JP7392318B2 - Paper made from fluorine fibers - Google Patents
Paper made from fluorine fibers Download PDFInfo
- Publication number
- JP7392318B2 JP7392318B2 JP2019146075A JP2019146075A JP7392318B2 JP 7392318 B2 JP7392318 B2 JP 7392318B2 JP 2019146075 A JP2019146075 A JP 2019146075A JP 2019146075 A JP2019146075 A JP 2019146075A JP 7392318 B2 JP7392318 B2 JP 7392318B2
- Authority
- JP
- Japan
- Prior art keywords
- fluorine
- fiber
- fibers
- paper
- heating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000835 fiber Substances 0.000 title claims description 220
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 title claims description 127
- 239000011737 fluorine Substances 0.000 title claims description 127
- 229910052731 fluorine Inorganic materials 0.000 title claims description 127
- 239000011159 matrix material Substances 0.000 claims description 29
- 238000002844 melting Methods 0.000 claims description 24
- 230000008018 melting Effects 0.000 claims description 24
- 238000000034 method Methods 0.000 description 39
- 238000010438 heat treatment Methods 0.000 description 27
- 239000006185 dispersion Substances 0.000 description 23
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 20
- 239000004810 polytetrafluoroethylene Substances 0.000 description 20
- 238000004519 manufacturing process Methods 0.000 description 15
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 14
- 238000009987 spinning Methods 0.000 description 14
- 238000002156 mixing Methods 0.000 description 13
- 230000035699 permeability Effects 0.000 description 11
- 238000010304 firing Methods 0.000 description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 10
- SNICXCGAKADSCV-UHFFFAOYSA-N nicotine Chemical compound CN1CCCC1C1=CC=CN=C1 SNICXCGAKADSCV-UHFFFAOYSA-N 0.000 description 9
- 229910052742 iron Inorganic materials 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- 229920000297 Rayon Polymers 0.000 description 6
- 206010061592 cardiac fibrillation Diseases 0.000 description 6
- 230000002600 fibrillogenic effect Effects 0.000 description 6
- 238000001035 drying Methods 0.000 description 5
- 239000004570 mortar (masonry) Substances 0.000 description 5
- 239000002994 raw material Substances 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 4
- 239000007864 aqueous solution Substances 0.000 description 4
- 230000015271 coagulation Effects 0.000 description 4
- 238000005345 coagulation Methods 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- -1 polytetrafluoroethylene Polymers 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 239000000853 adhesive Substances 0.000 description 3
- 229920001577 copolymer Polymers 0.000 description 3
- 238000005520 cutting process Methods 0.000 description 3
- 230000004927 fusion Effects 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 229920005594 polymer fiber Polymers 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 2
- 239000005977 Ethylene Substances 0.000 description 2
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 2
- 239000002033 PVDF binder Substances 0.000 description 2
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 238000003490 calendering Methods 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000010292 electrical insulation Methods 0.000 description 2
- 229920000840 ethylene tetrafluoroethylene copolymer Polymers 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 238000004299 exfoliation Methods 0.000 description 2
- 238000001125 extrusion Methods 0.000 description 2
- 125000001153 fluoro group Chemical group F* 0.000 description 2
- 238000005187 foaming Methods 0.000 description 2
- 239000011810 insulating material Substances 0.000 description 2
- MLFHJEHSLIIPHL-UHFFFAOYSA-N isoamyl acetate Chemical compound CC(C)CCOC(C)=O MLFHJEHSLIIPHL-UHFFFAOYSA-N 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000000314 lubricant Substances 0.000 description 2
- 238000002074 melt spinning Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000000178 monomer Substances 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 2
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 2
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 2
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 229910052938 sodium sulfate Inorganic materials 0.000 description 2
- 235000011152 sodium sulphate Nutrition 0.000 description 2
- 239000011550 stock solution Substances 0.000 description 2
- IXPNQXFRVYWDDI-UHFFFAOYSA-N 1-methyl-2,4-dioxo-1,3-diazinane-5-carboximidamide Chemical compound CN1CC(C(N)=N)C(=O)NC1=O IXPNQXFRVYWDDI-UHFFFAOYSA-N 0.000 description 1
- QCVGEOXPDFCNHA-UHFFFAOYSA-N 5,5-dimethyl-2,4-dioxo-1,3-oxazolidine-3-carboxamide Chemical compound CC1(C)OC(=O)N(C(N)=O)C1=O QCVGEOXPDFCNHA-UHFFFAOYSA-N 0.000 description 1
- 229920001780 ECTFE Polymers 0.000 description 1
- 102000002322 Egg Proteins Human genes 0.000 description 1
- 108010000912 Egg Proteins Proteins 0.000 description 1
- 239000001856 Ethyl cellulose Substances 0.000 description 1
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical compound CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 description 1
- 229920002153 Hydroxypropyl cellulose Polymers 0.000 description 1
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 1
- 229920001967 Metal rubber Polymers 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- ABBQHOQBGMUPJH-UHFFFAOYSA-M Sodium salicylate Chemical compound [Na+].OC1=CC=CC=C1C([O-])=O ABBQHOQBGMUPJH-UHFFFAOYSA-M 0.000 description 1
- 235000021355 Stearic acid Nutrition 0.000 description 1
- 239000002390 adhesive tape Substances 0.000 description 1
- 125000000129 anionic group Chemical group 0.000 description 1
- 239000003945 anionic surfactant Substances 0.000 description 1
- 239000002518 antifoaming agent Substances 0.000 description 1
- 238000010009 beating Methods 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 239000003093 cationic surfactant Substances 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000012461 cellulose resin Substances 0.000 description 1
- 239000006059 cover glass Substances 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 235000014103 egg white Nutrition 0.000 description 1
- 210000000969 egg white Anatomy 0.000 description 1
- 239000012772 electrical insulation material Substances 0.000 description 1
- 238000004945 emulsification Methods 0.000 description 1
- 235000019325 ethyl cellulose Nutrition 0.000 description 1
- 229920001249 ethyl cellulose Polymers 0.000 description 1
- 239000002657 fibrous material Substances 0.000 description 1
- 230000009477 glass transition Effects 0.000 description 1
- 235000011187 glycerol Nutrition 0.000 description 1
- 239000001863 hydroxypropyl cellulose Substances 0.000 description 1
- 235000010977 hydroxypropyl cellulose Nutrition 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 229910017053 inorganic salt Inorganic materials 0.000 description 1
- 229940117955 isoamyl acetate Drugs 0.000 description 1
- 229940057995 liquid paraffin Drugs 0.000 description 1
- 229910001416 lithium ion Inorganic materials 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000002736 nonionic surfactant Substances 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 235000019422 polyvinyl alcohol Nutrition 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 230000002335 preservative effect Effects 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 239000000661 sodium alginate Substances 0.000 description 1
- 235000010413 sodium alginate Nutrition 0.000 description 1
- 229940005550 sodium alginate Drugs 0.000 description 1
- 235000011121 sodium hydroxide Nutrition 0.000 description 1
- 229960004025 sodium salicylate Drugs 0.000 description 1
- 239000008117 stearic acid Substances 0.000 description 1
- BFKJFAAPBSQJPD-UHFFFAOYSA-N tetrafluoroethene Chemical group FC(F)=C(F)F BFKJFAAPBSQJPD-UHFFFAOYSA-N 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
Landscapes
- Paper (AREA)
Description
本発明は、フッ素系繊維から成る抄紙に関するものである。 The present invention relates to paper making made of fluorine fibers.
抄紙は、幅広い分野でニーズがあり、フィルターやセパレーター、さらには電気絶縁部材など様々なものに用いられる。それぞれの用途によって、求められる厚みや耐熱性や緻密性は様々である。このため、抄紙製造条件の最適化はもちろんのこと、使用する繊維の素材としての特性、物性の最適化も重要となる。 Paper making is in demand in a wide range of fields, and is used for a variety of products such as filters, separators, and even electrical insulation materials. The required thickness, heat resistance, and density vary depending on the application. For this reason, it is important not only to optimize paper manufacturing conditions, but also to optimize the characteristics and physical properties of the fibers used as raw materials.
近年、ノートPC、スマートフォン、タブレットなどの普及が進み、これらがIT社会化に大きな貢献をしてきた。このため、ノートPC、スマートフォン、タブレットなどの電子デバイスに使用されているリチウムイオン電池の高度化、より安全で高い性能が期待される全固体二次電池の開発が望まれている。この状況の中、電子デバイスに使用される抄紙等の絶縁紙あるいは絶縁シートの性能も高度化が求められる。絶縁部材は、その使用環境によって求められる耐熱性や厚みは異なるが、全固体二次電池をはじめとした高機能二次電池では、使用環境温度が200℃を超えることもあり、絶縁部材にもそのような耐熱性が求められる。また、厚みに関しては、50μmより薄厚(厚みが薄いこと)なものが求められる。このような問題を解決するために常時使用温度が200℃を超えるフッ素系繊維の抄紙が望まれているが、フッ素系繊維の抄紙においては50μmより薄厚なものは得られていない。 In recent years, notebook PCs, smartphones, tablets, etc. have become more popular, and these have made a major contribution to the development of an IT society. For this reason, there is a desire to improve the sophistication of lithium-ion batteries used in electronic devices such as notebook PCs, smartphones, and tablets, and to develop all-solid-state secondary batteries that are expected to be safer and have higher performance. Under these circumstances, the performance of insulating paper such as paper or insulating sheets used in electronic devices is required to be improved. The heat resistance and thickness required for insulating materials differ depending on the environment in which they are used, but for high-performance secondary batteries such as all-solid-state secondary batteries, the operating environment temperature can exceed 200°C, so Such heat resistance is required. Furthermore, regarding the thickness, it is required to be thinner than 50 μm. In order to solve these problems, it is desired to make paper using fluorine fibers whose operating temperature exceeds 200° C., but paper having a thickness of less than 50 μm has not been produced using fluorine fibers.
フッ素系繊維の抄紙の技術としては、ポリビニルピロリドンなどの自己接着機能を有する物質とフッ素繊維を混合してフッ素繊維混抄紙を得て、その後、自己接着機能物資を除去する方法が知られている(特許文献1参照)。特許文献1の実施例2において、テトラフルオロエチレンとエチレンの共重合体から成り、繊維径が10μmのフッ素繊維90wt%とポリビニルピロリドン10wt%を分散混合して得たフッ素繊維混抄紙を90℃以上の熱水に通して、フッ素繊維抄紙を得ている。しかしながら、厚みが110μmと記載されており、電子デバイス用の絶縁部材に適さない。また、繊維径が10μmのフッ素繊維を用いているが、自己接着機能を有する物質を使用するため、これ以上の薄厚化が困難であると考えられる。 A known technique for making paper using fluorine fibers is to obtain fluorine fiber-containing paper by mixing fluorine fibers with a substance that has a self-adhesive function, such as polyvinylpyrrolidone, and then remove the self-adhesive function material. (See Patent Document 1). In Example 2 of Patent Document 1, fluorine fiber mixed paper obtained by dispersing and mixing 90 wt% of fluorine fibers made of a copolymer of tetrafluoroethylene and ethylene and having a fiber diameter of 10 μm and 10 wt% of polyvinylpyrrolidone is heated at 90°C or higher. Fluorine fiber paper is obtained by passing it through hot water. However, the thickness is described as 110 μm, making it unsuitable as an insulating member for electronic devices. Further, although fluorine fibers with a fiber diameter of 10 μm are used, it is thought that it is difficult to reduce the thickness further because a substance having a self-adhesive function is used.
他の技術としては、ポリテトラフルオロエチレンの水性ディスパージョンをマトリックス成分に分散させ、口金より紡出して得た未延伸ポリテトラフルオロエチレン系重合体繊維を加熱焼結する方法が知られている(特許文献2参照)。特許文献2の実施例1において、未延伸ポリテトラフルオロエチレン系重合体繊維を水に分散して得た抄紙原料を湿式抄紙して得た抄紙シートを400℃で4分間加熱処理して焼結させ、更に325℃で24時間熱処理させ、該焼結シートを縦および横方向に各々延伸倍率が1:3となるように延伸してフッ素繊維シートを得ていることが記載されている。しかしながら、厚みが87μmと記載されており、電子デバイス用の絶縁部材に適さない。また、未延伸ポリテトラフルオロエチレン系重合体繊維を用いているため、繊維径を小さくすることが難しく、これ以上の薄厚化が困難であると考えられる。 Another known technique is to disperse an aqueous dispersion of polytetrafluoroethylene in a matrix component, and then heat and sinter the undrawn polytetrafluoroethylene polymer fiber obtained by spinning it from a spinneret ( (See Patent Document 2). In Example 1 of Patent Document 2, a paper sheet obtained by wet papermaking of a papermaking raw material obtained by dispersing undrawn polytetrafluoroethylene polymer fibers in water was heat-treated at 400 ° C. for 4 minutes and sintered. It is described that a fluorine fiber sheet is obtained by subjecting the sintered sheet to a heat treatment at 325° C. for 24 hours, and stretching the sintered sheet in the longitudinal and transverse directions at a stretching ratio of 1:3. However, the thickness is described as 87 μm, making it unsuitable for use as an insulating member for electronic devices. Furthermore, since undrawn polytetrafluoroethylene polymer fibers are used, it is difficult to reduce the fiber diameter, and it is considered difficult to further reduce the thickness.
薄厚抄紙を得るためには、抄紙の原料である繊維の繊維径を小さくする、かつ繊維径の小さい原料を用いて抄紙にする手法が重要と考える。 In order to obtain thin and thick paper, we believe that it is important to reduce the fiber diameter of the fibers that are the raw material for paper making, and to make paper using raw materials with small fiber diameters.
本発明の課題は、耐熱性、耐薬品性、電気絶縁性、摩擦特性、耐候性に優れるというフッ素系繊維の素材としての特性を維持しつつ、薄厚化させ、電子デバイス用の絶縁部材に適したフッ素系繊維から成る抄紙を得ることである。 The object of the present invention is to maintain the properties of fluorine-based fibers as a material, such as excellent heat resistance, chemical resistance, electrical insulation, friction properties, and weather resistance, while reducing the thickness of the fluorine fibers, making them suitable for insulating members for electronic devices. The objective is to obtain paper made of fluorine-based fibers.
上記課題を解決する本発明のフッ素系繊維から成る抄紙は、抄紙を構成する繊維が融点の異なる2種類以上のフッ素系繊維のみから成り、その少なくとも一部が融着していることを特徴とするものである。 The paper made of fluorine fibers of the present invention which solves the above problems is characterized in that the fibers constituting the paper are composed only of two or more types of fluorine fibers having different melting points, and at least some of them are fused. It is something to do.
本発明のフッ素系繊維から成る抄紙は、融点の異なる2種類以上のフッ素系繊維のみから成り、その少なくとも一部が融着しているため、フッ素系繊維の素材としての特性を維持しつつ、薄厚化することができ、電子デバイス用の絶縁部材に適したフッ素系繊維から成る抄紙を提供することができる。 The paper made from fluorine-based fibers of the present invention is made only of two or more types of fluorine-based fibers with different melting points, and at least some of them are fused together, so that while maintaining the characteristics of the fluorine-based fiber as a material, It is possible to provide paper made of fluorine-based fibers that can be made thin and suitable for insulating members for electronic devices.
<フッ素系繊維>
本発明におけるフッ素系繊維としては、重合体の繰り返し構造単位の90%以上が、主鎖または側鎖にフッ素原子を1個以上含むモノマーで構成された繊維であれば、いずれのものでも使用することができるが、フッ素原子数の多いモノマーで構成された繊維ほど好ましく、例えば、ポリテトラフルオロエチレン(PTFE、融点327℃)、4フッ化エチレン-6フッ化プロピレン共重合体(FEP、融点275℃)、4フッ化エチレン-パーフルオロアルキルビニルエーテル共重合体(PFA、融点310℃)、ポリフッ化ビニリデン(PVDF、融点156~178℃)、エチレン-4フッ化エチレン共重合体(ETFE、融点270℃)、エチレン/クロロトリフルオロエチレン共重合体(ECTFE、融点220~245℃)の繊維が挙げられる。これらのフッ素系繊維のうち、少なくとも融点の異なる2種類のフッ素系繊維(以下、融点が高いフッ素系繊維をフッ素系繊維A、融点が低いフッ素系繊維をフッ素系繊維Bということがある)によって本発明の抄紙は構成される。中でも、フッ素系繊維AにはPTFE、フッ素系繊維BにはPTFEに近い融点をもつPFAが好ましい。なお、本発明で用いるフッ素系繊維は、3種以上を混合して使用することもできる。また、フッ素系繊維中にセルロースおよびそれらの炭化物を1~25%含んでいても構わない。
<Fluorine fiber>
As the fluorine-based fiber in the present invention, any fiber can be used as long as 90% or more of the repeating structural units of the polymer are composed of a monomer containing one or more fluorine atoms in the main chain or side chain. However, the fibers composed of monomers with a larger number of fluorine atoms are more preferable. ), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA, melting point 310°C), polyvinylidene fluoride (PVDF, melting point 156-178°C), ethylene-tetrafluoroethylene copolymer (ETFE, melting point 270°C) ), and fibers of ethylene/chlorotrifluoroethylene copolymer (ECTFE, melting point 220-245°C). Among these fluorine fibers, at least two types of fluorine fibers with different melting points (hereinafter, the fluorine fiber with a high melting point may be referred to as fluorine fiber A, and the fluorine fiber with a low melting point may be referred to as fluorine fiber B) The paper making of the present invention is configured. Among these, PTFE is preferable for the fluorine-based fiber A, and PFA, which has a melting point close to that of PTFE, is preferable for the fluorine-based fiber B. In addition, the fluorine-based fibers used in the present invention can also be used in combination of three or more types. Furthermore, the fluorine-based fibers may contain 1 to 25% of cellulose and their carbides.
本発明におけるフッ素系繊維の繊維径としては、フッ素系繊維Aおよびフッ素系繊維Bのいずれも1.5μm以上20μm以下が好ましい。この範囲内であれば、繊維径は、フッ素系繊維Aとフッ素系繊維Bは異なっていても構わない。1.5μm以上であることで繊維同士が絡み易くなりすぎず均一に分散しやすくなる。20μm以下であることで繊維が硬くなったりしすぎず、繊維同士の絡合力を優れた範囲に維持することができる。その結果、十分な紙力が得られ、破れ難い抄紙とすることができる。 The fiber diameter of the fluorine-based fiber in the present invention is preferably 1.5 μm or more and 20 μm or less for both the fluorine-based fiber A and the fluorine-based fiber B. As long as it is within this range, the fiber diameters of the fluorine-based fiber A and the fluorine-based fiber B may be different. When the diameter is 1.5 μm or more, the fibers do not become too easily entangled with each other and are easily dispersed uniformly. When the thickness is 20 μm or less, the fibers do not become too hard, and the entanglement force between the fibers can be maintained within an excellent range. As a result, sufficient paper strength can be obtained and paper can be made that is difficult to tear.
また、フッ素系繊維の繊維長としては、フッ素系繊維Aおよびフッ素系繊維Bのいずれも0.5mm以上15mm以下が好ましく、より好ましくは1mm以上~8mm以下である。この範囲内であれば、繊維長は、フッ素系繊維Aとフッ素系繊維Bは異なっていても構わない。0.5mm以上とすることで、繊維同士の絡合により抄紙の強度を高くすることができる。また15mm以下とすることで、繊維同士の絡合がダマになるなどしてムラ等が生じるのを防ぐことができる。 Furthermore, the fiber length of the fluorine-based fibers for both fluorine-based fibers A and B is preferably 0.5 mm or more and 15 mm or less, more preferably 1 mm or more and 8 mm or less. As long as it is within this range, the fiber lengths of fluorine-based fiber A and fluorine-based fiber B may be different. By setting the thickness to 0.5 mm or more, the strength of the paper can be increased due to the entanglement of the fibers. Furthermore, by setting the thickness to 15 mm or less, it is possible to prevent unevenness from occurring due to entanglement of fibers becoming lumpy.
本発明におけるフッ素系繊維A及びBの断面形状は特に限定されるものではなく、断面については丸型、β型、C型、三角、扁平、ドックボーン型、多葉型等、いずれの形状であってもよい。また、中空形状であってもよい。断面形状は、フッ素系繊維Aとフッ素系繊維Bは異なっていても構わない。 The cross-sectional shape of the fluorine-based fibers A and B in the present invention is not particularly limited, and the cross-section may be any shape such as round, β-shape, C-shape, triangular, flat, dogbone shape, multilobal shape, etc. There may be. Further, it may have a hollow shape. The cross-sectional shapes of the fluorine-based fiber A and the fluorine-based fiber B may be different.
さらに、フッ素系繊維Aおよびフッ素系繊維Bのいずれも、フィブリル化したフッ素系繊維であってもよい。ここで、フィブリル化とはたて方向に繊維が2本以上に裂け、それぞれがもとの繊維よりも細い状態となったり、繊維表面に毛羽立ち部分を有したりすることをいう。フィブリル化することで、繊維同士の絡合性が向上し、紙力が向上するため、抄紙時の工程通過性に優れた抄紙を得ることができる。フッ素系繊維をフィブリル化させる手段としては、例えば、ナイヤガラビーター、ホモジナイザー、ディスクリファイナー、ライカイ機、すり棒とすり鉢等が挙げられる。 Furthermore, both the fluorine fiber A and the fluorine fiber B may be fibrillated fluorine fibers. Here, fibrillation refers to a state in which a fiber is split into two or more fibers in the warp direction, each of which is thinner than the original fiber, or has a fluffy portion on the fiber surface. Fibrillation improves the entanglement between fibers and improves paper strength, making it possible to obtain paper with excellent process passability during papermaking. Examples of means for fibrillating fluorine-based fibers include a Niagara beater, a homogenizer, a disc refiner, a laika machine, a pestle and a mortar.
<フッ素系繊維から成る抄紙>
フッ素系繊維Bの混率は、抄紙中で10%以上90%以下であることが好ましく、15%以上80%以下であることがより好ましく、20%以上70%以下であることがさらに好ましい。フッ素系繊維Bの混率を上記範囲とすることで、引張強度および引き裂き強度に優れた抄紙を得ることができる。フッ素系繊維Bの混率が10%未満の場合、熱接着部分の割合が不十分で、抄紙としての引張強度および引き裂き強度が弱くなる。逆に、フッ素系繊維Bの混率が90%を超えた場合、抄紙がフィルムライクとなり、引き裂き強度が極端に低下する。
<Paper made from fluorine fibers>
The mixing ratio of fluorine fiber B in paper making is preferably 10% or more and 90% or less, more preferably 15% or more and 80% or less, and even more preferably 20% or more and 70% or less. By setting the blending ratio of the fluorine-based fiber B within the above range, paper having excellent tensile strength and tear strength can be obtained. When the blending rate of fluorine-based fiber B is less than 10%, the proportion of the thermally bonded portion is insufficient, and the tensile strength and tear strength of the paper become weak. On the other hand, if the mixing ratio of fluorine-based fiber B exceeds 90%, the paper becomes film-like and the tear strength is extremely reduced.
ここでフッ素系繊維Bの割合は、加熱・加圧処理前のサンプルのタテ×ヨコ5cm角のサンプルを採取して各繊維に分別した後各繊維を100℃のオーブンで乾燥させた後、重量を測定してその比率から質量%として算出する。 Here, the proportion of fluorine-based fiber B is determined by taking a 5 cm square sample length x width of the sample before heating and pressure treatment, separating it into each fiber, drying each fiber in an oven at 100 ° C, and then weighing is measured and calculated as mass % from the ratio.
後述する抄紙工程においては、加工張力がかかるため、加工張力による抄紙の変形および破断を防止するために、フィブリル化したマトリックス成分を含むフッ素繊維を併用し、繊維同士の絡み合いで加工張力に耐えうる最低限の紙力を付与することが望ましい。マトリックス成分を含むフッ素繊維とは、後述するマトリックス紡糸法にて得られるフッ素系繊維延伸糸の中間体であり、焼成工程を経ていないフッ素繊維である。焼成工程を経ていないため、マトリックス成分が繊維中に残存している。フッ素系繊維をフィブリル化させる手段としては、前述のとおり、ナイヤガラビーター、ホモジナイザー、ディスクリファイナー、ライカイ機、すり棒とすり鉢等が挙げられるがこれらに限定されるものではない。 In the papermaking process described below, processing tension is applied, so in order to prevent paper from deforming and breaking due to processing tension, fluorine fibers containing a fibrillated matrix component are used in combination, and the intertwining of the fibers can withstand the processing tension. It is desirable to provide the minimum paper strength. The fluorine fiber containing a matrix component is an intermediate of a drawn fluorine fiber yarn obtained by the matrix spinning method described below, and is a fluorine fiber that has not undergone a firing process. Since the fibers have not undergone a firing process, the matrix components remain in the fibers. As mentioned above, means for fibrillating the fluorine-based fibers include, but are not limited to, a Niagara beater, a homogenizer, a disc refiner, a light machine, a mortar and a mortar.
フィブリル化の度合いは、JIS P 8121-2(2012)に準拠したカナディアンフリーネステスターの濾水度で確認することができ、濾水度が10~900cm3であることが好ましく、10~600cm3であることがより好ましく、10~300cm3であることがより好ましい。フィブリル化の度合いが少ない、つまり、濾水度が大きすぎる場合には、フィブリルによる絡み合いが少なくなり、ドライウェブの紙力が低下する。一方、フィブリル化の度合いが大きい、つまり、濾水度が小さすぎる場合には、フィブリル化工程の効率が低下するとともに、抄紙時の脱水工程の負荷が増大してしまう。 The degree of fibrillation can be confirmed by the freeness of a Canadian freeness tester according to JIS P 8121-2 (2012), and it is preferable that the freeness is between 10 and 900 cm3 , and between 10 and 600 cm3 . It is more preferable that it is, and more preferably that it is 10 to 300 cm 3 . When the degree of fibrillation is low, that is, when the freeness is too high, entanglement by fibrils decreases, and the paper strength of the dry web decreases. On the other hand, if the degree of fibrillation is large, that is, if the freeness is too low, the efficiency of the fibrillation process will decrease and the load of the dewatering process during papermaking will increase.
フィブリル化したマトリックス成分を含むフッ素系繊維の混率は、抄紙中で0~50%であることが好ましく、5~40%であることがより好ましく、10~30%であることがさらに好ましい。フィブリル化したマトリックス成分を含むフッ素系繊維の混率を上記範囲とすることで、適度なドライウェブの紙力を付与することができる。フィブリル化したマトリックス成分を含むフッ素系繊維の混率が上記範囲よりも大きい場合、ドライウェブの紙力は十分なものの、後述する加熱・加圧処理後のペーパーとしての力学物性が低下するため好ましくない。 The mixing ratio of fluorine-based fibers containing fibrillated matrix components is preferably 0 to 50%, more preferably 5 to 40%, and even more preferably 10 to 30%. By setting the mixing ratio of the fluorine-based fibers containing the fibrillated matrix component within the above range, it is possible to impart appropriate paper strength to the dry web. If the blending ratio of fluorine-based fibers containing fibrillated matrix components is greater than the above range, although the paper strength of the dry web is sufficient, it is not preferable because the mechanical properties of the paper after heating and pressure treatment described below will deteriorate. .
ここでフィブリル化したマトリックス成分を含むフッ素系繊維の割合は、加熱・加圧処理前のサンプルの場合、タテ×ヨコ5cm角のサンプルを採取して各繊維に分別した後各繊維を100℃のオーブンで乾燥させた後、重量を測定してその比率から質量%として算出する。 Here, the proportion of fluorine-based fibers containing fibrillated matrix components is determined by taking a 5 cm square sample length x width, separating it into each fiber, and heating and pressurizing each fiber at 100℃. After drying in an oven, the weight is measured and the ratio is calculated as mass %.
次に、本発明のフッ素系繊維から成る抄紙を製造する方法について、その一例を説明する。 Next, an example of the method for manufacturing paper made of fluorine fibers of the present invention will be explained.
<フッ素系繊維の製造方法>
フッ素系繊維の製造方法には、スプリット剥離法、ペースト押出法、溶融紡糸法、マトリックス紡糸法(エマルジョン法ともいう)などが知られている。
<Method for producing fluorine fiber>
Known methods for producing fluorine-based fibers include a split exfoliation method, a paste extrusion method, a melt spinning method, and a matrix spinning method (also referred to as an emulsion method).
スプリット剥離法とはフッ素系樹脂の粉末をシリンダ圧縮せしめた後、焼結、スプリット剥離させた後、延伸する製法である。 The split exfoliation method is a manufacturing method in which fluororesin powder is compressed in a cylinder, sintered, split exfoliated, and then stretched.
ペースト押出法とは、フッ素系樹脂の粉末ワックス状潤滑剤と混練し、棒状もしくはフィルム状に成形した後、該潤滑剤を除去し、延伸、焼成(焼成しない場合もある) する製法である。しかしながら、これら2つの製法では、どうしてもその製法上細く切り裂いて得られる最終繊維状物の断面は扁平形状であり、しかもランダムで均一性に劣り、抄紙加工後に引き裂き強力などにバラツキが生じるという欠点があった。 The paste extrusion method is a manufacturing method in which a fluororesin is kneaded with a powdered wax-like lubricant, formed into a rod or film, the lubricant is removed, and the product is stretched and fired (in some cases, it is not fired). However, with these two manufacturing methods, the cross section of the final fibrous material obtained by cutting into thin pieces is inevitably flat, random and less uniform, and the disadvantage is that there is variation in tearing strength after paper processing. there were.
また、溶融紡糸法とは、フッ素系樹脂の粉末を融点以上の温度で加熱し、溶融させた樹脂を口金より紡出させ、繊維化させる製法である。この製法は、口金より紡出させることで均一性が高いフッ素系繊維が得られるが、融点が高く、融点を超えても流動性をほとんど示さないPTFEなどには適用できない。 Furthermore, the melt spinning method is a manufacturing method in which fluororesin powder is heated at a temperature higher than its melting point, and the molten resin is spun from a spinneret to form fibers. This manufacturing method produces highly uniform fluorine-based fibers by spinning from a spinneret, but it cannot be applied to materials such as PTFE, which has a high melting point and exhibits almost no fluidity even above the melting point.
これらのことから、本発明のいうフッ素系繊維は、マトリックス紡糸法の実施が好ましい。マトリックス紡糸法とは、ビスコースなどをマトリックスとしてフッ素系樹脂の水分散液との混合液を口金より凝固浴中に吐出して繊維化し、次いで精錬した後、焼成を行う。フッ素系樹脂の融点以上で焼成することで、マトリックスポリマーの大部分を焼成飛散させながら、フッ素系樹脂を溶融し、粒子間を融着することで、初めてその後の延伸性が付与される。焼成後、未延伸糸は直接1STEPもしくは2STEPに分けて延伸されることで、フッ素系繊維延伸糸を得ることができる。この延伸工程時に強度が発現する。その後、得られたフッ素系繊維延伸糸を所定の繊維長にカットすることで、本発明で使用するフッ素系繊維を得ることができる。この製法は、口金より紡出させることで均一性が高いフッ素系繊維が得られる。また、口金設計や紡糸・延伸条件を変更することで、繊維径を小さくすることができ、抄紙の薄厚化に適する製法である。 For these reasons, it is preferable to use the matrix spinning method to produce the fluorine-based fibers of the present invention. In the matrix spinning method, a mixture of viscose or the like as a matrix and an aqueous dispersion of a fluororesin is discharged from a spinneret into a coagulation bath to form fibers, which are then refined and then fired. By firing at a temperature equal to or higher than the melting point of the fluororesin, most of the matrix polymer is fired and scattered, the fluororesin is melted, and the particles are fused together, thereby providing subsequent stretchability for the first time. After firing, the undrawn yarn is directly drawn in 1 or 2 steps to obtain a drawn fluorine-based fiber yarn. Strength is developed during this stretching process. Thereafter, the fluorine-based fiber used in the present invention can be obtained by cutting the obtained fluorine-based fiber drawn yarn to a predetermined fiber length. This manufacturing method yields highly uniform fluorine-based fibers by spinning from a spinneret. Furthermore, by changing the die design and spinning/drawing conditions, the fiber diameter can be reduced, making this manufacturing method suitable for making paper thinner.
紡糸原液において、フッ素系樹脂の割合が75~93質量%が好ましく、その際、マトリックス成分の割合を7~25質量%とすることが好ましい。紡糸原液において、フッ素系樹脂の割合が75質量%以上であると、焼成工程においてフッ素系樹脂粒子間の融着が進み、糸切れが発生しにくくなり、工程安定性が高いフッ素系繊維が得られる。一方、フッ素系樹脂の割合が93質量%以下であると紡糸工程において、糸切れが発生しにくくなる。マトリックス成分は、ビスコース、ポリビニルアルコール、アルギン酸ナトリウム、ヒドロキシプロピルセルロースが用いられるが、本発明では、ビスコースを用いることが好ましい。凝固浴は、無機鉱酸および/または無機塩の水溶液が用いられるが、本発明では硫酸-硫酸ソーダの混合水溶液を用いることが好ましい。 In the spinning dope, the proportion of the fluororesin is preferably 75 to 93% by mass, and in this case, the proportion of the matrix component is preferably 7 to 25% by mass. When the proportion of the fluororesin in the spinning dope is 75% by mass or more, fusion between the fluororesin particles progresses during the firing process, making it difficult for thread breakage to occur, resulting in a fluororesin fiber with high process stability. It will be done. On the other hand, when the proportion of the fluororesin is 93% by mass or less, yarn breakage is less likely to occur during the spinning process. Viscose, polyvinyl alcohol, sodium alginate, and hydroxypropyl cellulose are used as the matrix component, and in the present invention, it is preferable to use viscose. As the coagulation bath, an aqueous solution of an inorganic mineral acid and/or an inorganic salt is used, and in the present invention, it is preferable to use a mixed aqueous solution of sulfuric acid and sodium sulfate.
フィブリル化したパルプ含有フッ素系繊維は、マトリックス紡糸法にて繊維化し、焼成を行う前のものを用い、ナイヤガラビーター、ホモジナイザー、ディスクリファイナー、ライカイ機、すり棒とすり鉢、ウォータージェットパンチ等の機械作用でフィブリル化させたものである。マトリックス紡糸法のマトリックス樹脂としては、ビスコースなどのセルロース系をはじめとしたフィブリル化しやすいものが好ましい。 Fibrillated pulp-containing fluorine-based fibers are made into fibers using the matrix spinning method, and before firing, are processed using mechanical equipment such as a Niagara beater, homogenizer, disc refiner, Raikai machine, mortar and mortar, or water jet punch. It is fibrillated with. The matrix resin used in the matrix spinning method is preferably one that is easily fibrillated, such as a cellulose resin such as viscose.
<フッ素系繊維から成る抄紙>
フッ素系繊維Aとフッ素系繊維B(必要により、さらにフィブリル化したマトリックス成分を含むフッ素系繊維)をそれぞれ水中に分散させる。また、フィブリル化したマトリックス成分を含むフッ素系繊維を同時に含む場合には、フィブリル化させたいフッ素系繊維原料を水中に分散させ、ナイヤガラビーター、ホモジナイザー、ディスクリファイナー、ライカイ機などの機械処理を施す。さらに、それらの分散液を所定の割合で混合し、抄紙用分散液とする。
<Paper made from fluorine fibers>
Fluorine fiber A and fluorine fiber B (fluorine fiber containing a fibrillated matrix component if necessary) are each dispersed in water. In addition, when fluorine-based fibers containing fibrillated matrix components are included at the same time, the fluorine-based fiber raw material to be fibrillated is dispersed in water and subjected to mechanical treatment using a Niagara beater, homogenizer, disc refiner, Raikai machine, etc. Furthermore, these dispersions are mixed at a predetermined ratio to form a papermaking dispersion.
抄紙用分散液全重量に対するフッ素系繊維A、フッ素系繊維Bおよびフィブリル化したマトリックス成分を含むフッ素系繊維の合計量としては、0.05~5質量%が好ましい。合計量が0.05質量%よりも小さい場合には、生産効率が低下するとともに、脱水工程の負荷が増大してしまう。逆に、5質量%を超えると繊維の分散状態が悪化し、均一な抄紙を得ることが困難となる。 The total amount of fluorine fibers A, B, and fluorine fibers including the fibrillated matrix component based on the total weight of the papermaking dispersion is preferably 0.05 to 5% by mass. If the total amount is less than 0.05% by mass, production efficiency will decrease and the load on the dehydration process will increase. On the other hand, if it exceeds 5% by mass, the dispersion state of the fibers deteriorates and it becomes difficult to obtain uniform papermaking.
分散液は、予めフッ素系繊維Aの分散液、フッ素系繊維Bの分散液およびフィブリル化したマトリックス成分を含むフッ素系繊維の分散液を別々に調整した後、それらを混合してもよいし、フッ素系繊維Aとフッ素系繊維Bを直接同一のタンクに混合分散させた後、別途フィブリル化したマトリックス成分を含むフッ素系繊維を含む分散液を混合して調整してもよい。それぞれの繊維の分散液を別々に調整して混合する方法は、それぞれの繊維の形状・特性等に合わせて攪拌時間を別個に制御できる点で好ましく、2種類以上のフッ素系繊維を含む分散液を調整した後に、フィブリル化したマトリックス成分を含むフッ素系繊維を含む分散液を混合する方法は工程簡略の点で好ましい。 The dispersion may be prepared separately in advance by separately preparing a dispersion of fluorine fiber A, a dispersion of fluorine fiber B, and a dispersion of fluorine fiber containing a fibrillated matrix component, and then mixing them. The fluorine-based fiber A and the fluorine-based fiber B may be directly mixed and dispersed in the same tank and then mixed with a dispersion containing fluorine-based fibers containing a matrix component that has been separately fibrillated. The method of separately preparing and mixing a dispersion liquid of each fiber is preferable in that the stirring time can be controlled separately according to the shape and characteristics of each fiber, and the method of preparing a dispersion liquid of each fiber separately is preferable in that the stirring time can be controlled separately according to the shape and characteristics of each fiber. A method of mixing a dispersion containing fluorine-based fibers containing a fibrillated matrix component after adjusting the above is preferable from the viewpoint of simplifying the process.
抄紙用分散液には、水分散性を向上するためにカチオン系、アニオン系、ノニオン系などの界面活性剤などからなる分散剤や油剤、分散液の粘度を増加させて抄紙用分散液の凝集を防止する粘剤、さらに泡の発生を抑制する消泡剤等を添加してもよい。 In order to improve water dispersibility, dispersants and oil agents such as cationic, anionic, and nonionic surfactants are used in papermaking dispersions. A viscous agent to prevent foaming, and an antifoaming agent to suppress foaming may be added.
上記のように準備した抄紙用分散液を、丸網式、長網式、傾斜網式などの抄紙機または手漉き抄紙機を用いて抄紙し、これをヤンキードライヤーやロータリードライヤー等で乾燥し、ドライウェブとする。その後、これに加熱・加圧処理を施し、湿式抄紙を得る。なお、本発明においては加熱及び加圧を同時に行うことを加熱・加圧処理と言い、乾燥などの加熱のみで加圧を行わない処理とは区別する。また、ドライウェブとは、湿式抄造した抄紙のうちこの加熱・加圧処理を施していないものを言う。 The dispersion for paper making prepared as described above is made into paper using a paper machine such as a circular net type, fourdrinier type, or inclined net type, or a hand-made paper machine, and then dried with a Yankee dryer, a rotary dryer, etc., and then dried. Web. Thereafter, this is subjected to heat and pressure treatment to obtain wet papermaking. In the present invention, simultaneous heating and pressurization is referred to as heating/pressure treatment, and is distinguished from a treatment such as drying that only involves heating but does not apply pressure. Furthermore, the term "dry web" refers to paper that has not been subjected to this heating and pressure treatment among wet-processed paper.
加熱・加圧処理する手段としては、加熱及び加圧を同時に行うことができればいかなる手段でも良いが、例えば、平板等での熱プレス、カレンダーなどを採用することができる。なかでも、連続して加工することができるカレンダーが好ましい。カレンダーのロールは、金属-金属ロール、金属-紙ロール、金属-ゴムロール等の組み合わせを使用することができる。 As the means for heating and pressurizing, any means may be used as long as heating and pressurizing can be performed at the same time, and for example, a hot press using a flat plate, a calender, etc. can be employed. Among these, calenders that can be processed continuously are preferred. As the rolls of the calendar, a combination of metal-metal rolls, metal-paper rolls, metal-rubber rolls, etc. can be used.
加熱・加圧処理の温度条件は、フッ素系繊維Bの融点以上フッ素系繊維Aの融点以下の温度がよい。処理温度がフッ素系繊維Bの融点よりも低いと、フッ素系繊維Aおよびフッ素系繊維Bが熱融着せず、力学物性に優れた抄紙を得ることができない。一方、フッ素系繊維Aの融点を超えると、ドライウェブが軟らかくなりすぎて、カレンダーのロールや熱プレスの板等の加熱加圧装置に貼りついてしまい、安定して量産加工ができない。また、抄紙としても、表面が荒れたものになる。さらに、急激な温度変化は抄紙の収縮が大きくなり、安定して量産加工ができない。徐々に温度上昇するプロセスが好ましい。また、加熱・加圧処理としてカレンダー加工を採用した場合の圧力としては、98~7000N/cmが好ましい。98N/cm以上とすることで繊維間の空隙を潰すことができる。一方、7000N/cm以下とすることで、加熱・加圧処理工程における湿式不織布の破れ等を防ぎ、安定して処理を施すことができる。工程速度としては、1~30m/minが好ましく、より好ましくは2~20m/minである。1m/min以上とすることで、良好な作業効率を得ることができる。一方、30m/min以下とすることで、抄紙の内部の繊維にも熱を伝導させ、繊維の熱融着の実効を得ることができる。 The temperature condition for the heating/pressure treatment is preferably a temperature that is higher than the melting point of the fluorine fiber B and lower than the melting point of the fluorine fiber A. If the treatment temperature is lower than the melting point of fluorine-based fiber B, fluorine-based fiber A and fluorine-based fiber B will not be thermally fused, making it impossible to obtain paper with excellent mechanical properties. On the other hand, if the melting point of the fluorine-based fiber A is exceeded, the dry web becomes too soft and sticks to heating and pressing equipment such as a calendar roll or a hot press plate, making it impossible to stably mass-produce it. Moreover, when paper is made, the surface becomes rough. Furthermore, rapid temperature changes cause paper to shrink significantly, making stable mass production impossible. A gradual temperature increase process is preferred. Further, when calendering is employed as the heating/pressure treatment, the pressure is preferably 98 to 7000 N/cm. By setting it to 98 N/cm or more, the voids between fibers can be crushed. On the other hand, by setting it to 7000 N/cm or less, tearing of the wet nonwoven fabric during the heating/pressure treatment process can be prevented, and the treatment can be stably performed. The process speed is preferably 1 to 30 m/min, more preferably 2 to 20 m/min. Good working efficiency can be obtained by setting the speed to 1 m/min or more. On the other hand, by setting the speed to 30 m/min or less, heat can be conducted to the fibers inside the paper making, and the fibers can be effectively thermally fused.
かくして、融点の異なる2種類以上のフッ素系繊維の少なくとも一部が融着している本発明の抄紙を得ることができる。 In this way, it is possible to obtain the paper of the present invention in which at least a portion of two or more types of fluorine fibers having different melting points are fused together.
次に、実施例に基づき本発明を具体的に説明する。ただし、本発明はこれらの実施例のみに限定されるものではない。本発明の技術的範囲を逸脱しない範囲において、様々な変形や修正が可能である。なお、本実施例で用いる各種特性の測定方法は、以下のとおりである。 Next, the present invention will be specifically explained based on Examples. However, the present invention is not limited only to these examples. Various modifications and modifications can be made without departing from the technical scope of the present invention. Note that the methods for measuring various characteristics used in this example are as follows.
[測定・評価方法]
(1)繊維径
カット前のフッ素系繊維延伸糸からサンプルをランダムに抜き取り下記の通り包埋法により断面写真を撮影する。撮影画像からランダムに30個を選択し、繊維の輪郭線を平行線と見なし、平行線間距離を測定した。なお、観察した繊維は円形である。円形ではない場合は、繊維の輪郭線に外接する最も小さい長方形または正方形を仮定し、長辺の長さと短辺の長さの平均値(正方形の場合は1辺の長さに相当)を二次粒子径とする。
[Measurement/evaluation method]
(1) Fiber diameter A sample is randomly extracted from the drawn fluorine fiber yarn before cutting, and a cross-sectional photograph is taken using the embedding method as described below. Thirty fibers were randomly selected from the photographed images, and the distance between the parallel lines was measured, regarding the contour lines of the fibers as parallel lines. Note that the observed fibers are circular. If it is not circular, assume the smallest rectangle or square that circumscribes the fiber outline, and double the average length of the long side and short side (corresponding to the length of one side in the case of a square). The particle size is as follows.
<包埋法>
サンプル糸を成形枠にやや張力を加え粘着テープで固定する。200℃で加熱してパラフィンとステアリン酸の混合物を溶融させる。130℃になったらエチルセルロースを少量ずつ加え、攪拌しながら1時間保温して泡を抜く。100℃まで落とした後、成形枠に流し込む。冷却・固化させた後、適当な大きさのブロックに切り分ける。ミクロトームを用いて、ブロックから切片(厚さ7μm程度)を切り出し、スライドグラスの上に載せる。このとき、スライドグラス上にアルブメンを薄く塗り延ばしておく(アルブメンは卵の白身とグリセリン等量、防腐剤としてサリチル酸ソーダ1wt%添加したもの)。70℃に保った乾燥機に20分放置して熱処理を行い乾燥させた後、酢酸イソアミル浴に約1時間浸し、脱包埋を行ない、その後風乾する。スライドグラスの上に流動パラフィンを一滴つけ、空気が入らないようにカバーグラスを静かに載せ、顕微鏡を用いて写真を撮影する。
<Embedding method>
Apply some tension to the sample thread on the molding frame and fix it with adhesive tape. Heat at 200°C to melt the paraffin and stearic acid mixture. When the temperature reaches 130°C, add ethyl cellulose little by little and keep warm for 1 hour while stirring to remove bubbles. After cooling the temperature to 100°C, pour it into a molding frame. After cooling and solidifying, cut into blocks of appropriate size. A section (approximately 7 μm thick) is cut from the block using a microtome and placed on a glass slide. At this time, spread a thin layer of Albumen on the slide glass (Albumen is a mixture of egg white and glycerin in equal parts and 1 wt % of sodium salicylate added as a preservative). After being left in a dryer kept at 70°C for 20 minutes for heat treatment and drying, it is immersed in an isoamyl acetate bath for about 1 hour for deembedding, and then air-dried. Place a drop of liquid paraffin on the slide glass, gently place a cover glass on it to prevent air from entering, and take a photo using a microscope.
(2)融点
JIS K7121(2012) 4.2(2)に準拠した方法で測定した値である。窒素気流下10℃/分で加熱した際の融解ピーク温度の値をいう融点とする。なお、ガラス転移温度、融点とも、上記条件で測定したファーストランの測定値とする。
(2) Melting point This is a value measured by a method based on JIS K7121 (2012) 4.2 (2). The melting point is defined as the value of the melting peak temperature when heated at 10° C./min under a nitrogen stream. Note that both the glass transition temperature and the melting point are the measured values of the first run measured under the above conditions.
(3)目付
JIS P8124(2011)に準拠し、20cm×20cmの試験片を、試料の幅1m当たり3枚採取し、標準状態におけるそれぞれの質量(g)を量り、その平均値を1m2当たりの質量(g/m2)で表した。
(3) Based on JIS P8124 (2011), take three 20cm x 20cm test pieces per 1m of sample width, weigh the mass (g) of each in standard condition, and calculate the average value per 1m2 . It was expressed in mass (g/m 2 ).
(4)厚さ
JIS P8118(2014)に準拠し、20cm×20cmの試験片を採取し、試料の異なる10か所について、厚さ測定機を用いて、直径16mmの加圧子による100kPaの加圧下、厚さを落ち着かせるために10秒間待った後に厚さを測定し、平均値を算出した。
(4) Thickness In accordance with JIS P8118 (2014), a test piece of 20 cm x 20 cm was taken, and 10 different locations on the sample were measured using a thickness measuring machine under a pressure of 100 kPa using a presser with a diameter of 16 mm. After waiting 10 seconds for the thickness to settle, the thickness was measured and the average value was calculated.
(5)引き裂き強度
JIS P8116(2000)に準拠した条件で測定した。得られたサンプルは手漉きサンプルであり、繊維配向性は低いことから、タテ方向の引き裂き強度のみ測定した。
(5) Tear strength Measured under conditions based on JIS P8116 (2000). Since the obtained sample was a handmade sample and had low fiber orientation, only the tear strength in the longitudinal direction was measured.
(6)繊維の融着
KEYENCE社の走査型電子顕微鏡VE-9800装置を用いて、加熱加圧後のサンプルから、20cm×20cmの試験片を採取し、試料の異なる10か所において断面観察を100倍率で行い、融着の有無を測定した。
(6) Fusion of fibers Using a scanning electron microscope VE-9800 manufactured by KEYENCE, a 20 cm x 20 cm test piece was taken from the sample after heating and pressurizing, and cross-sectional observation was performed at 10 different locations on the sample. The presence or absence of fusion was measured by performing the test at a magnification of 100 times.
(7)透気度
JIS-P8117(2009)に準拠した条件で測定した。5cm×5cmの試験片を採取し、試料の異なる3か所について、測定し、平均値を算出した。ただし、透気度が著しく悪く測定困難な試料については、測定不可と記載し、抄紙ではなく、空隙がないフィルムと判断した。
(7) Air permeability Measured under conditions based on JIS-P8117 (2009). A 5 cm x 5 cm test piece was taken, measurements were taken at three different locations on the sample, and the average value was calculated. However, samples with extremely poor air permeability that were difficult to measure were marked as unmeasurable, and were determined to be films without voids, rather than paper.
(8)濾水度
JIS P 8121-2(2012)に準拠したカナディアンフリーネステスターを用いて測定した。
(8) Freeness Measured using a Canadian freeness tester in accordance with JIS P 8121-2 (2012).
[製造方法・製造装置]
《手抄きの抄紙機》
底に140メッシュの手漉き抄紙網を設置した大きさ30cm×30cm、高さ40cmの手すき抄紙機(熊谷理機工業製)を用いた。
[Manufacturing method/manufacturing equipment]
《Hand-made paper machine》
A handmade paper machine (manufactured by Kumagai Riki Kogyo) with a size of 30 cm x 30 cm and a height of 40 cm was used, with a 140 mesh handmade paper screen installed at the bottom.
《回転型乾燥機》
手すき抄紙した後の乾燥には回転型乾燥機(熊谷理機工業製ROTARY DRYER DR-200)を用いた。
《Rotary dryer》
A rotary dryer (ROTARY DRYER DR-200 manufactured by Kumagai Riki Kogyo) was used for drying after hand-making the paper.
《加熱・加圧》
鉄ロールとペーパーロールとからなる油圧式3本ロールカレンダー加工機(由利ロール製、型式IH式H3RCM)を使用して加熱・加圧を施した。
《Heating/pressurizing》
Heating and pressure were applied using a hydraulic three-roll calendering machine (manufactured by Yuri Roll, model IH type H3RCM) consisting of an iron roll and a paper roll.
[実施例1]
ビスコース50質量%と濃度60%のPTFE水分散液50%を混合した後、10Torrの減圧下で脱泡して、ビスコースに対するPTFE樹脂含有量は87.0%である原液を得た。この原液を複数の吐出孔を有する口金より凝固浴に吐出した。
凝固浴は硫酸濃度10.0%、硫酸ソーダ濃度11.0%の混合水溶液であり、温度は10℃であった。次いで凝固した未焼成糸を温度80℃の温水で洗浄した後、濃度0.12%の苛性ソーダ水溶液を入れたアルカリ浴中に導いて精錬し、酸成分を完全に除去した。その後、アルカリ浴から導かれた未焼成糸をニップローラで絞った後、4%のリラックスを与えながら280℃~350℃の温度で徐々に昇温した焼成ローラを用いて焼成を行い30m/分の速度で引き取り、未延伸糸を得た。次いで未延伸糸を350℃の温度で熱延伸し、丸断面形状のPTFE延伸糸を得た。得られたPTFE延伸糸は6mmにカットし、フッ素系繊維Aを得た。フッ素系繊維Bは、FEP水分散液を使用して、焼成温度を230℃~300℃に変更する以外はフッ素系繊維Aと同様の手法にて得た。
[Example 1]
After mixing 50% by mass of viscose and 50% of an aqueous PTFE dispersion having a concentration of 60%, defoaming was performed under a reduced pressure of 10 Torr to obtain a stock solution with a PTFE resin content of 87.0% relative to the viscose. This stock solution was discharged into a coagulation bath through a nozzle having a plurality of discharge holes.
The coagulation bath was a mixed aqueous solution with a sulfuric acid concentration of 10.0% and a sodium sulfate concentration of 11.0%, and the temperature was 10°C. Next, the coagulated unfired yarn was washed with hot water at a temperature of 80° C., and then introduced into an alkaline bath containing an aqueous solution of caustic soda having a concentration of 0.12% for refining to completely remove acid components. After that, the unfired yarn led from the alkaline bath is squeezed with a nip roller, and then fired using a firing roller whose temperature is gradually raised from 280°C to 350°C while giving 4% relaxation. The yarn was taken off at a high speed to obtain an undrawn yarn. The undrawn yarn was then hot-stretched at a temperature of 350° C. to obtain a drawn PTFE yarn with a round cross-section. The obtained PTFE drawn yarn was cut into 6 mm pieces to obtain fluorine-based fiber A. Fluorine-based fiber B was obtained in the same manner as fluorine-based fiber A, except that an FEP aqueous dispersion was used and the firing temperature was changed from 230°C to 300°C.
フッ素系繊維A:PTFE繊維70質量部を水に分散し、繊維の濃度が0.10質量%となる分散液を作製した。次いで、フッ素系繊維B:FEP繊維30質量部を水に分散し、繊維の濃度が0.15質量%となる分散液を作製した。ナイヤガラビーターで20分叩解した混合液を作製した。ナイヤガラビーター後の繊維は、手抄き作業をするためのウェブ強度を有していた。これらを混合して、さらに水を加え、PTFE繊維70質量部、FEP繊維30質量部を0.07質量%の分散液とした。この分散液を用いて手抄きの抄紙機で湿紙を作製した。ローラーで脱水して得られたウェブを、回転型乾燥機を用いて110℃で70秒間乾燥してドライウェブを得たあと、続いて鉄ロール表面温度220℃、線圧490N/cm、ロール回転速度3m/分で片面を加熱・加圧処理を施した後、鉄ロール表面温度250℃、線圧490N/cm、ロール回転速度3m/分で他方の面を加熱・加圧して、抄紙を得た。また、加熱加圧後のサンプルの断面を観察すると、フッ素系繊維B:FEP繊維の一部が融着していた。 Fluorine-based fiber A: 70 parts by mass of PTFE fibers were dispersed in water to prepare a dispersion having a fiber concentration of 0.10% by mass. Next, fluorine-based fiber B: 30 parts by mass of FEP fibers were dispersed in water to prepare a dispersion having a fiber concentration of 0.15% by mass. A mixed solution was prepared by beating with a Niagara beater for 20 minutes. The fibers after the Niagara beater had web strength for hand-sheeting operations. These were mixed and further water was added to form a dispersion of 70 parts by mass of PTFE fibers and 30 parts by mass of FEP fibers at a concentration of 0.07% by mass. Wet paper was produced using this dispersion using a hand paper machine. The web obtained by dewatering with a roller was dried for 70 seconds at 110°C using a rotary dryer to obtain a dry web, and then the iron roll surface temperature was 220°C, the linear pressure was 490 N/cm, and the roll was rotated. After heating and pressurizing one side at a speed of 3 m/min, the other side was heated and pressurized at an iron roll surface temperature of 250°C, a linear pressure of 490 N/cm, and a roll rotation speed of 3 m/min to obtain paper. Ta. Moreover, when the cross section of the sample after heating and pressurizing was observed, a part of the fluorine-based fiber B:FEP fiber was fused.
得られた抄紙は目付け40g/m2、厚み21.2μmであった。また、透気度も優れており、抄紙としての機能を有していた。 The obtained paper had a basis weight of 40 g/m 2 and a thickness of 21.2 μm. It also had excellent air permeability and functioned as a paper-making material.
[実施例2]
フッ素系繊維Bは、PFA水分散液を使用、焼成温度を230℃~300℃に変更する以外、実施例1のフッ素系繊維Aと同様の手法にて得た。
[Example 2]
Fluorine-based fiber B was obtained in the same manner as fluorine-based fiber A in Example 1, except that a PFA aqueous dispersion was used and the firing temperature was changed from 230°C to 300°C.
実施例1において、フッ素系繊維B:FEP繊維をPFA繊維に変更し、PTFE繊維:PFA繊維の割合を70:30とし、鉄ロール表面温度を250→270℃に変更した以外は、同様の手順で抄紙を作製した。ナイヤガラビーター後の繊維は、それぞれわずかに繊維表面がフィブリル化し、手抄き作業をするためのウェブ強度を有していた。また、加熱加圧後のサンプルの断面を観察すると、フッ素系繊維B:PFA繊維の一部が融着していた。 In Example 1, the same procedure was followed except that the fluorine-based fiber B: FEP fiber was changed to PFA fiber, the ratio of PTFE fiber: PFA fiber was changed to 70:30, and the iron roll surface temperature was changed from 250 to 270 ° C. A paper was made. The fibers after the Niagara beater were slightly fibrillated on the fiber surface and had web strength for manual papermaking. Moreover, when the cross section of the sample after heating and pressurizing was observed, a part of the fluorine-based fiber B:PFA fiber was fused.
得られた抄紙は目付け40g/m2、厚み20.2μmであった。また、透気度も優れており、抄紙としての機能を有していた。 The obtained paper had a basis weight of 40 g/m 2 and a thickness of 20.2 μm. It also had excellent air permeability and functioned as a paper-making material.
[実施例3]
実施例1において、フッ素系繊維A:PTFE繊維をPFA繊維に、フッ素系繊維B:PFA繊維をFEP繊維に変更し、PFA繊維:FEP繊維の割合を70:30とし、鉄ロール表面温度を220→250℃に変更した以外は、同様の手順で抄紙を作製した。ナイヤガラビーター後の繊維は、それぞれわずかに繊維表面がフィブリル化し、手抄き作業をするためのウェブ強度を有していた。また、加熱加圧後のサンプルの断面を観察すると、フッ素系繊維B:FEP繊維の一部が融着していた。
[Example 3]
In Example 1, fluorine-based fiber A: PTFE fiber was changed to PFA fiber, fluorine-based fiber B: PFA fiber was changed to FEP fiber, the ratio of PFA fiber: FEP fiber was 70:30, and the iron roll surface temperature was 220. → Paper was made using the same procedure except that the temperature was changed to 250°C. The fibers after the Niagara beater were slightly fibrillated on the fiber surface and had web strength for manual papermaking. Moreover, when the cross section of the sample after heating and pressurizing was observed, a part of the fluorine-based fiber B:FEP fiber was fused.
得られた抄紙は目付け41g/m2、厚み27.3μmであった。透気度も優れており、抄紙としての機能を有していた。 The obtained paper had a basis weight of 41 g/m 2 and a thickness of 27.3 μm. It also had excellent air permeability and functioned as paper making.
[実施例4]
実施例2において、フッ素系繊維Aおよびフッ素繊維Bに加え、フッ素系繊維Aの製造工程において、マトリックス紡糸法にて繊維化し、焼成を行う前のものを用い、ナイヤガラビーターで処理したフィブリル化したマトリックス成分を含むフッ素系繊維も用いた。PTFE繊維:PFA繊維:フィブリル化したマトリックス成分を含むフッ素系繊維の割合を40:30:30とした以外は、同様の手順で抄紙を作製した。なお、フィブリル化したフッ素系繊維の濾水度は657cm3であり、ドライウェブの強度は大幅に改善し、取り扱いも容易なレベルであった。また、加熱加圧後のサンプルの断面を観察すると、フッ素系繊維B:PFA繊維の一部が融着していた。
[Example 4]
In Example 2, in addition to fluorine-based fiber A and fluorine-based fiber B, in the manufacturing process of fluorine-based fiber A, fluorine-based fibers that were made into fibers by a matrix spinning method and before firing were used, and fibrillated fibers treated with a Niagara beater were used. Fluorine-based fibers containing matrix components were also used. Paper was made using the same procedure except that the ratio of PTFE fiber: PFA fiber: fluorine fiber containing a fibrillated matrix component was 40:30:30. Note that the freeness of the fibrillated fluorine-based fibers was 657 cm 3 , and the strength of the dry web was significantly improved and was at a level that was easy to handle. Moreover, when the cross section of the sample after heating and pressurizing was observed, a part of the fluorine-based fiber B:PFA fiber was fused.
得られた抄紙は目付け40g/m2、厚み21.0μmであった。透気度も優れており、抄紙としての機能を有していた。 The obtained paper had a basis weight of 40 g/m 2 and a thickness of 21.0 μm. It also had excellent air permeability and functioned as paper making.
[実施例5]
実施例4において、フッ素系繊維Aおよびフッ素繊維Bの繊維径を3μm、19μmと変更した以外、同様の手順で抄紙を作製した。また、加熱加圧後のサンプルの断面を観察すると、フッ素系繊維B:PFA繊維の一部が融着していた。
[Example 5]
Paper was produced in the same manner as in Example 4, except that the fiber diameters of fluorine fiber A and fluorine fiber B were changed to 3 μm and 19 μm. Moreover, when the cross section of the sample after heating and pressurizing was observed, a part of the fluorine-based fiber B:PFA fiber was fused.
得られた抄紙は目付け41g/m2、厚み11.4μmであった。透気度も優れており、抄紙としての機能を有していた。 The obtained paper had a basis weight of 41 g/m 2 and a thickness of 11.4 μm. It also had excellent air permeability and functioned as paper making.
[比較例1]
実施例1において、PTFE繊維の割合を100し、鉄ロール表面温度を300℃に変更した以外は、同様の手順で抄紙を作製した。また、加熱加圧後のサンプルの断面を観察すると、PTFE繊維が膜化して融着していた。
[Comparative example 1]
Paper was produced in the same manner as in Example 1, except that the proportion of PTFE fibers was changed to 100 and the surface temperature of the iron roll was changed to 300°C. Moreover, when the cross section of the sample after heating and pressurizing was observed, the PTFE fibers were formed into a film and fused together.
得られた抄紙は目付け45g/m2、厚み14.1μmであった。しかし、透気度が測定困難であり、抄紙としての機能を有していなかった。 The obtained paper had a basis weight of 45 g/m 2 and a thickness of 14.1 μm. However, it was difficult to measure the air permeability, and it did not have a paper-making function.
[比較例2]
実施例1において、PTFE繊維の繊維径を20μmに変更した以外は、同様の手順で抄紙を作製した。また、加熱加圧後のサンプルの断面を観察すると、PTFE繊維が膜化して融着していた。
[Comparative example 2]
Paper was produced in the same manner as in Example 1, except that the fiber diameter of the PTFE fibers was changed to 20 μm. Moreover, when the cross section of the sample after heating and pressurizing was observed, the PTFE fibers were formed into a film and fused together.
得られた抄紙は目付け41g/m2、厚み58.2μmであった。しかし、透気度が測定困難であり、抄紙としての機能を有していなかった。 The obtained paper had a basis weight of 41 g/m 2 and a thickness of 58.2 μm. However, it was difficult to measure the air permeability, and it did not have a paper-making function.
[比較例3]
実施例3において、PFA繊維の割合を100し、鉄ロール表面温度を270℃に変更した以外は、同様の手順で抄紙を作製した。また、加熱加圧後のサンプルの断面を観察すると、PFA繊維が膜化して融着していた。
[Comparative example 3]
In Example 3, paper was made in the same manner as in Example 3, except that the proportion of PFA fibers was changed to 100 and the iron roll surface temperature was changed to 270°C. Furthermore, when the cross section of the sample after heating and pressurization was observed, the PFA fibers were formed into a film and fused together.
得られた抄紙は目付け41g/m2、厚み18.9μmであった。しかし、透気度が測定困難であり、抄紙としての機能を有していなかった。 The obtained paper had a basis weight of 41 g/m 2 and a thickness of 18.9 μm. However, it was difficult to measure the air permeability, and it did not have a paper-making function.
実施例1~5、および比較例1~3で作製したフッ素系繊維から成る抄紙については、上述の(3)目付、(4)厚さ、(5)引き裂き強度、(6)透気度の評価を行い、結果を表1に示した。その結果、本発明におけるフッ素系繊維から成る抄紙は、耐熱性、耐薬品性、電気絶縁性、摩擦特性、耐候性に優れるというフッ素系繊維の素材としての特性を維持しつつ、薄厚化させ、電子デバイス用の絶縁部材に適したフッ素系繊維から成る抄紙であることが明確であった。
Regarding the paper made of fluorine-based fibers produced in Examples 1 to 5 and Comparative Examples 1 to 3, the above-mentioned (3) basis weight, (4) thickness, (5) tear strength, and (6) air permeability were determined. An evaluation was conducted and the results are shown in Table 1. As a result, the paper made from fluorine-based fibers in the present invention maintains the properties of fluorine-based fibers as a material, such as excellent heat resistance, chemical resistance, electrical insulation, friction properties, and weather resistance, while being thinner. It was clear that the paper was made from fluorine-based fibers and was suitable for insulating materials for electronic devices.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019146075A JP7392318B2 (en) | 2019-08-08 | 2019-08-08 | Paper made from fluorine fibers |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019146075A JP7392318B2 (en) | 2019-08-08 | 2019-08-08 | Paper made from fluorine fibers |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2021025175A JP2021025175A (en) | 2021-02-22 |
JP7392318B2 true JP7392318B2 (en) | 2023-12-06 |
Family
ID=74662164
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019146075A Active JP7392318B2 (en) | 2019-08-08 | 2019-08-08 | Paper made from fluorine fibers |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7392318B2 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002155457A (en) | 2000-11-14 | 2002-05-31 | Daikin Ind Ltd | Fluororesin-based composite sheet having air permeability |
JP2003049387A (en) | 2001-08-02 | 2003-02-21 | Tomoegawa Paper Co Ltd | Fluorine resin fiber paper, coppered plate for print substrate by using the same and method for producing the same plate |
JP2005273100A (en) | 2004-03-26 | 2005-10-06 | Nippon Pillar Packing Co Ltd | Fiber-made paper sheet and printed circuit board and method for producing the same |
JP2011179126A (en) | 2010-02-26 | 2011-09-15 | Univ Of Yamanashi | Pfa porous sheet |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0397993A (en) * | 1989-07-06 | 1991-04-23 | Tomoegawa Paper Co Ltd | Production of fluorinated fiber paper |
-
2019
- 2019-08-08 JP JP2019146075A patent/JP7392318B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002155457A (en) | 2000-11-14 | 2002-05-31 | Daikin Ind Ltd | Fluororesin-based composite sheet having air permeability |
JP2003049387A (en) | 2001-08-02 | 2003-02-21 | Tomoegawa Paper Co Ltd | Fluorine resin fiber paper, coppered plate for print substrate by using the same and method for producing the same plate |
JP2005273100A (en) | 2004-03-26 | 2005-10-06 | Nippon Pillar Packing Co Ltd | Fiber-made paper sheet and printed circuit board and method for producing the same |
JP2011179126A (en) | 2010-02-26 | 2011-09-15 | Univ Of Yamanashi | Pfa porous sheet |
Also Published As
Publication number | Publication date |
---|---|
JP2021025175A (en) | 2021-02-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110528314B (en) | Composite sheet containing melt-blown polyphenylene sulfide superfine fibers and preparation method and application thereof | |
JP5948544B2 (en) | Production method of composite sheet material | |
JP2010202987A (en) | Composite sheet material and method for producing the same | |
CN112912564B (en) | High tensile strength paper suitable for use in electrochemical cells | |
WO2012099036A1 (en) | Porous electrode base material, method for manufacturing same, membrane-electrode assembly, solid polymer fuel cell, precursor sheet, and fibrillar fibers | |
JP4677919B2 (en) | Tow and short fiber bundles and pulp and liquid dispersions and papers composed of polyphenylene sulfide nanofibers | |
JP7392318B2 (en) | Paper made from fluorine fibers | |
JP4396536B2 (en) | Method for producing fineness polytetrafluoroethylene fiber | |
WO2020196215A1 (en) | Separator for solid electrolytic capacitor | |
JP2012069339A (en) | Separator for cell | |
JP5435817B2 (en) | Method for producing porous electrode substrate | |
US20210296685A1 (en) | Solid-state composite electrolytes comprising aramid polymer fibrils | |
JP6821071B2 (en) | Separator for solid electrolytic capacitors | |
JP2006274474A (en) | Tow, staple fiber strand, pulp, liquid dispersion and paper composed of polymer alloy fiber containing polyphenylene sulfide | |
JP2009174090A (en) | Paper comprising polyphenylene sulfide and method for producing the same | |
JP2004293027A (en) | Polyvinyl alcohol fiber, and nonwoven fabric comprising the same | |
JP4240387B2 (en) | Method for producing polytetrafluoroethylene fiber | |
WO2017095386A1 (en) | Filaments comprising microfibrillar cellulose with calcium carbonate minerals | |
JP2005248378A (en) | Polytetrafluoroethylene fiber, method for producing the same, and cloth given by using the same | |
JP7232617B2 (en) | Wet-laid nonwoven fabric containing polyphenylene sulfide fiber | |
JP2007270389A (en) | Polytetrafluoroethylene fiber and method for producing the same | |
CN114243222B (en) | Diaphragm with high cross-sectional structure consistency and preparation method thereof | |
JP5485211B2 (en) | Method for producing porous electrode substrate | |
JP4396549B2 (en) | Polytetrafluoroethylene fiber mixed with different fineness and fabric using the same | |
JP2004308038A (en) | Low-density wet type nonwoven fabric |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20220620 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20230524 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20230620 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230801 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20231024 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20231106 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 7392318 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |