JP7389764B2 - Reactor containment cooling system - Google Patents

Reactor containment cooling system Download PDF

Info

Publication number
JP7389764B2
JP7389764B2 JP2021004834A JP2021004834A JP7389764B2 JP 7389764 B2 JP7389764 B2 JP 7389764B2 JP 2021004834 A JP2021004834 A JP 2021004834A JP 2021004834 A JP2021004834 A JP 2021004834A JP 7389764 B2 JP7389764 B2 JP 7389764B2
Authority
JP
Japan
Prior art keywords
water
cooling water
cooling system
cooling
cooled heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021004834A
Other languages
Japanese (ja)
Other versions
JP2022109492A (en
Inventor
匠 宇都宮
ギヨームローラント グランジョン
花梨 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi GE Nuclear Energy Ltd
Original Assignee
Hitachi GE Nuclear Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi GE Nuclear Energy Ltd filed Critical Hitachi GE Nuclear Energy Ltd
Priority to JP2021004834A priority Critical patent/JP7389764B2/en
Publication of JP2022109492A publication Critical patent/JP2022109492A/en
Application granted granted Critical
Publication of JP7389764B2 publication Critical patent/JP7389764B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Structure Of Emergency Protection For Nuclear Reactors (AREA)

Description

本発明は、原子炉格納容器の冷却システムに関する。 The present invention relates to a cooling system for a nuclear reactor containment vessel.

従来の改良型沸騰水型原子炉(ABWR)においては、原子炉圧力容器内で発生する蒸気を原子炉格納容器内のサプレッションプールに導入して凝縮させ、原子炉圧力容器および原子炉格納容器の過圧を防止している。また、サプレッションプールに導入される蒸気で駆動しサプレッションプールの冷却水を原子炉圧力容器内に注水し、炉心の冠水および冷却を維持している。 In a conventional advanced boiling water reactor (ABWR), steam generated in the reactor pressure vessel is introduced into a suppression pool in the reactor containment vessel and condensed, and the steam generated in the reactor pressure vessel and reactor containment vessel is condensed. Prevents overpressure. It is also driven by steam introduced into the suppression pool and injects cooling water from the suppression pool into the reactor pressure vessel to maintain flooding and cooling of the reactor core.

また、蒸気により熱せられるサプレッションプールの冷却水は、残留熱除去系のポンプにより原子炉格納容器外の熱交換器に送られ冷却される。これにより、原子炉格納容器は、温度および圧力の上昇を防止されている。 Cooling water in the suppression pool heated by steam is sent to a heat exchanger outside the reactor containment vessel by a pump in the residual heat removal system and is cooled. This prevents the reactor containment vessel from increasing in temperature and pressure.

しかし、例えば、全交流電源喪失(Station Black Out:SBO)により残留熱除去系のポンプが停止した場合、サプレッションプールの冷却水を原子炉格納容器外の熱交換器に送ることができず、原子炉格納容器の温度および圧力が長期的に緩やかに上昇する。これにより、原子炉格納容器の放射性物質の閉じ込め機能に影響を及ぼす可能性がある。 However, for example, if the pumps in the residual heat removal system stop due to a station black out (SBO), the cooling water from the suppression pool cannot be sent to the heat exchanger outside the reactor containment vessel, and the Temperature and pressure in the reactor containment vessel increase slowly over time. This may affect the ability of the reactor containment vessel to contain radioactive materials.

全交流電源喪失時に原子炉格納容器を継続して冷却できる冷却システムが、特許文献1に開示されている。特許文献1の原子炉格納容器の冷却システムは、冷却水が原子炉格納容器を冷却する外周プールへ原子炉格納容器の外に設置した補給水タンクから重力により給水され、給水調整弁により外周プールの水位に応じて補給水タンクから外周プールへ供給される冷却水の水量が調整される。 A cooling system that can continuously cool a reactor containment vessel when all AC power is lost is disclosed in Patent Document 1. In the reactor containment cooling system of Patent Document 1, cooling water is supplied by gravity from a make-up water tank installed outside the reactor containment vessel to an outer circumferential pool that cools the reactor containment vessel, and a water supply regulating valve is used to supply cooling water to an outer circumferential pool that cools the reactor containment vessel. The amount of cooling water supplied from the make-up water tank to the outer pool is adjusted according to the water level.

特開2015-227830号公報Japanese Patent Application Publication No. 2015-227830

特許文献1の原子力格納容器の冷却システムは、大量の冷却水を貯蔵する外周プールと補給水タンクが必要で、これらの建設のためにかかる工期やコストの点で改善の余地がある。 The cooling system for a nuclear power containment vessel disclosed in Patent Document 1 requires a peripheral pool and a make-up water tank for storing a large amount of cooling water, and there is room for improvement in terms of the construction period and cost required for constructing these.

本発明の目的は、全交流電源喪失時等により既存の冷却システムが停止した場合でも原子炉格納容器を継続して冷却でき、工期とコストを抑制できる冷却システムを提供する。 An object of the present invention is to provide a cooling system that can continue to cool a nuclear reactor containment vessel even when the existing cooling system is stopped due to a complete loss of AC power, thereby reducing construction time and costs.

上記目的を達成するために、本発明は、炉心を内蔵する原子炉圧力容器を格納する鋼製の原子炉格納容器を冷却する冷却システムであって、前記原子炉鋼製容器の外壁に接触する複数の水冷伝熱管と、前記複数の水冷伝熱管の各々の両端と連結し、前記複数の水冷伝熱管の各々に冷却水を流通させる冷却水配管と、前記冷却水配管と連通し、前記冷却水配管に冷却水を供給する冷却水槽とを備える。 In order to achieve the above object, the present invention provides a cooling system for cooling a steel reactor containment vessel housing a reactor pressure vessel containing a reactor core, the cooling system being in contact with an outer wall of the reactor steel vessel. a plurality of water-cooled heat transfer tubes, a cooling water pipe connected to both ends of each of the plurality of water-cooled heat transfer tubes and for circulating cooling water to each of the plurality of water-cooled heat transfer tubes, and communicating with the cooling water pipe for cooling the water-cooled heat transfer tubes; A cooling water tank that supplies cooling water to the water pipes is provided.

本発明によれば、全交流電源喪失時等により既存の冷却システムが停止した場合でも原子炉格納容器を継続して冷却でき、工期とコストを抑制できる冷却システムを提供できる。上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。 According to the present invention, it is possible to provide a cooling system that can continue to cool the reactor containment vessel even when the existing cooling system is stopped due to a complete loss of AC power, etc., and can reduce construction time and costs. Problems, configurations, and effects other than those described above will be made clear by the following description of the embodiments.

本発明の第1の実施形態による原子炉格納容器の冷却システムを用いた原子力発電プラントの構成を示す概略図である。1 is a schematic diagram showing the configuration of a nuclear power plant using a cooling system for a reactor containment vessel according to a first embodiment of the present invention. 本発明の第1の実施形態による原子炉格納容器の冷却システムにおける複数の水冷伝熱管と原子炉格納容器の配置を示す概略断面図である。FIG. 2 is a schematic cross-sectional view showing the arrangement of a plurality of water-cooled heat transfer tubes and a reactor containment vessel in the reactor containment cooling system according to the first embodiment of the present invention. 本発明の第2の実施形態による原子炉格納容器の冷却システムに用いられる水冷伝熱管の断面図である。FIG. 3 is a cross-sectional view of a water-cooled heat transfer tube used in a cooling system for a reactor containment vessel according to a second embodiment of the present invention. 本発明の第3の実施形態による原子炉格納容器の冷却システムにおける複数の水冷伝熱管の各々の断面形状と、複数の水冷伝熱管と原子炉格納容器の配置を示す概略断面図である。FIG. 7 is a schematic cross-sectional view showing the cross-sectional shape of each of a plurality of water-cooled heat transfer tubes and the arrangement of the plurality of water-cooled heat transfer tubes and the reactor containment vessel in a cooling system for a reactor containment vessel according to a third embodiment of the present invention. 本発明の第4の実施形態による原子炉格納容器の冷却システムを用いた原子力発電プラントの構成を示す概略図である。FIG. 3 is a schematic diagram showing the configuration of a nuclear power plant using a cooling system for a reactor containment vessel according to a fourth embodiment of the present invention. 本発明の第5の実施形態による原子炉格納容器の冷却システムを用いた原子力発電プラントの構成の一例を示す概略図である。FIG. 3 is a schematic diagram showing an example of the configuration of a nuclear power plant using a cooling system for a reactor containment vessel according to a fifth embodiment of the present invention. 本発明の第5の実施形態による原子炉格納容器の冷却システムを用いた原子力発電プラントの構成の他の例を示す概略図である。FIG. 7 is a schematic diagram showing another example of the configuration of a nuclear power plant using the reactor containment cooling system according to the fifth embodiment of the present invention. 本発明の第6の実施形態による原子炉格納容器の冷却システムを用いた原子力発電プラントの構成を示す概略図である。FIG. 3 is a schematic diagram showing the configuration of a nuclear power plant using a cooling system for a reactor containment vessel according to a sixth embodiment of the present invention. 本発明の第7の実施形態による原子炉格納容器の冷却システムを用いた原子力発電プラントの構成を示す概略図である。FIG. 7 is a schematic diagram showing the configuration of a nuclear power plant using a cooling system for a reactor containment vessel according to a seventh embodiment of the present invention.

以下、図面を用いて、本発明の第1~第7の実施形態による原子炉格納容器の冷却システムの構成及び動作について説明する。なお、各図において、同一符号は同一部分を示す。また、各図面は、互いに直交するXYZ軸により方向を特定し、+Xを「右」、-Xを「左」、+Yを「上」、-Yを「下」、+Zを「前」、-Zを「後」と規定する。また、本発明の冷却システムは、沸騰水型軽水炉(BWR)に用いることができ、原子力発電プラントの熱出力に対して原子炉格納容器の表面積が大きい小型炉(SMR)に特に好適である。 The configuration and operation of the reactor containment vessel cooling system according to the first to seventh embodiments of the present invention will be described below with reference to the drawings. Note that in each figure, the same reference numerals indicate the same parts. In addition, each drawing specifies the direction using the XYZ axes that are orthogonal to each other, and +X is "right", -X is "left", +Y is "up", -Y is "down", +Z is "front", - Z is defined as "back". Furthermore, the cooling system of the present invention can be used in a boiling water reactor (BWR), and is particularly suitable for a small reactor (SMR) in which the surface area of the reactor containment vessel is large relative to the thermal output of a nuclear power plant.

(第1の実施形態)
図1は、本発明の第1の実施形態による原子炉格納容器の冷却システム10を用いた原子力発電プラント100の構成を示す概略図で、図2は、本発明の第1の実施形態による原子炉格納容器の冷却システムにおける複数本の水冷伝熱管と原子炉格納容器の配置を示す概略断面図である。
(First embodiment)
FIG. 1 is a schematic diagram showing the configuration of a nuclear power plant 100 using a reactor containment cooling system 10 according to a first embodiment of the present invention, and FIG. FIG. 2 is a schematic cross-sectional view showing the arrangement of a plurality of water-cooled heat transfer tubes and a reactor containment vessel in a reactor containment cooling system.

原子力発電プラント100は沸騰水型軽水炉(BWR)で、図1に示すように、炉心1と、炉心1を内蔵する原子炉圧力容器2と、原子炉圧力容器2を格納する原子炉格納容器3と、原子炉格納容器3を冷却する冷却システム10とを備える。 The nuclear power plant 100 is a boiling water light water reactor (BWR), and as shown in FIG. and a cooling system 10 that cools the reactor containment vessel 3.

原子炉格納容器3は、原子炉圧力容器を格納するための気密性の高い容器で、冷却システム10により効率よく冷却するために鋼製になっている。また、本実施形態の原子炉格納容器3は略円筒形となっている。 The reactor containment vessel 3 is a highly airtight vessel for storing a reactor pressure vessel, and is made of steel in order to be efficiently cooled by the cooling system 10. Further, the reactor containment vessel 3 of this embodiment has a substantially cylindrical shape.

冷却システム10は、鋼製の原子炉格納容器3を冷却するシステムで、原子炉格納容器3の側面に接触する複数の水冷伝熱管4と、複数の水冷伝熱管4の各々の両端と連結し、複数の水冷伝熱管4の各々に冷却水CWを流通させる冷却水配管5と、冷却水配管5と連通し冷却水CWを供給する冷却水槽6とを備える。 The cooling system 10 is a system for cooling the reactor containment vessel 3 made of steel, and is connected to a plurality of water-cooled heat transfer tubes 4 that contact the side surfaces of the reactor containment vessel 3 and both ends of each of the plurality of water-cooled heat transfer tubes 4. , a cooling water pipe 5 that allows cooling water CW to flow through each of the plurality of water-cooled heat transfer tubes 4, and a cooling water tank 6 that communicates with the cooling water pipe 5 and supplies the cooling water CW.

複数の水冷伝熱管4の各々は鋼管で、図1に示すように原子炉格納容器3の側面に沿ってY軸方向(上下方向)に伸び、原子炉格納容器3の側面に接触する。また、複数の水冷伝熱管4は、図2に示すように、原子炉格納容器3の周方向に隙間なく配列され、隣合う水冷伝熱管4どうしが接している。これにより、冷却システム10は、原子炉格納容器3の熱を複数の水冷伝熱管4に移動させ、原子炉格納容器3を冷却できる。 Each of the plurality of water-cooled heat transfer tubes 4 is a steel pipe, and as shown in FIG. 1, extends in the Y-axis direction (vertical direction) along the side surface of the reactor containment vessel 3 and comes into contact with the side surface of the reactor containment vessel 3. Moreover, as shown in FIG. 2, the plurality of water-cooled heat transfer tubes 4 are arranged without gaps in the circumferential direction of the reactor containment vessel 3, and adjacent water-cooled heat transfer tubes 4 are in contact with each other. Thereby, the cooling system 10 can transfer the heat of the reactor containment vessel 3 to the plurality of water-cooled heat transfer tubes 4 to cool the reactor containment vessel 3.

冷却水配管5は、複数の水冷伝熱管4の各々の両端と連結し、複数の水冷伝熱管4の各々に冷却水CWを流通させるための配管である。図1に示すように冷却水配管5は、水冷伝熱管4の上端と連結し冷却水配管5において上方(+Y軸方向)に配置される上方配管5aと、水冷伝熱管4の下端と連結し冷却水配管5において下方(-Y軸方向)に配置される下方配管5bと、上方配管5aと下方配管5bとの間に設けられ上方配管5aと下方配管5bとを連結する中間配管5cとを備える。中間配管5cには冷却水ポンプ5dと熱交換器5eが設けられ、冷却水ポンプ5dから熱交換器5eに冷却水が吐出されるように配置されている。 The cooling water pipe 5 is connected to both ends of each of the plurality of water-cooled heat exchanger tubes 4, and is a pipe for circulating cooling water CW to each of the plurality of water-cooled heat exchanger tubes 4. As shown in FIG. 1, the cooling water piping 5 is connected to the upper end of the water-cooled heat exchanger tube 4 and is connected to the upper piping 5a, which is arranged upward (in the +Y-axis direction) in the cooling water piping 5, and the lower end of the water-cooled heat exchanger tube 4. In the cooling water pipe 5, a lower pipe 5b is arranged downward (in the −Y axis direction), and an intermediate pipe 5c is provided between the upper pipe 5a and the lower pipe 5b and connects the upper pipe 5a and the lower pipe 5b. Be prepared. A cooling water pump 5d and a heat exchanger 5e are provided in the intermediate pipe 5c, and are arranged so that cooling water is discharged from the cooling water pump 5d to the heat exchanger 5e.

なお、冷却システム10の冷却水配管5としては、原子力発電プラント100の補機(図示せず)を冷却する冷却水系統(原子炉補機冷却水系)に含まれる既存の配管を用いることができる。この場合、冷却水ポンプ5dと熱交換器5eには、同じく原子炉補機冷却水系に含まれる冷却水ポンプと熱交換器が用いることができる。 Note that as the cooling water piping 5 of the cooling system 10, existing piping included in a cooling water system (reactor auxiliary cooling water system) that cools auxiliary equipment (not shown) of the nuclear power plant 100 can be used. . In this case, a cooling water pump and a heat exchanger that are also included in the reactor auxiliary cooling water system can be used as the cooling water pump 5d and the heat exchanger 5e.

冷却水槽6は、冷却水CWが貯蔵されるタンクで、図1に示すように水冷伝熱管4の上端より上方(+Y軸方向)に配置されている。冷却水槽6の下部(本実施形態では底面)には第1排水口6aが設けられ、第1排水口6aには排水管6bの一端が取り付けられている。そして、排水管6bの他端には上方配管5aが連結し、これにより冷却水槽6と上方配管5aが連通される。そのため、冷却水槽6に冷却水CWを満たすことにより、水冷伝熱管4と冷却水配管5には冷却水CWが確保される。なお、冷却システム10の冷却水槽6としては原子炉補機冷却水系に含まれるサージタンクを用いることができる。 The cooling water tank 6 is a tank in which cooling water CW is stored, and is arranged above the upper end of the water-cooled heat transfer tube 4 (in the +Y-axis direction), as shown in FIG. A first drain port 6a is provided at the lower part (bottom surface in this embodiment) of the cooling water tank 6, and one end of a drain pipe 6b is attached to the first drain port 6a. The upper pipe 5a is connected to the other end of the drain pipe 6b, thereby communicating the cooling water tank 6 and the upper pipe 5a. Therefore, by filling the cooling water tank 6 with cooling water CW, the cooling water CW is ensured in the water-cooled heat exchanger tubes 4 and the cooling water piping 5. Note that as the cooling water tank 6 of the cooling system 10, a surge tank included in the reactor auxiliary equipment cooling water system can be used.

(動作)
まず、通常通りに稼動する冷却システム10の動作について説明する。冷却水槽6から注入され、冷却水配管5と水冷伝熱管4に充満する冷却水CWは、冷却水ポンプ5dが稼動することにより冷却水配管5と水冷伝熱管4を循環する。
(motion)
First, the operation of the cooling system 10 that operates normally will be described. The cooling water CW injected from the cooling water tank 6 and filling the cooling water piping 5 and the water-cooled heat exchanger tubes 4 circulates through the cooling water piping 5 and the water-cooled heat exchanger tubes 4 by operating the cooling water pump 5d.

水冷伝熱管4を流通する冷却水CWには、原子炉格納容器3から水冷伝熱管4に移動した熱が移動する。熱が移動した冷却水CWは、水冷伝熱管4から上方配管5aへ、上方配管5aから中間配管5cへ流入する。中間配管5cには冷却水ポンプ5dが設けられていて、冷却水CWは冷却水ポンプ5dにより熱交換器5eへ吐出される。熱交換器5eに送られた冷却水CWは熱交換器5eにより熱が奪われ冷却される。冷却された冷却水CWは、中間配管5cから下方配管5bへ流入し、下方配管5bから再び水冷伝熱管4に送られる。水冷伝熱管4では再び原子炉格納容器3から水冷伝熱管4に移動した熱が冷却水CWに移動する。このように、通常通りに原子力発電プラント100が稼動する場合の冷却システム10は、冷却水ポンプ5dを稼動させることにより冷却水CWを循環させ、原子炉格納容器3を冷却する。 The heat transferred from the reactor containment vessel 3 to the water-cooled heat transfer tubes 4 is transferred to the cooling water CW flowing through the water-cooled heat transfer tubes 4 . The cooling water CW, to which the heat has been transferred, flows from the water-cooled heat transfer tube 4 to the upper pipe 5a, and from the upper pipe 5a to the intermediate pipe 5c. A cooling water pump 5d is provided in the intermediate pipe 5c, and the cooling water CW is discharged to the heat exchanger 5e by the cooling water pump 5d. The cooling water CW sent to the heat exchanger 5e has its heat removed by the heat exchanger 5e and is cooled. The cooled cooling water CW flows into the lower pipe 5b from the intermediate pipe 5c, and is sent to the water-cooled heat transfer tube 4 again from the lower pipe 5b. In the water-cooled heat transfer tubes 4, the heat transferred from the reactor containment vessel 3 to the water-cooled heat transfer tubes 4 is transferred to the cooling water CW again. In this way, when the nuclear power plant 100 operates normally, the cooling system 10 circulates the cooling water CW by operating the cooling water pump 5d to cool the reactor containment vessel 3.

次に、全交流電源喪失時等により冷却水ポンプ5dが停止した場合の冷却システム10の動作について説明する。この場合、冷却水ポンプ5dが停止するため、冷却水CWは冷却水配管5と水冷伝熱管4を循環せず、冷却水配管5と水冷伝熱管4に滞留する。 Next, the operation of the cooling system 10 when the cooling water pump 5d stops due to a complete loss of AC power, etc. will be described. In this case, since the cooling water pump 5d is stopped, the cooling water CW does not circulate through the cooling water piping 5 and the water-cooled heat exchanger tubes 4, but stays in the cooling water piping 5 and the water-cooled heat exchanger tubes 4.

水冷伝熱管4に滞留する冷却水CWは、原子炉格納容器3から水冷伝熱管4に移動した熱により熱せられる。これにより、水冷伝熱管4の冷却水CWは、冷却水配管5と冷却水槽6の冷却水CWと比較して相対的に高温になる。そのため、水冷伝熱管4の冷却水CWは上昇し、上方配管5aを介して冷却水槽6に流入する。また、冷却水槽6の冷却水CWは下降し、上方配管5aを介して水冷伝熱管4に流入する。そのため、水冷伝熱管4と冷却水槽6の間には、冷却水CWの自然対流現象が発生する。これにより、水冷伝熱管4の熱を冷却水CWに移動させ、原子炉格納容器3を冷却することができる。 The cooling water CW staying in the water-cooled heat transfer tube 4 is heated by the heat transferred from the reactor containment vessel 3 to the water-cooled heat transfer tube 4 . As a result, the cooling water CW of the water-cooled heat transfer tube 4 becomes relatively high in temperature compared to the cooling water CW of the cooling water pipe 5 and the cooling water tank 6. Therefore, the cooling water CW of the water-cooled heat transfer tube 4 rises and flows into the cooling water tank 6 via the upper pipe 5a. Further, the cooling water CW in the cooling water tank 6 descends and flows into the water-cooled heat transfer tubes 4 via the upper pipe 5a. Therefore, a natural convection phenomenon of the cooling water CW occurs between the water-cooled heat transfer tube 4 and the cooling water tank 6. Thereby, the heat of the water-cooled heat transfer tube 4 can be transferred to the cooling water CW, and the reactor containment vessel 3 can be cooled.

特に原子炉圧力容器2と原子炉格納容器3の間に存在する配管(図示せず)が破断し原子炉圧力容器2の崩壊熱を含んだ蒸気が原子炉格納容器3に流入する原子炉冷却材喪失事故(LOCA)時において、原子炉格納容器3を密閉したまま効率よく原子炉格納容器3を冷却できるので、本実施形態は好適である。 In particular, reactor cooling occurs when a pipe (not shown) existing between the reactor pressure vessel 2 and the reactor containment vessel 3 ruptures, and steam containing the decay heat of the reactor pressure vessel 2 flows into the reactor containment vessel 3. In the event of a loss of material accident (LOCA), the present embodiment is suitable because the reactor containment vessel 3 can be efficiently cooled while the reactor containment vessel 3 is kept sealed.

なお、水冷伝熱管4の上端から第1排水口6aに至るまでの上方配管5a及び排水管6bの高さは単調に増加するように設けることが好ましい。このように上方配管5a及び排水管6bを設けると、冷却水槽6内の冷却水CWが重力により水冷伝熱管4内に容易に導入されるので、水冷伝熱管4と冷却水槽6の間における冷却水CWの対流が発生しやすくなり、原子炉格納容器3を冷却しやすくなる。 Note that it is preferable that the heights of the upper pipe 5a and the drain pipe 6b from the upper end of the water-cooled heat transfer tube 4 to the first drain port 6a increase monotonically. When the upper pipe 5a and the drain pipe 6b are provided in this way, the cooling water CW in the cooling water tank 6 is easily introduced into the water-cooled heat exchanger tube 4 by gravity, so that the cooling between the water-cooled heat exchanger tube 4 and the cooling water tank 6 is improved. Convection of water CW is more likely to occur, making it easier to cool the reactor containment vessel 3.

(効果)
本実施形態の原子炉格納容器3の冷却システム10は、全交流電源喪失時等により冷却水ポンプ5dが稼動せず、通常時における冷却システム10が停止する非常時において、原子炉格納容器3に接する水冷伝熱管4と冷却水槽6の間に冷却水CWの自然対流現象が発生し、原子炉格納容器3を継続して冷却できる。
(effect)
The cooling system 10 for the reactor containment vessel 3 according to the present embodiment is configured to cool the reactor containment vessel 3 in an emergency when the cooling water pump 5d does not operate due to a total AC power loss, etc., and the cooling system 10 normally stops. A natural convection phenomenon of cooling water CW occurs between the water-cooled heat transfer tubes 4 and the cooling water tank 6 that are in contact with each other, and the reactor containment vessel 3 can be continuously cooled.

また、本実施形態の原子炉格納容器3の冷却システム10は、大量の冷却水を貯蔵する外周プールを備えないため、工期とコストを抑制できる。特に、本実施形態の原子炉格納容器3の冷却システム10は、冷却水配管5として原子炉補機冷却水系に含まれる既存の配管を用い、冷却水槽6として原子炉補機冷却水系に含まれる既存のサージタンクを用いることができる。そのため、冷却水配管5と冷却水槽6として新規設備を設けなくてもよく、工期とコストをさらに抑制できる。 Moreover, since the cooling system 10 for the reactor containment vessel 3 of this embodiment does not include an outer peripheral pool that stores a large amount of cooling water, the construction period and cost can be reduced. In particular, the cooling system 10 for the reactor containment vessel 3 of this embodiment uses existing piping included in the reactor auxiliary cooling water system as the cooling water piping 5, and using existing piping included in the reactor auxiliary cooling water system as the cooling water tank 6. An existing surge tank can be used. Therefore, there is no need to provide new equipment for the cooling water piping 5 and the cooling water tank 6, and the construction period and cost can be further reduced.

(第2の実施形態)
図3は、本発明の第2の実施形態による原子炉格納容器3の冷却システム10に用いられる水冷伝熱管4の断面図である。
(Second embodiment)
FIG. 3 is a sectional view of a water-cooled heat transfer tube 4 used in a cooling system 10 for a reactor containment vessel 3 according to a second embodiment of the present invention.

本実施形態に係る冷却システム10が第1実施形態と異なる点は、水冷伝熱管4の内壁に複数の伝熱フィン4aが設けられている点である。これにより、水冷伝熱管4は冷却水CWと接する表面積が大きくなり、原子炉格納容器3の熱を第1実施形態の円環の水冷伝熱管4よりも多く冷却水CWに移動させることができる。 The cooling system 10 according to this embodiment differs from the first embodiment in that a plurality of heat transfer fins 4a are provided on the inner wall of the water-cooled heat transfer tube 4. As a result, the water-cooled heat transfer tube 4 has a larger surface area in contact with the cooling water CW, and can transfer more heat from the reactor containment vessel 3 to the cooling water CW than the annular water-cooled heat transfer tube 4 of the first embodiment. .

(第3の実施形態)
図4は、本発明の第3の実施形態による原子炉格納容器3の冷却システム10における複数の水冷伝熱管4の各々の断面形状と、複数の水冷伝熱管4と原子炉格納容器3の配置を示す概略断面図である。
(Third embodiment)
FIG. 4 shows the cross-sectional shape of each of a plurality of water-cooled heat exchanger tubes 4 in a cooling system 10 for a reactor containment vessel 3 according to a third embodiment of the present invention, and the arrangement of a plurality of water-cooled heat exchanger tubes 4 and a reactor containment vessel 3. FIG.

本実施形態に係る冷却システム10が第1実施形態と異なる点は、水冷伝熱管4の形状である。具体的には、本実施形態に係る複数の水冷伝熱管4の各々には、原子炉格納容器3の外壁に対向し、原子炉格納容器3の外壁と面接触する第1側面4bが設けられている。これにより、複数の水冷伝熱管4の各々の原子炉格納容器3の外壁と接触する面積が大きくなり、原子炉格納容器3から水冷伝熱管4に移動する熱を多くすることができる。 The cooling system 10 according to this embodiment differs from the first embodiment in the shape of the water-cooled heat exchanger tubes 4. Specifically, each of the plurality of water-cooled heat transfer tubes 4 according to the present embodiment is provided with a first side surface 4b that faces the outer wall of the reactor containment vessel 3 and is in surface contact with the outer wall of the reactor containment vessel 3. ing. This increases the area of each of the plurality of water-cooled heat transfer tubes 4 in contact with the outer wall of the reactor containment vessel 3, and it is possible to increase the amount of heat transferred from the reactor containment vessel 3 to the water-cooled heat transfer tubes 4.

また、本実施形態に係る複数の水冷伝熱管4のうち隣合う2つの水冷伝熱管4の各々には、互いに対向し、互いに面接触する第2側面4cが設けられている。これにより、複数の水冷伝熱管4の各々は、冷却水CWの流量と冷却水CWに接する水冷伝熱管4の内壁の表面積を増加させることができ、原子炉格納容器3から冷却水CWに移動する熱量が多くなるので、原子炉格納容器3を効果的に冷却できる。 Further, each of two adjacent water-cooled heat exchanger tubes 4 among the plurality of water-cooled heat exchanger tubes 4 according to this embodiment is provided with second side surfaces 4c that face each other and make surface contact with each other. As a result, each of the plurality of water-cooled heat transfer tubes 4 can increase the flow rate of the cooling water CW and the surface area of the inner wall of the water-cooled heat transfer tubes 4 in contact with the cooling water CW, and move from the reactor containment vessel 3 to the cooling water CW. Since the amount of heat generated increases, the reactor containment vessel 3 can be effectively cooled.

(第4の実施形態)
図5は、本発明の第4の実施形態による原子炉格納容器3の冷却システム20を用いた原子力発電プラント100の構成を示す概略図である。
(Fourth embodiment)
FIG. 5 is a schematic diagram showing the configuration of a nuclear power plant 100 using a cooling system 20 for a reactor containment vessel 3 according to a fourth embodiment of the present invention.

本実施形態に係る冷却システム20が第1実施形態と異なる点は、冷却水槽6の形態である。即ち、本実施形態に係る冷却システム20は、冷却水槽6として、原子炉格納容器3の上部に設けられ、燃料交換時に水が貯蔵される原子炉ウェルを用いる。そのため、冷却水槽6を新たに設けなくてもよく、工期とコストを抑制できる。なお、図5において、第1排水口6aの位置を冷却水槽6である原子炉ウェルの側面の下部に示したが、これは一例であり、原子炉ウェルの底面でもよいことは言うまでもない。 The cooling system 20 according to this embodiment differs from the first embodiment in the form of the cooling water tank 6. That is, the cooling system 20 according to the present embodiment uses, as the cooling water tank 6, a reactor well that is provided in the upper part of the reactor containment vessel 3 and stores water during fuel exchange. Therefore, there is no need to newly provide the cooling water tank 6, and the construction period and cost can be reduced. In FIG. 5, the position of the first drain port 6a is shown at the lower side of the reactor well, which is the cooling water tank 6, but this is just an example, and it goes without saying that it may be located at the bottom of the reactor well.

(第5の実施形態)
図6は、本発明の第5の実施形態による原子炉格納容器3の冷却システム30を用いた原子力発電プラント100の構成の一例を示す概略図である。また、図7は、本発明の第5の実施形態による原子炉格納容器3の冷却システム30を用いた原子力発電プラント100の構成の他の例を示す概略図である。
(Fifth embodiment)
FIG. 6 is a schematic diagram showing an example of the configuration of a nuclear power plant 100 using a cooling system 30 for a reactor containment vessel 3 according to a fifth embodiment of the present invention. Moreover, FIG. 7 is a schematic diagram showing another example of the configuration of the nuclear power plant 100 using the cooling system 30 for the reactor containment vessel 3 according to the fifth embodiment of the present invention.

本実施形態に係る冷却システム30が第1実施形態または第4の実施形態と異なる点は、冷却水槽6(サージタンクまたは原子炉ウェル)に第2排水口6cと冷水下降用配管6dと冷水下降用配管6dの冷却水CWの流れを制御する制御弁(本実施形態では逆止弁6e)とを備える点である。 The cooling system 30 according to the present embodiment is different from the first embodiment or the fourth embodiment in that the cooling water tank 6 (surge tank or reactor well) has a second drain port 6c, a cold water descending pipe 6d, and a cold water descending pipe 6d. It is provided with a control valve (in this embodiment, a check valve 6e) that controls the flow of cooling water CW in the service pipe 6d.

第2排水口6cは、第1排水口6aと同様に冷却水槽6の下部に設けられ、冷水下降用配管6dが取り付けられている。冷水下降用配管6dは下方配管5bに連結し、冷却水槽6と下方配管5bを連通する。なお、冷却水槽6に貯蔵された冷却水CWを水冷伝熱管4へ短時間で供給するためには、冷水下降用配管6dの長さはできるだけ短いことが好ましい。 The second drain port 6c is provided at the lower part of the cooling water tank 6 similarly to the first drain port 6a, and a cold water descending pipe 6d is attached thereto. The cold water descending pipe 6d is connected to the lower pipe 5b, and communicates the cooling water tank 6 with the lower pipe 5b. In addition, in order to supply the cooling water CW stored in the cooling water tank 6 to the water-cooled heat exchanger tube 4 in a short time, it is preferable that the length of the cold water descending pipe 6d is as short as possible.

また、冷水下降用配管6dには、冷却水槽6から下方配管5bへの冷却水CWの流れを許容し、下方配管5bから冷却水槽6への冷却水CWの流れを禁止する逆止弁6eが設けられている。なお、逆止弁6eは、冷却水ポンプ5dが停止したときに、冷水下降用配管6d内の冷却水CWの自重を加えた圧力によって逆止弁6eの弁がより開きやすいように、冷水下降用配管6dの下部(下方配管5bのできるだけ近く)に設けることが好ましい。 Further, the cold water descending pipe 6d is provided with a check valve 6e that allows the flow of the cooling water CW from the cooling water tank 6 to the lower pipe 5b and prohibits the flow of the cooling water CW from the lower pipe 5b to the cooling water tank 6. It is provided. In addition, the check valve 6e is designed so that when the cooling water pump 5d stops, the check valve 6e is opened more easily by the pressure added with the weight of the cooling water CW in the cold water descending pipe 6d. It is preferable to provide it at the lower part of the pipe 6d (as close as possible to the lower pipe 5b).

(動作)
全交流電源喪失時等により冷却水ポンプ5dが停止した場合、水冷伝熱管4に滞留する冷却水CWは、原子炉格納容器3から水冷伝熱管4に移動した熱により熱せられる。これにより、水冷伝熱管4の冷却水CWは、冷却水配管5と冷却水槽6の冷却水CWと比較して相対的に高温になる。そのため、水冷伝熱管4の冷却水CWは上昇し、上方配管5aと排水管6bを介して冷却水槽6に流入する。そして、冷却水槽6の冷却水CWは下降し、冷水下降用配管6dと下方配管5bを介して水冷伝熱管4に流入する。これにより、水冷伝熱管4の熱を冷却水CWに移動させ、原子炉格納容器3を冷却することができる。
(motion)
When the cooling water pump 5d is stopped due to a complete loss of AC power, etc., the cooling water CW remaining in the water-cooled heat exchanger tubes 4 is heated by the heat transferred from the reactor containment vessel 3 to the water-cooled heat exchanger tubes 4. As a result, the cooling water CW of the water-cooled heat transfer tube 4 becomes relatively high in temperature compared to the cooling water CW of the cooling water pipe 5 and the cooling water tank 6. Therefore, the cooling water CW of the water-cooled heat transfer tube 4 rises and flows into the cooling water tank 6 via the upper pipe 5a and the drain pipe 6b. Then, the cooling water CW in the cooling water tank 6 descends and flows into the water-cooled heat transfer tube 4 via the cold water descending pipe 6d and the lower pipe 5b. Thereby, the heat of the water-cooled heat transfer tube 4 can be transferred to the cooling water CW, and the reactor containment vessel 3 can be cooled.

なお、逆止弁6eは、冷却水ポンプ5dが稼動する場合(通常時)には、冷却水ポンプ5dにより中間配管5cから下方配管5bへ吐出された冷却水CWが冷水下降用配管6dに流入することを防止する。一方、冷却水ポンプ5dが停止する場合(非常時)には、逆止弁6eは冷却水槽6に貯蔵されている冷却水CWの水圧により開き、冷却水槽6から下方配管5bに冷却水CWを流す。 Note that the check valve 6e prevents the cooling water CW discharged from the intermediate pipe 5c to the lower pipe 5b by the cooling water pump 5d from flowing into the cold water descending pipe 6d when the cooling water pump 5d operates (normally). prevent On the other hand, when the cooling water pump 5d is stopped (in an emergency), the check valve 6e is opened by the water pressure of the cooling water CW stored in the cooling water tank 6, and the cooling water CW is supplied from the cooling water tank 6 to the lower pipe 5b. Flow.

(効果)
本実施形態の冷却システム30は、全交流電源喪失時等により冷却水ポンプ5dを稼動できない非常時において、原子炉格納容器3から水冷伝熱管4に移動した熱により加熱されて上昇する冷却水(温水)CWが上方配管5aを介して排水管6bから冷却水槽6に流入するときに、冷却水槽6内の冷却水(冷水)CWを下方配管5b(水冷伝熱管4の下端)に流入できる冷水下降用配管6dを備えている。すなわち、本実施形態の冷却システム30では、冷水下降用配管6dが追加することにより水冷伝熱管4と冷却水槽6の間を冷却水CWが自然対流により循環する流路が形成されるので、原子炉格納容器3を確実に継続して冷却できる。
(effect)
In the case of an emergency in which the cooling water pump 5d cannot be operated due to a total AC power loss or the like, the cooling system 30 of this embodiment is configured to provide cooling water ( Cold water that can flow the cooling water (cold water) CW in the cooling water tank 6 into the lower pipe 5b (lower end of the water-cooled heat transfer tube 4) when the hot water) CW flows into the cooling water tank 6 from the drain pipe 6b via the upper pipe 5a. A descending pipe 6d is provided. That is, in the cooling system 30 of this embodiment, by adding the cold water descending pipe 6d, a flow path is formed in which the cooling water CW circulates between the water-cooled heat exchanger tube 4 and the cooling water tank 6 by natural convection, so that the atomic The reactor containment vessel 3 can be reliably and continuously cooled.

また、冷却水ポンプ5dを稼動できる場合(通常時)には、冷却水ポンプ5dにより中間配管5cから下方配管5bへ吐出された冷却水CWは、逆止弁6eにより冷水下降用配管6dに流入することが防止されるため、水冷伝熱管4を流通する冷却水CWの量の減少が抑制され冷却性能を維持できる。 Furthermore, when the cooling water pump 5d can be operated (normally), the cooling water CW discharged from the intermediate pipe 5c to the lower pipe 5b by the cooling water pump 5d flows into the cold water descending pipe 6d by the check valve 6e. Since this is prevented, the decrease in the amount of cooling water CW flowing through the water-cooled heat exchanger tubes 4 is suppressed, and cooling performance can be maintained.

(第6の実施形態)
図8は、本発明の第6の実施形態による原子炉格納容器3の冷却システム40を用いた原子力発電プラント100の構成を示す概略図である。
(Sixth embodiment)
FIG. 8 is a schematic diagram showing the configuration of a nuclear power plant 100 using a cooling system 40 for a reactor containment vessel 3 according to a sixth embodiment of the present invention.

本実施形態に係る冷却システム40が第5実施形態と異なる点は、逆止弁6e(制御弁)に代えて、電磁弁6fとバッテーリー等の直流電源(図示せず)と制御装置(図示せず)を備える点である。 The cooling system 40 according to this embodiment differs from the fifth embodiment in that instead of a check valve 6e (control valve), a solenoid valve 6f, a DC power source (not shown) such as a battery, and a control device (not shown) are used. The point is to have the following.

電磁弁6fは、非通電時に閉じ通電時に開くノーマルクローズタイプの電磁弁である。制御装置は、直流電源と電磁弁6fの通電を制御する装置で、通常時には電磁弁6fに通電せず、非常時には電磁弁6fに通電する。すなわち、通常時には、電磁弁6fが閉じ、冷却水ポンプ5dにより中間配管5cから下方配管5bへ吐出された冷却水CWが冷水下降用配管6dに流入することが防止されるため、水冷伝熱管4を流通する冷却水CWの量の減少が抑制され、冷却性能を維持できる。 The solenoid valve 6f is a normally closed type solenoid valve that closes when not energized and opens when energized. The control device is a device that controls energization of the DC power source and the solenoid valve 6f, and does not energize the solenoid valve 6f in normal times, but energizes the solenoid valve 6f in an emergency. That is, in normal times, the solenoid valve 6f is closed and the cooling water CW discharged from the intermediate pipe 5c to the lower pipe 5b by the cooling water pump 5d is prevented from flowing into the cold water descending pipe 6d. A decrease in the amount of cooling water CW flowing through the cooling water CW is suppressed, and cooling performance can be maintained.

一方、異常時には、制御装置が電磁弁6fを通電して開き、冷却水槽6の冷却水CWを冷水下降用配管6dにより下降させ、下方配管5bを介して水冷伝熱管4に流入させることができる。そのため、原子炉格納容器3に接する水冷伝熱管4と冷却水槽6の間に自然対流による冷却水CWの循環を発生させ、原子炉格納容器3を確実に継続して冷却できる。 On the other hand, in the event of an abnormality, the control device energizes the solenoid valve 6f to open it, allowing the cooling water CW in the cooling water tank 6 to be lowered by the cold water descending pipe 6d, and to flow into the water-cooled heat exchanger tubes 4 via the lower pipe 5b. . Therefore, circulation of the cooling water CW by natural convection is generated between the water-cooled heat transfer tubes 4 and the cooling water tank 6 in contact with the reactor containment vessel 3, and the reactor containment vessel 3 can be reliably and continuously cooled.

(第7の実施形態)
図9は、本発明の第7の実施形態による原子炉格納容器3の冷却システム50を用いた原子力発電プラント100の構成を示す概略図である。本実施形態に係る冷却システム50が第5実施形態と異なる点は、逆止弁6eに代えて、遮断弁6gと圧縮空気設備(図示せず)が設けられている点である。
(Seventh embodiment)
FIG. 9 is a schematic diagram showing the configuration of a nuclear power plant 100 using a cooling system 50 for a reactor containment vessel 3 according to a seventh embodiment of the present invention. The cooling system 50 according to this embodiment differs from the fifth embodiment in that a cutoff valve 6g and compressed air equipment (not shown) are provided in place of the check valve 6e.

遮断弁6gは、空圧により閉じるノーマルオープンタイプの空圧弁である。圧縮空気設備は、例えばコンプレッサーであり、通常時(通電時)には空気を供給して遮断弁6gを閉じ、異常時(非通電時)には空気の供給を停止して遮断弁6gを開く。 The shutoff valve 6g is a normally open type pneumatic valve that is closed by air pressure. The compressed air equipment is, for example, a compressor, which supplies air and closes the shutoff valve 6g during normal times (when energized), and stops the supply of air and opens the shutoff valve 6g during abnormal times (when not energized). .

すなわち、通常時には、遮断弁6gが閉じ、冷却水ポンプ5dにより中間配管5cから下方配管5bへ吐出された冷却水CWは冷水下降用配管6dに流入できない。それにより、水冷伝熱管4を流通する冷却水CWの量の減少が抑制され、冷却性能を維持できる。 That is, under normal conditions, the shutoff valve 6g is closed, and the cooling water CW discharged from the intermediate pipe 5c to the lower pipe 5b by the cooling water pump 5d cannot flow into the cold water descending pipe 6d. Thereby, a decrease in the amount of cooling water CW flowing through the water-cooled heat transfer tubes 4 is suppressed, and cooling performance can be maintained.

一方、異常時には、遮断弁6gが開き、冷却水槽6の冷却水CWを冷水下降用配管6dにより下降させ、下方配管5bを介して水冷伝熱管4に流入させることができる。そのため、原子炉格納容器3に接する水冷伝熱管4と冷却水槽6の間に自然対流による冷却水CWの循環が発生し、原子炉格納容器3を確実に継続して冷却できる。 On the other hand, in the event of an abnormality, the shutoff valve 6g is opened, and the cooling water CW in the cooling water tank 6 can be lowered by the cold water descending pipe 6d, and can be made to flow into the water-cooled heat transfer tube 4 via the lower pipe 5b. Therefore, circulation of the cooling water CW due to natural convection occurs between the water-cooled heat transfer tubes 4 and the cooling water tank 6 that are in contact with the reactor containment vessel 3, and the reactor containment vessel 3 can be reliably and continuously cooled.

なお、本発明は上記した実施形態に限定されるものではなく、様々な変形例が含まれる。例えば、上述した実施形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施形態の構成を加えることも可能である。また、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。例えば、第3の実施形態による原子炉格納容器3の冷却システム10における複数の水冷伝熱管4の各々の内壁に複数の伝熱フィン4aを設けても良い。そして、複数の伝熱フィン4aの形状は、複数の水冷伝熱管4の各々の内壁から複数の水冷伝熱管4の各々の中心軸に向かって突出する形状でも良く、複数の水冷伝熱管4の各々の内壁面の法線方向に突出する形状でもよく、その他の形状でもよい。 Note that the present invention is not limited to the embodiments described above, and includes various modifications. For example, the embodiments described above have been described in detail to explain the present invention in an easy-to-understand manner, and the present invention is not necessarily limited to having all the configurations described. Furthermore, it is possible to replace a part of the configuration of one embodiment with the configuration of another embodiment, and it is also possible to add the configuration of another embodiment to the configuration of one embodiment. Furthermore, it is possible to add, delete, or replace some of the configurations of each embodiment with other configurations. For example, a plurality of heat transfer fins 4a may be provided on the inner wall of each of the plurality of water-cooled heat transfer tubes 4 in the cooling system 10 for the reactor containment vessel 3 according to the third embodiment. The shape of the plurality of heat transfer fins 4a may be a shape that protrudes from the inner wall of each of the plurality of water-cooled heat transfer tubes 4 toward the center axis of each of the plurality of water-cooled heat transfer tubes 4, and It may have a shape that projects in the normal direction of each inner wall surface, or it may have another shape.

1…炉心、2…原子炉圧力容器、3…原子炉格納容器、4…水冷伝熱管、5…冷却水配管、6…冷却水槽 1...Reactor core, 2...Reactor pressure vessel, 3...Reactor containment vessel, 4...Water-cooled heat transfer tube, 5...Cooling water piping, 6...Cooling water tank

Claims (11)

炉心を内蔵する原子炉圧力容器を格納する鋼製の原子炉格納容器を冷却する冷却システムであって、
前記原子炉格納容器の外壁に接触する複数の水冷伝熱管と、
前記複数の水冷伝熱管の各々の両端と連結し、前記複数の水冷伝熱管の各々に冷却水を流通させる冷却水配管と、
前記冷却水配管と連通し、前記冷却水配管に冷却水を供給する冷却水槽とを備えることを特徴とする冷却システム。
A cooling system that cools a steel reactor containment vessel that stores a reactor pressure vessel containing a reactor core,
a plurality of water-cooled heat transfer tubes in contact with an outer wall of the reactor containment vessel;
Cooling water piping connected to both ends of each of the plurality of water-cooled heat exchanger tubes and circulating cooling water to each of the plurality of water-cooled heat exchanger tubes;
A cooling system comprising: a cooling water tank that communicates with the cooling water pipe and supplies cooling water to the cooling water pipe.
請求項1に記載の冷却システムにおいて、
前記冷却水配管は、補機を冷却する冷却水系統に含まれる配管であり、
前記冷却水槽は、前記補機を冷却する冷却水系統に含まれるサージタンクであることを特徴とする冷却システム。
The cooling system according to claim 1,
The cooling water pipe is a pipe included in a cooling water system that cools the auxiliary equipment,
The cooling system is characterized in that the cooling water tank is a surge tank included in a cooling water system that cools the auxiliary equipment.
請求項1に記載の冷却システムにおいて、
前記冷却水槽が、原子炉ウェルであることを特徴とする冷却システム。
The cooling system according to claim 1,
A cooling system characterized in that the cooling water tank is a nuclear reactor well.
請求項1に記載の冷却システムにおいて、
前記冷却水槽の排水口が前記複数の水冷伝熱管の各々より上方に設けられ、
前記複数の水冷伝熱管の下端と前記冷却水槽の排水口を連通する冷水下降用配管と、
前記冷水下降用配管を流れる冷却水の流れを制御する制御弁を備えることを特徴とする冷却システム。
The cooling system according to claim 1,
A drain port of the cooling water tank is provided above each of the plurality of water-cooled heat transfer tubes,
cold water descending piping that communicates the lower ends of the plurality of water-cooled heat transfer tubes with the drain port of the cooling water tank;
A cooling system comprising a control valve that controls the flow of cooling water flowing through the cold water descending pipe.
請求項4に記載の冷却システムにおいて、
前記制御弁が逆止弁であることを特徴とする冷却システム。
The cooling system according to claim 4,
A cooling system characterized in that the control valve is a check valve.
請求項4に記載の冷却システムにおいて、
前記制御弁が電磁弁であることを特徴とする冷却システム。
The cooling system according to claim 4,
A cooling system characterized in that the control valve is a solenoid valve.
請求項4に記載の冷却システムにおいて、
前記制御弁が、空気圧により冷却水の流れを遮断する遮断弁であることを特徴とする冷却システム。
The cooling system according to claim 4,
A cooling system characterized in that the control valve is a shutoff valve that shuts off the flow of cooling water using air pressure.
請求項1に記載の冷却システムにおいて、
前記原子炉格納容器の側面が、前記複数の水冷伝熱管により覆われていることを特徴とする冷却システム。
The cooling system according to claim 1,
A cooling system characterized in that a side surface of the reactor containment vessel is covered with the plurality of water-cooled heat transfer tubes.
請求項1に記載の冷却システムにおいて、
前記複数の水冷伝熱管の内周壁に複数の放熱フィンが設けられていることを特徴とする冷却システム。
The cooling system according to claim 1,
A cooling system characterized in that a plurality of radiation fins are provided on an inner peripheral wall of the plurality of water-cooled heat transfer tubes.
請求項1に記載の冷却システムにおいて、
前記複数の水冷伝熱管の各々には、前記原子炉格納容器の外壁に対向し、前記原子炉格納容器の外壁と面接触する第1側面が設けられていることを特徴とする冷却システム。
The cooling system according to claim 1,
A cooling system characterized in that each of the plurality of water-cooled heat transfer tubes is provided with a first side surface that faces the outer wall of the reactor containment vessel and makes surface contact with the outer wall of the reactor containment vessel.
請求項10に記載の冷却システムにおいて、
前記複数の水冷伝熱管のうち隣合う2つの水冷伝熱管の各々には、互いに対向し、互いに面接触する第2側面が設けられていることを特徴とする冷却システム。
The cooling system according to claim 10,
A cooling system characterized in that each of two adjacent water-cooled heat transfer tubes among the plurality of water-cooled heat transfer tubes is provided with a second side surface that faces each other and makes surface contact with each other.
JP2021004834A 2021-01-15 2021-01-15 Reactor containment cooling system Active JP7389764B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021004834A JP7389764B2 (en) 2021-01-15 2021-01-15 Reactor containment cooling system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021004834A JP7389764B2 (en) 2021-01-15 2021-01-15 Reactor containment cooling system

Publications (2)

Publication Number Publication Date
JP2022109492A JP2022109492A (en) 2022-07-28
JP7389764B2 true JP7389764B2 (en) 2023-11-30

Family

ID=82560541

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021004834A Active JP7389764B2 (en) 2021-01-15 2021-01-15 Reactor containment cooling system

Country Status (1)

Country Link
JP (1) JP7389764B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180358136A1 (en) 2017-06-09 2018-12-13 Sichuan Xingzhi Zhihui Intellectual Property Operation Co., Ltd. Containment cooling system capable of improving coolant utilization rate

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5952788A (en) * 1982-09-21 1984-03-27 株式会社東芝 Reactor container facility
JPS60141594U (en) * 1984-02-29 1985-09-19 株式会社東芝 Reactor containment vessel cooling system
JPS62194195A (en) * 1986-02-19 1987-08-26 Nishiyodo Kuuchiyouki Kk Heat transfer tube equipped with internal surface fin

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180358136A1 (en) 2017-06-09 2018-12-13 Sichuan Xingzhi Zhihui Intellectual Property Operation Co., Ltd. Containment cooling system capable of improving coolant utilization rate

Also Published As

Publication number Publication date
JP2022109492A (en) 2022-07-28

Similar Documents

Publication Publication Date Title
JP6961620B2 (en) Improved molten fuel reactor cooling configuration and pump configuration
JP5734831B2 (en) Used nuclear fuel storage tank driven cooling system
JP4834349B2 (en) Reactor containment cooling equipment
US5011652A (en) Nuclear power facilities
US5087408A (en) Nuclear power facilities
JP2634738B2 (en) Passive cooling system for liquid metal-cooled reactors with back-up cooling channels
JP4148417B2 (en) Stable passive residual heat removal system for liquid metal furnace
KR102580625B1 (en) Passive cooling for cold shutdown
JP2659632B2 (en) Passive cooling safety system for liquid metal cooled reactor
US20150117589A1 (en) Molten Salt Reactor
CN104937670B (en) The passive spentnuclear fuel pond cooling system of formula of rotating and method
JPH0715507B2 (en) Passive safety equipment for nuclear reactors
JPH04125495A (en) Nuclear reactor facility
JP6402171B2 (en) Passive cooling system for coolant storage area of nuclear power plant
KR20140126187A (en) Passive safety system and nuclear power plant having the same
KR102243711B1 (en) Nuclear reactor long-term cooling system and nuclear plant having the same
JP2018136172A (en) Emergency core cooling system and boiling-water nuclear power plant using the same
KR101255588B1 (en) Device for residual heat removal of reactor and its method
JP4908561B2 (en) Reactor containment vessel and nuclear power plant using the same
US5021211A (en) Liquid metal cooled nuclear reactors with passive cooling system
US5579355A (en) Heat dissipation system for a nuclear reactor, in particular a pressurized water reactor
KR101742644B1 (en) Passive Auxiliary Feedwater Cooling System having Air-Cooled Double Containments
JP2013057559A (en) Water cooling type nuclear power generation facility and emergency stop method for the same
JP7389764B2 (en) Reactor containment cooling system
JP2015227830A (en) Cooling system of reactor container

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230801

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230904

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231117

R150 Certificate of patent or registration of utility model

Ref document number: 7389764

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150