can be reduced, it is possible to reduce the compressive stress generated in the core member 20, thereby reducing core loss, increasing magnetic permeability, and improving the magnetic properties of the core member 20. becomes possible. Thereby, it becomes possible to improve the efficiency of the motor using the iron core structure 10.
Note that when forming the bonding layer 40, it is sufficient that the core member 20 and the motor frame 30 can be temporarily held together, so other methods that can temporarily fasten them may be used, such as interference fit or intermediate It is not necessary to use a fixing method that causes tightening, such as fitting. In that case, the compressive stress generated in the iron core member 20 can be further reduced.

また、接合層40は、鉄心部材20の金属材料及びモータフレーム30の金属材料の塑性流動によりこれらを接合するので、これらが溶融せず、溶接による材料の変成や接着による異質材料の介入が生じないので、鉄心部材20とモータフレーム30の導電性を高く維持することができ、鉄心部材20の磁気特性を高く維持することが可能となる。また、同様の理由により、鉄心部材20とモータフレーム30伝熱性を高く維持することができ、放熱性を向上させることが可能となる。 Furthermore, since the joining layer 40 joins the metal material of the iron core member 20 and the metal material of the motor frame 30 by plastic flow, these do not melt, resulting in metamorphosis of the material due to welding and intervention of different materials due to adhesion. Therefore, the conductivity of the iron core member 20 and the motor frame 30 can be maintained high, and the magnetic properties of the iron core member 20 can be maintained high. Further, for the same reason, it is possible to maintain high heat conductivity between the iron core member 20 and the motor frame 30, and it is possible to improve heat dissipation.

特に、接合層40は、摩擦攪拌接合により形成した場合には、少なくとも工具100の突起部102の深度までは塑性流動を生じた接合層40を形成するので、信頼性の高い接合を行うことが可能である。
また、接合層40が鉄心部材20及びモータフレーム30の軸方向の端部に位置するので、その形成作業時間の短縮、作業の容易化を図ることが可能となる。
In particular, when the bonding layer 40 is formed by friction stir welding, the bonding layer 40 undergoes plastic flow at least to the depth of the protrusion 102 of the tool 100, so that highly reliable bonding can be performed. It is possible.
Further, since the bonding layer 40 is located at the end of the core member 20 and the motor frame 30 in the axial direction, it is possible to shorten the time required for forming the bonding layer and to facilitate the work.

また、接合層40を、超音波接合により形成した場合には、鉄心部材20及びモータフレーム30の境界となる周面の広範囲に渡って容易に接合層40を形成することができ、高い接合強度を容易に得ることが可能となる。また、広範囲に接合層40を形成することにより、磁気特性や放熱性について部材の場所による偏りを低減することが可能となる。
また、接合層40を鉄心部材20及びモータフレーム30の少なくとも軸方向の中間部に設けた場合、鉄心構造体10をモータに組み込んだ場合に、モータフレーム30と鉄心部材20の間でトルクが生じ易い軸方向中間部を保持することができるので、モータフレーム30に対する鉄心部材20の回転を効果的に抑制することが可能となる。
In addition, when the bonding layer 40 is formed by ultrasonic bonding, the bonding layer 40 can be easily formed over a wide range of the circumferential surface that forms the boundary between the iron core member 20 and the motor frame 30, resulting in high bonding strength. can be easily obtained. Furthermore, by forming the bonding layer 40 over a wide area, it is possible to reduce deviations in magnetic properties and heat dissipation properties depending on the location of the member.
Furthermore, if the bonding layer 40 is provided at least in the intermediate portion of the core member 20 and the motor frame 30 in the axial direction, torque will be generated between the motor frame 30 and the core member 20 when the core structure 10 is incorporated into a motor. Since the axially intermediate portion, which is easy to maintain, can be held, rotation of the iron core member 20 with respect to the motor frame 30 can be effectively suppressed.

[その他]
以上、本発明の実施形態について説明したが、本発明は上記の実施形態に限られない。
例えば、上記実施形態では、摩擦攪拌接合による接合層40を、鉄心部材20及びモータフレーム30の軸方向の一端面側に形成しているが、両方の端面に形成しても良い。
また、上記実施形態では、超音波接合による接合層40を、モータフレーム30の外周面における軸方向の中間部にホーン110を当接させて形成しているが、鉄心部材20の内周面にホーン110を押し当てて接合層40を形成してもよい。
また、超音波接合による接合層40を、鉄心部材20及びモータフレーム30の軸方向の中間部に形成しているが、軸方向の中間部以外又は中間部を含んで、軸方向の他の複数位置又は軸方向の全域において接合層40を形成しても良い。
[others]
Although the embodiments of the present invention have been described above, the present invention is not limited to the above embodiments.
For example, in the embodiment described above, the bonding layer 40 by friction stir welding is formed on one end surface side in the axial direction of the iron core member 20 and the motor frame 30, but it may be formed on both end surfaces.
Further, in the above embodiment, the bonding layer 40 by ultrasonic bonding is formed by bringing the horn 110 into contact with the axially intermediate portion of the outer circumferential surface of the motor frame 30; The bonding layer 40 may be formed by pressing the horn 110.
Further, the bonding layer 40 formed by ultrasonic bonding is formed at the axially intermediate portion of the iron core member 20 and the motor frame 30, but other than the axially intermediate portion or including the intermediate portion, the bonding layer 40 is The bonding layer 40 may be formed in the entire position or in the axial direction.

また、上記実施形態では、鉄心部材20が一体のステータコアであることとしたが、本発明に係る鉄心部材は、ヨーク、ティース、その他の部分が分割された分割型のコアであってもよい。この分割型のコアとする場合などには、鉄心部材を構成する電磁鋼板に、無方向性電磁鋼板でなく、方向性電磁鋼板を用いてもよい。 Further, in the above embodiment, the iron core member 20 is an integrated stator core, but the iron core member according to the present invention may be a split core in which the yoke, teeth, and other parts are divided. In the case of using this split core, for example, a grain-oriented electrical steel sheet may be used instead of a non-oriented electrical steel sheet as the electrical steel sheet constituting the core member.

また、上記実施形態では、モータフレーム30をアルミニウム又はアルミ合金とし、鉄心部材20と異種金属接合を行っているが、モータフレーム30も鋼材として、塑性流動による接合層40で接合しても良い。 Further, in the above embodiment, the motor frame 30 is made of aluminum or an aluminum alloy and is joined to the iron core member 20 by dissimilar metals, but the motor frame 30 may also be made of steel and joined by a joining layer 40 using plastic flow.

10 鉄心構造体
20 鉄心部材
21 ヨーク
22 ティース
23 スロット
30 モータフレーム
31 延出部
32 貫通孔
40 接合層
100 工具
101 先端面
102 突起部
110 ホーン
S 接合箇所
10 Core structure 20 Core member 21 Yoke 22 Teeth 23 Slot 30 Motor frame 31 Extension portion 32 Through hole 40 Bonding layer 100 Tool 101 Tip surface 102 Projection 110 Horn S Joint location

Claims (7)

円筒状の鉄心部材と、
前記鉄心部材の外周に設けられた円筒状のモータフレームと、
前記鉄心部材と前記モータフレームとの境界で全周に渡ってこれらを固定するために設けられた接合層とを備え、
前記接合層は、塑性流動を生じた前記鉄心部材の金属材料及び前記モータフレームの金属材料であるモータの鉄心構造体。
a cylindrical iron core member,
a cylindrical motor frame provided on the outer periphery of the iron core member;
a bonding layer provided at the boundary between the iron core member and the motor frame to fix them over the entire circumference;
The bonding layer is an iron core structure of a motor, which is a metal material of the iron core member and a metal material of the motor frame that have undergone plastic flow.
前記接合層は、前記鉄心部材及び前記モータフレームの面一となる軸方向の一端面に位置すると共に、摩擦攪拌接合により塑性流動を生じた状態の前記鉄心部材の金属材料及び前記モータフレームの金属材料である請求項1に記載のモータの鉄心構造体。 The bonding layer is located on one end surface in the axial direction where the core member and the motor frame are flush with each other, and the metal material of the core member and the metal of the motor frame are in a state where plastic flow has occurred due to friction stir welding. The iron core structure of a motor according to claim 1, which is made of a material. 前記接合層は、超音波接合により塑性流動を生じた状態の前記鉄心部材の金属材料及び前記モータフレームの金属材料である請求項1に記載のモータの鉄心構造体。 2. The motor core structure according to claim 1, wherein the bonding layer is a metal material of the core member and a metal material of the motor frame that have undergone plastic flow due to ultrasonic bonding. 前記接合層は、前記鉄心部材及び前記モータフレームの少なくとも軸方向の中間部に位置する請求項3に記載のモータの鉄心構造体。 The motor core structure according to claim 3, wherein the bonding layer is located at least in an axially intermediate portion of the core member and the motor frame. 円筒状の鉄心部材の外周に円筒状のモータフレームを設け、
前記鉄心部材の金属材料と前記モータフレームの金属材料との境界で全周に渡ってこれらの塑性流動により接合層を形成して前記鉄心部材と前記モータフレームとの間を接合するモータの鉄心構造体の形成方法。
A cylindrical motor frame is provided around the outer periphery of a cylindrical iron core member,
An iron core structure of a motor in which a bonding layer is formed by plastic flow at the boundary between the metal material of the iron core member and the metal material of the motor frame over the entire circumference to bond the iron core member and the motor frame. How the body is formed.
前記鉄心部材及び前記モータフレームの面一となる軸方向の一端面において、前記鉄心部材と前記モータフレームとを摩擦攪拌接合により塑性流動を生じさせて接合層を形成する請求項5に記載のモータの鉄心構造体の形成方法。 The motor according to claim 5, wherein a bonding layer is formed by causing plastic flow between the iron core member and the motor frame by friction stir welding at one end surface in the axial direction where the iron core member and the motor frame are flush with each other. How to form an iron core structure. 前記鉄心部材と前記モータフレームとを超音波接合により塑性流動を生じさせて接合層を形成する請求項5に記載のモータの鉄心構造体の形成方法。 6. The method of forming a motor core structure according to claim 5, wherein a bonding layer is formed by causing plastic flow between the core member and the motor frame by ultrasonic bonding.
JP2019144982A 2019-08-07 2019-08-07 Motor core structure and its formation method Active JP7398898B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019144982A JP7398898B2 (en) 2019-08-07 2019-08-07 Motor core structure and its formation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019144982A JP7398898B2 (en) 2019-08-07 2019-08-07 Motor core structure and its formation method

Publications (2)

Publication Number Publication Date
JP2021027733A JP2021027733A (en) 2021-02-22
JP7398898B2 true JP7398898B2 (en) 2023-12-15

Family

ID=74664936

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019144982A Active JP7398898B2 (en) 2019-08-07 2019-08-07 Motor core structure and its formation method

Country Status (1)

Country Link
JP (1) JP7398898B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002056446A1 (en) 2000-12-27 2002-07-18 Hitachi, Ltd. Dynamo-electric machine
JP2004236456A (en) 2003-01-31 2004-08-19 Honda Motor Co Ltd Rotor of induction motor, and manufacturing method for rotor of induction motor
JP2010178589A (en) 2009-02-02 2010-08-12 Mazda Motor Corp Rotating electrical machine
JP2010178598A (en) 2009-02-02 2010-08-12 Mazda Motor Corp Rotary electric machine

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5560007B2 (en) * 2009-08-26 2014-07-23 アイチエレック株式会社 Electric motor and compressor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002056446A1 (en) 2000-12-27 2002-07-18 Hitachi, Ltd. Dynamo-electric machine
JP2004236456A (en) 2003-01-31 2004-08-19 Honda Motor Co Ltd Rotor of induction motor, and manufacturing method for rotor of induction motor
JP2010178589A (en) 2009-02-02 2010-08-12 Mazda Motor Corp Rotating electrical machine
JP2010178598A (en) 2009-02-02 2010-08-12 Mazda Motor Corp Rotary electric machine

Also Published As

Publication number Publication date
JP2021027733A (en) 2021-02-22

Similar Documents

Publication Publication Date Title
JP4273118B2 (en) Method for manufacturing a stator and stator manufactured by the method
JP3786664B2 (en) Rotating electrical machine core manufacturing method
JP4938389B2 (en) Laminated core and stator
KR100950829B1 (en) Rotor of rotary electric machine and manufacturing method of the same
JP5292271B2 (en) Permanent magnet rotating electric machine
JP6002935B2 (en) Motor stator and motor
JP2010178598A (en) Rotary electric machine
JP2007252088A (en) Rotary-electric machine and manufacturing method thereof
JPH10174394A (en) Rundle core type rotating electric machine
JP5274091B2 (en) Stator manufacturing method for rotating electrical machine
JP2010148329A (en) Stator core structure of rotating electric machine
JP2001292542A (en) Manufacturing method for stator core of motor and stator
JP6633171B1 (en) Laminated core, stator and rotor
JP2010178589A (en) Rotating electrical machine
CN112737166A (en) Rotating electrical machine and method for manufacturing rotating electrical machine
JPH0582142B2 (en)
JP7398898B2 (en) Motor core structure and its formation method
JP2008155247A (en) Friction welding method, and friction welding member joined by using the method
JP2006211846A (en) Rotating electric machine
JP4062723B2 (en) Rotary motor and method of manufacturing the same
JP2006141076A (en) Stator structure
JP2005094929A (en) Manufacturing method for stator core, motor having stator core manufactured by the manufacturing method, and manufacturing equipment
JP7065666B2 (en) Joined body, rotary electric machine, and manufacturing method of rotary electric machine
JP2000184643A (en) Outer rotor for wheel-in motor
KR20160013195A (en) Electromagnetic clutch

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220316

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230307

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230822

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231205

R150 Certificate of patent or registration of utility model

Ref document number: 7398898

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150