JP7393780B2 - Screening method for gap junction function regulators - Google Patents

Screening method for gap junction function regulators Download PDF

Info

Publication number
JP7393780B2
JP7393780B2 JP2019149966A JP2019149966A JP7393780B2 JP 7393780 B2 JP7393780 B2 JP 7393780B2 JP 2019149966 A JP2019149966 A JP 2019149966A JP 2019149966 A JP2019149966 A JP 2019149966A JP 7393780 B2 JP7393780 B2 JP 7393780B2
Authority
JP
Japan
Prior art keywords
gap junction
cell
cells
plaque
gap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019149966A
Other languages
Japanese (ja)
Other versions
JP2021029134A (en
Inventor
和作 神谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Juntendo University
Original Assignee
Juntendo University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Juntendo University filed Critical Juntendo University
Priority to JP2019149966A priority Critical patent/JP7393780B2/en
Publication of JP2021029134A publication Critical patent/JP2021029134A/en
Application granted granted Critical
Publication of JP7393780B2 publication Critical patent/JP7393780B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、ギャップ結合プラークの断片化やギャップ結合の機能を制御し得る素材の評価又は選択方法に関する。 The present invention relates to a method for evaluating or selecting a material that can control the fragmentation of gap junction plaques and the function of gap junctions.

ヒトをはじめとする多細胞生物において細胞間連絡(細胞間コミュニケーション)は最も基本的な生物機能の1つである。ギャップ結合は、隣接する細胞間を直接連絡するチャネルであり、隣接細胞からそれぞれ供与されたコネクソン(ヘミチャネル)と呼ばれる膜タンパク質複合体が細胞外領域で結合して高分子複合体(ギャップ結合プラーク)を形成している。1つのコネクソンはコネキシンと呼ばれる4回膜貫通型タンパク質が中央のポアを囲んで6量体を形成したものである。ギャップ結合はイオン、セカンドメッセンジャー、代謝物質等の分子量1000以下の低分子を通すことが知られており、細胞間の常性維持や細胞分化の際のシグナル伝達などに不可欠であることされている。 In multicellular organisms including humans, intercellular communication is one of the most basic biological functions. Gap junctions are channels that directly communicate between adjacent cells, and membrane protein complexes called connexons (hemichannels) donated from adjacent cells bind together in the extracellular region to form macromolecular complexes (gap junction plaques). ) is formed. A connexon consists of four transmembrane proteins called connexins surrounding a central pore to form a hexamer. Gap junctions are known to pass small molecules with a molecular weight of less than 1000, such as ions, second messengers, and metabolites, and are essential for maintaining intercellular homeostasis and signal transmission during cell differentiation. .

コネキシン遺伝子の変異の中には発生・心臓の拍動・神経伝達に異常を来すもの、白内障や難聴といった病気を引き起こすものが数多く報告されている。例えば、近年、本発明者らは、遺伝性難聴で最も頻度の高いコネキシン26をコードするGJB2遺伝子の変異における初期分子病態にギャップ結合プラークの断片化が見られること、正常なコネキシン26の存在下では他のコネキシンを含むギャップ結合は集積、安定化して巨大プラークを形成するが、コネキシン26が変異または欠損した際には、ギャップ結合プラークが断片化することを明らかにしている(非特許文献1)。
一方で、コネキシン26が癌転移と密接に関わり、コネキシン26の機能を生化学的に抑制することにより癌の転移が抑制されることが報告されている(特許文献1)。
Many connexin gene mutations have been reported to cause abnormalities in development, heartbeat, and nerve transmission, as well as diseases such as cataracts and hearing loss. For example, in recent years, the present inventors have shown that fragmentation of gap junction plaques is seen in the early molecular pathogenesis of mutations in the GJB2 gene, which encodes connexin 26, which is the most common cause of inherited hearing loss, and that fragmentation of gap junction plaques is observed in the presence of normal connexin 26. have shown that gap junctions containing other connexins accumulate and stabilize to form giant plaques, but when connexin 26 is mutated or deleted, gap junction plaques become fragmented (Non-patent Document 1). ).
On the other hand, it has been reported that connexin 26 is closely related to cancer metastasis, and that cancer metastasis is suppressed by biochemically suppressing the function of connexin 26 (Patent Document 1).

したがって、ギャップ結合プラークの断片化を制御できる薬剤は、ギャップ結合を介した細胞間コミュニケーションの機能異常に関連する疾患の治療剤や癌転移抑制剤となり得ると考えられる。 Therefore, it is thought that drugs that can control the fragmentation of gap junction plaques can serve as therapeutic agents for diseases associated with dysfunctional intercellular communication via gap junctions and cancer metastasis inhibitors.

特開2001-17184号公報Japanese Patent Application Publication No. 2001-17184

Kamiya, J. Clin. Invest. 124, 1598-1607 (2014)Kamiya, J. Clin. Invest. 124, 1598-1607 (2014)

本発明は、ギャップ結合プラークの断片化又はギャップ結合の機能を制御し得る素材を、簡易に且つ効率よく選抜するための方法を提供することに関する。 The present invention relates to providing a method for simply and efficiently selecting a material that can control the fragmentation of gap junction plaques or the function of gap junctions.

本発明者は、断片化されたギャップ結合プラークを発現する細胞をマルチウェルプレート上で培養し、形成されるギャップ結合プラークをイメージングし、1細胞の細胞領域に接するギャップ結合プラークの最大径、最大面積又は最小真円度を評価することにより、当該ギャップ結合プラークの断片化又はギャップ結合の機能を制御できる素材を効率的にスクリーニングできることを見出した。 The present inventor cultured cells expressing fragmented gap junction plaques on multiwell plates, imaged the formed gap junction plaques, and determined the maximum diameter and maximum diameter of gap junction plaques in contact with the cell area of one cell. We have found that by evaluating the area or minimum circularity, it is possible to efficiently screen for materials that can control the fragmentation of the gap junction plaque or the function of the gap junction.

すなわち、本発明は、以下の工程(a)~(f)を含む、ギャップ結合プラーク断片化制御剤又はギャップ結合機能制御剤の評価又は選択方法を提供するものである。
(a)断片化されたギャップ結合プラークを形成し得る細胞をマルチウェルプレート上で培養する工程
(b)前記工程で培養された培養細胞に被験物質を接触させる工程
(c)ギャップ結合プラーク、細胞膜及び細胞核を可視化する工程
(d)前記ギャップ結合プラークを含む領域の画像を取得する工程
(e)該取得画像から1細胞の細胞領域に接するギャップ結合プラークの直径、面積又は真円度を測定し、その中から最大径、最大面積又は最小真円度を選択して記録する工程
(f)前記最大径、最大面積又は最小真円度を基準値と比較し、ギャップ結合プラーク断片化制御剤又はギャップ結合機能制御剤を評価又は選択する工程
That is, the present invention provides a method for evaluating or selecting a gap junction plaque fragmentation controlling agent or a gap junction function controlling agent, which includes the following steps (a) to (f).
(a) A step of culturing cells that can form fragmented gap junction plaques on a multiwell plate (b) A step of bringing a test substance into contact with the cultured cells cultured in the above step (c) A gap junction plaque, a cell membrane and (d) obtaining an image of the region containing the gap junction plaque; (e) measuring the diameter, area, or roundness of the gap junction plaque in contact with the cell region of one cell from the obtained image. , a step of selecting and recording the maximum diameter, maximum area, or minimum circularity from among them (f) comparing the maximum diameter, maximum area, or minimum circularity with a reference value, and comparing the maximum diameter, maximum area, or minimum circularity with a reference value, and determining the gap junction plaque fragmentation control agent or Step of evaluating or selecting a gap junction function controlling agent

本発明の方法によれば、マルチウェルプレートの1ウェルの中で1千~10万の細胞のギャップ結合の形状データを高速で連続的且つ正確に得ることができ、ギャップ結合プラーク断片化制御剤又はギャップ結合機能制御剤の選抜を大規模で効率的に行うことが可能である。 According to the method of the present invention, gap junction shape data of 1,000 to 100,000 cells in one well of a multiwell plate can be obtained continuously and accurately at high speed, and gap junction plaque fragmentation control agent Alternatively, it is possible to efficiently select agents for controlling gap junction function on a large scale.

全自動イメージングサイトメーターで撮影された細胞の画像。緑:1細胞の境界(細胞膜)、水色:細胞核、赤:ギャップ結合プラーク。右図は拡大図(矢印:ギャップ結合プラーク)。Cell images taken with a fully automatic imaging cytometer. Green: boundary of one cell (cell membrane), light blue: cell nucleus, red: gap junction plaque. The right image is an enlarged view (arrow: gap junction plaque). ギャップ結合プラークにおけるプラークの直径と真円度を示す模式図。Schematic diagram showing plaque diameter and circularity in gap junction plaques. 被験物質添加後の1細胞のギャップ結合プラークの最大径、最大面積及び最小真円度の測定結果。Measurement results of maximum diameter, maximum area, and minimum roundness of gap junction plaque of one cell after addition of test substance. ギャップ結合プラーク断片化抑制剤添加後の1細胞のギャップ結合プラークの最大径、最大面積又は最小真円度の測定結果と、直径、面積又は真円度の平均値を1細胞のデータとして記録した場合の測定結果との比較。The measurement results of the maximum diameter, maximum area, or minimum roundness of the gap junction plaque of one cell after addition of the gap junction plaque fragmentation inhibitor and the average value of the diameter, area, or roundness were recorded as data for one cell. Comparison with the measurement results in case.

本発明のギャップ結合プラーク断片化制御剤又はギャップ結合機能制御剤を評価又は選択する方法は、以下の工程(a)~(f)を含むものである。
(a)断片化されたギャップ結合プラークを形成し得る細胞をマルチウェルプレート上で培養する工程
(b)前記工程で培養された培養細胞に被験物質を接触させる工程
(c)ギャップ結合プラーク、細胞膜及び細胞核を可視化する工程
(d)前記ギャップ結合プラークを含む領域の画像を取得する工程
(e)該取得画像から1細胞の細胞領域に接するギャップ結合プラークの直径、面積又は真円度を測定し、その中から最大径、最大面積又は最小真円度を選択して記録する工程
(f)前記最大径、最大面積又は最小真円度を基準値と比較し、ギャップ結合プラーク断片化制御剤又はギャップ結合機能制御剤を評価又は選択する工程
The method of evaluating or selecting a gap junction plaque fragmentation controlling agent or a gap junction function controlling agent of the present invention includes the following steps (a) to (f).
(a) A step of culturing cells that can form fragmented gap junction plaques on a multiwell plate (b) A step of bringing a test substance into contact with the cultured cells cultured in the above step (c) A gap junction plaque, a cell membrane and (d) obtaining an image of the region containing the gap junction plaque; (e) measuring the diameter, area, or roundness of the gap junction plaque in contact with the cell region of one cell from the obtained image. , a step of selecting and recording the maximum diameter, maximum area, or minimum circularity from among them (f) comparing the maximum diameter, maximum area, or minimum circularity with a reference value, and comparing the maximum diameter, maximum area, or minimum circularity with a reference value, and determining the gap junction plaque fragmentation control agent or Step of evaluating or selecting a gap junction function controlling agent

本発明において、「ギャップ結合」とは、隣り合う上皮細胞をつなぎ、隣り合う細胞間の小分子やイオンの輸送や活動電位の伝搬のような細胞間コミュニケーション機能を持つ細胞間結合を意味する。
「ギャップ結合プラーク」は、隣接する細胞膜上のコネクソン(connexon)同士が接合したギャップ結合チャネル(gap junctional channel)が数千個集合した複合体を指す。ここで、コネクソンは、コネキシン(connexin;Cx)のホモ6量体を意味する。
In the present invention, "gap junction" refers to an intercellular junction that connects adjacent epithelial cells and has intercellular communication functions such as transport of small molecules and ions between adjacent cells and propagation of action potentials.
“Gap junctional plaque” refers to a complex consisting of several thousand gap junctional channels in which connexons on adjacent cell membranes join together. Here, connexon means a homohexamer of connexin (Cx).

コネキシンは、20種以上のコネキシン蛋白質ファミリーが確認されており、その分布は組織特異性を示す。例えば、蝸牛では分子量26,000のコネキシンと分子量30,000のコネキシンが主体であり、心臓では分子量43,000のコネキシンが主体である。それぞれCx26、Cx30、Cx43と表わし、コネキシン26、コネキシン30、コネキシン43と呼ばれている。
各組織において発現するコネキシンを以下に示す。同じ組織内に複数のコネキシンが共存し、協同してギャップ結合の形成を担う場合もある。
・血管(内皮:Cx40、Cx37、平滑筋:Cx43)
・肝臓(Cx32、Cx26)
・膵臓(β細胞:Cx36、外分泌腺:Cx32)
・水晶体(上皮:Cx43、線維:Cx46、Cx50)
・内耳(蝸牛:Cx26、Cx30)
・心臓(洞房結節:Cx45、心房筋:Cx43、Cx45、Cx40、房室結節:Cx45、ヒス束:Cx40、プルキンエ線維:Cx40、Cx43、心室筋:Cx43、Cx45)
・神経系(星状膠細胞:Cx43、Cx30、Cx26、希突起膠細胞:Cx32、Cx29、Cx47、ミエリン鞘:Cx32、上衣細胞:Cx43、ニューロン:Cx36)
More than 20 types of connexin protein families have been confirmed, and their distribution shows tissue specificity. For example, in the cochlea, connexins with a molecular weight of 26,000 and connexins with a molecular weight of 30,000 predominate, and in the heart, connexins with a molecular weight of 43,000 predominate. They are expressed as Cx26, Cx30, and Cx43, respectively, and are called connexin 26, connexin 30, and connexin 43.
Connexins expressed in each tissue are shown below. In some cases, multiple connexins coexist within the same tissue and work together to form gap junctions.
- Blood vessels (endothelium: Cx40, Cx37, smooth muscle: Cx43)
・Liver (Cx32, Cx26)
・Pancreas (β cell: Cx36, exocrine gland: Cx32)
・Lens (epithelium: Cx43, fibers: Cx46, Cx50)
・Inner ear (cochlea: Cx26, Cx30)
・Heart (sino-atrial node: Cx45, atrial muscle: Cx43, Cx45, Cx40, atrioventricular node: Cx45, bundle of His: Cx40, Purkinje fibers: Cx40, Cx43, ventricular muscle: Cx43, Cx45)
・Nervous system (astrocytes: Cx43, Cx30, Cx26, oligodendrocytes: Cx32, Cx29, Cx47, myelin sheath: Cx32, ependymal cells: Cx43, neurons: Cx36)

工程(a)において、「断片化されたギャップ結合プラークを形成し得る細胞」とは、正常なコネキシンの発現が制御され、断片化されたギャップ結合プラークを形成し得る細胞を意味し、例えばCx26ノックアウトマウス由来の内耳細胞、Cx26ノックアウトマウス由来の幹細胞(iPS細胞)から分化誘導した内耳細胞(文献:Fukunaga, Stem Cell Reports, 2016, 7(6), 1023-1036)の他、断片化されたギャップ結合プラークを形成するように遺伝子工学的に操作された組換え細胞が挙げられる。
断片化されたギャップ結合プラークを形成するように遺伝子工学的に操作された組換え細胞としては、例えば、Cx30のみを強制発現するHela細胞(非特許文献1)や正常なギャップ結合形成機能を喪失したコネキシン変異体を発現するように遺伝的に操作された組換え細胞が挙げられる。
コネキシン変異体としては、コネキシンを構成するアミノ酸において少なくとも1つのアミノ酸残基の欠失、他のアミノ酸残基への置換、他のアミノ酸残基の付加又は挿入が為され、正常なギャップ結合形成機能を喪失したコネキシン分子が挙げられ、好ましくはアミノ酸残基が他のアミノ酸残基へ置換された変異体である。アミノ酸残基の変異は、アミノ酸配列中の1つの領域に導入されてもよいが、複数の異なる領域に導入されてもよい。変異の数は少なくとも1つであればよく、好ましくは1~50個、1~30個、1~20個、1~10個又は1~5個であり得る。
例えば、Cx26のアミノ酸配列(配列番号1)の75番目のアルギニン残基をトリプトファン残基に置換(R75W)したCx26変異体、75番目のアルギニン残基をグルタミン残基に置換(R75Q)したCx26変異体、143番目のアルギニン残基をグルタミン残基に置換(R143Q)したCx26変異体、179番目のアスパラギン酸残基をアスパラギン残基に置換(D179N)したCx26変異体、184番目のアルギニン残基をグルタミン残基に置換(R184Q)したCx26変異体、235番目のシステイン残基を欠失(235delC)させたCx26変異体、45番目のグリシン残基をグルタミン酸残基に置換し且つ136番目のチロシン残基を他のアミノ酸酸残基に置換(G45E/Y136X)したCx26変異体等が挙げられる。
In step (a), "cells capable of forming fragmented gap junction plaques" refers to cells in which normal connexin expression is regulated and capable of forming fragmented gap junction plaques, such as Cx26 Inner ear cells derived from knockout mice, inner ear cells induced to differentiate from stem cells (iPS cells) derived from Cx26 knockout mice (Reference: Fukunaga, Stem Cell Reports, 2016, 7(6), 1023-1036), and fragmented inner ear cells Includes recombinant cells that have been genetically engineered to form gap junction plaques.
Examples of recombinant cells that have been genetically engineered to form fragmented gap junction plaques include HeLa cells that forcibly express only Cx30 (Non-Patent Document 1) and cells that have lost normal gap junction formation function. recombinant cells that have been genetically engineered to express connexin mutants.
Connexin mutants include the deletion of at least one amino acid residue, substitution with another amino acid residue, addition or insertion of another amino acid residue in the amino acids that constitute connexin, and normal gap junction formation function. Examples include connexin molecules in which the amino acid residue has been lost, preferably a mutant in which the amino acid residue is substituted with another amino acid residue. Mutations in amino acid residues may be introduced into one region in the amino acid sequence, or may be introduced into multiple different regions. The number of mutations may be at least one, preferably 1 to 50, 1 to 30, 1 to 20, 1 to 10, or 1 to 5.
For example, a Cx26 mutant in which the 75th arginine residue of the Cx26 amino acid sequence (SEQ ID NO: 1) is replaced with a tryptophan residue (R75W), and a Cx26 mutant in which the 75th arginine residue in the Cx26 amino acid sequence (SEQ ID NO: 1) is replaced with a glutamine residue (R75Q). Cx26 mutant with the 143rd arginine residue replaced with a glutamine residue (R143Q), Cx26 mutant with the 179th aspartic acid residue replaced with an asparagine residue (D179N), and the 184th arginine residue replaced with an asparagine residue (D179N). Cx26 mutant with glutamine residue substituted (R184Q), Cx26 mutant with cysteine residue at position 235 deleted (235delC), glycine residue at position 45 replaced with glutamic acid residue and tyrosine residue at position 136 Examples include Cx26 mutants in which the group is replaced with other amino acid residues (G45E/Y136X).

コネキシン変異体を発現するように遺伝的に操作された組換え細胞は、コネキシン変異体をコードする核酸が発現可能に宿主細胞に導入されている細胞、好ましくはコネキシン変異体をコードする遺伝子が恒常的に発現可能なように宿主細胞に導入されている細胞であり、コネキシン変異体をコードする核酸が、染色体外要素として当該核酸が複製可能となるように導入されている細胞、又は当該核酸が染色体組み込みにより当該核酸が複製可能となるように導入されている細胞が挙げられる。 A recombinant cell genetically engineered to express a connexin variant is a cell in which a nucleic acid encoding a connexin variant has been introduced into a host cell capable of expressing it, preferably a cell in which the gene encoding the connexin variant is constitutively present. A cell into which a nucleic acid encoding a connexin variant has been introduced in such a way that the nucleic acid can be replicated as an extrachromosomal element, or a cell in which the nucleic acid is Examples include cells into which the nucleic acid has been introduced so as to be replicable through chromosomal integration.

ここで、核酸はDNA、RNA、mRNA、cDNA、cRNAの何れでも良い。当該コネキシン変異体をコードする核酸が発現可能に宿主細胞に導入されている細胞は、前記コネキシン変異体をコードする核酸と、用いられる宿主細胞におけるコネキシン変異体の発現に適したベクター(大腸菌のプラスミド、酵母のプラスミド、レトロウイルスベクター等の動物ウイルスベクター)とを連結させることにより得られたDNA断片を宿主細胞に導入することにより得ることができる。宿主細胞へのコネキシン変異体をコードする核酸の導入は、例えば、公知の形質転換、トランスフェクション等の方法、エレクトロポレーション法、リン酸カルシウム法、リポフェクション法、DEAEデキストラン法、パーティクルガン法、ウイルスを利用した方法等に準じて行なうことができる。 Here, the nucleic acid may be any of DNA, RNA, mRNA, cDNA, and cRNA. The cell into which the nucleic acid encoding the connexin variant has been introduced into a host cell capable of expressing the connexin variant contains the nucleic acid encoding the connexin variant and a vector (E. coli plasmid) suitable for expressing the connexin variant in the host cell used. , a yeast plasmid, or an animal virus vector such as a retrovirus vector), and the resulting DNA fragment can be obtained by introducing the resulting DNA fragment into a host cell. Nucleic acids encoding connexin variants can be introduced into host cells using, for example, known methods such as transformation and transfection, electroporation, calcium phosphate method, lipofection method, DEAE dextran method, particle gun method, and viruses. It can be carried out according to the method etc.

コネキシン変異体をコードする核酸としては、コネキシンをコードする核酸配列上の1つ以上のヌクレオチドに対する突然変異導入、又は該ヌクレオチド配列に対する別のヌクレオチド配列の置換若しくは挿入、或いは該遺伝子の配列の一部若しくは全部の削除などが為された核酸が挙げられる。上記突然変異導入や、ヌクレオチド配列の置換若しくは挿入のための具体的な手法としては、紫外線照射、部位特異的変異導入、及びSOE-PCR法や相同組換え法、などを挙げることができる。 Nucleic acids encoding connexin variants include mutagenesis of one or more nucleotides on the connexin-encoding nucleic acid sequence, or substitution or insertion of another nucleotide sequence into the nucleotide sequence, or a part of the sequence of the gene. Alternatively, examples include nucleic acids that have been completely deleted. Specific methods for the above-mentioned mutation introduction and nucleotide sequence substitution or insertion include ultraviolet irradiation, site-specific mutagenesis, SOE-PCR method, homologous recombination method, and the like.

また、前記宿主細胞としては、前記コネキシン変異体ポリペプチドをコードする核酸が効率よく発現され、かつ培養が容易なものであればよく、例えば、Hela細胞、アフリカツメガエル卵母細胞、チャイニーズハムスター卵巣細胞(CHO)、human embryonic kidney(HEK)細胞、Sf-9 insect細胞等が挙げられる。 Further, the host cell may be any cell that can efficiently express the nucleic acid encoding the connexin variant polypeptide and is easy to culture, such as HeLa cells, Xenopus oocytes, Chinese hamster ovary cells, etc. (CHO), human embryonic kidney (HEK) cells, Sf-9 insect cells, and the like.

断片化されたギャップ結合プラークを形成し得る細胞は、96well、384well、1536wellなどのマルチウェルプレート上で培養される。ここで、培養に用いられる培地としては、当該細胞が生育するのに適した成分、例えば、グルコース、アミノ酸、ペプトン、ビタミン、細胞増殖促進因子(例えば、細胞成長因子、ホルモン、結合タンパク質、細胞接着因子、脂質)、血清(例えば、FBS、FCS等)、塩化カルシウム、塩化マグネシウム等を成分とする培地であればよい。前記培地は、市販されている培地であってもよく、例えばD-MEM培地、Ham’s F-12培地、MEM培地等が挙げられる。 Cells capable of forming fragmented gap junction plaques are cultured on multiwell plates such as 96 wells, 384 wells, and 1536 wells. Here, the culture medium used includes ingredients suitable for the growth of the cells, such as glucose, amino acids, peptone, vitamins, cell growth promoting factors (e.g., cell growth factors, hormones, binding proteins, cell adhesion). Any medium may be used as long as it contains components such as factors, lipids), serum (eg, FBS, FCS, etc.), calcium chloride, magnesium chloride, etc. The medium may be a commercially available medium, such as D-MEM medium, Ham's F-12 medium, MEM medium, and the like.

工程(b)において、断片化されたギャップ結合プラークを形成し得る細胞と、被験物質との接触は、例えば被験物質を所定の濃度になるように予め培養液中に添加した後、断片化されたギャップ結合プラークを形成し得る細胞を培地に載置すること、或いは、断片化されたギャップ結合プラークを形成し得る細胞が載置された培地に、被験物質を所定の濃度になるように添加することにより行うことができる。
ここで、断片化されたギャップ結合プラークを形成し得る細胞の播種時の細胞濃度は、例えば96ウェルプレートを使用した場合、5000~20000cells/ウェルとするのが好ましい。また、被験物質の添加濃度は、10~1000nMとするのが好ましい。
In step (b), the cells capable of forming fragmented gap junction plaques are brought into contact with the test substance, for example, by adding the test substance to the culture medium in advance to a predetermined concentration, and then fragmenting the cells. Placing cells capable of forming fragmented gap junction plaques in a medium, or adding a test substance to a predetermined concentration to a medium containing cells capable of forming fragmented gap junction plaques. This can be done by
Here, the cell concentration at the time of seeding of cells capable of forming fragmented gap junction plaques is preferably 5,000 to 20,000 cells/well when a 96-well plate is used, for example. Further, the concentration of the test substance added is preferably 10 to 1000 nM.

尚、本発明において、被験物質としては、特に限定されず、天然に存在する物質であっても、化学的又は生物学的方法等で人工的に合成した物質であってもよく、また化合物であっても、組成物若しくは混合物であってもよい。 In the present invention, the test substance is not particularly limited, and may be a naturally occurring substance, a substance artificially synthesized by chemical or biological methods, or a compound. It may be a composition or a mixture.

断片化されたギャップ結合プラークを形成し得る細胞と被験物質との接触は、室温(25℃~37℃)で通常24~72時間程度培養するのが好ましい。 For contact between cells capable of forming fragmented gap junction plaques and the test substance, it is preferable to culture them at room temperature (25° C. to 37° C.) for usually about 24 to 72 hours.

次いで、工程(c)において、ギャップ結合プラーク、細胞膜及び細胞核が可視化される。可視化は、必要に応じて細胞を固定、透過処理、ブロッキングした後に、蛍光色素及び/又は抗体コンジュゲート等の染色試薬を用いて染色することにより行われる。
これらの試薬による細胞の染色は、例えば、対応する細胞染色試薬を細胞に添加し、室温~37℃で所定の時間インキュベートすることにより行われる。
ギャップ結合プラークの可視化は、抗コネキシン抗体と蛍光標識二次抗体による免疫蛍光染色法を用いることにより行うことできる。
細胞膜は、スフィンゴ糖脂質GM1を特異的に認識する蛍光標識コレラ毒素Bサブユニット(CtxB)等を用いて標識することや、膜貫通タンパク質であるカドヘリンを抗カドヘリン抗体を用いて標識することにより、可視化することが可能である。
細胞核の可視化は、公知の核染色試薬、例えばDAPI、プロピジウムヨージド(PI)、ヘキスト33342などを用いることにより行うことが可能である。
Then, in step (c), gap junction plaques, cell membranes and cell nuclei are visualized. Visualization is performed by fixing, permeabilizing, and blocking cells as necessary, and then staining them with a staining reagent such as a fluorescent dye and/or an antibody conjugate.
Staining of cells with these reagents is performed, for example, by adding the corresponding cell staining reagent to cells and incubating at room temperature to 37° C. for a predetermined period of time.
Visualization of gap junction plaques can be performed by using an immunofluorescent staining method using an anti-connexin antibody and a fluorescently labeled secondary antibody.
Cell membranes can be labeled with a fluorescently labeled cholera toxin B subunit (CtxB) that specifically recognizes the glycosphingolipid GM1, or by labeling cadherin, a transmembrane protein, with an anti-cadherin antibody. It is possible to visualize.
Visualization of cell nuclei can be performed using known nuclear staining reagents such as DAPI, propidium iodide (PI), Hoechst 33342, and the like.

上記細胞の可視化の際には、被験物質の副作用による細胞死を計数するべく、必要に応じて、断片化PARPや抗活性型カスパーゼ3等のアポトーシスマーカーを標識、検出することができる。 When visualizing the cells, if necessary, apoptotic markers such as fragmented PARP and anti-active caspase 3 can be labeled and detected in order to count cell death due to side effects of the test substance.

次いで、工程(d)において前記ギャップ結合プラークを含む領域の画像が取得される。
すなわち、前工程で可視化された、ギャップ結合、細胞膜、細胞核、更にはアポトーシスマーカーの可視化画像が取得される。画像の取得は、全自動イメージングサイトメーター(GE社、IN Cell Analyzer 2200など)を用いて行うことができる。
例えば、ギャップ結合に関してはコネキシンを標識した緑色蛍光の焦点の合う部分を自動認識し、その焦点を中心にZ軸方向に4μm程度の厚みの合成画像(2.5D)を取得する。これによりギャップ結合プラーク全体について表層側から基底部側までの全体像が得られる。細胞境界(細胞膜)を識別する赤色蛍光、核を識別するDAPIの蛍光も同様に画像取得される(図1参照)。画像は、1ウェルにつき10~50視野取得するのがよい。
Then, in step (d) an image of the region containing the gap junction plaque is acquired.
That is, visualized images of gap junctions, cell membranes, cell nuclei, and even apoptosis markers visualized in the previous step are obtained. Image acquisition can be performed using a fully automatic imaging cytometer (GE, IN Cell Analyzer 2200, etc.).
For example, regarding gap junctions, the focused part of green fluorescence labeled with connexin is automatically recognized, and a composite image (2.5D) with a thickness of about 4 μm in the Z-axis direction is obtained with the focused focus as the center. This provides an overall image of the entire gap junction plaque from the superficial side to the basal side. Images of red fluorescence, which identifies cell boundaries (cell membranes), and DAPI fluorescence, which identifies nuclei, are similarly acquired (see FIG. 1). Images are preferably acquired from 10 to 50 fields per well.

次いで、工程(e)において、前記取得画像から1細胞の細胞領域に接するギャップ結合プラークの直径、面積又は真円度を測定し、その中から最大径、最大面積又は最小真円度が選択され記録される。
画像の解析は、画像解析ソフトウェア(GE社、IN Cell Investigatorなど)を用い、以下に示す手順で、ギャップ結合プラークの形状データが取得される。
先ず、細胞膜情報画像から個々の単一細胞の細胞領域を認識させる。具体的には、赤色蛍光の示す範囲全体をCell-Preとして認識させ、その中で蛍光強度が周囲より強い部分をMembraneとして認識させる。細胞核情報は単一細胞の指標として認識させる。Cell-PreからMembraneを差し引いたときに囲まれる範囲で内部に細胞核情報が一点のみ存在するものを1細胞単位として解析する。
Next, in step (e), the diameter, area, or circularity of the gap junction plaque in contact with the cell area of one cell is measured from the acquired image, and the maximum diameter, maximum area, or minimum circularity is selected from among them. recorded.
Image analysis is performed using image analysis software (GE, IN Cell Investigator, etc.), and the shape data of the gap junction plaque is obtained by the following procedure.
First, the cell region of each single cell is recognized from the cell membrane information image. Specifically, the entire range indicated by the red fluorescence is recognized as the Cell-Pre, and a part of the range where the fluorescence intensity is stronger than the surrounding area is recognized as the Membrane. Cell nucleus information is recognized as an indicator of a single cell. Cells in which only one cell nucleus information exists within the range enclosed when Membrane is subtracted from Cell-Pre are analyzed as one cell unit.

次にギャップ結合プラーク情報をTargetとして認識させる。次いで、認識した1細胞と前記Targetが含まれる或いは接点のあるギャップ結合プラークの直径、面積、真円度が計測され、その中から、最大径、最大面積又は最小真円度の測定値が1細胞のデータとして記録される。
ここで、ギャップ結合プラークの直径とは、コネキシン免疫染色で標識された対象物の最大径であり、面積とは同対象物の面積であり、真円度とは対象物が真円に近いほど1に近く、反対に正円から変形して楕円、扁平、線状に近くなるほど0に近い値を示す(図2参照)。
この測定により、一度に多数の細胞のギャップ結合サイズのデータを得ることが可能である。例えば96ウェルプレートの1ウェルの中で1視野100細胞の測定を10視野で行う。これにより1ウェル1000細胞以上の数値データを得ることができる。
Next, gap junction plaque information is recognized as a target. Next, the diameter, area, and circularity of the gap junction plaque that contains or has a contact point with the recognized cell and the Target are measured, and the measured values of the maximum diameter, maximum area, or minimum circularity are determined as 1. Recorded as cell data.
Here, the diameter of the gap junction plaque is the maximum diameter of the object labeled with connexin immunostaining, the area is the area of the same object, and the roundness is the closer the object is to a perfect circle. The value is closer to 1, and conversely, the closer the shape is to an ellipse, flattened, or linear shape (see FIG. 2), the closer the value is to 0 (see FIG. 2).
With this measurement, it is possible to obtain gap junction size data for a large number of cells at once. For example, 100 cells per field of view are measured in 10 fields of view in one well of a 96-well plate. This makes it possible to obtain numerical data for 1,000 cells or more per well.

次いで、工程(f)において、前記プラークの最大径、最大面積又は最小真円度を基準値と比較し、ギャップ結合プラーク断片化制御剤又はギャップ結合機能制御剤が評価又は選択される。
後記実施例に示すように、ギャップ結合プラーク断片化制御剤の添加により、ギャップ結合プラークの最大径及び最大面積の値は増大し、最小真円度の値は減少する。
よって、最大径、最大面積又は最小真円度のレベルの判定は、被験物質を添加した細胞における当該ギャップ結合プラークの最大径、最大面積の値が、所定の基準値と比較して増加している、最小真円度が所定の基準値と比較して減少していれば、当該被験物質をギャップ結合プラーク断片化抑制剤ひいてはギャップ結合機能向上剤として評価又は選択することができ、被験物質を添加した細胞における当該ギャップ結合の最大径、最大面積の値が、所定の基準値と比較して減少している、最小真円度が所定の基準値と比較して増加していれば、当該被験物質をギャップ結合プラーク断片化促進剤ひいてはギャップ結合機能抑制剤として評価又は選択することができる。
Next, in step (f), the maximum diameter, maximum area, or minimum roundness of the plaque is compared with a reference value, and a gap junction plaque fragmentation controlling agent or a gap junction function controlling agent is evaluated or selected.
As shown in the Examples below, the addition of a gap junction plaque fragmentation control agent increases the maximum diameter and maximum area values and decreases the minimum circularity value of gap junction plaques.
Therefore, the maximum diameter, maximum area, or minimum roundness level is determined by determining whether the maximum diameter or maximum area value of the gap junction plaque in cells to which the test substance has been added increases compared to a predetermined reference value. If the minimum roundness is decreased compared to a predetermined reference value, the test substance can be evaluated or selected as a gap junction plaque fragmentation inhibitor and furthermore, as a gap junction function improver. If the maximum diameter and maximum area values of the gap junction in the added cells are decreased compared to the predetermined reference value, and the minimum roundness is increased compared to the predetermined reference value, then The test substance can be evaluated or selected as a gap junction plaque fragmentation promoting agent and thus a gap junction function inhibitor.

所定の基準値としては、例えば被験物質の非存在下で測定されたギャップ結合のサイズ値の他、予め測定して決定された断片化したギャップ結合プラーク及び/又は正常ギャップ結合プラークのサイズ値が挙げられる。
例えば、予め測定して決定された、断片化したギャップ結合プラークのサイズ値(x(0))と正常なギャップ結合プラークのサイズ値(x(1))と、被験物質接触後のギャップ結合プラークのサイズ値(x)から、下記式のようにギャップ結合回復率を算出することによってギャップ結合プラーク断片化抑制剤又はギャップ結合機能向上剤を評価することができる。
The predetermined standard values include, for example, the gap junction size value measured in the absence of the test substance, as well as the size value of fragmented gap junction plaques and/or normal gap junction plaques determined by pre-measurement. Can be mentioned.
For example, the size value of fragmented gap junction plaques (x(0)), the size value of normal gap junction plaques (x(1)) determined by pre-measurement, and the size value of gap junction plaques after contact with the test substance. The gap junction plaque fragmentation inhibitor or gap junction function improver can be evaluated by calculating the gap junction recovery rate from the size value (x) as shown in the following formula.

Figure 0007393780000001
Figure 0007393780000001

また、本発明の方法では、ギャップ結合機能制御剤又はギャップ結合プラーク断片化制御剤の選択又は評価と同時に、被験物質の毒性評価を併せて行うことができる。
この場合には、標識されたアポトーシスマーカー(例えば、活性型カスパーゼ3)が、核標識との共局在により死細胞として測定される。死細胞率として核の総数に対する死細胞の率(アポトーシスマーカー陽性率)を算出する。例えば、得られる死細胞率をギャップ結合の回復率から差し引いた値をギャップ結合回復・毒性評価指数(Gap junction Restoration and Toxicity Index;GRT値)とし、副作用を考慮したギャップ結合プラーク断片化抑制剤又はギャップ結合機能向上剤の判定が可能となる。すなわち、被験物質無添加時の死細胞率をy(0)、被験物質添加後の死細胞率をyとすると、下記式に示すように被験物質誘導性死細胞率が算出され、
Furthermore, in the method of the present invention, toxicity evaluation of a test substance can be performed simultaneously with the selection or evaluation of a gap junction function controlling agent or a gap junction plaque fragmentation controlling agent.
In this case, a labeled apoptotic marker (eg, active caspase 3) is determined as a dead cell by colocalization with a nuclear label. The ratio of dead cells to the total number of nuclei (apoptotic marker positive ratio) is calculated as the dead cell ratio. For example, the value obtained by subtracting the obtained dead cell rate from the gap junction recovery rate is used as the Gap junction Restoration and Toxicity Index (GRT value), and a gap junction plaque fragmentation inhibitor that takes side effects into account or It becomes possible to determine gap junction function improving agents. That is, if the dead cell rate without the addition of the test substance is y(0) and the dead cell rate after the addition of the test substance is y, the test substance-induced dead cell rate is calculated as shown in the formula below,

Figure 0007393780000002
Figure 0007393780000002

斯かる被験物質誘導性死細胞率をギャップ結合回復率から差し引くことにより、GRT値を求めることができる。
GRT値=(ギャップ結合回復率)-(被験物質誘導性死細胞率)
The GRT value can be determined by subtracting the test substance-induced cell death rate from the gap junction recovery rate.
GRT value = (gap junction recovery rate) - (test substance-induced cell death rate)

ここで、GRT値は0-1の範囲で得られると考えられるが、値が高いほど有効性・安全性が高いと評価でき、臨床応用のための薬剤スクリーニングの指標となる。
例えば、ギャップ結合回復率が0.95(95%回復)であっても、被験物質誘導性死細胞率が0.5(被験物質により50%が細胞死)だった場合はGRT値=0.95-0.5=0.45となる。それに対しギャップ結合回復率が0.78(78%回復)、被験物質誘導性死細胞率が0.08(被験物質により8%が細胞死)だった場合はGRT値=0.78-0.08=0.7となる。すなわち後者の被験物質または投与濃度の方が有効性・安全性が高いまたは投与条件であると考えられる。
この指数を用いて安全で効果的な薬剤を大規模にスクリーニングし、ギャップ結合プラーク断片化抑制剤又はギャップ結合機能向上剤を選抜することが可能となる。
Here, the GRT value is considered to be obtained in the range of 0-1, but the higher the value, the higher the efficacy and safety can be evaluated, and it becomes an index for drug screening for clinical application.
For example, even if the gap junction recovery rate is 0.95 (95% recovery), if the test substance-induced cell death rate is 0.5 (50% cell death due to the test substance), the GRT value = 0. 95-0.5=0.45. On the other hand, if the gap junction recovery rate was 0.78 (78% recovery) and the test substance-induced cell death rate was 0.08 (8% cell death due to the test substance), the GRT value = 0.78-0. 08=0.7. In other words, the latter test substance or administration concentration is considered to have higher efficacy and safety or administration conditions.
Using this index, it becomes possible to screen safe and effective drugs on a large scale and select gap junction plaque fragmentation inhibitors or gap junction function improving agents.

上記方法により、ギャップ結合プラーク断片化抑制剤又はギャップ結合機能向上剤として評価又は選択された被験物質は、ギャップ結合を介した細胞間連絡の異常に関連する疾患の治療剤、例えば、皮膚疾患(例えば先天性魚鱗癬)、循環器疾患、気道上皮炎、肺胞組織障害、聴覚障害(例えば遺伝性難聴)、内皮病変、視覚障害(例えば白内障)等の治療剤となり得、ギャップ結合プラーク断片化促進剤又はギャップ結合機能抑制剤として評価又は選択された被験物質は、がん転移抑制剤となり得る。 The test substance evaluated or selected as a gap junction plaque fragmentation inhibitor or a gap junction function enhancer by the above method can be used as a therapeutic agent for diseases associated with abnormalities in intercellular communication via gap junctions, such as skin diseases ( It can be used as a therapeutic agent for diseases such as congenital ichthyosis), cardiovascular diseases, airway epitheliitis, alveolar tissue disorders, hearing disorders (e.g., hereditary hearing loss), endothelial lesions, visual disorders (e.g., cataracts), and gap junction plaque fragmentation. A test substance evaluated or selected as a promoter or gap junction function inhibitor can be a cancer metastasis inhibitor.

(1)細胞培養と薬剤の添加
細胞イメージング用の96wellプレート、Lumox multi-well 96well plate(Sarstedt社)にCx30、Cx26又はCx26変異体をそれぞれ安定発現させたHela細胞を播種した。
Cx30、Cx26又はCx26変異体(R75W)をコードする遺伝子、ネオマイシン耐性遺伝子などの薬剤耐性遺伝子を持つプラスミドをリポフェクション法によりHela細胞へ遺伝子導入し、その後、ネオマイシン等の薬剤を添加し、遺伝子導入されてない細胞を死滅させ、遺伝子導入された細胞だけが生存するように培養した。具体的には、6cm dishで遺伝子導入を行った24時間後、増殖速度に応じて1/10~1/40で10cm dishにまき直した。さらに24時間後、発現ベクターに入っている選択マーカーにあわせた薬剤入り培地に培地交換し、1週間に2回、コロニーが成長するまで培地交換した。薬剤を加えてから14-16日目くらいにコロニーが出現するのを確認してコロニーを単離し、ワセリンをキャップの底面に押しつけ、コロニーが中に入るようにした。キャップの中に培地を入れ、pipettingで剥離し24穴のdishに移した。遺伝子が導入されているかはPCR法等により確認した。
9600細胞/ウェルの各細胞を播種した後、10%ウシ胎児血清入りのD-MEM培地により37℃、5%CO2下で3日間培養した。コンフルエント(飽和状態)に対し、60-80%程度の均一な細胞密度になることを確認した後、被験薬剤を、50、100、500及び1000nM濃度で添加した。添加から24~48時間後、4%パラホルムアルデヒドで(PFA)で15分間固定し、その後PBSへ液交換し4℃で保管した。
(1) Cell culture and drug addition Hela cells stably expressing Cx30, Cx26, or Cx26 mutants were seeded on a 96-well plate for cell imaging, Lumox multi-well 96-well plate (Sarstedt).
A gene encoding Cx30, Cx26, or Cx26 mutant (R75W), or a plasmid carrying a drug resistance gene such as a neomycin resistance gene is introduced into HeLa cells by lipofection, and then a drug such as neomycin is added to induce the gene introduction. Cells that did not contain the gene were killed, and only the cells that had been introduced with the gene were cultured to survive. Specifically, 24 hours after gene introduction was carried out in a 6 cm dish, the seeds were reseeded in a 10 cm dish at a rate of 1/10 to 1/40 depending on the growth rate. After another 24 hours, the medium was exchanged with a medium containing a drug matching the selection marker contained in the expression vector, and the medium was exchanged twice a week until colonies grew. Approximately 14 to 16 days after adding the drug, the appearance of colonies was confirmed, and the colonies were isolated, and Vaseline was pressed against the bottom of the cap to allow the colonies to enter. A medium was placed in the cap, peeled off by pipetting, and transferred to a 24-hole dish. Whether the gene had been introduced was confirmed by PCR method or the like.
After seeding each cell at 9600 cells/well, the cells were cultured for 3 days at 37° C. and 5% CO 2 in D-MEM medium containing 10% fetal bovine serum. After confirming a uniform cell density of approximately 60-80% of confluence (saturation), test drugs were added at concentrations of 50, 100, 500, and 1000 nM. 24 to 48 hours after addition, the cells were fixed with 4% paraformaldehyde (PFA) for 15 minutes, and then the solution was exchanged with PBS and stored at 4°C.

(2)免疫蛍光染色によるギャップ結合と単一細胞の可視化
2-1.ギャップ結合、細胞膜、アポトーシスマーカーの可視化
1)固定した細胞の透過処理:0.1% TritonX-100(10%液 10μl/ml PBS)(50ul/well)5min。
2)洗浄:PBS 5分 2回(洗浄は一回150μl程度)。
3)ブロッキング:2%BSA 30分(50ul/well)。
4)一次抗体反応:以下の抗体を1次抗体として反応させる。(希釈液は1%BSA溶液とする)
・抗Cx26抗体(Rb Invitrogen) 1:600
・抗Cx30抗体(Rb Invitrogen) 1:600
・抗抗活性型カスパーゼ3抗体(Rb Promega) 1:400
5)パラフィルムをかけて冷蔵庫内のシェーカーで一晩反応させる。
6)洗浄:PBS共洗い1回+PBS 10分 2回。
7)二次抗体反応及び細胞膜の染色:以下の抗体を1%BSAで反応させる。常温1時間。同時に、CxtBによる細胞膜の可視化処理を行った。
・二次抗体:Alexa488-Rb 1:1000
・細胞膜の可視化:CxtB-Alexa555 1:400
8)洗浄:PBS 10分 2回。
(2) Visualization of gap junctions and single cells by immunofluorescence staining 2-1. Visualization of gap junctions, cell membranes, and apoptosis markers 1) Permeabilization of fixed cells: 0.1% TritonX-100 (10% solution 10 μl/ml PBS) (50 ul/well) for 5 min.
2) Washing: PBS 5 minutes twice (approximately 150 μl each wash).
3) Blocking: 2% BSA 30 minutes (50ul/well).
4) Primary antibody reaction: The following antibodies are reacted as primary antibodies. (The diluent is a 1% BSA solution)
・Anti-Cx26 antibody (Rb Invitrogen) 1:600
・Anti-Cx30 antibody (Rb Invitrogen) 1:600
・Anti-active caspase 3 antibody (Rb Promega) 1:400
5) Cover with parafilm and let react overnight in a shaker in the refrigerator.
6) Washing: PBS co-wash once + PBS 10 minutes twice.
7) Secondary antibody reaction and cell membrane staining: React the following antibodies with 1% BSA. 1 hour at room temperature. At the same time, cell membrane visualization treatment using CxtB was performed.
・Secondary antibody: Alexa488-Rb 1:1000
・Visualization of cell membrane: CxtB-Alexa555 1:400
8) Washing: PBS 10 minutes twice.

2-2.細胞核の可視化
1)細胞核の染色:DAPI(Dojindo) 1:3000 in PBS 約3分。
2)封入:液を除き、1回PBSで洗浄してFluoSaveで封入。
3)保存:プレートシールを貼り冷蔵庫で遮光保存。
2-2. Visualization of cell nuclei 1) Staining of cell nuclei: DAPI (Dojindo) 1:3000 in PBS for about 3 minutes.
2) Mounting: Remove the liquid, wash once with PBS, and mount with FluoSave.
3) Storage: Cover with a plate sticker and store in the refrigerator, protected from light.

(3)イメージングサイトメーターによる蛍光画像の自動撮影
上記で染色したイメージングプレートを全自動イメージングサイトメーター(GE社、IN Cell Analyzer 2200など)で染色したギャップ結合、細胞膜、アポトーシスマーカーの標識蛍光を画像取得した。ギャップ結合に関してはコネキシン30またはコネキシン26を標識した緑色蛍光の焦点の合う部分を自動認識し、その焦点を中心にZ軸方向に約4μmの厚みの合成画像(2.5D)を取得する。これによりギャップ結合プラーク全体について表層側から基底部側までの全体像を可視化できる画像を得る。
細胞境界を識別する赤色蛍光、核を認識するDAPIの蛍光も同様に画像取得する。同様に1ウェルにつき10視野の画像を取得する。
尚、抗活性型カスパーゼ3抗体による染色では死細胞全体が緑に染色され、細胞死を計数するために使用される。
(3) Automatically capture fluorescence images using an imaging cytometer Capture images of labeled fluorescence of gap junctions, cell membranes, and apoptosis markers using a fully automatic imaging cytometer (GE, IN Cell Analyzer 2200, etc.) on the imaging plate stained above. did. Regarding gap junctions, the focused portion of green fluorescence labeled with connexin 30 or connexin 26 is automatically recognized, and a composite image (2.5D) with a thickness of approximately 4 μm in the Z-axis direction centered on the focal point is obtained. As a result, an image is obtained in which the entire gap junction plaque can be visualized from the superficial side to the basal side.
Images of red fluorescence, which identifies cell boundaries, and DAPI fluorescence, which recognizes nuclei, are similarly acquired. Similarly, images of 10 fields of view are acquired per well.
In addition, when staining with an anti-active caspase 3 antibody, the entire dead cells are stained green, which is used to count cell death.

(4)画像解析ソフトによるギャップ結合サイズの解析
取得した画像を画像解析ソフトウェア(GE社、IN Cell Investigatorなど)を用い、以下の解析方法によりギャップ結合プラークの形成や回復を解析した。
1)細胞の認識
まず、Alexa555標識CtxB等細胞膜情報を示す赤色蛍光の画像から個々の単一細胞の細胞領域を解析プログラムに自動認識させる。赤色蛍光の示す範囲全体をCell-Preして認識し、その中で蛍光強度が周囲より強い部分をMembraneとして認識する。核染色のDAPIの蛍光は単一細胞の指標として認識する。Cell-PreからMembraneを差し引いたときに囲まれる範囲で内部にDAPIの各標識が一点のみ存在するものを1細胞単位として解析する。
(4) Analysis of gap junction size using image analysis software The formation and recovery of gap junction plaques were analyzed using image analysis software (GE, IN Cell Investigator, etc.) using image analysis software using the following analysis method.
1) Cell Recognition First, an analysis program is made to automatically recognize the cell region of each single cell from an image of red fluorescence indicating cell membrane information such as Alexa555-labeled CtxB. The entire range indicated by the red fluorescence is recognized by Cell-Pre, and the part where the fluorescence intensity is stronger than the surrounding area is recognized as the membrane. The fluorescence of nuclear staining DAPI is recognized as an indicator of single cells. Cells in which only one DAPI label exists within the range enclosed when Membrane is subtracted from Cell-Pre are analyzed as one cell unit.

2)ギャップ結合プラークの認識
次に緑色蛍光情報からギャップ結合プラークの領域をTargetとして認識させる。
上記解析で認識した1細胞と上記Targetが含まれる或いは接点のあるギャップ結合プラークの直径、面積、真円度を測定した。その中で最大のプラーク径、最大のプラーク面積及び最小真円度の測定値を1細胞のデータとして記録した。この測定により、一度に複数(例えば100細胞)のギャップ結合サイズのデータを得た。
2) Recognition of gap junction plaque Next, the gap junction plaque region is recognized as a target from the green fluorescence information.
The diameter, area, and circularity of a gap junction plaque containing or having a contact point with one cell recognized in the above analysis and the above Target were measured. Among them, the measured values of the maximum plaque diameter, maximum plaque area, and minimum roundness were recorded as data for one cell. Through this measurement, gap junction size data for multiple cells (for example, 100 cells) was obtained at once.

3)ギャップ結合回復率の算出
薬剤を添加していない断片化したCx30ギャップ結合の数値(1-2μm程度)をx(0)、Cx26ギャップ結合のような集積したギャップ結合の平均値(3-5μm程度)をx(1)、薬剤添加後の数値(ギャップ結合プラークの最大径、最大面積、最小真円度)の平均をxとすると、下記式よりギャップ結合回復率を算出することができる。
3) Calculation of gap junction recovery rate The number of fragmented Cx30 gap junctions (approximately 1-2 μm) to which no drug has been added is x (0), and the average value of accumulated gap junctions such as Cx26 gap junctions (3- 5 μm) is x (1), and the average of the values after drug addition (maximum diameter, maximum area, and minimum roundness of gap junction plaques) is x, then the gap junction recovery rate can be calculated from the following formula. .

Figure 0007393780000003
Figure 0007393780000003

4)薬剤誘導性死細胞率の算出
活性型カスパーゼ3抗体等を用いて標識された緑色蛍光は、DAPIによる核標識との共局在により死細胞として測定される。死細胞率として核の総数に対する死細胞の率(活性型カスパーゼ3陽性率)を算出する。得られる死細胞率をギャップ結合の回復率から差し引くことにより、副作用を考慮した最適濃度の判定が可能となる。薬剤無添加時の死細胞率をy(0)薬剤添加後の死細胞率をyとすると、下記式より薬剤誘導性死細胞率を算出することができる。
4) Calculation of drug-induced dead cell rate Green fluorescence labeled using activated caspase 3 antibody etc. is measured as dead cells by colocalization with nuclear labeling by DAPI. The ratio of dead cells to the total number of nuclei (active caspase 3 positive ratio) is calculated as the dead cell ratio. By subtracting the resulting dead cell rate from the gap junction recovery rate, it becomes possible to determine the optimal concentration in consideration of side effects. When the dead cell rate without the addition of the drug is y(0) and the dead cell rate after the addition of the drug is y, the drug-induced dead cell rate can be calculated from the following formula.

Figure 0007393780000004
Figure 0007393780000004

5)ギャップ結合回復・毒性評価指数の算出
上記3)のギャップ結合回復率から、4)の薬剤誘導性死細胞率を差し引くことにより((ギャップ結合回復率)-(薬剤誘導性死細胞率))、ギャップ結合回復・毒性評価指数(GRT値)を算出することができる。
5) Calculation of gap junction recovery/toxicity evaluation index By subtracting the drug-induced dead cell rate in 4) from the gap junction recovery rate in 3) above, ((gap junction recovery rate) - (drug-induced dead cell rate) ), the gap junction recovery/toxicity evaluation index (GRT value) can be calculated.

(5)結果
1)予めコネキシン分子の免疫染色による顕微鏡観察によってギャップ結合プラークの断片化を修復すること、及びNeurobiotin tracerを用いた染料輸送試験(Dye transfer assay)によるギャップ結合の機能亢進が確認された2種の薬剤(プロテアソーム阻害剤)A、Bと、ギャップ結合プラークの断片化の修復とギャップ結合の機能亢進を示さないことが確認された薬剤Cを添加した場合のギャップ結合プラークの最大径(Target Length)、最大面積(Target Area)、最小真円度(Form Factor)の測定結果を図3に示す。また、比較として、薬剤A又はBを添加した場合について、全てのギャップ結合プラークの直径、面積、真円度のそれぞれの平均値を1細胞のデータとして記録した場合の測定結果の比較を図4に示す。
図3より、薬剤Cでは効果は見られないが、薬剤AとBでは概ね濃度依存的にギャップ結合プラークの最大径と最大面積が増加し、最小真円度が減少した。高濃度(1000nM)ではAよりもBの効果が顕著であった。しかし低濃度(50nM)では、BよりもAの効果が高かった。副作用を考慮した場合には低濃度で効果のあるAが薬剤としてより適切であると考えられる。
一方、1細胞のデータとして、最大径、最大面積又は最小真円度を用いなかった場合には濃度依存性の変化は全く反映されなかった(図4右)。
(5) Results 1) Repair of gap junction plaque fragmentation was confirmed in advance by microscopic observation using immunostaining of connexin molecules, and hyperfunction of gap junctions was confirmed by dye transfer assay using Neurobiotin tracer. Maximum diameter of gap junction plaques when two drugs (proteasome inhibitors) A and B and drug C, which was confirmed to repair gap junction plaque fragmentation and not to enhance gap junction function, were added. Figure 3 shows the measurement results of (Target Length), maximum area (Target Area), and minimum roundness (Form Factor). For comparison, Figure 4 shows a comparison of measurement results when drug A or B was added and the average values of diameter, area, and roundness of all gap junction plaques were recorded as data for one cell. Shown below.
As shown in FIG. 3, no effect was observed with drug C, but with drugs A and B, the maximum diameter and maximum area of gap junction plaques generally increased in a concentration-dependent manner, and the minimum circularity decreased. At high concentration (1000 nM), the effect of B was more pronounced than that of A. However, at low concentrations (50 nM), A was more effective than B. When side effects are taken into consideration, A, which is effective at low concentrations, is considered to be more appropriate as a drug.
On the other hand, when the maximum diameter, maximum area, or minimum circularity was not used as data for one cell, no concentration-dependent changes were reflected at all (Fig. 4, right).

2)50nMでの薬剤A(A50)とB(B50)のギャップ結合回復率を上記(4)の3)で示した式から算出すると、以下のように計算される。

Figure 0007393780000005
2) When the gap junction recovery rate of drugs A (A50) and B (B50) at 50 nM is calculated from the formula shown in 3) of (4) above, it is calculated as follows.
Figure 0007393780000005

この計算値では、ポジティブコントロール値として内耳で正常ギャップ結合機能を持つとされるCX26のギャップ結合プラークの最大径をx(1)とした。
薬剤無添加のCX30のプラーク最大径x(0)と測定値が同等で薬剤によるプラーク最大径の増加が全く見られない場合は0付近となり、CX26のギャップ結合のプラーク最大径と同程度まで回復した場合は+1付近の値となる。もしCX26よりもさらに最大径が増加した場合は1を超える値になる。つまり低濃度では50mMでの薬剤Aの回復率1.31は薬剤Bの回復率0.43よりも高いため、低濃度ではAの方がBより効果が高いことが分かる。
In this calculated value, the maximum diameter of the gap junction plaque of CX26, which is considered to have normal gap junction function in the inner ear, was set as x(1) as a positive control value.
If the measured value is the same as the maximum plaque diameter x (0) of CX30 without the addition of drugs and no increase in the maximum plaque diameter due to the drug is observed, it will be around 0, and it will recover to the same level as the maximum plaque diameter of gap junctions of CX26. In this case, the value will be around +1. If the maximum diameter increases further than CX26, the value will exceed 1. In other words, at low concentrations, the recovery rate of drug A at 50 mM is 1.31, which is higher than the recovery rate of drug B, 0.43, indicating that A is more effective than B at low concentrations.

3)50nMでの薬剤A(A50)とB(B50)の薬剤誘導性死細胞率を上記(4)の4)で示した式から算出すると、以下のように計算され、この濃度ではBの方が副作用による死細胞が高いことが分かる。

Figure 0007393780000006
3) When the drug-induced cell death rate of drugs A (A50) and B (B50) at 50 nM is calculated from the formula shown in 4) of (4) above, it is calculated as follows. It can be seen that the number of dead cells due to side effects is higher in the
Figure 0007393780000006

4)そして、ギャップ結合回復・毒性評価指数(GRT値)を以下のように、算出することができる。
GRT値(A50)=1.31-0.0015=1.3085
GRT値(B50)=0.43-0.0177=0.4123
これによりいずれも効果の見られた薬剤Aと薬剤Bのうち、50nMの低濃度で使用した場合に効果と安全性の高い薬剤はAであると判定できる。
4) Then, the gap junction recovery/toxicity evaluation index (GRT value) can be calculated as follows.
GRT value (A50) = 1.31-0.0015 = 1.3085
GRT value (B50) = 0.43-0.0177 = 0.4123
As a result, it can be determined that among drug A and drug B, both of which were found to be effective, drug A has the highest efficacy and safety when used at a low concentration of 50 nM.

Claims (5)

以下の工程(a)~(f)を含む、ギャップ結合プラーク断片化制御剤又はギャップ結合機能制御剤の評価又は選択方法。
(a)断片化されたギャップ結合プラークを形成し得る細胞をマルチウェルプレート上で培養する工程
(b)前記工程で培養された培養細胞に被験物質を接触させる工程
(c)ギャップ結合プラーク、細胞膜及び細胞核を可視化する工程
(d)前記ギャップ結合プラークを含む領域の画像を取得する工程
(e)該取得画像から1細胞の細胞領域に接するギャップ結合プラークの直径、面積及び真円度を測定し、その中から最大径、最大面積及び最小真円度を記録する工程
(f)前記最大径、最大面積及び最小真円度を基準値と比較し、ギャップ結合プラーク断片化制御剤又はギャップ結合機能制御剤を評価又は選択する工程
A method for evaluating or selecting a gap junction plaque fragmentation controlling agent or a gap junction function controlling agent, comprising the following steps (a) to (f).
(a) A step of culturing cells that can form fragmented gap junction plaques on a multiwell plate (b) A step of bringing a test substance into contact with the cultured cells cultured in the above step (c) A gap junction plaque, a cell membrane and (d) obtaining an image of the region containing the gap junction plaque; (e) measuring the diameter, area, and roundness of the gap junction plaque in contact with the cell region of one cell from the obtained image. (f) Comparing the maximum diameter, maximum area and minimum circularity with a reference value, and determining the gap junction plaque fragmentation control agent or the gap junction. Process of evaluating or selecting a function control agent
工程(a)において、断片化されたギャップ結合プラークを形成し得る細胞が、Cx26変異体又はCx30野生型を発現させた細胞である、請求項1記載の方法。 2. The method according to claim 1, wherein in step (a), the cells capable of forming fragmented gap junction plaques are cells expressing Cx26 mutant or Cx30 wild type. Cx26変異体が、Cx26のアミノ酸配列の75番目のアルギニン残基をトリプトファン残基又はグルタミン残基に置換した変異体である、請求項2記載の方法。 3. The method according to claim 2, wherein the Cx26 mutant is a mutant in which the 75th arginine residue in the amino acid sequence of Cx26 is replaced with a tryptophan residue or a glutamine residue. 工程(e)において、1視野100細胞の測定を10視野で行う、請求項1~3のいずれか1項に記載の方法。 The method according to any one of claims 1 to 3, wherein in step (e), measurement of 100 cells per field is performed in 10 fields. さらに、アポトーシスマーカーを用いて死細胞率を算出し、被験物質による毒性評価を併せて行う、請求項1~のいずれか1項に記載の方法。 The method according to any one of claims 1 to 4 , wherein the dead cell rate is further calculated using an apoptosis marker, and toxicity evaluation by the test substance is also performed.
JP2019149966A 2019-08-19 2019-08-19 Screening method for gap junction function regulators Active JP7393780B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019149966A JP7393780B2 (en) 2019-08-19 2019-08-19 Screening method for gap junction function regulators

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019149966A JP7393780B2 (en) 2019-08-19 2019-08-19 Screening method for gap junction function regulators

Publications (2)

Publication Number Publication Date
JP2021029134A JP2021029134A (en) 2021-03-01
JP7393780B2 true JP7393780B2 (en) 2023-12-07

Family

ID=74674146

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019149966A Active JP7393780B2 (en) 2019-08-19 2019-08-19 Screening method for gap junction function regulators

Country Status (1)

Country Link
JP (1) JP7393780B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011507860A (en) 2007-12-21 2011-03-10 コーダ セラピューティクス, インコーポレイテッド Use of anti-connexin polynucleotides and anti-connexin peptides for the treatment of abnormal or excessive scarring
WO2017146035A1 (en) 2016-02-22 2017-08-31 学校法人順天堂 Method for producing inner ear cells
JP2017526687A (en) 2014-08-22 2017-09-14 オークランド ユニサービシーズ リミティド Channel regulator

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011507860A (en) 2007-12-21 2011-03-10 コーダ セラピューティクス, インコーポレイテッド Use of anti-connexin polynucleotides and anti-connexin peptides for the treatment of abnormal or excessive scarring
JP2017526687A (en) 2014-08-22 2017-09-14 オークランド ユニサービシーズ リミティド Channel regulator
WO2017146035A1 (en) 2016-02-22 2017-08-31 学校法人順天堂 Method for producing inner ear cells

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
FUKUNAGA I. et al.,In Vitro Models of GJB2-Related Hearing Loss Recapitulate Ca2+ Transients via a Gap Junction Characteristic of Developing Cochlea,Stem Cell Reports, 2016, vol. 7, p. 1023-1036
KAMIYA K. et al.,Assembly of the cochlear gap junction macromolecular complex requires connexin 26,Journal of Clinical Investigation, 2014, vol. 124, no. 4, p. 1598-1607

Also Published As

Publication number Publication date
JP2021029134A (en) 2021-03-01

Similar Documents

Publication Publication Date Title
Ohkawa et al. Autoantibodies to epilepsy-related LGI1 in limbic encephalitis neutralize LGI1-ADAM22 interaction and reduce synaptic AMPA receptors
US20210140965A1 (en) Corneal endothelial cell marker
US7700101B2 (en) Reagents and method for modulating Dkk-mediated interactions
CN109553687B (en) Fluorescent probe constructed based on G protein coupled receptor
US10041935B2 (en) Identification of olfactory receptors sensitive to different odorants
JP2002512362A (en) Multi-parameter FACS to detect changes in cell parameters and screen small molecule libraries
Ekberg et al. OMP-ZsGreen fluorescent protein transgenic mice for visualisation of olfactory sensory neurons in vivo and in vitro
CN104726551A (en) Method For Evaluating The Scent Performance Of Perfumes And Perfume Mixtures
JP2013240352A (en) Long-time monitoring method using photoprotein and analysis method
Wong et al. Dynamic buffering of extracellular chemokine by a dedicated scavenger pathway enables robust adaptation during directed tissue migration
US20120021417A1 (en) DOPAMINERGIC NEURON PROLIFERATIVE PROGENITOR CELL MARKER Nato3
Huebner et al. ARVCF catenin controls force production during vertebrate convergent extension
JP7393780B2 (en) Screening method for gap junction function regulators
EP3828543B1 (en) Method and kit for rapid measurement of autoantibody activity with respect to tsh receptor
CN102016587A (en) A new metastatic human tumor associated molecule, methods to detect both activated gene and protein and to interfere with gene expression
US9989540B2 (en) Diagnostic and monitoring system for Huntington's disease
US20200172956A1 (en) Evaluation System for Therapeutic Drug for Genetic Kidney Disorder Alport Syndrome
JP4282163B2 (en) Cancer metastasis testing method and cancer metastasis inhibitor screening method
Sayer et al. Interaction of the nuclear matrix protein NAKAP with HypA and huntingtin: implications for nuclear toxicity in Huntington’s disease pathogenesis
US20040224370A1 (en) Fluorescence guided cell capture
US20200400567A1 (en) Fusion polypeptide
JP6319504B2 (en) Screening method for salty taste modifiers
Ciampi et al. Specialization of the photoreceptor transcriptome by Srrm3-dependent microexons is required for outer segment maintenance and vision
EP1454982A1 (en) Mtehod of analyzing gene expression
Laureano et al. shox2 is required for vestibular statoacoustic neuron development

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220715

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230516

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230517

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230718

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230915

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231117

R150 Certificate of patent or registration of utility model

Ref document number: 7393780

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S201 Request for registration of exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R314201