JP7391534B2 - Ni-based alloys and filler metals for welding - Google Patents

Ni-based alloys and filler metals for welding Download PDF

Info

Publication number
JP7391534B2
JP7391534B2 JP2019090553A JP2019090553A JP7391534B2 JP 7391534 B2 JP7391534 B2 JP 7391534B2 JP 2019090553 A JP2019090553 A JP 2019090553A JP 2019090553 A JP2019090553 A JP 2019090553A JP 7391534 B2 JP7391534 B2 JP 7391534B2
Authority
JP
Japan
Prior art keywords
welding
less
test
solidification
cracking
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019090553A
Other languages
Japanese (ja)
Other versions
JP2020185580A (en
Inventor
真佑 小川
善宏 藤田
隆裕 仁木
剛史 小川
健司 上村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Energy Systems and Solutions Corp
Original Assignee
Toshiba Corp
Toshiba Energy Systems and Solutions Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Energy Systems and Solutions Corp filed Critical Toshiba Corp
Priority to JP2019090553A priority Critical patent/JP7391534B2/en
Publication of JP2020185580A publication Critical patent/JP2020185580A/en
Application granted granted Critical
Publication of JP7391534B2 publication Critical patent/JP7391534B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Arc Welding In General (AREA)

Description

本発明の実施形態は、溶接用Ni基合金および溶加材に関する。 Embodiments of the present invention relate to a Ni-based alloy for welding and a filler metal.

近年、蒸気タービンにおいては、蒸気温度の高温化が図られており、それに伴い、蒸気タービンを構成する材料に対して、耐熱強度の向上が求められている。特に、現在開発が進められているA-USC(先進超々臨界圧)蒸気タービンでは、700℃を超える、もしくはそれに近い蒸気温度が想定されている。そのため、従来のCrMoV鋼などの耐熱低合金鋼の使用可能な温度を超えるため、Ni基合金の適用が検討されている。 BACKGROUND ART In recent years, steam temperatures in steam turbines have been increasing, and as a result, materials constituting steam turbines are required to have improved heat resistance strength. In particular, in the A-USC (Advanced Ultra Super Critical) steam turbine currently under development, steam temperatures exceeding or close to 700° C. are assumed. Therefore, since the temperature exceeds the usable temperature of conventional heat-resistant low-alloy steels such as CrMoV steel, the application of Ni-based alloys is being considered.

このNi基合金として、例えば、600系合金などの適用が検討されている。蒸気タービンのタービンロータ材としては、例えば、617合金やTOS1X(東芝社製)などがある。また、タービンロータを構成する構成部品を溶接する際に使用される溶加材の代表的なものとして、例えば、617合金からなる溶加材などが使用されている。 Application of a 600 series alloy, for example, as the Ni-based alloy is being considered. Examples of turbine rotor materials for steam turbines include 617 alloy and TOS1X (manufactured by Toshiba Corporation). Further, as a typical filler metal used when welding the components constituting the turbine rotor, for example, a filler metal made of 617 alloy is used.

特許第5703177号Patent No. 5703177 特許第5254693号Patent No. 5254693 特許第6323188号Patent No. 6323188 特開2017-221965号公報JP 2017-221965 Publication

溶接学会論文集 第27巻 第2号 p144-148 (2009) Effect of Ce addition to filler metal on microcracking susceptibility of alloy 690 multipass wel metalWelding Society Transactions Vol. 27 No. 2 p144-148 (2009) Effect of Ce addition to filler metal on microcracking susceptibility of alloy 690 multipass wel metal K.Nishimoto,I.Woo and M.Shirai:Underlying Mechanism in the improvement of HAZ cracking Susceptibility by Rare Earth Metal Addition, -Study on Weldability of Cast alloy 718(Report8)-Quarterly,J.JWS,20-1,(2002),p87-95K.Nishimoto,I.Woo and M.Shirai:Underlying Mechanism in the improvement of HAZ cracking Susceptibility by Rare Earth Metal Addition, -Study on Weldability of Cast alloy 718(Report8)-Quarterly,J.JWS,20-1,( 2002), p87-95 Welding Jounal/August 2018,vol 98 page243-252Welding Journal/August 2018,vol 98 page243-252 Savage W. F., and Lundin C.D.; “The Varestraint Test”, The Welding Journal, October, 1965, pp. 433- 442.Savage W. F., and Lundin C.D.; “The Varestraint Test”, The Welding Journal, October, 1965, pp. 433- 442. 溶接学会誌 2009年 78巻 4号 p.298-300Journal of Welding Society 2009 Volume 78 Issue 4 p.298-300

高温における強度特性が向上されたTOS1XなどのNi基合金に対し適用される、従来の617合金の溶加材では、その溶接に起因して凝固割れや液化割れが生じることが報告されており、継手品質上でいくつかの問題例が報告されている。また、TOS1Xのように高温の機械的特性が高い材料に対して使用するには、強度的に不十分である問題点がある。そのため、高温における強度特性を有し、かつ、高温割れ感受性を低減したNi基合金の溶加材が求められている。 It has been reported that solidification cracking and liquefaction cracking occur due to welding with conventional 617 alloy filler metals, which are applied to Ni-based alloys such as TOS1X, which have improved strength properties at high temperatures. Several examples of problems with joint quality have been reported. Furthermore, there is a problem in that the strength is insufficient for use with materials such as TOS1X, which have high mechanical properties at high temperatures. Therefore, there is a need for a Ni-based alloy filler material that has strength characteristics at high temperatures and has reduced hot cracking susceptibility.

これまでNi基合金溶接金属や溶接材料に関しては以下のような取り組みがなされている。Ni基合金溶接用材料に対する機械的性質向上の先行技術文献は多く知られている(例えば、特許文献1,3,4)。しかし、高温割れ感受性に関して合わせて具体的な記述のあるものはない。 Up to now, the following efforts have been made regarding Ni-based alloy weld metals and welding materials. Many prior art documents on improving the mechanical properties of Ni-based alloy welding materials are known (for example, Patent Documents 1, 3, and 4). However, there is no specific description regarding hot cracking susceptibility.

一方、高温割れ感受性低減の取り組みとしては、近年Ni基合金の溶接材料にREMと呼ばれる希土類を、既存の成分系に添加して、高温割れの一つである液化割れ感受性を改善できることが分かっているが、凝固割れ感受性の低減には効果が乏しいことが分かっている(例えば、非特許文献1,2)。 On the other hand, as an effort to reduce the susceptibility to hot cracking, it has recently been discovered that adding a rare earth element called REM to the existing component system of Ni-based alloy welding materials can improve susceptibility to liquefaction cracking, which is one type of hot cracking. However, it is known that the effect of reducing solidification cracking susceptibility is poor (for example, Non-Patent Documents 1 and 2).

また溶接高温割れを抑制する技術も提案されている(例えば、特許文献2)。当該技術ではREM添加によるNi基合金の凝固割れ感受性の低減も図っているが、REM添加に伴う液化割れ感受性および機械的性質への影響については不明である。 Furthermore, a technique for suppressing weld hot cracking has also been proposed (for example, Patent Document 2). Although this technique attempts to reduce the solidification cracking susceptibility of Ni-based alloys by adding REM, it is unclear about the effects of REM addition on liquefaction cracking susceptibility and mechanical properties.

こうしたことを踏まえるに、REM添加により得られる効果は、添加する元成分系により異なると考えられ、例えば溶接高温割れだけでなく熱間加工性を向上させることを意図して添加する場合もある(例えば、特許文献3)。このようにREM添加によるNi基合金の性能向上については、一義的な効果にとどまらない。 Taking this into account, the effects obtained by adding REM are thought to vary depending on the original component system to which it is added; for example, it may be added with the intention of improving not only weld hot cracking but also hot workability ( For example, Patent Document 3). In this way, the performance improvement of Ni-based alloys due to the addition of REM is not limited to a primary effect.

半面、Ni基合金においてREMを過剰に添加した場合、Niとの金属間化合物を生じ、性能が低下するという負の効果も報告されている(例えば、非特許文献1)。したがってNi基合金においてREM添加により、選択的に望ましい効果を享受することについては、REM添加量の調整、元材料の成分系のREM添加への適否判断や元材料成分調整を行う等が必要となり、容易ではない。 On the other hand, it has been reported that when excessive REM is added to a Ni-based alloy, an intermetallic compound with Ni is formed, resulting in a negative effect of deterioration of performance (for example, Non-Patent Document 1). Therefore, in order to selectively enjoy desired effects by adding REM to Ni-based alloys, it is necessary to adjust the amount of REM added, determine whether the composition of the base material is appropriate for REM addition, and adjust the composition of the base material. ,It's not easy.

以上のように、Ni基合金の溶接金属または溶接材料については機械的性質に関する例は多数あるものの、溶接時の高温割れへの抑制の取り組みとしては例が少なく、特に凝固割れ、液化割れ双方において、既知の材料を凌駕する耐割れ性能を有した溶接金属を提供する溶接材料はない。 As mentioned above, although there are many examples regarding the mechanical properties of Ni-based alloy weld metals or welding materials, there are few examples of efforts to suppress hot cracking during welding, especially in both solidification cracking and liquefaction cracking. , no welding material provides a weld metal with cracking resistance superior to known materials.

ここで、Ni基合金は低温から高温まで優れた機械的性質を有し、多くの場合、他の金属類に比して高価であるため、過酷環境下で使用される機器、またはそれらの重要な一部に使用される。加えてNi基合金が採用される機器の多くは公益性が高く、また安全であることを強く求められる機器である場合が多い。こうした重要機器の溶接部は通常、放射線透過検査や超音波探傷試験により溶接部内部に割れや空孔等有害な欠陥がないことが確認され、欠陥発見に至った場合は補修溶接を行い健全な溶接継手とし使用される。 Here, Ni-based alloys have excellent mechanical properties from low to high temperatures, and are often more expensive than other metals, so they can be used in equipment used in harsh environments or in important equipment. used in some parts. In addition, many of the devices in which Ni-based alloys are used have a high public interest, and are often devices that are strongly required to be safe. The welded parts of these important equipment are usually confirmed to have no harmful defects such as cracks or holes inside the welded part through radiographic inspection or ultrasonic testing, and if a defect is discovered, repair welding is carried out to ensure that it is sound. Used as welded joints.

しかしながら、高温割れに伴う割れは数十μm程度の微細なものもあり、現在の技術による検査や試験では検出が困難な場合がある。溶接部において高温割れを内在したままそれら機器の運用を行った場合、内在欠陥に起因して設計想定外の破壊に至る可能性もあり、そもそも想定しえないため、前触れなく破壊に至ったり、予想しえない規模の事故や損害を引き起こす可能性がある。こうした背景によりNi基合金の溶接部において高温割れの発生を抑制することは強く求められている。 However, some of the cracks associated with hot cracking are minute, on the order of tens of micrometers, and may be difficult to detect with inspections and tests using current technology. If such equipment is operated with hot cracks still present in the welded parts, there is a possibility that the inherent defects will lead to destruction that is not expected in the design. There is a possibility of causing an accident or damage of an unpredictable scale. Against this background, there is a strong demand for suppressing the occurrence of hot cracks in welded parts of Ni-based alloys.

上記の従来の事情を踏まえ本発明が解決しようとする課題は、高温機械的特性に優れ、かつ、従来の溶加材に比較して高温割れが生じづらく、溶接性および製造性に優れた溶接用Ni基合金および溶加材を提供することにある。 Based on the above-mentioned conventional circumstances, the problem to be solved by the present invention is to create a welding material that has excellent high-temperature mechanical properties, is less prone to hot cracking than conventional filler metals, and has excellent weldability and manufacturability. An object of the present invention is to provide a Ni-based alloy and a filler metal for use in the present invention.

実施形態の溶接用Ni基合金は、質量%で、C:0.05~0.15、Cr:20~24、Co:10~15、Mo:8~10、Al:0.8~1.5、Ti:0.6以下、Si:0.5以下、Mn:0.5以下、Cu:0.5以下、Fe:3.0以下、REM:0.002~0.03、P:0.02以下、S:0.015以下を含有し、残部がNiおよび不可避的不純物からなることを特徴とする。 The Ni-based alloy for welding of the embodiment has C: 0.05-0.15, Cr: 20-24, Co: 10-15, Mo: 8-10, Al: 0.8-1. 5, Ti: 0.6 or less, Si: 0.5 or less, Mn: 0.5 or less, Cu: 0.5 or less, Fe: 3.0 or less, REM: 0.002 to 0.03, P: 0 0.02 or less, S: 0.015 or less, and the remainder consists of Ni and inevitable impurities.

バレストレイン試験装置の概略構成を示す図。FIG. 1 is a diagram showing a schematic configuration of a Balestrain test device. トランスバレストレイン試験の手順を説明するための図。Diagram for explaining the procedure of a transvalle train test. トランスバレストレイン試験の手順を説明するための図。Diagram for explaining the procedure of a transvalle train test. トランスバレストレイン試験の手順を説明するための図。Diagram for explaining the procedure of a transvalle train test. 試験結果からBTRSCを求める方法を説明するための図。The figure for explaining the method of calculating BTRSC from a test result. ロンジバレストレイン試験の手順を説明するための図。Diagram for explaining the procedure of the Longivalle restraint test.

以下、実施形態に係る溶接用Ni基合金および溶加材について説明する。 Hereinafter, a Ni-based alloy for welding and a filler metal according to an embodiment will be described.

実施形態に係る溶接用Ni基合金は、以下に示す組成成分範囲で構成される。なお、以下の説明において組成成分を表す%は、特に明記しない限り質量%とする。
質量%で、C:0.05~0.15、Cr:20~24、Co:10~15、Mo:8~10、Al:0.8~1.5、Ti:0.6以下、Si:0.5以下、Mn:0.5以下、Cu:0.5以下、Fe:3.0以下、REM:0.002~0.03、P:0.02以下、S:0.015以下を含有し、残部がNiおよび不可避的不純物からなる。
The Ni-based alloy for welding according to the embodiment has the composition range shown below. In addition, in the following description, % representing a composition component is mass % unless otherwise specified.
In mass%, C: 0.05 to 0.15, Cr: 20 to 24, Co: 10 to 15, Mo: 8 to 10, Al: 0.8 to 1.5, Ti: 0.6 or less, Si : 0.5 or less, Mn: 0.5 or less, Cu: 0.5 or less, Fe: 3.0 or less, REM: 0.002 to 0.03, P: 0.02 or less, S: 0.015 or less The remainder consists of Ni and unavoidable impurities.

上記した成分範囲の溶接用Ni基合金は、例えば、溶接用の溶加材として使用することができる。例えば、Ni基合金からなるタービンロータ構成部材どうしを溶接する際の溶加材として使用することができる。また、Ni基合金からなるタービンロータ構成部材と、低合金鋼(例えば、CrMoV鋼や12Cr鋼)からなるタービンロータ構成部材とを溶接する際の溶加材として使用することができる。この溶加材は、TIG溶接などに使用される。 The Ni-based alloy for welding having the above-mentioned composition range can be used, for example, as a filler material for welding. For example, it can be used as a filler material when welding turbine rotor components made of Ni-based alloys. Further, it can be used as a filler material when welding a turbine rotor component made of a Ni-based alloy and a turbine rotor component made of low alloy steel (for example, CrMoV steel or 12Cr steel). This filler metal is used for TIG welding and the like.

上記した溶加材を用いて溶接されるタービンロータとしては、例えば、700℃を超える、もしくはそれに近い高温蒸気環境下で使用可能なタービンロータなどが挙げられる。なお、この溶加材を用いて溶接される構成部品は、タービンロータの構成部品に限られるものではなく、例えば、700℃を超える、もしくはそれに近い高温蒸気環境下および高温二酸化炭素環境下で使用される他の構成部品であってもよい。 Examples of turbine rotors welded using the above-described filler metal include turbine rotors that can be used in high-temperature steam environments exceeding or close to 700°C. Note that components to be welded using this filler metal are not limited to turbine rotor components, and can be used, for example, in high-temperature steam environments exceeding or close to 700 degrees Celsius, and in high-temperature carbon dioxide environments. Other components may also be used.

また、上記した組成成分範囲のNi基合金は、高温割れ感受性が低く、溶接性および製造性に優れている。このNi基合金を用いて作製された溶加材においても高温割れ感受性が低く、溶接性および製造性に優れている。 Further, the Ni-based alloy having the above-mentioned composition range has low sensitivity to hot cracking and is excellent in weldability and manufacturability. Filler metals made using this Ni-based alloy also have low hot cracking susceptibility and are excellent in weldability and manufacturability.

なお本実施形態の成分系はAWS A5.14 ERNiCrCoMo-1、JIS Z 3334 SNi6617に適合している。これは溶接を行う事業者が規格に基づき施工法等を取得する場合は円滑にそれらを行えることに加え、同規格材料に関する施工法を保有している場合は再度の取得を必要としない等、実使用上の利便性も有することを意味する。 Note that the component system of this embodiment conforms to AWS A5.14 ERNiCrCoMo-1 and JIS Z 3334 SNi6617. This means that if a welding business obtains a construction method based on the standard, they can do so smoothly, and if they have a construction method for the same standard material, they do not need to obtain it again. This means that it also has practical convenience.

次に、上記した実施形態における溶接用Ni基合金における各組成成分範囲の限定理由を説明する。 Next, the reason for limiting the range of each composition in the Ni-based welding alloy in the above-described embodiment will be explained.

(1)C(炭素)、Cr(クロム)、Co(コバルト)、Mo(モリブデン)、Fe(鉄)、Al(アルミニウム)、Ti(チタン) 、Cu(銅)
これらは、AWS A5.14 ERNiCrCoMo-1に規定される範囲を満足させるため、C:0.05~0.15、Cr:20~24、Co:10~15、Mo:8~10、Fe:3.0以下、Al:0.8~1.5、Ti:0.6以下、Cu:0.5以下とする。
(1) C (carbon), Cr (chromium), Co (cobalt), Mo (molybdenum), Fe (iron), Al (aluminum), Ti (titanium), Cu (copper)
In order to satisfy the range specified in AWS A5.14 ERNiCrCoMo-1, C: 0.05 to 0.15, Cr: 20 to 24, Co: 10 to 15, Mo: 8 to 10, Fe: 3.0 or less, Al: 0.8 to 1.5, Ti: 0.6 or less, Cu: 0.5 or less.

(2)Si(ケイ素)
Siは、湯流れを向上させる効果がある。一方、Siの含有率が0.5%を超えると、溶接性を低下させる。そのため、Siの含有率を0.5%以下とした。また、Siの含有率を0.01~0.25%とすることがより好ましい。
(2) Si (silicon)
Si has the effect of improving the flow of hot water. On the other hand, if the Si content exceeds 0.5%, weldability will be reduced. Therefore, the Si content was set to 0.5% or less. Further, it is more preferable that the Si content is 0.01 to 0.25%.

(3)Mn(マンガン)
Mnは、脆性に起因するS(硫黄)とMnSとなり、脆性を防止し、湯流れを向上させる効果がある。一方,Mnの含有率が0.5%を超えると、溶接性を低下させる。そのため、Mnの含有率を0.5%以下とした。また、Mnの含有率を0.15~0.4%とすることがより好ましい。ここで、Mnの上記効果を得るために、Mnは、少なくとも0.1%以上含有されることが望ましい。
(3) Mn (manganese)
Mn becomes S (sulfur) and MnS, which is caused by brittleness, and has the effect of preventing brittleness and improving melt flow. On the other hand, when the Mn content exceeds 0.5%, weldability is reduced. Therefore, the Mn content was set to 0.5% or less. Further, it is more preferable that the Mn content is 0.15 to 0.4%. Here, in order to obtain the above effects of Mn, it is desirable that Mn be contained in an amount of at least 0.1% or more.

(4)REM(表1におけるCe)
REMはSc、Yおよびランタノイド(原子番号57~71)の総称である。REMはミッシュメタルと呼ばれる複数種類のREMの混合物として添加してもよいし、分離された1種又は2種以上の元素で添加してもよい。なお含有量としては0.002~0.03%が望ましい。Ce、La、NdをはじめとするREMは金属組織中の粒内においてP,Sと共に微細生成相を生じることによりP,Sの粒界偏析を抑制し、粒界結合力を向上させる。また、溶接時の凝固中に化合物を形成することにより固相線温度をあげる効果がある。そのためCe、La、NdをはじめとするREMは溶接部の凝固割れ感受性を低減させるのに有用な元素でありその含有量としては0.002%以上が望ましい。一方REMを過剰に添加した場合、上記効果が飽和してしまうことに加えて、低融点の金属間化合物であるREM-Ni金属間化合物が形成され粒界の結合力低下を招き高温割れ感受性が増大する。そのため0.03%以下とした。
(4) REM (Ce in Table 1)
REM is a general term for Sc, Y, and lanthanoids (atomic numbers 57-71). REM may be added as a mixture of multiple types of REM called misch metal, or may be added as one or more separated elements. Note that the content is preferably 0.002 to 0.03%. REM, including Ce, La, and Nd, suppresses the grain boundary segregation of P and S by forming finely formed phases together with P and S in the grains in the metal structure, thereby improving grain boundary bonding strength. Also, by forming a compound during solidification during welding, it has the effect of raising the solidus temperature. Therefore, REM including Ce, La, and Nd are useful elements for reducing the susceptibility to solidification cracking of the weld, and their content is preferably 0.002% or more. On the other hand, if REM is added in excess, in addition to the above effects being saturated, a REM-Ni intermetallic compound, which is an intermetallic compound with a low melting point, is formed, which reduces the bonding strength of grain boundaries and increases hot cracking susceptibility. increase Therefore, the content was set at 0.03% or less.

(5)P(リン)、S(硫黄)
P、Sは、実施形態における溶接用Ni基合金においては、不可避的不純物に分類されるものである。これらの不可避的不純物は、可能な限りその残存含有率を0%に近づけることが望ましい。また、これらの不可避的不純物のうち、少なくとも、Pは0.02%以下、およびSは0.015%以下に抑制されることが好ましい、が可能な限りそれぞれの残存含有率を0%に近づけることがさらに望ましい。なお、PやSの含有率が上記範囲を超える場合には、脱リン処理や脱硫処理を施し、上記範囲内の含有率とする。
(5) P (phosphorus), S (sulfur)
P and S are classified as inevitable impurities in the Ni-based alloy for welding in the embodiment. It is desirable that the residual content of these unavoidable impurities be as close to 0% as possible. Furthermore, among these unavoidable impurities, it is preferable to suppress at least P to 0.02% or less and S to 0.015% or less, so that the residual content of each of them approaches 0% as much as possible. Even more desirable. In addition, when the content of P or S exceeds the above range, dephosphorization treatment or desulfurization treatment is performed to bring the content within the above range.

(6)N(窒素)、B(ホウ素)、Nb(ニオブ)
N、B、Nbは、実施形態における溶接用Ni基合金においては、不可避的不純物に分類されるものである。これらのうちNは、溶融金属の凝固過程において(Ti、Nb)(N、C)の複合化合物の生成を促す。その結果、凝固中の相形成およびその形成順序に影響を与える。このため、凝固温度域の拡大を引き起こし、凝固割れ感受性を増大させる。これを抑制するため、0.02%以下とすることが好ましく、さらには0.01%以下とすることが好ましい。
(6) N (nitrogen), B (boron), Nb (niobium)
N, B, and Nb are classified as inevitable impurities in the Ni-based alloy for welding in the embodiment. Among these, N promotes the formation of a composite compound of (Ti, Nb) (N, C) during the solidification process of molten metal. As a result, it affects phase formation and the order of their formation during solidification. This causes an expansion of the solidification temperature range and increases the susceptibility to solidification cracking. In order to suppress this, the content is preferably 0.02% or less, and more preferably 0.01% or less.

Bは、粒界偏析し、高温強度を向上させる効果があるものの、Bの含有率が増加すると粒界脆化を招くとともに、溶接性が低下する。そのため、Bの含有率は、0.005%以下とすることが好ましい。 Although B segregates at grain boundaries and has the effect of improving high-temperature strength, an increase in B content causes grain boundary embrittlement and reduces weldability. Therefore, the content of B is preferably 0.005% or less.

Nbは、γ’(Ni(Al,Ti))相に固容して、γ’相を強化し、安定化させる効果があるものの、Nbの含有率が0.4%を超えると、液化割れ感受性が高まる。そのため、Nbの含有率は0.4%以下とすることが好ましい。 Nb solidifies in the γ' (Ni 3 (Al, Ti)) phase and has the effect of strengthening and stabilizing the γ' phase, but if the Nb content exceeds 0.4%, it will liquefy. Increased cracking susceptibility. Therefore, the Nb content is preferably 0.4% or less.

ここで、実施形態における溶接用Ni基合金、およびこの溶接用Ni基合金を用いて製造される溶加材について説明する。実施形態における溶接用Ni基合金は、この溶接用Ni基合金を構成する組成成分を真空誘導溶解(VIM)し、その溶湯を所定の型枠に注入して鋳塊を形成すること等で作製する。 Here, a Ni-based welding alloy according to an embodiment and a filler metal manufactured using this Ni-based welding alloy will be described. The Ni-based alloy for welding in the embodiment is produced by vacuum induction melting (VIM) of the composition components constituting the Ni-based alloy for welding, and by pouring the molten metal into a predetermined mold to form an ingot. do.

また、実施形態の溶加材は、実施形態における溶接用Ni基合金を構成する組成成分を真空誘導溶解(VIM)し、その溶湯を所定の型枠に注入して鋳塊を形成し、その鋳塊を機械加工した部材を線引き加工して、ワイヤ状にすること等で作製される。 In addition, the filler metal of the embodiment is produced by vacuum induction melting (VIM) of the composition components constituting the Ni-based alloy for welding in the embodiment, and injecting the molten metal into a predetermined mold to form an ingot. It is manufactured by drawing a machined ingot into a wire shape.

次に、実施形態の化学組成範囲にあるNi基合金が、高温割れ感受性が低いことを説明する。表1は、高温割れ感受性の評価に用いられた試料の化学組成を示す。なお実施例1、2は、本実施形態の化学組成成分となるように、REMを添加したNi基合金である。比較例1および2はAWS A5.14 ERNiCrCoMo-1を満足し、その組成が実施形態の化学組成範囲にないNi基合金である。 Next, it will be explained that the Ni-based alloy in the chemical composition range of the embodiment has low hot cracking susceptibility. Table 1 shows the chemical composition of the samples used for hot cracking susceptibility evaluation. Note that Examples 1 and 2 are Ni-based alloys to which REM is added so as to have the chemical composition of this embodiment. Comparative Examples 1 and 2 are Ni-based alloys that satisfy AWS A5.14 ERNiCrCoMo-1 and whose compositions are outside the chemical composition range of the embodiment.

Figure 0007391534000001
Figure 0007391534000001

高温割れ感受性評価試験は、非特許文献4及び非特許文献5に記載のあるバレストレイン試験により実施した。トランスバレストレイン試験により得られるBTRSCは凝固割れ感受性を、ロンジバレストレイン試験により得たBTRLCは液化割れ感受性を示す指標として広く知られており、それぞれ値が小さい方が、高温割れが生じづらい。 The hot cracking susceptibility evaluation test was carried out by the Balestrain test described in Non-Patent Document 4 and Non-Patent Document 5. BTRSC obtained by the Transvalle Strain test is widely known as an indicator of solidification cracking susceptibility, and BTRLC obtained by the Longivalle strain test is widely known as an index of liquefaction cracking susceptibility, and the smaller the value of each, the less likely hot cracking will occur.

ここで実施例の凝固割れ感受性を評価するために用いたトランスバレストレイン試験について説明する。凝固割れは、溶融金属が凝固する過程中、液相―固相が混在する凝固最終状態で凝固収縮力に耐えきれず開口し、そのまま凝固することにより生じる。 Here, the transvare strain test used to evaluate the solidification cracking susceptibility of the examples will be explained. Solidification cracks occur during the solidification process of molten metal, which cannot withstand the solidification shrinkage force in the final state of solidification in which the liquid phase and solid phase coexist, and the metal opens and solidifies as it is.

前述の液相―固相混在領域を温度の観点から見た場合、凝固開始まもなく通過する極めて延性が低くなる温度領域(凝固脆性温度域)を含んでおり、そのため液相―固相混在領域が広いほど凝固割れが生じやすい。例えば同一の組成を有する溶接基材に対してより高い入熱で溶接を行った場合は、被溶接基材がより加熱され、溶融部の冷却に時間を要するため凝固に要する時間が長くなることから、溶融部位の液相―固相混在領域が広くなり、凝固割れが生じやすくなる。 When looking at the above-mentioned liquid phase-solid phase mixed region from a temperature perspective, it includes a temperature region where ductility is extremely low (solidification brittle temperature region) that passes shortly after solidification begins, and therefore the liquid phase-solid phase mixed region is The wider it is, the more likely it is that solidification cracks will occur. For example, if welding is performed with a higher heat input on welding base materials with the same composition, the welded base material will be heated more and it will take longer to cool the molten part, which will lengthen the time required for solidification. As a result, the liquid phase-solid phase coexistence region at the melting site becomes wider, and solidification cracking becomes more likely to occur.

トランスバレストレイン試験では、液相―固相混在領域を発生させ、その領域に強制的に割れを発生させることにより、その割れ長さを通して液相固相混在領域を測定し凝固脆性温度域(Brittleness Temperature Range)を得る試験手法である。液相―固相混在温度領域と凝固脆性温度域は厳密には異なるが、便宜上同一とみなす。トランスバレストレイン試験の結果から得られる指標をBTRSCと表記する。 In the Transvare Strain test, a liquid-solid phase mixed region is generated, a crack is forcibly generated in that region, and the liquid-solid phase mixed region is measured through the length of the crack to determine the solidification brittleness temperature range (Brittleness). This is a test method to obtain the temperature range. Strictly speaking, the liquid-solid phase mixed temperature range and the solidification brittle temperature range are different, but for convenience, they are considered to be the same. The index obtained from the results of the transvalle train test is expressed as BTRSC.

次にトランスバレストレイン試験の手順を説明する。図1にバレストレイン試験装置100の構成を示す。バレストレイン試験装置100は、試験片を曲げることで規定のひずみが与えられるよう試験片との接触面に規定の曲率(R)を有するベンディングブロック101、試験片をベンディングブロック101に押し当て塑性変形をさせるのに十分な押し当て力を有する可動式のヨーク102、溶接用アークを発生させ試験片上で溶融池を形成させることを目的とした溶接トーチ103で構成される。 Next, the procedure of the transvalle train test will be explained. FIG. 1 shows the configuration of a Balestrain test device 100. The Balestrain test device 100 includes a bending block 101 having a specified curvature (R) on the contact surface with the test piece so that a specified strain is applied by bending the test piece, and a bending block 101 that presses the test piece against the bending block 101 to cause plastic deformation. The test piece is composed of a movable yoke 102 having a pressing force sufficient to cause the welding process to occur, and a welding torch 103 whose purpose is to generate a welding arc and form a molten pool on the test piece.

トランスバレストレイン試験実施時は図2に示すように、ヨーク102とベンディングブロック101の間に評価対象の試験片110を挟み、その後、溶接トーチ103と試験片110との間にアークを発生させ試験片表面を溶融させる。次にアークを発生させたまま溶接トーチ103を規定の速度で図3に示すように規定位置まで移動させる。次に図4に示すように規定位置到達後は、アークを消弧させると同時にヨーク102を押し下げる。この結果、試験片110が溶接線の方向に沿って規定の曲率に曲がり、溶融面に指定のひずみが生じるため、溶融池近傍に強制的に割れを発生させることができる。 As shown in FIG. 2, when performing a transvalle train test, a test piece 110 to be evaluated is sandwiched between the yoke 102 and the bending block 101, and then an arc is generated between the welding torch 103 and the test piece 110 to perform the test. Melt one surface. Next, the welding torch 103 is moved at a specified speed to a specified position as shown in FIG. 3 while the arc is being generated. Next, as shown in FIG. 4, after reaching the specified position, the arc is extinguished and at the same time the yoke 102 is pushed down. As a result, the test piece 110 bends to a specified curvature along the direction of the weld line, and a specified strain is generated on the molten surface, so that cracks can be forcibly generated in the vicinity of the molten pool.

なおアーク消弧時の溶融池近傍の状態としては、溶接トーチ103直下では消弧前に形成された溶融池により完全な液相だが、トーチ進行方向と逆に向かうと、凝固開始に伴い液相―固相が混在する領域があり、やがて完全に凝固が完了した固相状態となる。試験実施で生じた割れは液相―固相混在領域に生じる。 When the arc is extinguished, the state near the molten pool is completely liquid just below the welding torch 103 due to the molten pool formed before the arc is extinguished, but when the direction is opposite to the direction of torch movement, the liquid phase changes as solidification begins. - There is a region where the solid phase is mixed, and eventually the solid phase state is completely solidified. The cracks that occurred during the test occurred in the liquid-solid phase mixed region.

次に、試験実施により得られた割れからBTRSC導出する方法について説明する。図5(a)にアーク消弧時概念図、図5(b)に再溶融部の溶融池境界からの距離-温度の関係を表すグラフを示す。なお、図5(b)のグラフの上部には、図5(a)に示す溶融池を含むA部を拡大して示してある。まず、試験実施により得られた割れのうち最大の長さの割れ(例えば図5(b)に示す割れ110a)を選定し長さを計測する。その後、事前に同一の試験条件で取得しておいた図5(b)に示される、アーク消弧時の溶融池からの各距離における温度分布と、測定した割れ長さより、割れの起点・終点の各温度が導出される。ここで得られた起点・終点の温度の差をBTRSCとして表記する。BTRSCの値が小さいほど、割れ感受性が低く、耐凝固割れ性を有する。なお本指標は同種の材料間での相対比較に用いるのが一般的である。 Next, a method for deriving BTRSC from the cracks obtained in the test will be explained. FIG. 5(a) shows a conceptual diagram when the arc is extinguished, and FIG. 5(b) shows a graph showing the relationship between the distance of the remelted part from the molten pool boundary and the temperature. Note that, in the upper part of the graph in FIG. 5(b), part A including the molten pool shown in FIG. 5(a) is shown in an enlarged manner. First, a crack with the maximum length (for example, crack 110a shown in FIG. 5(b)) is selected from among the cracks obtained in the test, and its length is measured. After that, from the temperature distribution at each distance from the molten pool at the time of arc extinguishment and the measured crack length, as shown in Figure 5(b), which was obtained in advance under the same test conditions, the starting and ending points of the crack were determined. Each temperature is derived. The difference in temperature between the starting point and the ending point obtained here is expressed as BTRSC. The smaller the value of BTRSC, the lower the cracking susceptibility and the higher the solidification cracking resistance. This index is generally used for relative comparisons between materials of the same type.

次に、液化割れ感受性を評価するために用いたロンジバレストレイン試験について説明する。液化割れは、溶接時の加熱により粒界で低融点化合物や共晶を生成したり、成分偏析が生じると共に溶融され、凝固時の収縮ひずみにより開口し生じる。発生する箇所は凝固割れと異なり被溶接基材であり、溶接熱影響部粗粒域で生じるため、液化割れ感受性評価を行うロンジバレストレイン試験では、試験片110を図6(a)に示すように配置し、溶接トーチ103を図中矢印で示す方向に進行させる。アークを発生させた後、割れ長さから起点・終点の温度差を得る手法についてはトランスバレストレイン試験と同様でありその結果をBTRLCとして表記する。BTRLCの値が小さいほど、割れ感受性が低く、耐液化割れ性を有する。なお本指標は同種の材料間での相対比較に用いるのが一般的である。 Next, the Longivare strain test used to evaluate liquefaction cracking susceptibility will be explained. Liquefaction cracking occurs when a low melting point compound or eutectic is generated at the grain boundary due to heating during welding, or when components are segregated, the material is melted and opened due to shrinkage strain during solidification. Unlike solidification cracking, the location where cracking occurs is in the base material to be welded, and it occurs in the coarse grain region of the weld heat affected zone. Therefore, in the LongiValle restraint test to evaluate liquefaction cracking susceptibility, the test piece 110 is The welding torch 103 is moved in the direction indicated by the arrow in the figure. After generating an arc, the method of obtaining the temperature difference between the starting point and the ending point from the crack length is the same as the transvalle strain test, and the result is expressed as BTRLC. The smaller the value of BTRLC, the lower the cracking susceptibility and the higher the liquefaction cracking resistance. This index is generally used for relative comparisons between materials of the same type.

ここで、表1に示す化学組成を有する試料は、Ni基合金をそれぞれ真空誘導溶解炉にて溶解し、鋼塊を作製し、この鋼塊を熱間鍛造した後、所定のサイズの部材にするよう機械加工等を行ったもので、これら試料を用いてバレストレイン試験を実施した。その結果を表2内のBTRSC、BTRLCとして記載した。実施例1、2は、比較例1と比べBTRSC、BTRLC共に低下していることがわかり凝固割れ感受性および液化割れ感受性に優れることが分かる。これらより本実施形態の溶接用Ni基合金および溶加材は高温割れ感受性が低いことが分かる。なおバレストレイン試験実施条件は表3に示す。 Here, the samples having the chemical composition shown in Table 1 are prepared by melting each Ni-based alloy in a vacuum induction melting furnace to produce a steel ingot, hot forging this steel ingot, and then forming it into a member of a predetermined size. These samples were subjected to mechanical processing, etc., and a Balestrain test was conducted using these samples. The results are listed as BTRSC and BTRLC in Table 2. It can be seen that Examples 1 and 2 have lower BTRSC and BTRLC than Comparative Example 1, indicating that they are excellent in solidification cracking susceptibility and liquefaction cracking susceptibility. From these results, it can be seen that the Ni-based welding alloy and filler metal of this embodiment have low hot cracking susceptibility. The conditions for conducting the Balestrain test are shown in Table 3.

Figure 0007391534000002
Figure 0007391534000002

Figure 0007391534000003
Figure 0007391534000003

以上、本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 Although several embodiments of the present invention have been described above, these embodiments are presented as examples and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, substitutions, and changes can be made without departing from the gist of the invention. These embodiments and their modifications are included within the scope and gist of the invention, as well as within the scope of the invention described in the claims and its equivalents.

100……バレストレイン試験装置、101……ベンディングブロック、102……ヨーク、103……溶接トーチ、110……試験片。 100... Balestrain test device, 101... Bending block, 102... Yoke, 103... Welding torch, 110... Test piece.

Claims (4)

質量%で、C:0.05~0.15、Cr:20~24、Co:10~15、Mo:8~10、Al:0.8~1.5、Ti:0.6以下、Si:0.5以下、Mn:0.5以下、Cu:0.5以下、Fe:0.5以下、REM:0.002~0.03、P:0.02以下、S:0.015以下を含有し、残部がNiおよび不可避的不純物からなることを特徴とする溶接用Ni基合金。 In mass%, C: 0.05 to 0.15, Cr: 20 to 24, Co: 10 to 15, Mo: 8 to 10, Al: 0.8 to 1.5, Ti: 0.6 or less, Si : 0.5 or less, Mn: 0.5 or less, Cu: 0.5 or less, Fe: 0.5 or less, REM: 0.002 to 0.03, P: 0.02 or less, S: 0.015 or less A Ni-based alloy for welding, characterized in that the remainder consists of Ni and inevitable impurities. 請求項1記載の溶接用Ni基合金であって、
前記不可避的不純物のうち、Nbは0.4質量%以下、Bは0.005質量% 以下、Nは0.02質量%以下であることを特徴とする溶接用Ni基合金。
The Ni-based alloy for welding according to claim 1,
A Ni-based alloy for welding, characterized in that among the inevitable impurities, Nb is 0.4% by mass or less, B is 0.005% by mass or less, and N is 0.02% by mass or less.
請求項1又は2記載の溶接用Ni基合金であって、
前記REMは、少なくともCeを含む
ことを特徴とする溶接用Ni基合金。
The Ni-based alloy for welding according to claim 1 or 2,
The REM is a Ni-based alloy for welding, characterized in that it contains at least Ce.
請求項1乃至のいずれか1項記載の溶接用Ni基合金を用いて作製されたことを特徴とする溶加材。 A filler material produced using the Ni-based alloy for welding according to any one of claims 1 to 3 .
JP2019090553A 2019-05-13 2019-05-13 Ni-based alloys and filler metals for welding Active JP7391534B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019090553A JP7391534B2 (en) 2019-05-13 2019-05-13 Ni-based alloys and filler metals for welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019090553A JP7391534B2 (en) 2019-05-13 2019-05-13 Ni-based alloys and filler metals for welding

Publications (2)

Publication Number Publication Date
JP2020185580A JP2020185580A (en) 2020-11-19
JP7391534B2 true JP7391534B2 (en) 2023-12-05

Family

ID=73222460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019090553A Active JP7391534B2 (en) 2019-05-13 2019-05-13 Ni-based alloys and filler metals for welding

Country Status (1)

Country Link
JP (1) JP7391534B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117385212B (en) * 2023-12-08 2024-03-12 北京北冶功能材料有限公司 Nickel-based high-temperature alloy foil with excellent medium-temperature strength and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010029914A (en) 2008-07-30 2010-02-12 Mitsubishi Heavy Ind Ltd Welding material for nickel-based alloy
JP2012507624A (en) 2008-11-04 2012-03-29 シーメンス アクティエンゲゼルシャフト Welding additives, use of welding additives and components
JP2013036086A (en) 2011-08-09 2013-02-21 Nippon Steel & Sumitomo Metal Corp Ni-BASED HEAT-RESISTANT ALLOY
WO2015111641A1 (en) 2014-01-27 2015-07-30 新日鐵住金株式会社 Welding material for ni-based heat-resistant alloy, and welded metal and welded joint each using same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4355224A (en) * 1980-08-15 1982-10-19 Huntington Alloys, Inc. Coated electrode
JPH0663789A (en) * 1992-08-19 1994-03-08 Daido Steel Co Ltd Ni or ni alloy welding wire for gas shielded arc welding
JPH10193174A (en) * 1996-12-27 1998-07-28 Daido Steel Co Ltd Filler metal for welding oxide diffusion reinforcement alloy

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010029914A (en) 2008-07-30 2010-02-12 Mitsubishi Heavy Ind Ltd Welding material for nickel-based alloy
JP2012507624A (en) 2008-11-04 2012-03-29 シーメンス アクティエンゲゼルシャフト Welding additives, use of welding additives and components
JP2013036086A (en) 2011-08-09 2013-02-21 Nippon Steel & Sumitomo Metal Corp Ni-BASED HEAT-RESISTANT ALLOY
WO2015111641A1 (en) 2014-01-27 2015-07-30 新日鐵住金株式会社 Welding material for ni-based heat-resistant alloy, and welded metal and welded joint each using same

Also Published As

Publication number Publication date
JP2020185580A (en) 2020-11-19

Similar Documents

Publication Publication Date Title
KR101192618B1 (en) Welding material for ni-based alloy
JP5977998B2 (en) Ni-base alloy weld metal, strip electrode, and welding method
KR101809360B1 (en) METHOD FOR PRODUCING Ni-BASED HEAT-RESISTANT ALLOY WELDING JOINT AND WELDING JOINT OBTAINED BY USING THE SAME
JP6197885B2 (en) Welding material for Ni-base heat-resistant alloy, weld metal and welded joint using the same
JP6211296B2 (en) Steel plate with excellent sour resistance and HAZ toughness
JP5651090B2 (en) Steel material excellent in toughness of weld heat-affected zone and method for producing the same
JP6852809B2 (en) Austenitic heat-resistant steel Welded metal, welded joints, welding materials for austenitic heat-resistant steel, and methods for manufacturing welded joints
JP6978614B2 (en) Solid wire for gas metal arc welding and gas metal arc welding method
JP2010150585A (en) Ni-based alloy for casting part of steam turbine excellent in high-temperature strength, castability and weldability, turbine casing of steam turbine, valve casing of steam turbine, nozzle box of steam turbine, and pipe of steam turbine
JP7391534B2 (en) Ni-based alloys and filler metals for welding
JP5703177B2 (en) Ni-base alloy for welding and filler metal
JP2017205800A (en) Ni-BASED ALLOY FOR WELDING, AND FILLER MATERIAL FOR BOILING WATER REACTOR
JP7391533B2 (en) Ni-based alloys and filler metals for welding
JP5520105B2 (en) Steel material excellent in toughness of weld heat-affected zone and method for producing the same
KR101659245B1 (en) Thick steel sheet having excellent welding heat-affected part toughness
JP6638552B2 (en) Welding material for austenitic heat-resistant steel
JP5796379B2 (en) Steel for welded structure excellent in CTOD characteristics of high heat input weld heat affected zone
JP4416614B2 (en) Welding repair method for gear box for railway vehicles
WO2020170928A1 (en) Welding material for high-cr ferritic heat-resistant steels
JP7140207B2 (en) METHOD FOR MANUFACTURING FERRITIC HEAT-RESISTANT STEEL WELD JOINT
JP6638551B2 (en) Austenitic heat-resistant steel weld metal and welded joint having the same
CN111151920A (en) 3425LC welding strip and production process thereof
JP7492184B1 (en) Manufacturing method of solid wire and welded joint
JP3365269B2 (en) Invar alloy with excellent hot cracking resistance
JP3860522B2 (en) Welding material, welding method and welded joint

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230530

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231024

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231122

R150 Certificate of patent or registration of utility model

Ref document number: 7391534

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150