JP7391534B2 - Ni-based alloys and filler metals for welding - Google Patents
Ni-based alloys and filler metals for welding Download PDFInfo
- Publication number
- JP7391534B2 JP7391534B2 JP2019090553A JP2019090553A JP7391534B2 JP 7391534 B2 JP7391534 B2 JP 7391534B2 JP 2019090553 A JP2019090553 A JP 2019090553A JP 2019090553 A JP2019090553 A JP 2019090553A JP 7391534 B2 JP7391534 B2 JP 7391534B2
- Authority
- JP
- Japan
- Prior art keywords
- welding
- less
- test
- solidification
- cracking
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910045601 alloy Inorganic materials 0.000 title claims description 52
- 239000000956 alloy Substances 0.000 title claims description 52
- 238000003466 welding Methods 0.000 title claims description 52
- 239000000945 filler Substances 0.000 title claims description 21
- 229910052751 metal Inorganic materials 0.000 title description 27
- 239000002184 metal Substances 0.000 title description 27
- 150000002739 metals Chemical class 0.000 title description 7
- 239000000463 material Substances 0.000 claims description 23
- 239000012535 impurity Substances 0.000 claims description 8
- 229910052799 carbon Inorganic materials 0.000 claims description 4
- 238000005336 cracking Methods 0.000 description 45
- 238000012360 testing method Methods 0.000 description 41
- 238000007711 solidification Methods 0.000 description 28
- 230000008023 solidification Effects 0.000 description 28
- 229910052761 rare earth metal Inorganic materials 0.000 description 21
- 239000000203 mixture Substances 0.000 description 17
- 230000000694 effects Effects 0.000 description 13
- 238000000034 method Methods 0.000 description 13
- 239000011572 manganese Substances 0.000 description 10
- 239000007790 solid phase Substances 0.000 description 10
- 230000008018 melting Effects 0.000 description 7
- 238000002844 melting Methods 0.000 description 7
- 239000010955 niobium Substances 0.000 description 7
- 239000010936 titanium Substances 0.000 description 7
- 229910000831 Steel Inorganic materials 0.000 description 6
- 238000005452 bending Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 6
- 239000010959 steel Substances 0.000 description 6
- 229910052717 sulfur Inorganic materials 0.000 description 6
- 239000011651 chromium Substances 0.000 description 5
- 239000010949 copper Substances 0.000 description 5
- 229910052698 phosphorus Inorganic materials 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 239000007788 liquid Substances 0.000 description 4
- 239000012071 phase Substances 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- 230000006698 induction Effects 0.000 description 3
- 229910000765 intermetallic Inorganic materials 0.000 description 3
- 229910052758 niobium Inorganic materials 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 229910052719 titanium Inorganic materials 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 229910052684 Cerium Inorganic materials 0.000 description 2
- 229910052779 Neodymium Inorganic materials 0.000 description 2
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 229910052796 boron Inorganic materials 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 238000007689 inspection Methods 0.000 description 2
- 229910052746 lanthanum Inorganic materials 0.000 description 2
- 239000007791 liquid phase Substances 0.000 description 2
- 239000011593 sulfur Substances 0.000 description 2
- 229910000851 Alloy steel Inorganic materials 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- 229910001122 Mischmetal Inorganic materials 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000006477 desulfuration reaction Methods 0.000 description 1
- 230000023556 desulfurization Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000005496 eutectics Effects 0.000 description 1
- 238000005242 forging Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 229910052747 lanthanoid Inorganic materials 0.000 description 1
- 150000002602 lanthanoids Chemical class 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000009290 primary effect Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 150000002910 rare earth metals Chemical class 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 229910052706 scandium Inorganic materials 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 239000010421 standard material Substances 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
Images
Landscapes
- Arc Welding In General (AREA)
Description
本発明の実施形態は、溶接用Ni基合金および溶加材に関する。 Embodiments of the present invention relate to a Ni-based alloy for welding and a filler metal.
近年、蒸気タービンにおいては、蒸気温度の高温化が図られており、それに伴い、蒸気タービンを構成する材料に対して、耐熱強度の向上が求められている。特に、現在開発が進められているA-USC(先進超々臨界圧)蒸気タービンでは、700℃を超える、もしくはそれに近い蒸気温度が想定されている。そのため、従来のCrMoV鋼などの耐熱低合金鋼の使用可能な温度を超えるため、Ni基合金の適用が検討されている。 BACKGROUND ART In recent years, steam temperatures in steam turbines have been increasing, and as a result, materials constituting steam turbines are required to have improved heat resistance strength. In particular, in the A-USC (Advanced Ultra Super Critical) steam turbine currently under development, steam temperatures exceeding or close to 700° C. are assumed. Therefore, since the temperature exceeds the usable temperature of conventional heat-resistant low-alloy steels such as CrMoV steel, the application of Ni-based alloys is being considered.
このNi基合金として、例えば、600系合金などの適用が検討されている。蒸気タービンのタービンロータ材としては、例えば、617合金やTOS1X(東芝社製)などがある。また、タービンロータを構成する構成部品を溶接する際に使用される溶加材の代表的なものとして、例えば、617合金からなる溶加材などが使用されている。 Application of a 600 series alloy, for example, as the Ni-based alloy is being considered. Examples of turbine rotor materials for steam turbines include 617 alloy and TOS1X (manufactured by Toshiba Corporation). Further, as a typical filler metal used when welding the components constituting the turbine rotor, for example, a filler metal made of 617 alloy is used.
高温における強度特性が向上されたTOS1XなどのNi基合金に対し適用される、従来の617合金の溶加材では、その溶接に起因して凝固割れや液化割れが生じることが報告されており、継手品質上でいくつかの問題例が報告されている。また、TOS1Xのように高温の機械的特性が高い材料に対して使用するには、強度的に不十分である問題点がある。そのため、高温における強度特性を有し、かつ、高温割れ感受性を低減したNi基合金の溶加材が求められている。 It has been reported that solidification cracking and liquefaction cracking occur due to welding with conventional 617 alloy filler metals, which are applied to Ni-based alloys such as TOS1X, which have improved strength properties at high temperatures. Several examples of problems with joint quality have been reported. Furthermore, there is a problem in that the strength is insufficient for use with materials such as TOS1X, which have high mechanical properties at high temperatures. Therefore, there is a need for a Ni-based alloy filler material that has strength characteristics at high temperatures and has reduced hot cracking susceptibility.
これまでNi基合金溶接金属や溶接材料に関しては以下のような取り組みがなされている。Ni基合金溶接用材料に対する機械的性質向上の先行技術文献は多く知られている(例えば、特許文献1,3,4)。しかし、高温割れ感受性に関して合わせて具体的な記述のあるものはない。
Up to now, the following efforts have been made regarding Ni-based alloy weld metals and welding materials. Many prior art documents on improving the mechanical properties of Ni-based alloy welding materials are known (for example,
一方、高温割れ感受性低減の取り組みとしては、近年Ni基合金の溶接材料にREMと呼ばれる希土類を、既存の成分系に添加して、高温割れの一つである液化割れ感受性を改善できることが分かっているが、凝固割れ感受性の低減には効果が乏しいことが分かっている(例えば、非特許文献1,2)。
On the other hand, as an effort to reduce the susceptibility to hot cracking, it has recently been discovered that adding a rare earth element called REM to the existing component system of Ni-based alloy welding materials can improve susceptibility to liquefaction cracking, which is one type of hot cracking. However, it is known that the effect of reducing solidification cracking susceptibility is poor (for example,
また溶接高温割れを抑制する技術も提案されている(例えば、特許文献2)。当該技術ではREM添加によるNi基合金の凝固割れ感受性の低減も図っているが、REM添加に伴う液化割れ感受性および機械的性質への影響については不明である。 Furthermore, a technique for suppressing weld hot cracking has also been proposed (for example, Patent Document 2). Although this technique attempts to reduce the solidification cracking susceptibility of Ni-based alloys by adding REM, it is unclear about the effects of REM addition on liquefaction cracking susceptibility and mechanical properties.
こうしたことを踏まえるに、REM添加により得られる効果は、添加する元成分系により異なると考えられ、例えば溶接高温割れだけでなく熱間加工性を向上させることを意図して添加する場合もある(例えば、特許文献3)。このようにREM添加によるNi基合金の性能向上については、一義的な効果にとどまらない。 Taking this into account, the effects obtained by adding REM are thought to vary depending on the original component system to which it is added; for example, it may be added with the intention of improving not only weld hot cracking but also hot workability ( For example, Patent Document 3). In this way, the performance improvement of Ni-based alloys due to the addition of REM is not limited to a primary effect.
半面、Ni基合金においてREMを過剰に添加した場合、Niとの金属間化合物を生じ、性能が低下するという負の効果も報告されている(例えば、非特許文献1)。したがってNi基合金においてREM添加により、選択的に望ましい効果を享受することについては、REM添加量の調整、元材料の成分系のREM添加への適否判断や元材料成分調整を行う等が必要となり、容易ではない。 On the other hand, it has been reported that when excessive REM is added to a Ni-based alloy, an intermetallic compound with Ni is formed, resulting in a negative effect of deterioration of performance (for example, Non-Patent Document 1). Therefore, in order to selectively enjoy desired effects by adding REM to Ni-based alloys, it is necessary to adjust the amount of REM added, determine whether the composition of the base material is appropriate for REM addition, and adjust the composition of the base material. ,It's not easy.
以上のように、Ni基合金の溶接金属または溶接材料については機械的性質に関する例は多数あるものの、溶接時の高温割れへの抑制の取り組みとしては例が少なく、特に凝固割れ、液化割れ双方において、既知の材料を凌駕する耐割れ性能を有した溶接金属を提供する溶接材料はない。 As mentioned above, although there are many examples regarding the mechanical properties of Ni-based alloy weld metals or welding materials, there are few examples of efforts to suppress hot cracking during welding, especially in both solidification cracking and liquefaction cracking. , no welding material provides a weld metal with cracking resistance superior to known materials.
ここで、Ni基合金は低温から高温まで優れた機械的性質を有し、多くの場合、他の金属類に比して高価であるため、過酷環境下で使用される機器、またはそれらの重要な一部に使用される。加えてNi基合金が採用される機器の多くは公益性が高く、また安全であることを強く求められる機器である場合が多い。こうした重要機器の溶接部は通常、放射線透過検査や超音波探傷試験により溶接部内部に割れや空孔等有害な欠陥がないことが確認され、欠陥発見に至った場合は補修溶接を行い健全な溶接継手とし使用される。 Here, Ni-based alloys have excellent mechanical properties from low to high temperatures, and are often more expensive than other metals, so they can be used in equipment used in harsh environments or in important equipment. used in some parts. In addition, many of the devices in which Ni-based alloys are used have a high public interest, and are often devices that are strongly required to be safe. The welded parts of these important equipment are usually confirmed to have no harmful defects such as cracks or holes inside the welded part through radiographic inspection or ultrasonic testing, and if a defect is discovered, repair welding is carried out to ensure that it is sound. Used as welded joints.
しかしながら、高温割れに伴う割れは数十μm程度の微細なものもあり、現在の技術による検査や試験では検出が困難な場合がある。溶接部において高温割れを内在したままそれら機器の運用を行った場合、内在欠陥に起因して設計想定外の破壊に至る可能性もあり、そもそも想定しえないため、前触れなく破壊に至ったり、予想しえない規模の事故や損害を引き起こす可能性がある。こうした背景によりNi基合金の溶接部において高温割れの発生を抑制することは強く求められている。 However, some of the cracks associated with hot cracking are minute, on the order of tens of micrometers, and may be difficult to detect with inspections and tests using current technology. If such equipment is operated with hot cracks still present in the welded parts, there is a possibility that the inherent defects will lead to destruction that is not expected in the design. There is a possibility of causing an accident or damage of an unpredictable scale. Against this background, there is a strong demand for suppressing the occurrence of hot cracks in welded parts of Ni-based alloys.
上記の従来の事情を踏まえ本発明が解決しようとする課題は、高温機械的特性に優れ、かつ、従来の溶加材に比較して高温割れが生じづらく、溶接性および製造性に優れた溶接用Ni基合金および溶加材を提供することにある。 Based on the above-mentioned conventional circumstances, the problem to be solved by the present invention is to create a welding material that has excellent high-temperature mechanical properties, is less prone to hot cracking than conventional filler metals, and has excellent weldability and manufacturability. An object of the present invention is to provide a Ni-based alloy and a filler metal for use in the present invention.
実施形態の溶接用Ni基合金は、質量%で、C:0.05~0.15、Cr:20~24、Co:10~15、Mo:8~10、Al:0.8~1.5、Ti:0.6以下、Si:0.5以下、Mn:0.5以下、Cu:0.5以下、Fe:3.0以下、REM:0.002~0.03、P:0.02以下、S:0.015以下を含有し、残部がNiおよび不可避的不純物からなることを特徴とする。 The Ni-based alloy for welding of the embodiment has C: 0.05-0.15, Cr: 20-24, Co: 10-15, Mo: 8-10, Al: 0.8-1. 5, Ti: 0.6 or less, Si: 0.5 or less, Mn: 0.5 or less, Cu: 0.5 or less, Fe: 3.0 or less, REM: 0.002 to 0.03, P: 0 0.02 or less, S: 0.015 or less, and the remainder consists of Ni and inevitable impurities.
以下、実施形態に係る溶接用Ni基合金および溶加材について説明する。 Hereinafter, a Ni-based alloy for welding and a filler metal according to an embodiment will be described.
実施形態に係る溶接用Ni基合金は、以下に示す組成成分範囲で構成される。なお、以下の説明において組成成分を表す%は、特に明記しない限り質量%とする。
質量%で、C:0.05~0.15、Cr:20~24、Co:10~15、Mo:8~10、Al:0.8~1.5、Ti:0.6以下、Si:0.5以下、Mn:0.5以下、Cu:0.5以下、Fe:3.0以下、REM:0.002~0.03、P:0.02以下、S:0.015以下を含有し、残部がNiおよび不可避的不純物からなる。
The Ni-based alloy for welding according to the embodiment has the composition range shown below. In addition, in the following description, % representing a composition component is mass % unless otherwise specified.
In mass%, C: 0.05 to 0.15, Cr: 20 to 24, Co: 10 to 15, Mo: 8 to 10, Al: 0.8 to 1.5, Ti: 0.6 or less, Si : 0.5 or less, Mn: 0.5 or less, Cu: 0.5 or less, Fe: 3.0 or less, REM: 0.002 to 0.03, P: 0.02 or less, S: 0.015 or less The remainder consists of Ni and unavoidable impurities.
上記した成分範囲の溶接用Ni基合金は、例えば、溶接用の溶加材として使用することができる。例えば、Ni基合金からなるタービンロータ構成部材どうしを溶接する際の溶加材として使用することができる。また、Ni基合金からなるタービンロータ構成部材と、低合金鋼(例えば、CrMoV鋼や12Cr鋼)からなるタービンロータ構成部材とを溶接する際の溶加材として使用することができる。この溶加材は、TIG溶接などに使用される。 The Ni-based alloy for welding having the above-mentioned composition range can be used, for example, as a filler material for welding. For example, it can be used as a filler material when welding turbine rotor components made of Ni-based alloys. Further, it can be used as a filler material when welding a turbine rotor component made of a Ni-based alloy and a turbine rotor component made of low alloy steel (for example, CrMoV steel or 12Cr steel). This filler metal is used for TIG welding and the like.
上記した溶加材を用いて溶接されるタービンロータとしては、例えば、700℃を超える、もしくはそれに近い高温蒸気環境下で使用可能なタービンロータなどが挙げられる。なお、この溶加材を用いて溶接される構成部品は、タービンロータの構成部品に限られるものではなく、例えば、700℃を超える、もしくはそれに近い高温蒸気環境下および高温二酸化炭素環境下で使用される他の構成部品であってもよい。 Examples of turbine rotors welded using the above-described filler metal include turbine rotors that can be used in high-temperature steam environments exceeding or close to 700°C. Note that components to be welded using this filler metal are not limited to turbine rotor components, and can be used, for example, in high-temperature steam environments exceeding or close to 700 degrees Celsius, and in high-temperature carbon dioxide environments. Other components may also be used.
また、上記した組成成分範囲のNi基合金は、高温割れ感受性が低く、溶接性および製造性に優れている。このNi基合金を用いて作製された溶加材においても高温割れ感受性が低く、溶接性および製造性に優れている。 Further, the Ni-based alloy having the above-mentioned composition range has low sensitivity to hot cracking and is excellent in weldability and manufacturability. Filler metals made using this Ni-based alloy also have low hot cracking susceptibility and are excellent in weldability and manufacturability.
なお本実施形態の成分系はAWS A5.14 ERNiCrCoMo-1、JIS Z 3334 SNi6617に適合している。これは溶接を行う事業者が規格に基づき施工法等を取得する場合は円滑にそれらを行えることに加え、同規格材料に関する施工法を保有している場合は再度の取得を必要としない等、実使用上の利便性も有することを意味する。 Note that the component system of this embodiment conforms to AWS A5.14 ERNiCrCoMo-1 and JIS Z 3334 SNi6617. This means that if a welding business obtains a construction method based on the standard, they can do so smoothly, and if they have a construction method for the same standard material, they do not need to obtain it again. This means that it also has practical convenience.
次に、上記した実施形態における溶接用Ni基合金における各組成成分範囲の限定理由を説明する。 Next, the reason for limiting the range of each composition in the Ni-based welding alloy in the above-described embodiment will be explained.
(1)C(炭素)、Cr(クロム)、Co(コバルト)、Mo(モリブデン)、Fe(鉄)、Al(アルミニウム)、Ti(チタン) 、Cu(銅)
これらは、AWS A5.14 ERNiCrCoMo-1に規定される範囲を満足させるため、C:0.05~0.15、Cr:20~24、Co:10~15、Mo:8~10、Fe:3.0以下、Al:0.8~1.5、Ti:0.6以下、Cu:0.5以下とする。
(1) C (carbon), Cr (chromium), Co (cobalt), Mo (molybdenum), Fe (iron), Al (aluminum), Ti (titanium), Cu (copper)
In order to satisfy the range specified in AWS A5.14 ERNiCrCoMo-1, C: 0.05 to 0.15, Cr: 20 to 24, Co: 10 to 15, Mo: 8 to 10, Fe: 3.0 or less, Al: 0.8 to 1.5, Ti: 0.6 or less, Cu: 0.5 or less.
(2)Si(ケイ素)
Siは、湯流れを向上させる効果がある。一方、Siの含有率が0.5%を超えると、溶接性を低下させる。そのため、Siの含有率を0.5%以下とした。また、Siの含有率を0.01~0.25%とすることがより好ましい。
(2) Si (silicon)
Si has the effect of improving the flow of hot water. On the other hand, if the Si content exceeds 0.5%, weldability will be reduced. Therefore, the Si content was set to 0.5% or less. Further, it is more preferable that the Si content is 0.01 to 0.25%.
(3)Mn(マンガン)
Mnは、脆性に起因するS(硫黄)とMnSとなり、脆性を防止し、湯流れを向上させる効果がある。一方,Mnの含有率が0.5%を超えると、溶接性を低下させる。そのため、Mnの含有率を0.5%以下とした。また、Mnの含有率を0.15~0.4%とすることがより好ましい。ここで、Mnの上記効果を得るために、Mnは、少なくとも0.1%以上含有されることが望ましい。
(3) Mn (manganese)
Mn becomes S (sulfur) and MnS, which is caused by brittleness, and has the effect of preventing brittleness and improving melt flow. On the other hand, when the Mn content exceeds 0.5%, weldability is reduced. Therefore, the Mn content was set to 0.5% or less. Further, it is more preferable that the Mn content is 0.15 to 0.4%. Here, in order to obtain the above effects of Mn, it is desirable that Mn be contained in an amount of at least 0.1% or more.
(4)REM(表1におけるCe)
REMはSc、Yおよびランタノイド(原子番号57~71)の総称である。REMはミッシュメタルと呼ばれる複数種類のREMの混合物として添加してもよいし、分離された1種又は2種以上の元素で添加してもよい。なお含有量としては0.002~0.03%が望ましい。Ce、La、NdをはじめとするREMは金属組織中の粒内においてP,Sと共に微細生成相を生じることによりP,Sの粒界偏析を抑制し、粒界結合力を向上させる。また、溶接時の凝固中に化合物を形成することにより固相線温度をあげる効果がある。そのためCe、La、NdをはじめとするREMは溶接部の凝固割れ感受性を低減させるのに有用な元素でありその含有量としては0.002%以上が望ましい。一方REMを過剰に添加した場合、上記効果が飽和してしまうことに加えて、低融点の金属間化合物であるREM-Ni金属間化合物が形成され粒界の結合力低下を招き高温割れ感受性が増大する。そのため0.03%以下とした。
(4) REM (Ce in Table 1)
REM is a general term for Sc, Y, and lanthanoids (atomic numbers 57-71). REM may be added as a mixture of multiple types of REM called misch metal, or may be added as one or more separated elements. Note that the content is preferably 0.002 to 0.03%. REM, including Ce, La, and Nd, suppresses the grain boundary segregation of P and S by forming finely formed phases together with P and S in the grains in the metal structure, thereby improving grain boundary bonding strength. Also, by forming a compound during solidification during welding, it has the effect of raising the solidus temperature. Therefore, REM including Ce, La, and Nd are useful elements for reducing the susceptibility to solidification cracking of the weld, and their content is preferably 0.002% or more. On the other hand, if REM is added in excess, in addition to the above effects being saturated, a REM-Ni intermetallic compound, which is an intermetallic compound with a low melting point, is formed, which reduces the bonding strength of grain boundaries and increases hot cracking susceptibility. increase Therefore, the content was set at 0.03% or less.
(5)P(リン)、S(硫黄)
P、Sは、実施形態における溶接用Ni基合金においては、不可避的不純物に分類されるものである。これらの不可避的不純物は、可能な限りその残存含有率を0%に近づけることが望ましい。また、これらの不可避的不純物のうち、少なくとも、Pは0.02%以下、およびSは0.015%以下に抑制されることが好ましい、が可能な限りそれぞれの残存含有率を0%に近づけることがさらに望ましい。なお、PやSの含有率が上記範囲を超える場合には、脱リン処理や脱硫処理を施し、上記範囲内の含有率とする。
(5) P (phosphorus), S (sulfur)
P and S are classified as inevitable impurities in the Ni-based alloy for welding in the embodiment. It is desirable that the residual content of these unavoidable impurities be as close to 0% as possible. Furthermore, among these unavoidable impurities, it is preferable to suppress at least P to 0.02% or less and S to 0.015% or less, so that the residual content of each of them approaches 0% as much as possible. Even more desirable. In addition, when the content of P or S exceeds the above range, dephosphorization treatment or desulfurization treatment is performed to bring the content within the above range.
(6)N(窒素)、B(ホウ素)、Nb(ニオブ)
N、B、Nbは、実施形態における溶接用Ni基合金においては、不可避的不純物に分類されるものである。これらのうちNは、溶融金属の凝固過程において(Ti、Nb)(N、C)の複合化合物の生成を促す。その結果、凝固中の相形成およびその形成順序に影響を与える。このため、凝固温度域の拡大を引き起こし、凝固割れ感受性を増大させる。これを抑制するため、0.02%以下とすることが好ましく、さらには0.01%以下とすることが好ましい。
(6) N (nitrogen), B (boron), Nb (niobium)
N, B, and Nb are classified as inevitable impurities in the Ni-based alloy for welding in the embodiment. Among these, N promotes the formation of a composite compound of (Ti, Nb) (N, C) during the solidification process of molten metal. As a result, it affects phase formation and the order of their formation during solidification. This causes an expansion of the solidification temperature range and increases the susceptibility to solidification cracking. In order to suppress this, the content is preferably 0.02% or less, and more preferably 0.01% or less.
Bは、粒界偏析し、高温強度を向上させる効果があるものの、Bの含有率が増加すると粒界脆化を招くとともに、溶接性が低下する。そのため、Bの含有率は、0.005%以下とすることが好ましい。 Although B segregates at grain boundaries and has the effect of improving high-temperature strength, an increase in B content causes grain boundary embrittlement and reduces weldability. Therefore, the content of B is preferably 0.005% or less.
Nbは、γ’(Ni3(Al,Ti))相に固容して、γ’相を強化し、安定化させる効果があるものの、Nbの含有率が0.4%を超えると、液化割れ感受性が高まる。そのため、Nbの含有率は0.4%以下とすることが好ましい。 Nb solidifies in the γ' (Ni 3 (Al, Ti)) phase and has the effect of strengthening and stabilizing the γ' phase, but if the Nb content exceeds 0.4%, it will liquefy. Increased cracking susceptibility. Therefore, the Nb content is preferably 0.4% or less.
ここで、実施形態における溶接用Ni基合金、およびこの溶接用Ni基合金を用いて製造される溶加材について説明する。実施形態における溶接用Ni基合金は、この溶接用Ni基合金を構成する組成成分を真空誘導溶解(VIM)し、その溶湯を所定の型枠に注入して鋳塊を形成すること等で作製する。 Here, a Ni-based welding alloy according to an embodiment and a filler metal manufactured using this Ni-based welding alloy will be described. The Ni-based alloy for welding in the embodiment is produced by vacuum induction melting (VIM) of the composition components constituting the Ni-based alloy for welding, and by pouring the molten metal into a predetermined mold to form an ingot. do.
また、実施形態の溶加材は、実施形態における溶接用Ni基合金を構成する組成成分を真空誘導溶解(VIM)し、その溶湯を所定の型枠に注入して鋳塊を形成し、その鋳塊を機械加工した部材を線引き加工して、ワイヤ状にすること等で作製される。 In addition, the filler metal of the embodiment is produced by vacuum induction melting (VIM) of the composition components constituting the Ni-based alloy for welding in the embodiment, and injecting the molten metal into a predetermined mold to form an ingot. It is manufactured by drawing a machined ingot into a wire shape.
次に、実施形態の化学組成範囲にあるNi基合金が、高温割れ感受性が低いことを説明する。表1は、高温割れ感受性の評価に用いられた試料の化学組成を示す。なお実施例1、2は、本実施形態の化学組成成分となるように、REMを添加したNi基合金である。比較例1および2はAWS A5.14 ERNiCrCoMo-1を満足し、その組成が実施形態の化学組成範囲にないNi基合金である。 Next, it will be explained that the Ni-based alloy in the chemical composition range of the embodiment has low hot cracking susceptibility. Table 1 shows the chemical composition of the samples used for hot cracking susceptibility evaluation. Note that Examples 1 and 2 are Ni-based alloys to which REM is added so as to have the chemical composition of this embodiment. Comparative Examples 1 and 2 are Ni-based alloys that satisfy AWS A5.14 ERNiCrCoMo-1 and whose compositions are outside the chemical composition range of the embodiment.
高温割れ感受性評価試験は、非特許文献4及び非特許文献5に記載のあるバレストレイン試験により実施した。トランスバレストレイン試験により得られるBTRSCは凝固割れ感受性を、ロンジバレストレイン試験により得たBTRLCは液化割れ感受性を示す指標として広く知られており、それぞれ値が小さい方が、高温割れが生じづらい。 The hot cracking susceptibility evaluation test was carried out by the Balestrain test described in Non-Patent Document 4 and Non-Patent Document 5. BTRSC obtained by the Transvalle Strain test is widely known as an indicator of solidification cracking susceptibility, and BTRLC obtained by the Longivalle strain test is widely known as an index of liquefaction cracking susceptibility, and the smaller the value of each, the less likely hot cracking will occur.
ここで実施例の凝固割れ感受性を評価するために用いたトランスバレストレイン試験について説明する。凝固割れは、溶融金属が凝固する過程中、液相―固相が混在する凝固最終状態で凝固収縮力に耐えきれず開口し、そのまま凝固することにより生じる。 Here, the transvare strain test used to evaluate the solidification cracking susceptibility of the examples will be explained. Solidification cracks occur during the solidification process of molten metal, which cannot withstand the solidification shrinkage force in the final state of solidification in which the liquid phase and solid phase coexist, and the metal opens and solidifies as it is.
前述の液相―固相混在領域を温度の観点から見た場合、凝固開始まもなく通過する極めて延性が低くなる温度領域(凝固脆性温度域)を含んでおり、そのため液相―固相混在領域が広いほど凝固割れが生じやすい。例えば同一の組成を有する溶接基材に対してより高い入熱で溶接を行った場合は、被溶接基材がより加熱され、溶融部の冷却に時間を要するため凝固に要する時間が長くなることから、溶融部位の液相―固相混在領域が広くなり、凝固割れが生じやすくなる。 When looking at the above-mentioned liquid phase-solid phase mixed region from a temperature perspective, it includes a temperature region where ductility is extremely low (solidification brittle temperature region) that passes shortly after solidification begins, and therefore the liquid phase-solid phase mixed region is The wider it is, the more likely it is that solidification cracks will occur. For example, if welding is performed with a higher heat input on welding base materials with the same composition, the welded base material will be heated more and it will take longer to cool the molten part, which will lengthen the time required for solidification. As a result, the liquid phase-solid phase coexistence region at the melting site becomes wider, and solidification cracking becomes more likely to occur.
トランスバレストレイン試験では、液相―固相混在領域を発生させ、その領域に強制的に割れを発生させることにより、その割れ長さを通して液相固相混在領域を測定し凝固脆性温度域(Brittleness Temperature Range)を得る試験手法である。液相―固相混在温度領域と凝固脆性温度域は厳密には異なるが、便宜上同一とみなす。トランスバレストレイン試験の結果から得られる指標をBTRSCと表記する。 In the Transvare Strain test, a liquid-solid phase mixed region is generated, a crack is forcibly generated in that region, and the liquid-solid phase mixed region is measured through the length of the crack to determine the solidification brittleness temperature range (Brittleness). This is a test method to obtain the temperature range. Strictly speaking, the liquid-solid phase mixed temperature range and the solidification brittle temperature range are different, but for convenience, they are considered to be the same. The index obtained from the results of the transvalle train test is expressed as BTRSC.
次にトランスバレストレイン試験の手順を説明する。図1にバレストレイン試験装置100の構成を示す。バレストレイン試験装置100は、試験片を曲げることで規定のひずみが与えられるよう試験片との接触面に規定の曲率(R)を有するベンディングブロック101、試験片をベンディングブロック101に押し当て塑性変形をさせるのに十分な押し当て力を有する可動式のヨーク102、溶接用アークを発生させ試験片上で溶融池を形成させることを目的とした溶接トーチ103で構成される。
Next, the procedure of the transvalle train test will be explained. FIG. 1 shows the configuration of a
トランスバレストレイン試験実施時は図2に示すように、ヨーク102とベンディングブロック101の間に評価対象の試験片110を挟み、その後、溶接トーチ103と試験片110との間にアークを発生させ試験片表面を溶融させる。次にアークを発生させたまま溶接トーチ103を規定の速度で図3に示すように規定位置まで移動させる。次に図4に示すように規定位置到達後は、アークを消弧させると同時にヨーク102を押し下げる。この結果、試験片110が溶接線の方向に沿って規定の曲率に曲がり、溶融面に指定のひずみが生じるため、溶融池近傍に強制的に割れを発生させることができる。
As shown in FIG. 2, when performing a transvalle train test, a
なおアーク消弧時の溶融池近傍の状態としては、溶接トーチ103直下では消弧前に形成された溶融池により完全な液相だが、トーチ進行方向と逆に向かうと、凝固開始に伴い液相―固相が混在する領域があり、やがて完全に凝固が完了した固相状態となる。試験実施で生じた割れは液相―固相混在領域に生じる。
When the arc is extinguished, the state near the molten pool is completely liquid just below the
次に、試験実施により得られた割れからBTRSC導出する方法について説明する。図5(a)にアーク消弧時概念図、図5(b)に再溶融部の溶融池境界からの距離-温度の関係を表すグラフを示す。なお、図5(b)のグラフの上部には、図5(a)に示す溶融池を含むA部を拡大して示してある。まず、試験実施により得られた割れのうち最大の長さの割れ(例えば図5(b)に示す割れ110a)を選定し長さを計測する。その後、事前に同一の試験条件で取得しておいた図5(b)に示される、アーク消弧時の溶融池からの各距離における温度分布と、測定した割れ長さより、割れの起点・終点の各温度が導出される。ここで得られた起点・終点の温度の差をBTRSCとして表記する。BTRSCの値が小さいほど、割れ感受性が低く、耐凝固割れ性を有する。なお本指標は同種の材料間での相対比較に用いるのが一般的である。 Next, a method for deriving BTRSC from the cracks obtained in the test will be explained. FIG. 5(a) shows a conceptual diagram when the arc is extinguished, and FIG. 5(b) shows a graph showing the relationship between the distance of the remelted part from the molten pool boundary and the temperature. Note that, in the upper part of the graph in FIG. 5(b), part A including the molten pool shown in FIG. 5(a) is shown in an enlarged manner. First, a crack with the maximum length (for example, crack 110a shown in FIG. 5(b)) is selected from among the cracks obtained in the test, and its length is measured. After that, from the temperature distribution at each distance from the molten pool at the time of arc extinguishment and the measured crack length, as shown in Figure 5(b), which was obtained in advance under the same test conditions, the starting and ending points of the crack were determined. Each temperature is derived. The difference in temperature between the starting point and the ending point obtained here is expressed as BTRSC. The smaller the value of BTRSC, the lower the cracking susceptibility and the higher the solidification cracking resistance. This index is generally used for relative comparisons between materials of the same type.
次に、液化割れ感受性を評価するために用いたロンジバレストレイン試験について説明する。液化割れは、溶接時の加熱により粒界で低融点化合物や共晶を生成したり、成分偏析が生じると共に溶融され、凝固時の収縮ひずみにより開口し生じる。発生する箇所は凝固割れと異なり被溶接基材であり、溶接熱影響部粗粒域で生じるため、液化割れ感受性評価を行うロンジバレストレイン試験では、試験片110を図6(a)に示すように配置し、溶接トーチ103を図中矢印で示す方向に進行させる。アークを発生させた後、割れ長さから起点・終点の温度差を得る手法についてはトランスバレストレイン試験と同様でありその結果をBTRLCとして表記する。BTRLCの値が小さいほど、割れ感受性が低く、耐液化割れ性を有する。なお本指標は同種の材料間での相対比較に用いるのが一般的である。
Next, the Longivare strain test used to evaluate liquefaction cracking susceptibility will be explained. Liquefaction cracking occurs when a low melting point compound or eutectic is generated at the grain boundary due to heating during welding, or when components are segregated, the material is melted and opened due to shrinkage strain during solidification. Unlike solidification cracking, the location where cracking occurs is in the base material to be welded, and it occurs in the coarse grain region of the weld heat affected zone. Therefore, in the LongiValle restraint test to evaluate liquefaction cracking susceptibility, the
ここで、表1に示す化学組成を有する試料は、Ni基合金をそれぞれ真空誘導溶解炉にて溶解し、鋼塊を作製し、この鋼塊を熱間鍛造した後、所定のサイズの部材にするよう機械加工等を行ったもので、これら試料を用いてバレストレイン試験を実施した。その結果を表2内のBTRSC、BTRLCとして記載した。実施例1、2は、比較例1と比べBTRSC、BTRLC共に低下していることがわかり凝固割れ感受性および液化割れ感受性に優れることが分かる。これらより本実施形態の溶接用Ni基合金および溶加材は高温割れ感受性が低いことが分かる。なおバレストレイン試験実施条件は表3に示す。 Here, the samples having the chemical composition shown in Table 1 are prepared by melting each Ni-based alloy in a vacuum induction melting furnace to produce a steel ingot, hot forging this steel ingot, and then forming it into a member of a predetermined size. These samples were subjected to mechanical processing, etc., and a Balestrain test was conducted using these samples. The results are listed as BTRSC and BTRLC in Table 2. It can be seen that Examples 1 and 2 have lower BTRSC and BTRLC than Comparative Example 1, indicating that they are excellent in solidification cracking susceptibility and liquefaction cracking susceptibility. From these results, it can be seen that the Ni-based welding alloy and filler metal of this embodiment have low hot cracking susceptibility. The conditions for conducting the Balestrain test are shown in Table 3.
以上、本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 Although several embodiments of the present invention have been described above, these embodiments are presented as examples and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, substitutions, and changes can be made without departing from the gist of the invention. These embodiments and their modifications are included within the scope and gist of the invention, as well as within the scope of the invention described in the claims and its equivalents.
100……バレストレイン試験装置、101……ベンディングブロック、102……ヨーク、103……溶接トーチ、110……試験片。 100... Balestrain test device, 101... Bending block, 102... Yoke, 103... Welding torch, 110... Test piece.
Claims (4)
前記不可避的不純物のうち、Nbは0.4質量%以下、Bは0.005質量% 以下、Nは0.02質量%以下であることを特徴とする溶接用Ni基合金。 The Ni-based alloy for welding according to claim 1,
A Ni-based alloy for welding, characterized in that among the inevitable impurities, Nb is 0.4% by mass or less, B is 0.005% by mass or less, and N is 0.02% by mass or less.
前記REMは、少なくともCeを含む
ことを特徴とする溶接用Ni基合金。 The Ni-based alloy for welding according to claim 1 or 2,
The REM is a Ni-based alloy for welding, characterized in that it contains at least Ce.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019090553A JP7391534B2 (en) | 2019-05-13 | 2019-05-13 | Ni-based alloys and filler metals for welding |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019090553A JP7391534B2 (en) | 2019-05-13 | 2019-05-13 | Ni-based alloys and filler metals for welding |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2020185580A JP2020185580A (en) | 2020-11-19 |
JP7391534B2 true JP7391534B2 (en) | 2023-12-05 |
Family
ID=73222460
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019090553A Active JP7391534B2 (en) | 2019-05-13 | 2019-05-13 | Ni-based alloys and filler metals for welding |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7391534B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117385212B (en) * | 2023-12-08 | 2024-03-12 | 北京北冶功能材料有限公司 | Nickel-based high-temperature alloy foil with excellent medium-temperature strength and preparation method thereof |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010029914A (en) | 2008-07-30 | 2010-02-12 | Mitsubishi Heavy Ind Ltd | Welding material for nickel-based alloy |
JP2012507624A (en) | 2008-11-04 | 2012-03-29 | シーメンス アクティエンゲゼルシャフト | Welding additives, use of welding additives and components |
JP2013036086A (en) | 2011-08-09 | 2013-02-21 | Nippon Steel & Sumitomo Metal Corp | Ni-BASED HEAT-RESISTANT ALLOY |
WO2015111641A1 (en) | 2014-01-27 | 2015-07-30 | 新日鐵住金株式会社 | Welding material for ni-based heat-resistant alloy, and welded metal and welded joint each using same |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4355224A (en) * | 1980-08-15 | 1982-10-19 | Huntington Alloys, Inc. | Coated electrode |
JPH0663789A (en) * | 1992-08-19 | 1994-03-08 | Daido Steel Co Ltd | Ni or ni alloy welding wire for gas shielded arc welding |
JPH10193174A (en) * | 1996-12-27 | 1998-07-28 | Daido Steel Co Ltd | Filler metal for welding oxide diffusion reinforcement alloy |
-
2019
- 2019-05-13 JP JP2019090553A patent/JP7391534B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010029914A (en) | 2008-07-30 | 2010-02-12 | Mitsubishi Heavy Ind Ltd | Welding material for nickel-based alloy |
JP2012507624A (en) | 2008-11-04 | 2012-03-29 | シーメンス アクティエンゲゼルシャフト | Welding additives, use of welding additives and components |
JP2013036086A (en) | 2011-08-09 | 2013-02-21 | Nippon Steel & Sumitomo Metal Corp | Ni-BASED HEAT-RESISTANT ALLOY |
WO2015111641A1 (en) | 2014-01-27 | 2015-07-30 | 新日鐵住金株式会社 | Welding material for ni-based heat-resistant alloy, and welded metal and welded joint each using same |
Also Published As
Publication number | Publication date |
---|---|
JP2020185580A (en) | 2020-11-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101192618B1 (en) | Welding material for ni-based alloy | |
JP5977998B2 (en) | Ni-base alloy weld metal, strip electrode, and welding method | |
KR101809360B1 (en) | METHOD FOR PRODUCING Ni-BASED HEAT-RESISTANT ALLOY WELDING JOINT AND WELDING JOINT OBTAINED BY USING THE SAME | |
JP6197885B2 (en) | Welding material for Ni-base heat-resistant alloy, weld metal and welded joint using the same | |
JP6211296B2 (en) | Steel plate with excellent sour resistance and HAZ toughness | |
JP5651090B2 (en) | Steel material excellent in toughness of weld heat-affected zone and method for producing the same | |
JP6852809B2 (en) | Austenitic heat-resistant steel Welded metal, welded joints, welding materials for austenitic heat-resistant steel, and methods for manufacturing welded joints | |
JP6978614B2 (en) | Solid wire for gas metal arc welding and gas metal arc welding method | |
JP2010150585A (en) | Ni-based alloy for casting part of steam turbine excellent in high-temperature strength, castability and weldability, turbine casing of steam turbine, valve casing of steam turbine, nozzle box of steam turbine, and pipe of steam turbine | |
JP7391534B2 (en) | Ni-based alloys and filler metals for welding | |
JP5703177B2 (en) | Ni-base alloy for welding and filler metal | |
JP2017205800A (en) | Ni-BASED ALLOY FOR WELDING, AND FILLER MATERIAL FOR BOILING WATER REACTOR | |
JP7391533B2 (en) | Ni-based alloys and filler metals for welding | |
JP5520105B2 (en) | Steel material excellent in toughness of weld heat-affected zone and method for producing the same | |
KR101659245B1 (en) | Thick steel sheet having excellent welding heat-affected part toughness | |
JP6638552B2 (en) | Welding material for austenitic heat-resistant steel | |
JP5796379B2 (en) | Steel for welded structure excellent in CTOD characteristics of high heat input weld heat affected zone | |
JP4416614B2 (en) | Welding repair method for gear box for railway vehicles | |
WO2020170928A1 (en) | Welding material for high-cr ferritic heat-resistant steels | |
JP7140207B2 (en) | METHOD FOR MANUFACTURING FERRITIC HEAT-RESISTANT STEEL WELD JOINT | |
JP6638551B2 (en) | Austenitic heat-resistant steel weld metal and welded joint having the same | |
CN111151920A (en) | 3425LC welding strip and production process thereof | |
JP7492184B1 (en) | Manufacturing method of solid wire and welded joint | |
JP3365269B2 (en) | Invar alloy with excellent hot cracking resistance | |
JP3860522B2 (en) | Welding material, welding method and welded joint |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20220201 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20221209 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20221227 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20230530 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230726 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20231024 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20231122 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7391534 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |