JP7396131B2 - Distributed power source operation control device, distributed power source operation control method - Google Patents

Distributed power source operation control device, distributed power source operation control method Download PDF

Info

Publication number
JP7396131B2
JP7396131B2 JP2020037709A JP2020037709A JP7396131B2 JP 7396131 B2 JP7396131 B2 JP 7396131B2 JP 2020037709 A JP2020037709 A JP 2020037709A JP 2020037709 A JP2020037709 A JP 2020037709A JP 7396131 B2 JP7396131 B2 JP 7396131B2
Authority
JP
Japan
Prior art keywords
power source
distributed power
sequence voltage
phase difference
positive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020037709A
Other languages
Japanese (ja)
Other versions
JP2021141715A (en
Inventor
康一 中西
玄洋 三川
清次 河内
義明 伊達
圭士 藤見
広幸 小柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugoku Electric Power Co Inc
Original Assignee
Chugoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugoku Electric Power Co Inc filed Critical Chugoku Electric Power Co Inc
Priority to JP2020037709A priority Critical patent/JP7396131B2/en
Publication of JP2021141715A publication Critical patent/JP2021141715A/en
Application granted granted Critical
Publication of JP7396131B2 publication Critical patent/JP7396131B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Inverter Devices (AREA)

Description

本発明は、分散型電源の運転制御装置、分散型電源の運転制御方法に関する。 The present invention relates to a distributed power source operation control device and a distributed power source operation control method.

近年では、電力系統に対して、太陽光発電や風力発電等の再生可能エネルギーを利用した発電設備(分散型電源)が連系されるようになっている。分散型電源によって発電される電力は、再生可能エネルギーの条件(太陽光発電の場合は日照条件、風力発電の場合は風力・風向条件等)に起因して変動する。そのため、分散型電源が連系された電力系統においては、分散型電源の発電出力の変動に伴って、潮流の状況が変化して電圧変動を生じる。このとき、分散型電源の発電出力や分散型電源に設定される力率の値によっては、電力系統に現れる電圧が予め定められた電圧範囲を逸脱してしまい、例えば需要家宅の電気機器等の故障を招く虞がある。 In recent years, power generation facilities (distributed power sources) that utilize renewable energy such as solar power generation and wind power generation have been interconnected to the power grid. The power generated by distributed power sources fluctuates depending on the renewable energy conditions (sunshine conditions in the case of solar power generation, wind power and wind direction conditions in the case of wind power generation, etc.). Therefore, in a power system in which distributed power sources are interconnected, power flow conditions change and voltage fluctuations occur as the power generation output of the distributed power sources changes. At this time, depending on the power generation output of the distributed power source and the value of the power factor set for the distributed power source, the voltage appearing in the power system may deviate from the predetermined voltage range, for example, There is a risk of malfunction.

このような問題を解決する、分散型電源の運転制御のための1つの手法として、例えば、分散型電源の発電出力が最大となるときには、力率(皮相電力に占める有効電力の割合)が予め定められた一定の値となるように制御する一定力率制御方法が知られている(例えば、特許文献1を参照)。 As one method for controlling the operation of distributed power sources to solve such problems, for example, when the power generation output of a distributed power source is at its maximum, the power factor (ratio of active power to apparent power) is adjusted in advance. A constant power factor control method is known in which power factor is controlled to a predetermined constant value (for example, see Patent Document 1).

特開2017-121163号公報JP 2017-121163 Publication

しかし、長距離で負荷電流の変動が大きい電力系統に分散型電源が連系された場合、このような分散型電源に対して一定力率制御を行ったとしても、電力系統に現れる電圧を予め定められた電圧範囲内の適正な値に維持することは困難であった。 However, when a distributed power source is connected to a power system that has large load current fluctuations over long distances, even if constant power factor control is applied to such a distributed power source, the voltage appearing in the power system cannot be adjusted in advance. It was difficult to maintain proper values within the defined voltage range.

そこで、本発明は、長距離で負荷電流の変動が大きい電力系統に分散型電源を連系した場合であっても、電力系統における電圧変動を抑制することが可能な分散型電源の運転制御装置及びその運転制御方法を提供することを目的とする。 Therefore, the present invention provides an operation control device for a distributed power source that is capable of suppressing voltage fluctuations in the power system even when the distributed power source is connected to a power system that has large load current fluctuations over long distances. and its operation control method.

前述した課題を解決する主たる本発明は、電力系統に接続された電源元の出口地点における正相電圧と零相電圧との位相差と、前記電力系統に分散型電源が接続された地点における正相電圧と零相電圧との位相差と、に基づいて、前記電源元の出口地点における正相電圧と前記分散型電源の接続地点における正相電圧との位相差である相差角を算出する算出部と、前記相差角に基づいて、前記分散型電源の運転状態を制御する制御部と、を備えた分散型電源の運転制御装置である。
本発明の他の特徴については、添付図面及び本明細書の記載により明らかとなる。
The main invention for solving the above-mentioned problems is to reduce the phase difference between the positive-sequence voltage and the zero-sequence voltage at the exit point of the power source connected to the power system, and the positive phase difference at the point where the distributed power source is connected to the power system. Calculation of a phase difference angle that is a phase difference between a positive sequence voltage at an exit point of the power source and a positive sequence voltage at a connection point of the distributed power source, based on a phase difference between a phase voltage and a zero-sequence voltage. and a control unit that controls an operating state of the distributed power source based on the phase difference angle.
Other features of the invention will become apparent from the accompanying drawings and the description of this specification.

本発明によれば、長距離で負荷電流の変動が大きい電力系統に分散型電源を連系した場合であっても、例えば分散型電源の運転制御の1つとして、分散型電源の力率を適宜設定することによって、電力系統における電圧変動を抑制することが可能となる。 According to the present invention, even when a distributed power source is connected to a power system with large fluctuations in load current over a long distance, the power factor of the distributed power source can be controlled, for example, as one of the operational controls of the distributed power source. By appropriately setting it, it is possible to suppress voltage fluctuations in the power system.

電力系統に対して分散型電源が連系されていることを示す模式図である。FIG. 2 is a schematic diagram showing that distributed power sources are interconnected to a power system. 電源元の出口地点と分散型電源が接続された地点における電圧の相差角を説明するための図である。FIG. 3 is a diagram for explaining a voltage phase difference angle between an exit point of a power source and a point where a distributed power source is connected. 相差角と負荷の大きさとの関係を説明するための図である。FIG. 3 is a diagram for explaining the relationship between the phase difference angle and the magnitude of load. 相差角と負荷との関係を示す図である。It is a figure showing the relationship between phase difference angle and load. 相差角と分散型電源の発電出力との関係を説明するための図である。FIG. 3 is a diagram for explaining the relationship between the phase difference angle and the power generation output of a distributed power source. 相差角と、負荷の大きさと、分散型電源の発電出力との関係を示す図である。FIG. 3 is a diagram showing the relationship between phase difference angle, load size, and power generation output of a distributed power source. 本実施形態に係る分散型電源の運転制御装置の一例を示す図である。FIG. 1 is a diagram illustrating an example of an operation control device for a distributed power source according to the present embodiment. 本実施形態に係る分散型電源の運転制御装置の記憶部に予め記憶されるテーブル情報の一例を示す図である。FIG. 2 is a diagram showing an example of table information stored in advance in a storage unit of the operation control device for a distributed power source according to the present embodiment. 本実施形態に係る分散型電源の運転制御装置の動作の一例を示すフローチャートである。It is a flowchart which shows an example of operation of the operation control device of a distributed power supply concerning this embodiment.

本明細書および添付図面の記載により、少なくとも以下の事項が明らかとなる。
===電力系統===
図1は、電力系統に対して分散型電源が連系されていることを示す模式図である。
図1において、電力系統100は、発電機200、母線300、配電線400、分散型電源500を含んで構成されている。尚、母線300及び配電線400は、実際には3相であるが、説明の便宜上、1本の線で示すこととする。
From the description of this specification and the attached drawings, at least the following matters will become clear.
===Power system===
FIG. 1 is a schematic diagram showing that distributed power sources are interconnected with an electric power system.
In FIG. 1, a power system 100 includes a generator 200, a bus bar 300, a distribution line 400, and a distributed power source 500. Although the bus bar 300 and the distribution line 400 are actually three-phase, for convenience of explanation, they are shown as one line.

発電機200は、電力系統100に電力を供給する電源元であって、例えば発電所に設置されている。そして、発電機200の出力(電源元の出口地点)は、母線300に接続されている。 The generator 200 is a power source that supplies power to the power system 100, and is installed at a power plant, for example. The output of the generator 200 (the exit point of the power source) is connected to the bus 300.

配電線400は、負荷600(需要家)に電力を供給することができるように、母線300に接続され、母線300から電力を供給する下流側に向かって延びるように設置されている。尚、1本で示す配電線400は3相からなる1組の配電線であって、母線300には複数組の配電線400が接続されていてもよい。この場合、母線300と複数組の配電線400は、電力系統100内でバンクを形成する。 The power distribution line 400 is connected to the bus bar 300 and is installed so as to extend toward the downstream side where power is supplied from the bus bar 300 so as to be able to supply power to a load 600 (consumer). Note that the power distribution line 400 shown as one is a set of three-phase power distribution lines, and a plurality of sets of power distribution lines 400 may be connected to the bus bar 300. In this case, the busbar 300 and the plurality of sets of distribution lines 400 form a bank within the power system 100.

分散型電源500は、再生可能エネルギーを利用して電力を発電する装置である。例えば、分散型電源500としては、風力エネルギーを利用して電力を発電する風力発電装置や、太陽光エネルギーを利用して電力を発電する太陽光発電装置等が挙げられる。分散型電源500は、発電所の発電機200から供給される電力の代替となる電力を発電する装置であって、例えば需要家の個人宅内や工場敷地内に設置される。ここで、分散型電源500の発電電力が需要家で消費する電力よりも少ない場合、需要家では電力系統100から電力を買電する必要があり、一方、分散型電源500の発電電力が需要家で消費する電力よりも多く余剰となった場合、電力系統100を介して分散型電源500の余剰電力を売電することとなる。これらの買電や売電を行うために、分散型電源500は、配電線400に接続され、電力系統100に連系されている。 Distributed power source 500 is a device that generates power using renewable energy. For example, examples of the distributed power source 500 include a wind power generation device that generates power using wind energy, a solar power generation device that generates power using solar energy, and the like. The distributed power source 500 is a device that generates electric power as a substitute for the electric power supplied from the generator 200 of a power plant, and is installed, for example, in a consumer's private home or on the premises of a factory. Here, if the power generated by the distributed power source 500 is less than the power consumed by the consumer, the customer needs to purchase power from the power grid 100, and on the other hand, the power generated by the distributed power source 500 is less than the power consumed by the consumer. If the surplus power exceeds the power consumed by the distributed power source 500, the surplus power of the distributed power source 500 will be sold via the power system 100. In order to perform these power purchases and power sales, the distributed power source 500 is connected to a power distribution line 400 and interconnected to the power system 100.

分散型電源500が電力系統100に連系された場合、分散型電源500の発電電力の大きさに応じて、電力系統100には、配電線400の上流側から下流側へ向かう方向の潮流が生じるか、或いは、配電線400の下流側から上流側への逆方向へ向かう潮流(逆潮流)が生じることとなる。このように、電力系統100における潮流の方向が変化すると、配電線400に現れる電圧が変動してしまう。この電圧の変動を一定の電圧範囲に収める方法として、先に説明したような、分散型電源500の発電出力が最大となったときの力率を一定値に設定する一定力率制御方法を採用することができる。しかし、母線300から分岐する配電線400の長さが長距離に亘り、且つ、この配電線400に接続されている負荷600における負荷電流の変動が大きい場合、このような配電線400に接続された分散型電源500に対して一定力率制御方法を採用したとしても、配電線400に現れる電圧を一定の電圧範囲内となるように維持することは困難であることが現状である。 When the distributed power source 500 is connected to the power system 100, the power system 100 has a power flow from the upstream side to the downstream side of the distribution line 400, depending on the magnitude of the power generated by the distributed power source 500. Alternatively, a power flow in the opposite direction from the downstream side to the upstream side of the power distribution line 400 (reverse power flow) will occur. In this way, when the direction of the power flow in the power system 100 changes, the voltage appearing on the power distribution line 400 fluctuates. As a method to keep this voltage fluctuation within a certain voltage range, a constant power factor control method is adopted in which the power factor is set to a constant value when the power generation output of the distributed power source 500 reaches the maximum, as explained earlier. can do. However, if the length of the distribution line 400 branching from the busbar 300 is long, and the load current in the load 600 connected to this distribution line 400 fluctuates greatly, Even if a constant power factor control method is adopted for the distributed power source 500, it is currently difficult to maintain the voltage appearing on the distribution line 400 within a constant voltage range.

又、分散型電源500側では、配電線400の負荷や他の分散型電源の発電量等の変動による配電線400の負荷の変化を把握することが困難である。そのため、系統状況に応じて、分散型電源500を最適な状態で運転することは困難である。尚、配電線400の負荷とは、配電線400から供給される負荷と他の分散型電源の発電量との差を示している。 Furthermore, on the side of the distributed power source 500, it is difficult to grasp changes in the load on the distribution line 400 due to changes in the load on the distribution line 400 or the amount of power generated by other distributed power sources. Therefore, it is difficult to operate the distributed power source 500 in an optimal state depending on the system status. Note that the load on the distribution line 400 indicates the difference between the load supplied from the distribution line 400 and the amount of power generated by other distributed power sources.

そこで、長距離に亘る配電線400に負荷電流の変動が大きい負荷600が接続されている場合において、この配電線400に分散型電源500を接続して、分散型電源500を電力系統100に連系させたとき、配電線400に現れる電圧の変動を安定的に抑えることが望まれている。 Therefore, when a load 600 with large fluctuations in load current is connected to a long-distance distribution line 400, a distributed power source 500 is connected to this distribution line 400 to connect the distributed power source 500 to the power system 100. It is desired to stably suppress fluctuations in the voltage appearing on the power distribution line 400 when the system is connected to the power distribution line 400.

===母線300と分散型電源500が接続された地点の相差角===
<<母線300の正相電圧及び零相電圧の関係>>
例えば発電所に設けられる発電機200の出力地点(電源元の出口地点)である母線300に現れる正相電圧Vと零相電圧Vとの関係について以下に述べる。
=== Phase difference angle at the point where bus bar 300 and distributed power source 500 are connected ===
<<Relationship between positive sequence voltage and zero sequence voltage of bus bar 300>>
For example, the relationship between the positive-sequence voltage V s and the zero-sequence voltage V 0 appearing at the bus bar 300, which is the output point (the exit point of the power source) of the generator 200 installed in a power plant, will be described below.

電力系統100に現れる零相電圧Vは、例えば、電力系統100における3相分の対地間容量の中性点電圧を測定することによって求めることができる。この零相電圧Vは、地絡事故等によって3相分の対地間容量がアンバランスとなることによって大きな値となって発生する。例えば、零相電圧Vは、地絡事故が発生した時には数Vから数十Vの値になるが、地絡事故が発生していない時には、一般的には無電圧と認識される程度の数mVから数十mVの小さい値になる。ここで、各相の対地間容量は、電力系統100内における全ての対地間容量を足したものであるから、電力系統100内の何処であっても、3相分の対地間容量のアンバランスは変わらない。又、3相分の対地間容量のアンバランスは、負荷600の変動や分散型電源500の発電出力の変動の影響をほとんど受けることもない。よって、零相電圧Vは、負荷600や分散型電源500に関わらず、電力系統100の何処においても実質的に同じ位相を示すこととなる。つまり、発電所における母線300での正相電圧Vと零相電圧Vとの間には一定の位相差αを生じることとなる。 The zero-sequence voltage V 0 appearing in the power system 100 can be determined, for example, by measuring the neutral point voltage of the ground-to-ground capacitance for three phases in the power system 100. This zero-phase voltage V 0 is generated as a large value due to unbalance of the ground-to-ground capacitance of the three phases due to a ground fault or the like. For example, when a ground fault occurs, the zero-sequence voltage V0 ranges from several volts to several tens of volts, but when no ground fault occurs, it is generally recognized as no voltage. The value is small, ranging from several mV to several tens of mV. Here, the ground-to-ground capacity of each phase is the sum of all the ground-to-ground capacities in the power system 100, so no matter where in the power system 100, there is an imbalance in the ground-to-ground capacity for the three phases. remains unchanged. Further, the unbalance of the ground-to-ground capacity for the three phases is hardly affected by fluctuations in the load 600 or fluctuations in the power generation output of the distributed power source 500. Therefore, the zero-phase voltage V 0 exhibits substantially the same phase everywhere in the power system 100, regardless of the load 600 or the distributed power source 500. In other words, a constant phase difference α is generated between the positive-sequence voltage V s and the zero-sequence voltage V 0 at the bus bar 300 in the power plant.

<<分散型電源500の正相電圧及び零相電圧の関係>>
配電線400に対する分散型電源500の接続地点に現れる零相電圧Vは、配電線400の各相に同一容量のコンデンサを接続し、その中性点と接地との間の電圧を測定することによって求められる。この零相電圧Vは、母線300における零相電圧Vと同じであって、同じ位相を示すこととなる。尚、零相電圧Vは、例えば零相電圧検出器ZPDを用いて求めることができるが、この代わりに、配電線400の3相のシースアースの電流を測定することによっても求めることもできる。つまり、零相電圧Vを求めることができる手段であれば、零相電圧検出器ZPD以外の手段を用いてもよい。
<<Relationship between positive-sequence voltage and zero-sequence voltage of distributed power source 500>>
The zero-sequence voltage V 0 appearing at the connection point of the distributed power source 500 to the distribution line 400 can be determined by connecting capacitors of the same capacity to each phase of the distribution line 400 and measuring the voltage between the neutral point and ground. It is determined by This zero-phase voltage V 0 is the same as the zero-phase voltage V 0 at the bus bar 300, and exhibits the same phase. Note that the zero-phase voltage V 0 can be determined using, for example, a zero-phase voltage detector ZPD, but instead, it can also be determined by measuring the current of the three-phase sheath earth of the distribution line 400. . In other words, any means other than the zero-phase voltage detector ZPD may be used as long as it is capable of determining the zero-phase voltage V0 .

配電線400に対する分散型電源500の接続地点に現れる正相電圧Vは、例えば計器用変圧器VTを用いて求めることができる。 The positive sequence voltage V r appearing at the connection point of the distributed power source 500 to the distribution line 400 can be determined using, for example, a voltage transformer VT.

このようにして、分散型電源500の正相電圧Vが求められると、正相電圧Vと零相電圧Vとの位相差φも求められる。 In this manner, when the positive-sequence voltage V r of the distributed power source 500 is determined, the phase difference φ between the positive-sequence voltage V r and the zero-sequence voltage V 0 is also determined.

零相電圧Vが電力系統100の全体を通して同じであることから、母線300における正相電圧Vと零相電圧Vとの位相差αと、配電線400に対する分散型電源500の接続地点における正相電圧Vと零相電圧Vとの位相差φとを用いて、母線300における正相電圧Vと、配電線400に対する分散型電源500の接続地点における正相電圧Vとの位相差である相差角σを求めることができる。 Since the zero-sequence voltage V 0 is the same throughout the power system 100, the phase difference α between the positive-sequence voltage V s and the zero-sequence voltage V 0 at the bus bar 300 and the connection point of the distributed power source 500 to the distribution line 400 Using the phase difference φ between the positive - sequence voltage V r and the zero-sequence voltage V 0 at The phase difference angle σ, which is the phase difference of , can be determined.

<<母線300と分散型電源500が接続された地点の相差角>>
以下、図2を参照しつつ、相差角σの具体例について説明する。
図2(A)は、零相電圧Vの位相が正相電圧V,Vの位相よりも進んでいる場合の事例である。図2(B)は、零相電圧Vの位相が正相電圧Vの位相よりも遅れ、正相電圧Vの位相よりも進んでいる場合の事例である。図2(C)は、零相電圧Vの位相が正相電圧V,Vの位相よりも遅れている場合の事例である。尚、説明の便宜上、図2においては、負荷600の大きさ及び分散型電源500の発電出力は一定であることとする。又、紙面の反時計周りの方向を位相の進み方向(+)、紙面の時計回りの方向を位相の遅れ方向(-)とする。
<<Phase difference angle at the point where bus bar 300 and distributed power source 500 are connected>>
Hereinafter, a specific example of the phase difference angle σ will be described with reference to FIG.
FIG. 2A shows an example where the phase of the zero-sequence voltage V 0 is ahead of the phase of the positive-sequence voltages V s and V r . FIG. 2B shows an example in which the phase of the zero-sequence voltage V 0 lags behind the phase of the positive-sequence voltage V s and leads the phase of the positive-sequence voltage V r . FIG. 2C shows an example where the phase of the zero-sequence voltage V 0 lags behind the phases of the positive-sequence voltages V s and V r . For convenience of explanation, it is assumed in FIG. 2 that the size of the load 600 and the power generation output of the distributed power source 500 are constant. Further, the counterclockwise direction on the paper is defined as a phase leading direction (+), and the clockwise direction on the paper is defined as a phase lag direction (-).

零相電圧Vの位相は、発電機200及び分散型電源500にとって同じであることから、相差角σは、位相差αと位相差φとの差である位相差α-位相差φから求めることができる。 Since the phase of the zero-sequence voltage V0 is the same for the generator 200 and the distributed power source 500, the phase difference angle σ is determined from the phase difference α−phase difference φ, which is the difference between the phase difference α and the phase difference φ. be able to.

例えば、図2(A)の場合、零相電圧Vは正相電圧V,Vよりも位相が進んでいることから、位相差φの中に位相差αが含まれることとなるため、位相差αから位相差φを減じることによって(α-(+φ))、正相電圧Vと、正相電圧Vを境として零相電圧Vとは反対側となる正相電圧Vとの間の相差角σが求められる。又、図2(B)の場合、零相電圧Vの位相は、正相電圧Vの位相と正相電圧Vの位相との間になることから、位相差α、φに重なる角度はなく、位相差αから位相差φを減じることによって(-α-(+φ))、零相電圧Vを挟む正相電圧V,Vの間の相差角σが求められる。又、図2(C)の場合、零相電圧Vは正相電圧V,Vよりも位相が遅れていることから、位相差αの中に位相差φが含まれることとなるため、位相差αから位相差φを減じることによって(-α-(-φ))、正相電圧Vと、正相電圧Vを境として零相電圧Vとは反対側となる正相電圧Vとの間の相差角σが求められる。 For example, in the case of FIG. 2(A), since the zero-sequence voltage V 0 is ahead of the positive-sequence voltages V s and V r in phase, the phase difference α is included in the phase difference φ. , by subtracting the phase difference φ from the phase difference α (α−(+φ)), the positive-sequence voltage V s and the positive-sequence voltage V which is on the opposite side from the zero-sequence voltage V 0 with the positive-sequence voltage V s as the boundary The phase difference angle σ between r and r is determined. In addition, in the case of FIG. 2(B), since the phase of the zero-sequence voltage V 0 is between the phase of the positive-sequence voltage V s and the phase of the positive-sequence voltage V s , the angle overlapping the phase differences α and φ is Instead, by subtracting the phase difference φ from the phase difference α (−α−(+φ)), the phase difference angle σ between the positive-sequence voltages V s and V r sandwiching the zero-sequence voltage V 0 can be found. In addition, in the case of FIG. 2(C), since the zero-sequence voltage V 0 is delayed in phase from the positive-sequence voltages V s and V r , the phase difference φ is included in the phase difference α. , by subtracting the phase difference φ from the phase difference α (-α-(-φ)), the positive-sequence voltage V r and the positive phase that is opposite to the zero-sequence voltage V 0 with the positive-sequence voltage V r as the boundary The phase difference angle σ between the voltage V s and the voltage V s is determined.

<<相差角と負荷の関係>>
以下、図3を参照しつつ、相差角σと負荷600の大きさとの関係について説明する。
図3(A)は、負荷600が重負荷である場合の、配電線400上における正相電圧V及び零相電圧Vの位相差αと時間との関係を説明するための特性図である。又、図3(B)は、負荷600が軽負荷である場合の、配電線400上における正相電圧V及び零相電圧Vの位相差αと時間との関係を説明するための特性図である。尚、図3(A)(B)において、横軸は時間(msec)、縦軸は電圧(kV)を示している。又、図3(A)(B)には、それぞれ、例えば3つの電圧カーブ(実線、破線、一点鎖線)が描かれているが、3つの電圧カーブは、配電線400上において、母線300から遠ざかる方向に順に設定された地点X1~X3に現れる正相電圧Vであることとする。
<<Relationship between phase difference angle and load>>
The relationship between the phase difference angle σ and the magnitude of the load 600 will be described below with reference to FIG.
FIG. 3(A) is a characteristic diagram for explaining the relationship between the phase difference α between the positive-sequence voltage V s and the zero-sequence voltage V 0 on the distribution line 400 and time when the load 600 is a heavy load. be. Moreover, FIG. 3(B) shows a characteristic for explaining the relationship between the phase difference α between the positive-sequence voltage V s and the zero-sequence voltage V 0 on the distribution line 400 and time when the load 600 is a light load. It is a diagram. Note that in FIGS. 3A and 3B, the horizontal axis represents time (msec), and the vertical axis represents voltage (kV). In addition, in FIGS. 3A and 3B, for example, three voltage curves (a solid line, a broken line, and a one-dot chain line) are drawn, respectively. It is assumed that the positive sequence voltage V s appears at points X1 to X3 set in order in the direction of distance.

図3(A)(B)ともに、地点X1から地点X3に向かうにつれて(母線300から遠ざかるにつれて)、正相電圧V(正弦波)の振幅が徐々に小さくなり、正相電圧Vの周期が徐々に長くなっていることが分かる。ここで、負荷600が重負荷である場合の正相電圧Vと零相電圧Vとの位相差αは、負荷600が軽負荷である場合の正相電圧Vと零相電圧Vとの位相差αと比べて大きいことが分かる。この差は、母線300から最も遠く、分散型電源500の接続地点に最も近い配電線400上の地点X3において顕著である。このことより、発電機200の正相電圧Vと分散型電源500の正相電圧Vとの位相差である相差角σは、負荷600が重くなるほどに大きくなり、負荷600が軽くなるほどに小さくなることが分かる。 In both FIGS. 3A and 3B, the amplitude of the positive sequence voltage V s (sine wave) gradually decreases as it moves from point X1 to point X3 (as it moves away from the bus line 300), and the period of the positive sequence voltage V s It can be seen that it gradually becomes longer. Here, the phase difference α between the positive-sequence voltage V s and the zero-sequence voltage V 0 when the load 600 is a heavy load is the difference between the positive-sequence voltage V s and the zero-sequence voltage V 0 when the load 600 is a light load. It can be seen that the phase difference α is larger than the phase difference α. This difference is noticeable at point X3 on distribution line 400, which is farthest from busbar 300 and closest to the connection point of distributed power source 500. From this, the phase difference angle σ, which is the phase difference between the positive sequence voltage V s of the generator 200 and the positive sequence voltage V r of the distributed power source 500, increases as the load 600 becomes heavier and as the load 600 becomes lighter. You can see that it becomes smaller.

ここで、図1の電力系統100において、電力系統100の送電端となる発電機200の出力地点の正相電圧V、電力系統100の受電端となる分散型電源500の正相電圧V、配電線400のインピーダンスX(但し、説明の便宜上、電力系統100内の電気回路の抵抗分を0とする)、相差角σを用いると、受電端における有効電力Pは、式(1)にように示される。 Here, in the power system 100 of FIG. 1, the positive sequence voltage V s at the output point of the generator 200 which is the power transmission end of the power system 100, and the positive sequence voltage V r of the distributed power source 500 which is the power reception end of the power system 100 . , the impedance X of the power distribution line 400 (however, for convenience of explanation, the resistance component of the electric circuit in the power system 100 is assumed to be 0), and the phase difference angle σ, the effective power P r at the receiving end is calculated by the formula (1). It is shown as follows.

=(V/X)sinσ ・・・(1)
位相差αは、電力系統100における配電線400の各相の対地間容量のアンバランスにより発生する零相電圧Vが、発電機200の出力地点の正相電圧Vとの間に有する一定の角度である。一方、分散型電源500の正相電圧Vと零相電圧Vとの間の位相差φと、相差角σとの間には、以下の式(2)の関係が成り立つ。
P r = (V s V r /X) sin σ...(1)
The phase difference α is a constant value between the zero-sequence voltage V 0 generated due to the unbalance of the ground-to-ground capacity of each phase of the distribution line 400 in the power system 100 and the positive-sequence voltage V s at the output point of the generator 200. is the angle of On the other hand, the following equation (2) holds true between the phase difference φ between the positive-sequence voltage V r and the zero-sequence voltage V 0 of the distributed power source 500 and the phase difference angle σ.

σ=α±φ ・・・(2)
但し、φはαと同位相のときに0とする。
従って、負荷600をLとすると、Lは以下の式(3)で示される。
L=sinσ/(X/V) ・・・(3)
σ=α±φ...(2)
However, φ is set to 0 when it is in the same phase as α.
Therefore, assuming that the load 600 is L, L is expressed by the following equation (3).
L=sinσ/( X / VsVr )...(3)

式(3)は、電力系統100内の電気回路の抵抗分を省略した式であるが、電力系統100の常時の運用範囲において、σは0~30度の範囲内に収まっているため、実質的に直線として表される。つまり、負荷600と相差角σとは、実質的に比例関係を有することとなる。この関係を図4に示す。図4の横軸は負荷の大きさを示し、縦軸は相差角を示している。このことからも、負荷600の大きさに応じて相差角σが実質的に一次関数のように変化することが分かる。 Equation (3) is an equation that omits the resistance of the electric circuit in the power system 100, but in the normal operation range of the power system 100, σ is within the range of 0 to 30 degrees, so is represented as a straight line. In other words, the load 600 and the phase difference angle σ have a substantially proportional relationship. This relationship is shown in FIG. The horizontal axis in FIG. 4 shows the magnitude of the load, and the vertical axis shows the phase difference angle. This also shows that the phase difference angle σ changes substantially like a linear function depending on the magnitude of the load 600.

<<相差角と分散型電源500の発電出力との関係>>
図5を参照しつつ、相差角σと分散型電源500の発電出力との関係について説明する。
図5(A)は、分散型電源500の発電出力がない場合の、配電線400上における正相電圧V及び零相電圧Vの位相差αと時間との関係を説明するための特性図である。又、図5(B)は、分散型電源500の発電出力がある場合の、配電線400上における正相電圧V及び零相電圧Vの位相差αと時間との関係を説明するための特性図である。尚、図5(A)(B)において、横軸は時間(msec)、縦軸は電圧(kV)を示している。又、図5(A)(B)には、それぞれ、例えば3つの電圧カーブ(実線、破線、一点鎖線)が描かれているが、3つの電圧カーブは、配電線400上において、母線300から遠ざかる方向に順に設定された地点X1~X3に現れる正相電圧Vを示している。
<<Relationship between phase difference angle and power generation output of distributed power source 500>>
The relationship between the phase difference angle σ and the power generation output of the distributed power source 500 will be described with reference to FIG. 5.
FIG. 5(A) shows a characteristic for explaining the relationship between the phase difference α between the positive-sequence voltage V s and the zero-sequence voltage V 0 on the distribution line 400 and time when there is no power generation output of the distributed power source 500. It is a diagram. Further, FIG. 5(B) is for explaining the relationship between the phase difference α between the positive-sequence voltage V s and the zero-sequence voltage V 0 on the distribution line 400 and time when there is a power generation output of the distributed power source 500. FIG. Note that in FIGS. 5A and 5B, the horizontal axis represents time (msec), and the vertical axis represents voltage (kV). Furthermore, in FIGS. 5A and 5B, for example, three voltage curves (a solid line, a broken line, and a one-dot chain line) are drawn, respectively. It shows the positive-sequence voltage V s that appears at points X1 to X3 set in order in the direction of distance.

図5(A)(B)ともに、地点X1から地点X3に向かうにつれて(母線300から遠ざかるにつれて)、正相電圧V(正弦波)の振幅が徐々に小さくなり、正相電圧Vの周期が徐々に長くなっていることが分かる。ここで、分散型電源500の発電出力がない場合の正相電圧Vと零相電圧Vとの位相差αは、分散型電源500の発電出力がある場合の正相電圧Vと零相電圧Vとの位相差αと比べて大きいことが分かる。この差は、母線300から最も遠く、分散型電源500の接続地点に最も近い配電線400上の地点X3において顕著である。このことより、発電機200の正相電圧Vと分散型電源500の正相電圧Vとの位相差である相差角σは、分散型電源500の発電出力に応じて、実質的に一次関数のように変化することが分かる。 In both FIGS. 5A and 5B, the amplitude of the positive-sequence voltage V s (sine wave) gradually decreases as it moves from point X1 to point X3 (as it moves away from the bus line 300), and the period of the positive-sequence voltage V s It can be seen that it gradually becomes longer. Here, the phase difference α between the positive-sequence voltage V s and the zero-sequence voltage V 0 when there is no power generation output of the distributed power source 500 is the difference between the positive-sequence voltage V s and zero when there is a power generation output of the distributed power source 500. It can be seen that the phase difference α with respect to the phase voltage V 0 is larger. This difference is noticeable at point X3 on distribution line 400, which is farthest from busbar 300 and closest to the connection point of distributed power source 500. From this, the phase difference angle σ, which is the phase difference between the positive-sequence voltage V s of the generator 200 and the positive-sequence voltage V r of the distributed power source 500, is substantially linear depending on the power generation output of the distributed power source 500. You can see that it changes like a function.

ここで、図1の電力系統100において、負荷600が発電機200と分散型電源500との間の中間地点における配電線400に接続されている場合を考える。例えば、分散型電源500の発電出力が0から徐々に大きくなると、負荷600によって位相の遅れ側に開いていた相差角σは、徐々に小さくなる。そして、分散型電源500の発電出力が負荷600に供給されるべき電力の1/2になったときに、相差角σ=0(同位相)になる。このように、負荷600によって位相の遅れ側に開いていた相差角σが0になるまでの期間では、配電線400において電力が供給される方向は、発電機200の側から分散型電源500の側(潮流)となる。更に、分散型電源500の発電出力が負荷600に供給されるべき電力の1/2を超えて大きくなると、相差角σは、位相の進み側に開いていくこととなる。このとき、配電線400において電力が供給される方向は、分散型電源500側から発電機200の側(逆潮流)となる。 Here, in the power system 100 of FIG. 1, consider a case where the load 600 is connected to the distribution line 400 at an intermediate point between the generator 200 and the distributed power source 500. For example, when the power generation output of the distributed power source 500 gradually increases from 0, the phase difference angle σ, which was opened on the phase lag side due to the load 600, gradually becomes smaller. Then, when the power generation output of the distributed power source 500 becomes 1/2 of the power to be supplied to the load 600, the phase difference angle σ=0 (same phase). In this way, during the period until the phase difference angle σ, which was opened on the phase lag side due to the load 600, becomes 0, the direction in which power is supplied in the distribution line 400 is from the generator 200 side to the distributed power source 500 side. side (current). Furthermore, when the power generation output of the distributed power source 500 becomes larger than 1/2 of the power to be supplied to the load 600, the phase difference angle σ becomes wider on the phase leading side. At this time, the direction in which power is supplied in the distribution line 400 is from the distributed power source 500 side to the generator 200 side (reverse power flow).

以上説明した、相差角σと、負荷600の大きさと、分散型電源500の発電出力との間の関係は、例えば、図6に示すように、3次元の特性図として表すことができる。つまり、相差角σは、負荷600の大きさ及び分散型電源500の発電出力のそれぞれとの1次関数的な関係と対応付けることによって、負荷600の大きさ及び分散型電源500の発電出力の値に3次元的に対応する値として定まることとなる。 The relationship among the phase difference angle σ, the size of the load 600, and the power generation output of the distributed power source 500, which has been explained above, can be expressed as a three-dimensional characteristic diagram, for example, as shown in FIG. 6. In other words, the phase difference angle σ is calculated by associating the magnitude of the load 600 and the generated output of the distributed power source 500 with a linear function relationship. It is determined as a value that three-dimensionally corresponds to .

===分散型電源500の運転制御装置===
以下、図7を参照しつつ、分散型電源500の運転制御の一例として、力率を設定する運転制御装置について説明する。
===Operation control device of distributed power source 500===
Hereinafter, as an example of the operation control of the distributed power source 500, an operation control device that sets the power factor will be described with reference to FIG. 7.

図7は、本実施形態に係る分散型電源500の運転制御装置の一例を示す図である。
分散型電源500の運転制御装置700は、常時の状態において、発電機200の出力地点である母線300の正相電圧Vと分散型電源500の正相電圧Vとの位相差である相差角σを算出し、この相差角σの値に応じて、配電線400における電圧変動を予め定められた電圧範囲内に抑制することができるように、分散型電源500の力率の値を設定する装置である。尚、分散型電源500側では、発電機200の出力地点における正相電圧Vと零相電圧Vとの位相差αを把握することができないため、定数として予め設定された値をαとして用いることとする。
FIG. 7 is a diagram showing an example of an operation control device for the distributed power source 500 according to the present embodiment.
The operation control device 700 of the distributed power source 500 controls the phase difference, which is the phase difference between the positive sequence voltage V s of the bus bar 300, which is the output point of the generator 200, and the positive sequence voltage V r of the distributed power source 500 in a normal state. The angle σ is calculated, and the value of the power factor of the distributed power source 500 is set according to the value of the phase difference angle σ so that voltage fluctuations in the distribution line 400 can be suppressed within a predetermined voltage range. It is a device that does Note that on the side of the distributed power source 500, since it is not possible to grasp the phase difference α between the positive-sequence voltage V s and the zero-sequence voltage V 0 at the output point of the generator 200, a preset value as a constant is set as α. We will use it.

運転制御装置700は、分散型電源500の力率の値を上記のように設定するための手段として、第1算出部720、第2算出部730、制御部740、記憶部750を含んで構成されている。尚、運転制御装置700は、例えばマイクロコンピュータを含んで構成され、その機能は、当該マイクロコンピュータのためのプログラムに基づくソフトウエア処理によって実現されることとする。運転制御装置700は、分散型電源500内部に一体的に設けられてもよいし、分散型電源500の外部に隣接して設けられてもよい。 The operation control device 700 includes a first calculation section 720, a second calculation section 730, a control section 740, and a storage section 750 as means for setting the power factor value of the distributed power source 500 as described above. has been done. Note that the operation control device 700 is configured to include, for example, a microcomputer, and its functions are realized by software processing based on a program for the microcomputer. The operation control device 700 may be provided integrally inside the distributed power source 500 or may be provided adjacent to the outside of the distributed power source 500.

第1算出部720は、分散型電源500の配電線400と接続される側に現れる正相電圧Vと零相電圧Vとの位相差φを算出する。分散型電源500の出力地点における正相電圧Vは、例えば計器用変圧器VT(不図示)で測定され、この測定された正相電圧Vを示す情報が第1算出部720に供給される。又、分散型電源500の出力地点における零相電圧Vは、分散型電源500の出力地点における配電線400の各相に同一容量のコンデンサを接続し、その中性点と接地との間の電圧を例えば零相電圧検出器ZPDで測定し、この測定された零相電圧Vを示す情報が第1算出部720に供給される。そして、第1算出部720は、供給された正相電圧V及び零相電圧Vの情報から、位相差φを算出する。 The first calculation unit 720 calculates the phase difference φ between the positive-sequence voltage V r and the zero-sequence voltage V 0 appearing on the side of the distributed power source 500 connected to the distribution line 400 . The positive sequence voltage Vr at the output point of the distributed power source 500 is measured, for example, by a voltage transformer VT (not shown), and information indicating the measured positive sequence voltage Vr is supplied to the first calculation unit 720. Ru. Furthermore, the zero-sequence voltage V 0 at the output point of the distributed power source 500 is determined by connecting capacitors of the same capacity to each phase of the distribution line 400 at the output point of the distributed power source 500, and connecting the capacitors between the neutral point and ground. The voltage is measured by, for example, a zero-phase voltage detector ZPD, and information indicating the measured zero-phase voltage V 0 is supplied to the first calculation unit 720 . Then, the first calculation unit 720 calculates the phase difference φ from the supplied information on the positive-sequence voltage V r and the zero-sequence voltage V 0 .

ここで、地絡事故が発生していない常時において、分散型電源500の出力側で零相電圧検出器ZPDによって検出される零相電圧Vは、数mV~数十mVとかなり小さい値であるため、高調波発生源の多い一般の需要家や分散型電源500の設置地点では、零相電圧Vが高調波ノイズに埋もれてしまい、零相電圧Vを正しく検出できなくなる虞がある。そこで、零相電圧検出器ZPDにおいて検出される零相電圧Vから高調波ノイズを除去するための、バンドパスフィルタ又はローパスフィルタ等のフィルタ760が設けられている。このフィルタ760は、分散型電源500の正相電圧Vに対しても同様の高周波ノイズを除去するために設けられてもよい。 Here, at all times when no ground fault occurs, the zero-sequence voltage V 0 detected by the zero-sequence voltage detector ZPD on the output side of the distributed power source 500 is a fairly small value of several mV to several tens of mV. Therefore, in general consumers with many harmonic generation sources or at the installation point of the distributed power supply 500, the zero-sequence voltage V 0 may be buried in harmonic noise, and there is a risk that the zero-sequence voltage V 0 cannot be detected correctly. . Therefore, a filter 760 such as a band pass filter or a low pass filter is provided to remove harmonic noise from the zero phase voltage V0 detected by the zero phase voltage detector ZPD. This filter 760 may be provided to remove similar high-frequency noise from the positive-sequence voltage Vr of the distributed power source 500.

ここで、零相電圧検出器ZPDにおいて、各相の対地間に接続される容量は比較的小容量のものであることから、零相電圧Vを検出するに際して、高周波ノイズをより多く除去可能な高性能のフィルタが要求される。そこで、バンドパスフィルタ又はローパスフィルタの機能を果たすフィルタ760として、例えばアクティブフィルタを用いることができる。アクティブフィルタは、能動素子であるオペアンプやトランジスタ等に、抵抗やコンデンサを組み合わせて構成した回路であって、パッシブフィルタに比べて、増幅機能を有するとともにロールオフ特性(減衰の傾き)を高められる等の利点を有するため、フィルタ760として採用するには好適である。 Here, in the zero-sequence voltage detector ZPD, since the capacitance connected between each phase and the ground is relatively small, it is possible to remove more high-frequency noise when detecting the zero-sequence voltage V0 . A high-performance filter is required. Therefore, for example, an active filter can be used as the filter 760 that functions as a band-pass filter or a low-pass filter. An active filter is a circuit constructed by combining active elements such as operational amplifiers and transistors with resistors and capacitors. Compared to passive filters, it has an amplification function and has improved roll-off characteristics (attenuation slope). Since it has the following advantages, it is suitable for use as the filter 760.

第2算出部730は、定数として予め設定された位相差αと、第1算出部720によって得られた位相差φとから、図2に示すような相差角σを算出する。 The second calculation unit 730 calculates the phase difference angle σ as shown in FIG. 2 from the phase difference α preset as a constant and the phase difference φ obtained by the first calculation unit 720.

記憶部750には、図6に示すような、知見や実験等によって得られた、相差角σと、負荷600の大きさと、分散型電源500の発電出力とを対応付けた情報が予め記憶されている。 The storage unit 750 stores in advance information, as shown in FIG. 6, that associates the phase difference angle σ, the size of the load 600, and the power generation output of the distributed power source 500, obtained through knowledge, experiments, etc. ing.

そして、制御部740は、第3算出部730によって相差角σが求められると、この相差角σから式(3)に従って負荷600の大きさを推定する。負荷600は、例えば、重負荷又は軽負荷の何れか一方に割り振られる。つまり、このとき推定された負荷600の大きさが予め定められた基準値よりも大きい値であれば、負荷600は重負荷に割り振られ、負荷600の大きさが基準値よりも小さい値であれば、負荷600は軽負荷に割り振られる。そして、制御部740は、記憶部750を参照することによって、このときの負荷600の大きさと、分散型電源500の発電出力とから、分散型電源500が脱落(急停止)した際の電圧変化が最も小さくなる力率を求め、この力率を分散型電源500に設定する。これは、分散型電源500の発電出力が変動しても、電力系統100側の電圧に影響を与えないことが、分散型電源500側に求められており、分散型電源500が脱落した際の電圧変化が最も小さくなる力率を求めることで、分散型電源500の発電出力変動時の分散型電源側の電圧変動を最小化しようという考えに基づいている。 Then, when the phase difference angle σ is determined by the third calculation unit 730, the control unit 740 estimates the size of the load 600 from this phase difference angle σ according to equation (3). The load 600 is assigned to either a heavy load or a light load, for example. In other words, if the size of the load 600 estimated at this time is larger than the predetermined reference value, the load 600 is assigned to heavy load, and even if the size of the load 600 is smaller than the reference value, the load 600 is assigned to heavy load. For example, load 600 is assigned to light load. Then, by referring to the storage unit 750, the control unit 740 determines the voltage change when the distributed power source 500 is dropped (suddenly stopped) based on the size of the load 600 at this time and the generated output of the distributed power source 500. Find the power factor that makes the smallest value, and set this power factor in the distributed power source 500. This is because the distributed power source 500 is required to have no effect on the voltage on the power system 100 side even if the power generation output of the distributed power source 500 fluctuates. This is based on the idea of minimizing voltage fluctuations on the distributed power source side when the power generation output of the distributed power source 500 fluctuates by determining the power factor that causes the smallest voltage change.

図8は、運転制御装置700の記憶部750に予め記憶されるテーブル情報の一例を示す図である。 FIG. 8 is a diagram showing an example of table information stored in advance in the storage unit 750 of the operation control device 700.

分散型電源500の発電出力は、例えば、5段階の発電出力(0[kW]、500[kW]、1000[kW]、1500[kW]、2000[kW])に分類されている。負荷600は、例えば、分散型電源500の5段階それぞれの発電出力ごとに、上述した基準値を境に重負荷と軽負荷に分類されている。力率は、例えば、6段階の力率(0.95、0.94、0.93、0.92、0.91、0.90)に分類されている。 The power generation output of the distributed power source 500 is classified into five levels of power generation output (0 [kW], 500 [kW], 1000 [kW], 1500 [kW], and 2000 [kW]), for example. For example, the load 600 is classified into heavy load and light load based on the above-mentioned reference value for each of the five levels of power generation output of the distributed power source 500. The power factor is classified into six levels of power factors (0.95, 0.94, 0.93, 0.92, 0.91, 0.90), for example.

そして、分散型電源500の1つの発電出力と、負荷600(重負荷/軽負荷)と、1つの力率との間において、分散型電源500が脱落する前の分散型電源500が接続された地点の正相電圧Vと、分散型電源500が脱落した後の分散型電源500が接続された地点の正相電圧Vと、分散型電源500の脱落前後における分散型電源500が接続された地点の正相電圧Vの差電圧と、が対応付けられて、記憶部750に記憶されている。 The distributed power source 500 before the distributed power source 500 is disconnected is connected between one power generation output of the distributed power source 500, the load 600 (heavy load/light load), and one power factor. The positive sequence voltage V r at the point, the positive sequence voltage V r at the point where the distributed power source 500 is connected after the distributed power source 500 is disconnected, and the positive sequence voltage V r at the point where the distributed power source 500 is connected before and after the distributed power source 500 is disconnected. and the difference voltage between the positive sequence voltage Vr at the point where the positive sequence voltage V r is stored in association with each other in the storage unit 750 .

例えば、分散型電源500の発電出力が500[kW]、負荷600が重負荷、分散型電源500の力率が0.95の場合、分散型電源500が脱落する前の分散型電源500が接続された地点の正相電圧Vは6356[V]、分散型電源500が脱落した後の分散型電源500が接続された地点の正相電圧Vは6257[V]、分散型電源500の脱落前後における分散型電源500が接続された地点の正相電圧Vの差電圧は-99[V]と、記憶部750に記憶されている。尚、図中の差電圧の欄に示される黒三角は、分散型電源500が脱落した後に分散型電源500が接続された地点の正相電圧Vが低下したことを示している。 For example, if the power generation output of the distributed power source 500 is 500 [kW], the load 600 is a heavy load, and the power factor of the distributed power source 500 is 0.95, the distributed power source 500 before the distributed power source 500 is disconnected is connected. The positive sequence voltage V r at the point where the distributed power source 500 is connected is 6356 [V], and the positive sequence voltage V r at the point where the distributed power source 500 is connected after the distributed power source 500 is disconnected is 6257 [V]. The difference voltage between the positive sequence voltage Vr at the point where the distributed power source 500 is connected before and after the disconnection is -99 [V], which is stored in the storage unit 750. In addition, the black triangle shown in the differential voltage column in the figure indicates that the positive-sequence voltage V r at the point where the distributed power source 500 was connected decreased after the distributed power source 500 was disconnected.

図8に示されるテーブル情報は、分散型電源500の発電出力が0[kW]以外の場合において、分散型電源500の発電出力と、負荷600(重負荷/軽負荷)と、分散型電源500の力率との組み合わせとして48通り用意されており、記憶部750に記憶されている。尚、負荷600が重負荷及び軽負荷の場合において、分散型電源500の脱落前後における分散型電源500が接続された地点の正相電圧Vの差電圧が最小となる組合せについては、説明の便宜上、太線で囲むこととする。 The table information shown in FIG. 8 includes the power generation output of the distributed power source 500, the load 600 (heavy load/light load), and the power generation output of the distributed power source 500 when the power generation output of the distributed power source 500 is other than 0 [kW]. There are 48 combinations of the power factor and the power factor, which are stored in the storage unit 750. In addition, in the case where the load 600 is a heavy load or a light load, the combination that minimizes the voltage difference between the positive sequence voltage Vr at the point where the distributed power source 500 is connected before and after the distributed power source 500 is connected is as described in the explanation. For convenience, it is surrounded by a thick line.

制御部740は、実際に求められた相差角σから、分散型電源500の該当する発電出力と負荷600(重負荷又は軽負荷)を求め、記憶部750に記憶されたテーブル情報を参照することによって、このときに、分散型電源500の脱落前後における分散型電源500が接続された地点の正相電圧Vの差電圧が最小となる力率を求め、分散型電源500に対して、求められた力率に設定するための力率設定信号を出力する。例えば、分散型電源500の発電出力が500[kW]、負荷600が重負荷であることが相差角σから判明した場合、6通りの組み合わせが選択されるが、この中で、最も小さい差電圧は-43[V]であって、このときの力率は0.90である。よって、制御部740は、分散型電源500の力率を0.90に設定するための力率制御信号を出力する。 The control unit 740 determines the corresponding power generation output and load 600 (heavy load or light load) of the distributed power source 500 from the actually determined phase difference angle σ, and refers to the table information stored in the storage unit 750. At this time, find the power factor that minimizes the voltage difference between the positive sequence voltage Vr at the point where the distributed power source 500 is connected before and after the distributed power source 500 is disconnected, and calculate the power factor for the distributed power source 500 by Outputs a power factor setting signal to set the power factor to the specified power factor. For example, if it is found from the phase difference angle σ that the power generation output of the distributed power source 500 is 500 [kW] and that the load 600 is a heavy load, six combinations are selected, and among these, the lowest difference voltage is -43 [V], and the power factor at this time is 0.90. Therefore, the control unit 740 outputs a power factor control signal for setting the power factor of the distributed power source 500 to 0.90.

===分散型電源500の運転制御フローの一例===
図9は、本実施形態に係る分散型電源500の運転制御動作の一例を示すフローチャートである。尚、説明の便宜上、分散型電源500の発電出力は、例えば1000[kW]であることとする。
===Example of operation control flow of distributed power source 500===
FIG. 9 is a flowchart showing an example of the operation control operation of the distributed power source 500 according to the present embodiment. For convenience of explanation, it is assumed that the power generation output of the distributed power source 500 is, for example, 1000 [kW].

先ず、第1算出部720によって、分散型電源500の正相電圧Vと零相電圧Vとの差である位相差φを算出する(ステップS1)。 First, the first calculation unit 720 calculates the phase difference φ, which is the difference between the positive-sequence voltage V r and the zero-sequence voltage V 0 of the distributed power source 500 (step S1).

次に、第2算出部730によって、あらかじめ定められた値の位相差αと、ステップS1で算出された位相差φから、母線300及び分散型電源500が接続された地点の正相電圧の位相差である相差角σを算出する(ステップS2)。 Next, the second calculation unit 730 calculates the position of the positive-sequence voltage at the point where the bus 300 and the distributed power source 500 are connected, based on the phase difference α having a predetermined value and the phase difference φ calculated in step S1. A phase difference angle σ, which is a phase difference, is calculated (step S2).

次に、制御部740によって、相差角σから、式(3)に従って負荷600の大きさを推定し、このときの負荷600が基準値よりも大きい場合には重負荷に割り振り、一方、このときの負荷600が基準値よりも小さい場合には軽負荷に割り振る(ステップS3)。 Next, the control unit 740 estimates the size of the load 600 from the phase difference angle σ according to equation (3), and if the load 600 at this time is larger than the reference value, it is assigned to heavy load; If the load 600 is smaller than the reference value, the load is assigned to light load (step S3).

次に、制御部740によって、記憶部750に記憶されているテーブル情報を参照し、該当する分散型電源500の発電出力、負荷600(重負荷又は軽負荷)、分散型電源500の力率の組合せ(6通り)を抽出する。この場合、図8の太破線で囲まれた組合せが抽出される組合せとなる(ステップS4)。 Next, the control unit 740 refers to the table information stored in the storage unit 750 and calculates the power generation output of the corresponding distributed power source 500, the load 600 (heavy load or light load), and the power factor of the distributed power source 500. Extract combinations (6 ways). In this case, the combinations surrounded by thick broken lines in FIG. 8 are the combinations to be extracted (step S4).

次に、制御部740によって、抽出された6通りの組合せの中から、分散型電源500の脱落前後における分散型電源500が接続された地点の正相電圧Vの差電圧が最小となる組合せを更に抽出する。この場合、分散型電源500の脱落前後において、分散型電源500が接続された地点の正相電圧Vの差電圧が最小(-49[V])となる組合せを抽出する(ステップS5)。 Next, the control unit 740 selects a combination that minimizes the voltage difference between the positive sequence voltage V r at the point where the distributed power source 500 is connected before and after the distributed power source 500 is connected, from among the six extracted combinations. further extract. In this case, a combination is extracted in which the voltage difference between the positive sequence voltage V r at the point where the distributed power source 500 is connected is the minimum (-49 [V]) before and after the distributed power source 500 is disconnected (step S5).

次に、制御部740によって、ステップS5で抽出された組合せに該当する力率0.90を選択し、分散型電源500の力率を0.90に設定するための力率設定信号を出力する(ステップS6)。 Next, the control unit 740 selects a power factor of 0.90 that corresponds to the combination extracted in step S5, and outputs a power factor setting signal for setting the power factor of the distributed power source 500 to 0.90. (Step S6).

このようにして、分散型電源500の力率を設定することにより、配電線400における電圧変動が予め定められた電圧範囲から逸脱しないように抑制することが可能となる。 By setting the power factor of distributed power source 500 in this manner, it is possible to suppress voltage fluctuations in distribution line 400 from deviating from a predetermined voltage range.

===まとめ===
以上説明したように、本実施形態に係る分散型電源500の運転制御装置700は、電力系統100に接続された発電所における発電機200の出力地点の正相電圧Vと零相電圧Vとの位相差αと、電力系統100に分散型電源500が接続された地点における正相電圧Vと零相電圧Vとの位相差φと、に基づいて、発電機200の出力地点における正相電圧Vと分散型電源500の接続地点における正相電圧Vとの位相差である相差角σを算出する算出部(第1算出部720、第2算出部730)と、相差角σに基づいて、分散型電源500の運転状態を制御する制御部740と、を備えている。
===Summary===
As explained above, the operation control device 700 of the distributed power source 500 according to the present embodiment controls the positive-sequence voltage V s and the zero-sequence voltage V 0 at the output point of the generator 200 in the power plant connected to the power system 100. at the output point of the generator 200 based on the phase difference α between the positive-sequence voltage V r and the zero-sequence voltage V 0 at the point where the distributed power source 500 is connected to the power system 100. A calculation unit (first calculation unit 720, second calculation unit 730) that calculates a phase difference angle σ, which is a phase difference between the positive sequence voltage V s and the positive sequence voltage V r at the connection point of the distributed power source 500; The control unit 740 controls the operating state of the distributed power source 500 based on σ.

本実施形態では、制御部740は、相差角σに基づいて、分散型電源500の運転制御として、分散型電源500の力率を制御することとする。 In this embodiment, the control unit 740 controls the power factor of the distributed power source 500 based on the phase difference angle σ as the operational control of the distributed power source 500.

具体的には、制御部740は、相差角σと、分散型電源500の発電出力及び分散型電源が連系している電力系統100に接続された負荷600の大きさの少なくとも一方と、の関係に基づいて、分散型電源500の力率を制御する。 Specifically, the control unit 740 determines the phase difference angle σ and at least one of the power generation output of the distributed power source 500 and the size of the load 600 connected to the power system 100 to which the distributed power source is interconnected. The power factor of the distributed power source 500 is controlled based on the relationship.

より具体的には、制御部740は、分散型電源500が脱落したときの、分散型電源500が接続された地点における正相電圧Vの変動幅が最小となるように、分散型電源500の力率を制御する。 More specifically, the control unit 740 controls the distributed power source 500 so that when the distributed power source 500 is disconnected, the fluctuation width of the positive sequence voltage V r at the point where the distributed power source 500 is connected is minimized. Control the power factor of

これにより、長距離で負荷電流の変動が大きい電力系統100に分散型電源500を連系した場合であっても、例えば分散型電源500の運転制御の1つとして、分散型電源500の力率を本実施形態のように適宜設定することによって、電力系統100における電圧変動を予め定められた電圧範囲内に抑制することが可能となる。 As a result, even when the distributed power source 500 is connected to the power system 100 that has large load current fluctuations over a long distance, for example, the power factor of the distributed power source 500 can be controlled as one of the operation controls of the distributed power source 500. By appropriately setting as in this embodiment, it becomes possible to suppress voltage fluctuations in the power system 100 within a predetermined voltage range.

又、運転制御装置700は、電力系統100に分散型電源500が接続された地点における零相電圧Vを検出する零相電圧検出器(例えばZPD)と、零相電圧Vから高調波ノイズを除去するフィルタ760と、を更に有していてもよい。これにより、零相電圧Vに含まれる高調波ノイズを除去できるため、分散型電源500の力率を精度よく設定することが可能となり、ひいては、電力系統100における電圧変動を予め定められた電圧範囲内により確実に抑制することが可能となる。 The operation control device 700 also includes a zero-sequence voltage detector (for example, ZPD) that detects the zero-sequence voltage V 0 at the point where the distributed power source 500 is connected to the power system 100, and a zero-sequence voltage detector (for example, ZPD) that detects harmonic noise from the zero-sequence voltage V 0. It may further include a filter 760 for removing. As a result, harmonic noise included in the zero-sequence voltage V 0 can be removed, making it possible to accurately set the power factor of the distributed power source 500 and, in turn, reducing voltage fluctuations in the power system 100 to a predetermined voltage. It becomes possible to suppress the noise more reliably within the range.

尚、上記の実施形態は、本発明の理解を容易にするためのものであり、本発明を限定して解釈するためのものではない。本発明は、その趣旨を逸脱することなく、変更、改良され得るとともに、本発明にはその等価物も含まれる。 Note that the above embodiments are for facilitating understanding of the present invention, and are not intended to be interpreted as limiting the present invention. The present invention may be modified and improved without departing from the spirit thereof, and the present invention also includes equivalents thereof.

本実施形態では、分散型電源500の運転制御として、その力率を相差角σに応じた値に設定することを開示したが、それに限定されない。例えば、求められた相差角σが予め定められた角度を超えた場合に、脱調の可能性が高まったと判断し、分散型電源500を電力系統100から解列させるような制御を行ってもよい。 In the present embodiment, the operation control of the distributed power source 500 is disclosed in which the power factor is set to a value according to the phase difference angle σ, but the present invention is not limited thereto. For example, if the obtained phase difference angle σ exceeds a predetermined angle, it is determined that the possibility of step-out has increased, and control is performed to disconnect the distributed power source 500 from the power system 100. good.

100 電力系統
200 発電機
300 母線
400 配電線
500 分散型電源
600 負荷
700 運転制御装置
720 第1算出部
730 第2算出部
740 制御部
750 記憶部
760 フィルタ
100 Power system 200 Generator 300 Bus bar 400 Distribution line 500 Distributed power source 600 Load 700 Operation control device 720 First calculation section 730 Second calculation section 740 Control section 750 Storage section 760 Filter

Claims (9)

電力系統に接続された電源元の出口地点における正相電圧と零相電圧との位相差と、前記電力系統に分散型電源が接続された地点における正相電圧と零相電圧との位相差と、に基づいて、前記電源元の出口地点における正相電圧と前記分散型電源の接続地点における正相電圧との位相差である相差角を算出する算出部と、
前記相差角に基づいて、前記分散型電源の運転状態を制御する制御部と、
を備えたことを特徴とする分散型電源の運転制御装置。
The phase difference between the positive-sequence voltage and the zero-sequence voltage at the exit point of the power source connected to the power system, and the phase difference between the positive-sequence voltage and the zero-sequence voltage at the point where the distributed power source is connected to the power system. , a calculation unit that calculates a phase difference angle that is a phase difference between a positive sequence voltage at an exit point of the power source and a positive sequence voltage at a connection point of the distributed power source, based on
a control unit that controls the operating state of the distributed power source based on the phase difference angle;
An operation control device for a distributed power source, characterized by comprising:
前記制御部は、前記相差角に基づいて、前記分散型電源の力率を制御することを特徴とする請求項1に記載の分散型電源の運転制御装置。 The operation control device for a distributed power source according to claim 1, wherein the control unit controls a power factor of the distributed power source based on the phase difference angle. 前記制御部は、前記相差角と、前記分散型電源の発電出力及び前記分散型電源が連系している前記電力系統に接続された負荷の大きさの少なくとも一方と、の関係に基づいて、前記分散型電源の力率を制御することを特徴とする請求項2に記載の分散型電源の運転制御装置。 The control unit is based on the relationship between the phase difference angle and at least one of the power generation output of the distributed power source and the size of a load connected to the power system to which the distributed power source is interconnected. 3. The operation control device for a distributed power source according to claim 2, wherein the power factor of the distributed power source is controlled. 前記制御部は、前記分散型電源が脱落したときの、前記分散型電源の接続地点における正相電圧の変動幅が最小となるように、前記分散型電源の力率を制御する
ことを特徴とする請求項3に記載の分散型電源の運転制御装置。
The control unit controls the power factor of the distributed power source so that when the distributed power source is disconnected, a fluctuation width of the positive-sequence voltage at a connection point of the distributed power source is minimized. The operation control device for a distributed power source according to claim 3.
前記電力系統に前記分散型電源が接続された地点における零相電圧を検出する零相電圧検出器と、
前記零相電圧から高調波ノイズを除去するフィルタと、
を更に備えたことを特徴とする請求項1に記載の分散型電源の運転制御装置。
a zero-sequence voltage detector that detects a zero-sequence voltage at a point where the distributed power source is connected to the power system;
a filter that removes harmonic noise from the zero-sequence voltage;
The operation control device for a distributed power source according to claim 1, further comprising the following.
電力系統に接続された電源元の出口地点における正相電圧と零相電圧との位相差と、前記電力系統に分散型電源が接続された地点における正相電圧と零相電圧との位相差と、に基づいて、前記電源元の出口地点における正相電圧と前記分散型電源の接続地点における正相電圧との位相差である相差角を算出する第1ステップと、
前記相差角に基づいて、前記分散型電源の運転状態を制御する第2ステップと、
を含むことを特徴とする分散型電源の運転制御方法。
The phase difference between the positive-sequence voltage and the zero-sequence voltage at the exit point of the power source connected to the power system, and the phase difference between the positive-sequence voltage and the zero-sequence voltage at the point where the distributed power source is connected to the power system. A first step of calculating a phase difference angle, which is a phase difference between the positive sequence voltage at the exit point of the power source and the positive sequence voltage at the connection point of the distributed power source, based on ,
a second step of controlling the operating state of the distributed power source based on the phase difference angle;
A method for controlling the operation of a distributed power source, the method comprising:
前記第2ステップにおいて、前記相差角に基づいて、前記分散型電源の力率を制御することを特徴とする請求項6に記載の分散型電源の運転制御方法。 7. The method for controlling operation of a distributed power source according to claim 6, wherein in the second step, a power factor of the distributed power source is controlled based on the phase difference angle. 前記第2ステップにおいて、前記相差角と、前記分散型電源の発電出力及び前記分散型電源が連系している前記電力系統に接続された負荷の大きさの少なくとも一方と、の関係に基づいて、前記分散型電源の力率を制御することを特徴とする請求項7に記載の分散型電源の運転制御方法。 In the second step, based on the relationship between the phase difference angle and at least one of the power generation output of the distributed power source and the size of the load connected to the power system to which the distributed power source is interconnected. 8. The method for controlling operation of a distributed power source according to claim 7, further comprising controlling a power factor of the distributed power source. 前記第2ステップにおいて、前記分散型電源が脱落したときの、前記分散型電源の接続地点における正相電圧の変動幅が最小となるように、前記分散型電源の力率を制御することを特徴とする請求項8に記載の分散型電源の運転制御方法。 In the second step, the power factor of the distributed power source is controlled so that the fluctuation width of the positive sequence voltage at the connection point of the distributed power source is minimized when the distributed power source is disconnected. The method for controlling operation of a distributed power source according to claim 8.
JP2020037709A 2020-03-05 2020-03-05 Distributed power source operation control device, distributed power source operation control method Active JP7396131B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020037709A JP7396131B2 (en) 2020-03-05 2020-03-05 Distributed power source operation control device, distributed power source operation control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020037709A JP7396131B2 (en) 2020-03-05 2020-03-05 Distributed power source operation control device, distributed power source operation control method

Publications (2)

Publication Number Publication Date
JP2021141715A JP2021141715A (en) 2021-09-16
JP7396131B2 true JP7396131B2 (en) 2023-12-12

Family

ID=77669221

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020037709A Active JP7396131B2 (en) 2020-03-05 2020-03-05 Distributed power source operation control device, distributed power source operation control method

Country Status (1)

Country Link
JP (1) JP7396131B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004266961A (en) 2003-03-03 2004-09-24 Chubu Electric Power Co Inc Phase modification method for power system utilizing distributed power supply
JP2017041960A (en) 2015-08-19 2017-02-23 中国電力株式会社 Distributed power supply power factor selection device, distributed power supply power factor selection method, and program
JP2017121163A (en) 2016-08-10 2017-07-06 田淵電機株式会社 Distributed power supply system and power conversion device
JP2019118182A (en) 2017-12-27 2019-07-18 株式会社日立製作所 Power generation system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5186739A (en) * 1975-01-29 1976-07-29 Hitachi Ltd ITSUSEN CHIRAKUJIKOKENSHUTSUKEIDENKI
JPH0898550A (en) * 1994-09-19 1996-04-12 Kyushu Electric Power Co Inc Solar power generation device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004266961A (en) 2003-03-03 2004-09-24 Chubu Electric Power Co Inc Phase modification method for power system utilizing distributed power supply
JP2017041960A (en) 2015-08-19 2017-02-23 中国電力株式会社 Distributed power supply power factor selection device, distributed power supply power factor selection method, and program
JP2017121163A (en) 2016-08-10 2017-07-06 田淵電機株式会社 Distributed power supply system and power conversion device
JP2019118182A (en) 2017-12-27 2019-07-18 株式会社日立製作所 Power generation system

Also Published As

Publication number Publication date
JP2021141715A (en) 2021-09-16

Similar Documents

Publication Publication Date Title
US7319576B2 (en) Apparatus and method for providing differential protection for a phase angle regulating transformer in a power system
US9106152B2 (en) Method for stabilizing an electric grid
Guerrero et al. Decentralized control for parallel operation of distributed generation inverters in microgrids using resistive output impedance
JP6087531B2 (en) Power converter
WO2016017244A1 (en) Power conversion control device and solar power generation system
KR101664328B1 (en) Switching board capable of automatic power factor compensation using fuzzy-engine
CN106063102B (en) Voltage source converter
JPH11511960A (en) Method and apparatus for reactive power compensation
KR101529889B1 (en) Switchgear capable of power factor correction
KR100326103B1 (en) Control device of power conversion device
Rath et al. A comprehensive review on microgrid protection: issues and challenges
Arulampalam et al. Fast and adaptive under frequency load shedding and restoration technique using rate of change of frequency to prevent blackouts
Xu et al. Positive sequence differential impedance protection for distribution network with IBDGs
Esfahani et al. Loadability improvement of unbalanced hybrid AC-DC microgrids using a supervisory control scheme for interlinking converters
JP7396131B2 (en) Distributed power source operation control device, distributed power source operation control method
Laaksonen Protection scheme for island operated medium-voltage microgrid
JP5833338B2 (en) Low voltage distribution line impedance calculation device
JP4131861B2 (en) Unbalance compensation apparatus and method, power supply circuit
Liu et al. Control and protection cooperation strategy for voltage instability
Dewadasa et al. Line protection in inverter supplied networks
JP4320228B2 (en) Control device for self-excited converter
JP2008104262A (en) Islanding pevention for apparatus distributed power unit
JP2006025549A (en) Power supply device and power system equipped with the same
Laaksonen Enhanced Multi-Criteria-Based Passive Islanding Detection Scheme
Dhagate et al. Design and performance evaluation of 3-phase photovoltaic integrated UPQC

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230822

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230823

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230908

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231031

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231113

R150 Certificate of patent or registration of utility model

Ref document number: 7396131

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150