JP7393606B1 - centrifuge - Google Patents

centrifuge Download PDF

Info

Publication number
JP7393606B1
JP7393606B1 JP2022085758A JP2022085758A JP7393606B1 JP 7393606 B1 JP7393606 B1 JP 7393606B1 JP 2022085758 A JP2022085758 A JP 2022085758A JP 2022085758 A JP2022085758 A JP 2022085758A JP 7393606 B1 JP7393606 B1 JP 7393606B1
Authority
JP
Japan
Prior art keywords
liquid
rotating body
liquid supply
supply mechanism
centrifugal separator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022085758A
Other languages
Japanese (ja)
Other versions
JP2023178506A (en
Inventor
俊治 角野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2022085758A priority Critical patent/JP7393606B1/en
Application granted granted Critical
Publication of JP7393606B1 publication Critical patent/JP7393606B1/en
Publication of JP2023178506A publication Critical patent/JP2023178506A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

【課題】回転体と同期して回転する滞留液状体と連続的に送液する液状体の運動差による衝突で発生する攪乱範囲を最小化して濾過効率を向上させる液状体供給機構を設けた遠心分離機を提供するものである。【解決手段】半径方向へ回転体と同じ回転方向に傾けた壁部材を上下複数並列する複数の円盤の間に設け、該複数の円盤の間に液状体を供給可能にする液状体供給管を具備した構成とした。【選択図】図2[Problem] A centrifugal system equipped with a liquid supply mechanism that improves filtration efficiency by minimizing the range of disturbance caused by collisions caused by the difference in motion between the retained liquid that rotates in synchronization with a rotating body and the continuously fed liquid. It provides a separator. [Solution] A wall member tilted in the radial direction in the same rotational direction as the rotating body is provided between a plurality of upper and lower parallel disks, and a liquid supply pipe is provided for supplying a liquid between the plurality of disks. The structure is equipped with the following features. [Selection diagram] Figure 2

Description

本願発明は、遠心分離用の回転体に液状体を連続的に送液する際の送液の回転速度を回転体に同期させ、さらに送液流速を減速させて、回転体と同期して回転する滞留液状体との運動差を抑える事で、液状体間の衝突による攪乱を低減して濾過効率を向上させる遠心分離機に関するものである。 The present invention synchronizes the rotational speed of the liquid when continuously feeding a liquid to a rotating body for centrifugal separation with the rotating body, further reduces the liquid feeding flow rate, and rotates the liquid in synchronization with the rotating body. This invention relates to a centrifugal separator that improves filtration efficiency by suppressing the difference in motion between the liquid and the accumulated liquid, thereby reducing disturbance caused by collisions between the liquid.

一般に連続的に送液分離する遠心分離機は、高速回転する回転体の端面から処理前の液状体を投入し、投入された液状体が回転体と同期回転となった滞留液状体として遠心力を受けながら比重差濾過を進めながら回転体の投入反対端面から処理後の液状体として流出させている。この時、遠心力による濾過時間が長い方が濾過効率向上する為、投入付近の液状体が攪乱されて混濁した範囲が大きいと、残された遠心力による分離範囲が小さくなり、結果として濾過効率が低下する。 In general, a centrifugal separator that continuously feeds and separates liquid is used to charge unprocessed liquid from the end face of a rotating body that rotates at high speed, and the injected liquid is rotated in synchronization with the rotating body, causing a centrifugal force as the retained liquid The treated liquid is discharged from the opposite end of the rotating body from the input side while progressing with specific gravity filtration. At this time, the longer the filtration time due to centrifugal force, the higher the filtration efficiency, so if the liquid near the input is disturbed and becomes cloudy, the separation area due to the remaining centrifugal force becomes smaller, resulting in filtration efficiency. decreases.

これに対する従来技術は、回転体と同期して回転する複数の円盤に間隙を設け、その円盤外周部の前記間隙から送液される液状体を回転体と同期して回転する滞留液状体内部で放出する事で、気泡発生の低減及び攪乱の低減を特徴とした遠心分離機(特許文献1及び2)が提案されている。 The conventional technology for this purpose is to provide gaps between a plurality of discs that rotate in synchronization with the rotating body, and to transfer the liquid sent from the gaps on the outer periphery of the discs to the inside of the stagnant liquid that rotates in synchronization with the rotating body. A centrifugal separator (Patent Documents 1 and 2) has been proposed that is characterized by reducing bubble generation and disturbance by discharging air.

しかし、回転体と同期する円盤表面の摩擦力で送液に回転力を伝達するので、回転体と完全に同期させる事が出来ず回転方向において運動差があった。さらに、回転体と同期回転するまでには至っていないが、回転による遠心力が作用しており、ポンプ等の送液速度は加速されて高速になった送液と滞留液状体との半径方向(円盤外周から投入される遠心力方向)においても運動差があった。この半径方向の関係でみると、停止している液状体に高速の液状体を送液させて衝突させる状態であり、攪乱を起こす問題があった。 However, since the rotational force is transmitted to the liquid feeder by the frictional force of the disk surface that is synchronized with the rotating body, complete synchronization with the rotating body cannot be achieved, and there is a difference in motion in the direction of rotation. Furthermore, although it has not reached the point where it rotates synchronously with the rotating body, the centrifugal force due to rotation is acting, and the liquid feeding speed of the pump etc. is accelerated, and the radial direction ( There was also a difference in motion in the direction of centrifugal force applied from the outer circumference of the disk. In terms of this radial relationship, a high-speed liquid is fed and collided with a stationary liquid, which poses a problem of causing disturbance.

特許第6473939号Patent No. 6473939 特許第6579531号Patent No. 6579531

本発明は上記問題を解決する為になされたものであって、事前に滞留液状体と送液を同じ回転にして、回転方向の運動差を最小とする事。さらに、同じ回転にした後においても相対的な作用関係は静止した液状体(滞留液状体)に加速度とポンプ吐出圧力による高速となった送液が衝突して攪乱現象を起こす為、その送液速度を減速させて半径方向(遠心力方向)の運動差を最小とする事。
以上の回転方向と半径方向の2成分における滞留液状体と放出される液状体の運動差を最小にして、運動差による液状体同士の衝突による攪乱領域の拡大を抑えて濾過効率を向上させる事を課題とする。
The present invention has been made in order to solve the above problem, and is to minimize the difference in movement in the rotational direction by rotating the retained liquid and the liquid feeding at the same speed in advance. Furthermore, even after the same rotation, the relative action relationship is such that the high-speed liquid delivered due to acceleration and pump discharge pressure collides with the stationary liquid (stagnant liquid), causing a disturbance phenomenon. Minimize the difference in motion in the radial direction (direction of centrifugal force) by reducing the speed.
By minimizing the difference in motion between the retained liquid and the discharged liquid in the two components of the rotational direction and the radial direction, the filtration efficiency is improved by suppressing the expansion of the disturbance area due to collision between the liquids due to the difference in motion. The task is to

本願発明は、上記課題を解決する為のものであって、比重の異なる物質を含む液状体を遠心力により分離する回転体の内部に、前記液状体を供給し、比重の小さな液状体を連続して回転体の外に流出させる遠心分離装置であって、回転体は遠心力により内面側に滞留した滞留液状体を流出させる流出口を設けた容器であり、前記回転体と同じ回転中心軸で、さらに同回転数で回転して前記回転体の内面側に液状体を供給する液状体供給機構を設け、該液状体供給機構は回転方向側に液状体を案内することで生ずる逆流方向の作用力により、案内される液状体と回転体の内壁に滞留する滞留液状体とが衝突する速度を減速させて滞留液状体の攪乱範囲を抑制する案内部を有することを特徴とする。 The present invention is intended to solve the above-mentioned problems, and is to supply the liquid to the inside of a rotating body that separates liquids containing substances with different specific gravity by centrifugal force, so that the liquid with a small specific gravity is continuously produced. This is a centrifugal separator that drains the fluid out of a rotating body. Further, a liquid supply mechanism is provided which rotates at the same number of rotations and supplies the liquid to the inner surface of the rotating body , and the liquid supply mechanism is configured to prevent the liquid from flowing in the reverse flow direction caused by guiding the liquid in the rotation direction. The present invention is characterized in that it has a guide portion that reduces the collision speed of the guided liquid and the retained liquid remaining on the inner wall of the rotating body by the acting force of the rotating body, thereby suppressing the range of disturbance of the retained liquid .

前記液状体供給機構は前記回転体の回転中心軸に直交して複数のディスクを間隙を隔てて併設し、当該間隙に液状体を供給する液状体供給管を設け、前記案内部を前記複数のディスクの間隔内に立設した壁部材で構成したことを特徴とする。 The liquid supply mechanism includes a plurality of disks arranged at right angles to the central axis of rotation of the rotating body with a gap between them, a liquid supply pipe for supplying the liquid to the gap, and a guide section that connects the plurality of disks with each other. It is characterized by being constructed of wall members standing upright within the space between the disks.

前記液状体供給機構は前記回転体の回転中心軸に直交して複数のパイプを放射状に設け、当該複数のパイプに液状体を供給する液状体供給管を設け、前記案内部を前記複数のパイプの内面で構成したことを特徴とする。 The liquid supply mechanism includes a plurality of pipes radially provided perpendicular to the central axis of rotation of the rotating body, a liquid supply pipe for supplying the liquid to the plurality of pipes, and a guide section that connects the plurality of pipes. It is characterized by being composed of the inner surface of

前記液状体供給機構の複数のパイプは半径方向に外方側に進むに従い断面積が増加するように構成されたことを特徴とする。 The plurality of pipes of the liquid supply mechanism are characterized in that their cross-sectional areas increase as they proceed outward in the radial direction.

前記液状体供給機構の外周部である送出口を遠心分離中において前記遠心力により内面側に滞留した滞留液状体内に位置するように構成したことを特徴とする。 The present invention is characterized in that the outlet, which is the outer peripheral portion of the liquid supply mechanism, is configured to be located within the retained liquid that is retained on the inner surface side due to the centrifugal force during centrifugation.

本願発明の遠心分離機は、比重の異なる物質を含む液状体を遠心力により分離する回転体の内部に、前記液状体を供給し、比重の小さな液状体を連続して回転体の外に流出させる遠心分離装置であって、回転体は遠心力により内面側に滞留した滞留液状体を流出させる流出口を設けた容器であり、前記回転体と同じ回転中心軸で、さらに同回転数で回転して前記回転体の内面側に液状体を供給する液状体供給機構を設け、該液状体供給機構は回転方向側に液状体を案内することで生ずる逆流方向の作用力により、案内される液状体と回転体の内壁に滞留する滞留液状体とが衝突する速度を減速させて滞留液状体の攪乱範囲を抑制する案内部を有するので、案内部(8)が液状体を回転体と同じ回転状態にして回転方向の相対的な運動差も最小とすることができる。即ち、ポンプ吐出力と液状体供給機構により付与される遠心力を前記案内部によって回転方向と半径方向のベクトルに分解されて付与されると共に逆流方向の作用力による減速により液状体供給機構から送液される液状体と滞留液状体との相対的な運動差が起こす攪乱(液体同士の衝突及び送液により遠心分離液層を乱す)範囲を最小限に抑え、遠心分離作用エリアが広くなることで、液状体に掛かる遠心力付加時間が長くなり、結果として濾過効率が大幅に向上する。 The centrifugal separator of the present invention supplies the liquid to the inside of a rotating body that separates liquid substances containing substances with different specific gravity by centrifugal force, and continuously flows out the liquid with a small specific gravity to the outside of the rotating body. A centrifugal separator in which the rotating body is a container provided with an outlet through which the accumulated liquid accumulated on the inner surface side is discharged by centrifugal force, and the rotating body rotates on the same rotation center axis as the rotating body and at the same rotation speed. A liquid supply mechanism is provided for supplying the liquid to the inner surface of the rotating body , and the liquid supply mechanism is guided by an acting force in the reverse flow direction generated by guiding the liquid in the rotation direction. Since the guide part (8) reduces the collision speed of the liquid and the accumulated liquid remaining on the inner wall of the rotating body and suppresses the range of disturbance of the accumulated liquid , the guide part (8) moves the liquid to the same level as the rotating body. The difference in relative motion in the rotational direction can also be minimized by maintaining the same rotational state. That is, the pump discharge force and the centrifugal force applied by the liquid supply mechanism are decomposed into vectors in the rotational direction and the radial direction and applied by the guide section , and are also decelerated by the acting force in the reverse flow direction to be sent from the liquid supply mechanism. Minimize the range of disturbance caused by the relative motion difference between the liquid being liquid and the stagnant liquid (collision between liquids and liquid feeding, which disturbs the centrifuged liquid layer), and widen the centrifugal action area. This increases the time for which centrifugal force is applied to the liquid, resulting in a significant improvement in filtration efficiency.

また、大幅な濾過効率向上は、濾過効率アップの為に大型化された遠心分離機と同等とみなした場合に、大きなコスト低減ともいえる。 In addition, the significant improvement in filtration efficiency can be said to be a significant cost reduction when considered equivalent to a centrifugal separator that has been enlarged to increase filtration efficiency.

本願発明を実施した場合の一実施例で、遠心分離機全体の断面図である。FIG. 1 is a sectional view of the entire centrifugal separator according to an embodiment of the present invention. 本願発明を実施した場合の一実施例で、2枚の円盤(2)の間にブレード(8)を設けた液状体供給機構を有する遠心分離機の回転体(1)と液状体供給管(4)(回転シャフト兼用)の断面図である。尚、図2には流れ方向を含めた液状体の入りから流出口(6)までの回転方向要素を除いた流れ方向も開矢印で示している。An embodiment of the present invention is a centrifugal separator having a liquid supply mechanism in which a blade (8) is provided between two discs (2), and a liquid supply pipe ( 4) (also serves as a rotating shaft). In addition, in FIG. 2, the flow direction including the flow direction, excluding the rotational direction element from the inlet of the liquid to the outlet (6), is also shown by open arrows. 図2の液状体供給機構の2枚の円盤(2)の間にある湾曲したブレード(8)を平面でみた断面で図2のA-A矢視図である。FIG. 3 is a plan view of a curved blade (8) between two disks (2) of the liquid supply mechanism of FIG. 2 in cross section taken along the line A-A in FIG. 2; 図3に作用方向(逆流方向)を追記した図2のA-A矢視図である。FIG. 3 is a view taken along the line A-A in FIG. 2 with the direction of action (reverse flow direction) added to FIG. 3; 図3の変形例で、真直ぐなブレード(8)を回転体と同じ回転方向に角度を傾けた形状の液状体供給機構の平面からみた断面図で回転により中心に向かって発生する作用方向(逆流方向)も示している。This is a modified example of Fig. 3, which is a cross-sectional view of a liquid supply mechanism in which a straight blade (8) is tilted in the same direction of rotation as the rotating body. direction) is also shown. 図3の変形例で、屈曲したブレード(8)を平面からみた断面図である。FIG. 4 is a cross-sectional view of a bent blade (8) seen from a plane in a modification of FIG. 3; 図3の変形例で、湾曲したブレード(8)が円盤中心から円盤(2)の外周部までの長さとなった平面からみた断面図である。FIG. 4 is a cross-sectional view of a modified example of FIG. 3 viewed from a plane, showing the length of the curved blade (8) from the center of the disk to the outer periphery of the disk (2). 図2の液状体供給機構の変形例で、円盤(2)の一方を回転体上蓋部(3)にした場合の断面図で、回転体(1)の回転により中心に向かって発生する作用方向(逆流方向)も図示している。This is a cross-sectional view of a modified example of the liquid supply mechanism shown in FIG. 2, in which one of the disks (2) is used as the rotating body top cover (3), and the direction of action that occurs toward the center due to the rotation of the rotating body (1). (reverse flow direction) is also shown. 図2の液状体供給機構を簡素化して隠れ線も表示した斜視図である。FIG. 3 is a simplified perspective view of the liquid supply mechanism of FIG. 2 and also shows hidden lines. 図9の変形例で、円盤(2)とブレード(8)の間に間隔(9)がある形状を示す図である。尚、2枚の円盤(2)の間を繋ぎ固定する部材の記載は割愛した斜視図である。10 is a diagram showing a modification of FIG. 9 in which there is a gap (9) between the disk (2) and the blade (8). FIG. Note that this is a perspective view with illustrations of the members that connect and fix the two disks (2). 図2の液状体供給機構の変形例で、図2のブレード(8)と円盤(2)をパイプ(10)に置き替えた断面図である。FIG. 3 is a cross-sectional view of a modification of the liquid supply mechanism of FIG. 2 in which the blade (8) and disc (2) of FIG. 2 are replaced with a pipe (10). 真直ぐなパイプ(10)を回転体と同じ回転方向に角度を傾けた液状体供給機構で、図11のD-D矢視図である。This is a liquid supply mechanism in which a straight pipe (10) is tilted in the same direction of rotation as the rotating body, and is a view taken along the line D-D in FIG. 11. 図12の変形例で、湾曲したパイプ(10)を示したもので、図11のD-D矢視からみるのと同様の図である。This is a modified example of FIG. 12, showing a curved pipe (10), and is the same view as seen from the direction of arrow D-D in FIG. 11. 図13の変形例で、湾曲したパイプ(10)が半径方向に進むに従いパイプ(10)の断面積が大きくなるように記した図である。14 is a diagram showing a modification of FIG. 13 in which the cross-sectional area of the pipe (10) increases as the curved pipe (10) advances in the radial direction. FIG. 図2の変形例で、液状体供給管(4)と回転シャフトを別設した図で、液状体供給機構である円盤(2)、ブレード(8)及び液状体供給管(4)は回転体(1)の流出口(6)側から設けた断面図である。This is a modification of FIG. 2, in which the liquid supply pipe (4) and the rotating shaft are separately installed, and the disk (2), the blade (8), and the liquid supply pipe (4), which are the liquid supply mechanism, are connected to the rotating body. It is a sectional view provided from the outlet (6) side of (1). 図2の変形例で、回転シャフトと液状体供給管(4)を別設として、回転シャフト内径部に液状体供給管(4)を設けた断面図である。尚、液状体供給管(4)は無回転に限定せず回転してもよい。FIG. 3 is a cross-sectional view of a modification of FIG. 2 in which the rotating shaft and the liquid supply pipe (4) are provided separately, and the liquid supply pipe (4) is provided in the inner diameter part of the rotating shaft. Note that the liquid supply pipe (4) is not limited to non-rotation, and may be rotated.

本願発明を実施するための形態について、図1は一実施例で遠心分離機全体の断面図で詳細は以降の添付図面によって説明する。 Regarding the embodiment of the present invention, FIG. 1 is a cross-sectional view of the entire centrifugal separator according to one embodiment, and the details will be explained with reference to the accompanying drawings below.

図2~図4に示される実施形態について説明する。図2は本発明に係る遠心分離用の高速で回転する回転体(1)に液状体を連続的に送液する際の送出口である円盤外周部(2a)(ディスク外周部)から送出(回転体への供給)する流速を減速させて、回転体(1)と同期して回転する滞留液状体(5)の攪乱を低減して濾過効率を向上させる遠心分離機の回転部の断面図で、液状体の流れは小さな開矢印で連続的に記載しているが、実際は回転しながら移動しており、その回転要素は割愛している。
液状体供給機構は、回転中心軸(11)に直行して2枚の円盤(ディスク)(2)を間隙を隔てて並列させ、中央に液状体供給管(4)を連結して当該間隙間に液状体を供給するように構成され、壁部材であるブレード(8)を前記2枚の円盤(2)の間隙内に立設して案内部を構成している。
The embodiment shown in FIGS. 2 to 4 will be described. FIG. 2 shows the delivery ( A cross-sectional view of the rotating part of a centrifuge that improves filtration efficiency by reducing the flow rate (supply to the rotating body) to reduce disturbance of the retained liquid (5) that rotates in synchronization with the rotating body (1). Although the flow of the liquid is shown as a continuous flow using small open arrows, it actually moves while rotating, so the rotating elements are omitted.
The liquid supply mechanism consists of two disks (2) that are arranged in parallel with a gap between them in a direction perpendicular to the central axis of rotation (11), and a liquid supply pipe (4) connected to the center to fill the gap between the two disks (2). A blade (8), which is a wall member, is erected in the gap between the two disks (2) to form a guide section.

尚、前記2枚の円盤(2)の間隙の距離は、遠く離れていてもよく、液状体供給管(4)と連結した円盤(2)が流路(12)として接液しない構造でもよい。前記連結した円盤(2)と液状体供給管(4)は、連通しておればよく、必ずしも接合されている必要はない。
次に、円盤(2)が3枚以上の多重構造としてもよく、回転バランスを考慮した配置であれば、液状体供給管(4)は複数も可能で、その場合は回転中心軸(11)上に位置させる必要もない。
The gap between the two disks (2) may be far apart, and the structure may be such that the disk (2) connected to the liquid supply pipe (4) does not come into contact with the liquid as a flow path (12). . The connected disk (2) and liquid supply pipe (4) only need to be in communication and do not necessarily need to be joined.
Next, the disks (2) may have a multilayer structure with three or more disks, and as long as the arrangement takes rotational balance into consideration, it is possible to have a plurality of liquid supply pipes (4). In that case, the rotation center axis (11) There is no need to place it on top.

又、送出口である円盤外周部(2a)は滞留液状体(5)の内部に位置している事が望ましいが、滞留液状体(5)の外部である滞留液面(5a)より回転中心軸(11)側に位置していてもよい。 In addition, it is desirable that the outer circumference of the disk (2a), which is the delivery port, is located inside the retained liquid (5), but the center of rotation is closer to the retained liquid level (5a), which is outside the retained liquid (5). It may be located on the shaft (11) side.

攪乱の低減について、図2では回転体(1)同期回転する2枚の円盤(ディスク)(2)に挟まれた複数のブレード(8)により回転力を付与された液状体は、送出口である円盤外周部(2a)において、略同じ回転数で送出(回転体への供給)するので、回転に関する運動差は無く撹拌の要素が排除できる。 Regarding the reduction of disturbance, in Fig. 2, the liquid is given a rotational force by a plurality of blades (8) sandwiched between a rotating body (1) and two synchronously rotating disks (2), and the liquid is Since the material is delivered (supplied to the rotating body) at approximately the same rotational speed at a certain outer circumferential portion (2a) of the disk, there is no difference in motion regarding rotation, and the element of stirring can be eliminated.

図3は図2のA-A矢視図で、ブレード(8)で回転力を付与されて流れる様子を連続した小さな開矢印で示している。 FIG. 3 is a view taken along the line A-A in FIG. 2, and shows the state in which the blade (8) applies rotational force to the flow as shown by continuous small open arrows.

次に円盤外周部(2a)から送出する流速は、通常、ポンプ等から送液される流速にプラスして高速回転による遠心力で更に流速は高速化されて滞留液状体(5)と衝突する事になるが、図4に示す通り、半径方向へ回転体と同じ回転方向に湾曲させたブレード(8)を設ける事により、液状体には円盤(2)の中心に向かう逆流方向に作用力が働く。この逆流方向の作用力は、ポンプ等から送液される流速にプラスして遠心力で加速された流速を減速させる。
尚、図3及び図4記載のブレード(8)は、単純な湾曲形状であるが、望ましくは渦巻線形状が最良で、屈曲形状でも回転方向に傾けた直線形状であっても良い。
Next, the flow rate sent out from the outer peripheral part of the disk (2a) is normally increased by centrifugal force due to high-speed rotation in addition to the flow rate sent from a pump etc., and collides with the staying liquid (5). However, as shown in Figure 4, by providing a blade (8) that is curved in the radial direction in the same rotational direction as the rotating body, a force acting on the liquid in the counterflow direction toward the center of the disk (2) is applied. works. This acting force in the reverse flow direction is added to the flow velocity delivered from a pump or the like and decelerates the flow velocity accelerated by centrifugal force.
Although the blade (8) shown in FIGS. 3 and 4 has a simple curved shape, it is best to have a spiral shape, and it may have a bent shape or a straight shape tilted in the direction of rotation.

ここで、前記液状体供給管の断面積に対し前記液状体供給機構の外周面の流路断面積をα倍に設計した場合、下記の簡易式のとおり、逆流方向のエネルギー(力)が、遠心力による送液の加速力と液状体供給管の送液速度(ポンプの吐出圧力による)をα分の1に減速させる力を加算したエネルギーより大きくなるようにブレード(8)形状に設計すれば、液状体供給機構内部の空気が押出され、α分の1に減速された液状体が円盤外周部(2a)である送出口の全面から安定的に送液される。
1/αに減速する条件の簡易式 :
逆流方向のエネルギー≧送液の加速力+(1-1/α)×ポンプ送液速度
尚、望ましくは前記条件を満たす場合であるが、満たさない場合であっても減速するので攪乱範囲を小さくすることができる。
Here, if the cross-sectional area of the flow path on the outer peripheral surface of the liquid supply mechanism is designed to be α times the cross-sectional area of the liquid supply pipe, the energy (force) in the reverse flow direction will be: The shape of the blade (8) should be designed so that the energy is greater than the sum of the acceleration force of liquid feeding due to centrifugal force and the force that decelerates the liquid feeding speed of the liquid supply pipe (due to the pump discharge pressure) to 1/α. For example, the air inside the liquid supply mechanism is pushed out, and the liquid that has been decelerated to 1/α is stably fed from the entire surface of the outlet, which is the outer circumference of the disk (2a).
Simple formula for conditions for deceleration to 1/α:
Energy in the reverse flow direction ≧ acceleration force of liquid feeding + (1-1/α) × pump liquid feeding speed It is preferable that the above conditions are satisfied, but even if the above conditions are not met, the speed will be reduced and the disturbance range will be reduced. can do.

攪乱範囲について、同重力(遠心力)下においてバケツの水に同じ流量の水を入れるとして、小径のホース口から勢い良く入れた場合と大径のホース口から緩やかに入れた場合と比較して攪乱範囲の大小の差が意外と大きいことは、日常経験的にも想像しやすい。 Regarding the range of disturbance, let's compare the case where water is poured into a bucket at the same flow rate under the same gravity (centrifugal force), and when it is poured forcefully from a small-diameter hose spout, and when it is poured slowly from a large-diameter hose spout. It is easy to imagine from everyday experience that the difference in the size of the disturbance range is surprisingly large.

よって、攪乱範囲を最小限にすることで、効力のある遠心分離容積が大きく取れる結果としてろ過時間(遠心力時間)が長くなり、大幅な濾過効率向上を達成させることができる。 Therefore, by minimizing the disturbance range, a large effective centrifugation volume can be obtained, resulting in a longer filtration time (centrifugal force time), and a significant improvement in filtration efficiency can be achieved.

図5は図4の変形例で、半径方向へ回転体(1)と同じ回転方向に角度を傾けたブレード(8)を示しており、円盤(2)の中心から半径方向に距離を取った位置から円盤(2)の外周に向けて伸びている。円盤(2)の中心から半径方向に伸ばすと半径方向線と成す角度が取れない為である。 Figure 5 is a modification of Figure 4, showing a blade (8) tilted radially in the same direction of rotation as the rotating body (1), and with a radial distance from the center of the disk (2). It extends from the position toward the outer periphery of the disk (2). This is because if it extends in the radial direction from the center of the disk (2), it will not be possible to form an angle with the radial line.

図6は図5の変形例で、ブレード(8)を屈曲形状にした場合の実施例である。尚、ブレード(8)が円盤(2)の中心から距離を取った位置から半径方向に伸びた後に角度を取った形状でも良い。 FIG. 6 is a modification of FIG. 5, in which the blade (8) is bent. Note that the blade (8) may have a shape in which it extends in the radial direction from a position a distance from the center of the disc (2) and then takes an angle.

図7は図4の変形例でブレード(8)が円盤(2)の中心から伸びる形態でも良い。 FIG. 7 shows a modification of FIG. 4, in which the blade (8) may extend from the center of the disc (2).

図8は、図2の液状体供給機構の変形例で、円盤(2)の一方を回転体上蓋部(3)にした場合の断面図で、回転体(1)の回転により中心に向かって発生する作用方向(逆流方向)を矢印で示しており、ブレード(8)の形状と回転速度によって、液状体供給管(4)を逆流する力も発生させることが出来る。尚、実際に逆流させるわけではない。 FIG. 8 is a cross-sectional view of a modified example of the liquid supply mechanism shown in FIG. 2, in which one side of the disk (2) is used as the upper cover part (3) of the rotating body. The direction of action (reverse flow direction) that is generated is shown by an arrow, and depending on the shape and rotational speed of the blade (8), it is also possible to generate a force that causes the liquid to flow backward through the liquid supply pipe (4). Note that it does not actually cause the flow to flow backwards.

図9及び図10は図2の液状体供給機構を簡素化して隠れ線も表示した図で図10の様に必ずしもブレード(8)が2枚の円盤(2)に接合されず間隔(9)があっても実施可能で、液状体の性質によって間隔(9)を設ける場合がある。尚、間隔(9)を設けた場合の2枚の円盤(2)の接合部は割愛している。 Figures 9 and 10 are diagrams that simplify the liquid supply mechanism in Figure 2 and also display hidden lines.As shown in Figure 10, the blade (8) is not necessarily joined to the two discs (2), but the gap (9) is It is possible to implement even if there is a gap, and the interval (9) may be provided depending on the properties of the liquid. Note that the joint portion of the two disks (2) when the interval (9) is provided is omitted.

図11は図2の液状体供給機構の変形例で、図2のブレード(8)と円盤(2)を案内部としてパイプ(10)に置き替えた実施例である。 FIG. 11 shows a modification of the liquid supply mechanism shown in FIG. 2, in which the blade (8) and disc (2) shown in FIG. 2 are replaced with a pipe (10) as guide parts.

図12は図11のD-D矢視図で半径方向から回転方向に角度を傾けたパイプ(10)を放射状に設けた実施例であり、当該パイプ(10)の内面が案内部として作用する。 FIG. 12 shows an embodiment in which pipes (10) tilted from the radial direction to the rotational direction are provided radially in the DD arrow view of FIG. 11, and the inner surface of the pipe (10) acts as a guide part. .

図13は図12の変形例で、回転方向に湾曲したパイプ(10)を設けた実施例であるが、屈曲及び渦巻形状をしていても良い。 FIG. 13 is a modification of FIG. 12, in which a pipe (10) is curved in the direction of rotation, but it may also have a bent or spiral shape.

図14は図13の変形例で、湾曲したパイプ(10)が半径方向に行くにしたがって内径断面が多きくなった実施例であるが、真直ぐ、屈曲及び渦巻形状においても、半径方向に行くにしたがって内径断面が大きくなっても良い。 Fig. 14 is a modification of Fig. 13, and is an embodiment in which the curved pipe (10) has an inner diameter cross section that increases as it goes in the radial direction. Therefore, the inner diameter cross section may be large.

図15は図2の変形例で、回転シャフトと液状体供給管(4)を別設とし、円盤(2)、ブレード(8)及び液状体供給管(4)を流出口(6)側から回転可能として組入れた実施例である。尚、円盤(2)とブレード(8)で構成された液状体供給機構は回転中心軸(8)上において上下どの位置に設定しても良く、これは図2、図11及び図16の場合でも同じである。
又、図11においても、図15と同様に回転シャフトと液状体供給管(4)を別設とし、パイプ(10)及び液状体供給管(4)を流出口(6)側から回転可能として組入れても良い。
Fig. 15 is a modification of Fig. 2, in which the rotating shaft and the liquid supply pipe (4) are installed separately, and the disk (2), blade (8), and liquid supply pipe (4) are connected from the outlet (6) side. This is an embodiment in which it is installed rotatably. Note that the liquid supply mechanism composed of the disk (2) and the blade (8) may be set at any position above or below the rotation center axis (8), and this is the case in Figs. 2, 11, and 16. But it's the same.
Also, in FIG. 11, as in FIG. 15, the rotating shaft and the liquid supply pipe (4) are provided separately, and the pipe (10) and the liquid supply pipe (4) are rotatable from the outlet (6) side. May be incorporated.

図16は図2の変形例で、回転シャフトと液状体供給管(4)を別設として、回転シャフト内径部に液状体供給管(4)を設けた実施例である。尚、図は無回転としているが、必要に応じて液状体供給管(4)を回転させてもよい。 FIG. 16 is a modification of FIG. 2, and is an embodiment in which the rotating shaft and the liquid supply pipe (4) are provided separately, and the liquid supply pipe (4) is provided on the inner diameter part of the rotating shaft. Although the figure shows no rotation, the liquid supply pipe (4) may be rotated if necessary.

本発明についてある程度詳細にその最も好ましい実施形態について説明してきたが、本発明の技術思想に反することなしに、より広範に異なる実施形態を構成可能なことは明白なので、この発明は添付請求の範囲において限定した以外は特定の実施形態に制約されるものではない。 Although the present invention has been described in some detail with respect to its most preferred embodiment, it is clear that a wider range of different embodiments can be constructed without departing from the technical idea of the present invention. The present invention is not limited to any particular embodiment except as described in .

1 回転体
2 円盤(ディスク)
2a 円盤外周部(ディスク外周部)
3 回転体上蓋部
4 液状体供給管
5 滞留液状体
5a 滞留液面
6 流出口
7 ベアリング
8 ブレード(壁部材、案内部)
9 間隔
10 パイプ(案内部)
11 回転中心軸
12 流路
13 ロータリージョイント
14 変速クラッチ
15 ハウジング
16 モーター
17 スクレーパー
18 環状受液先端部
19 気泡発生防止受液ユニット(18と20をセットにした名称)
20 受液円錐筒
21 送液口
22 ろ過液出口
23 スラッジ及び洗浄廃液通り管
24 上下水平動付スライド排水受
25 排水伸縮ホース
26 水平動エアーシリンダー
27 上下動エアーシリンダー
28 Vベルト
29 スラッジ及び洗浄廃液出口
1 Rotating body 2 Disk
2a Disc outer periphery (disc outer periphery)
3 Rotating body upper lid part 4 Liquid supply pipe 5 Remaining liquid 5a Remaining liquid level 6 Outlet 7 Bearing 8 Blade (wall member, guide part)
9 Spacing 10 Pipe (guide section)
11 Rotation center axis 12 Flow path 13 Rotary joint 14 Variable speed clutch 15 Housing 16 Motor 17 Scraper 18 Annular liquid receiving tip 19 Bubble prevention liquid receiving unit (named after 18 and 20)
20 Liquid receiving conical cylinder 21 Liquid sending port 22 Filtrate outlet 23 Sludge and washing waste liquid passage pipe 24 Vertical and horizontal movement slide drainage receiver 25 Drainage telescopic hose 26 Horizontal movement air cylinder 27 Vertical movement air cylinder 28 V belt 29 Sludge and washing waste liquid passage Exit

Claims (5)

比重の異なる物質を含む液状体を遠心力により分離する回転体の内部に、前記液状体を供給し、比重の小さな液状体を連続して回転体の外に流出させる遠心分離装置であって、回転体は遠心力により内面側に滞留した滞留液状体を流出させる流出口を設けた容器であり、前記回転体と同じ回転中心軸で、さらに同回転数で回転して前記回転体の内面側に液状体を供給する液状体供給機構を設け、該液状体供給機構は回転方向側に液状体を案内することで生ずる逆流方向の作用力により、案内される液状体と回転体の内壁に滞留する滞留液状体とが衝突する速度を減速させて滞留液状体の攪乱範囲を抑制する案内部を有することを特徴とする遠心分離機。 A centrifugal separator that supplies the liquid to the inside of a rotating body that separates liquid substances containing substances with different specific gravity by centrifugal force, and continuously flows out the liquid with a small specific gravity to the outside of the rotating body, The rotating body is a container provided with an outlet through which the accumulated liquid accumulated on the inner surface side due to centrifugal force flows out. A liquid supply mechanism is provided for supplying a liquid to the rotating body , and the liquid supply mechanism causes the guided liquid and the inner wall of the rotating body to react by the force acting in the reverse flow direction generated by guiding the liquid in the rotational direction. A centrifugal separator characterized by having a guide portion that reduces the speed at which the staying liquid material collides with the remaining liquid material, thereby suppressing the disturbance range of the staying liquid material . 前記液状体供給機構は前記回転体の回転中心軸に直交して複数のディスクを間隙を隔てて併設し、当該間隙に液状体を供給する液状体供給管を設け、前記案内部を前記複数のディスクの間隔内に立設した壁部材で構成したことを特徴とする請求項1に記載の遠心分離機。 The liquid supply mechanism includes a plurality of disks arranged at right angles to the central axis of rotation of the rotating body with a gap between them, a liquid supply pipe for supplying the liquid to the gap, and a guide section that connects the plurality of disks with each other. The centrifugal separator according to claim 1, characterized in that the centrifugal separator comprises a wall member standing upright within the space between the disks. 前記液状体供給機構は前記回転体の回転中心軸に直交して複数のパイプを放射状に設け、当該複数のパイプに液状体を供給する液状体供給管を設け、前記案内部を前記複数のパイプの内面で構成したことを特徴とする請求項1に記載の遠心分離機。 The liquid supply mechanism includes a plurality of pipes radially provided perpendicular to the central axis of rotation of the rotating body, a liquid supply pipe for supplying the liquid to the plurality of pipes, and a guide section that connects the plurality of pipes. The centrifugal separator according to claim 1, characterized in that the centrifugal separator is configured with an inner surface of. 前記液状体供給機構の複数のパイプは半径方向に外方側に進むに従い断面積が増加するように構成されたことを特徴とする請求項3に記載の遠心分離機。 4. The centrifugal separator according to claim 3, wherein the plurality of pipes of the liquid supply mechanism are configured such that their cross-sectional area increases as they proceed outward in the radial direction. 前記液状体供給機構の外周部である送出口を遠心分離中において前記遠心力により内面側に滞留した滞留液状体内に位置するように構成したことを特徴とする請求項1~4に記載の遠心分離機。
The centrifuge according to any one of claims 1 to 4, characterized in that the outlet, which is an outer peripheral portion of the liquid supply mechanism, is configured to be located within the retained liquid that has accumulated on the inner surface side due to the centrifugal force during centrifugation. Separator.
JP2022085758A 2022-05-26 2022-05-26 centrifuge Active JP7393606B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022085758A JP7393606B1 (en) 2022-05-26 2022-05-26 centrifuge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022085758A JP7393606B1 (en) 2022-05-26 2022-05-26 centrifuge

Publications (2)

Publication Number Publication Date
JP7393606B1 true JP7393606B1 (en) 2023-12-07
JP2023178506A JP2023178506A (en) 2023-12-15

Family

ID=89023223

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022085758A Active JP7393606B1 (en) 2022-05-26 2022-05-26 centrifuge

Country Status (1)

Country Link
JP (1) JP7393606B1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003225588A (en) 2002-02-04 2003-08-12 Niigata Uoshinton Kk Vertical decanter type centrifugal separator
JP2018143939A (en) 2017-03-03 2018-09-20 俊治 角野 Centrifugal separator

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003225588A (en) 2002-02-04 2003-08-12 Niigata Uoshinton Kk Vertical decanter type centrifugal separator
JP2018143939A (en) 2017-03-03 2018-09-20 俊治 角野 Centrifugal separator

Also Published As

Publication number Publication date
JP2023178506A (en) 2023-12-15

Similar Documents

Publication Publication Date Title
EP1993702B2 (en) Centrifugal separator
JP3473974B2 (en) Decanter type centrifuge
US3399773A (en) Apparatus for separating solids from liquids
CN1028612C (en) Centrifugal separator
JPH0127780B2 (en)
CN102006940B (en) A centrifugal separator
US5147277A (en) Power-efficient liquid-solid separating centrifuge
CA2317528A1 (en) Solid bowl centrifuge for mixtures, especially for fibrous material suspensions used in the paper industry
KR20140045957A (en) Improved centrifugal separator
EP0171143B1 (en) Pump
EP1102638A1 (en) Improved centrifuge system
JPH07859A (en) Centrifugal concentrator
JP7393606B1 (en) centrifuge
JP2008542011A (en) Screw decanter centrifuge
US6238329B1 (en) Centrifugal separator for mixed immiscible fluids
US5545119A (en) Solid bowl worm centrifuge
CN101757992B (en) Dynamic prewhirl and axial push type hydrocyclone
NO781930L (en) INLET RULE FOR DISC RAFFINOER
US5257698A (en) Cleaner for stock suspensions
CN210386216U (en) Horizontal screw centrifugal machine
US4318670A (en) Screw pump for conveying waste water and the like
SE452345B (en) DEVICE FOR THE DISTRIBUTION OF SUSPENSION BY ITS INCORPORATION IN TREATMENT
US1882390A (en) Centrifugal machine
JP4342107B2 (en) Centrifuge outlet with reaction driven rotor
JP7361123B2 (en) separator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230725

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230906

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231017

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231023

R150 Certificate of patent or registration of utility model

Ref document number: 7393606

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150