JP7387909B2 - multi-directional input device - Google Patents

multi-directional input device Download PDF

Info

Publication number
JP7387909B2
JP7387909B2 JP2022547585A JP2022547585A JP7387909B2 JP 7387909 B2 JP7387909 B2 JP 7387909B2 JP 2022547585 A JP2022547585 A JP 2022547585A JP 2022547585 A JP2022547585 A JP 2022547585A JP 7387909 B2 JP7387909 B2 JP 7387909B2
Authority
JP
Japan
Prior art keywords
input device
lever
magnet
operating member
biasing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022547585A
Other languages
Japanese (ja)
Other versions
JPWO2022054759A1 (en
Inventor
伸之 二宮
真人 林
周二 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alps Alpine Co Ltd
Original Assignee
Alps Electric Co Ltd
Alps Alpine Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co Ltd, Alps Alpine Co Ltd filed Critical Alps Electric Co Ltd
Publication of JPWO2022054759A1 publication Critical patent/JPWO2022054759A1/ja
Application granted granted Critical
Publication of JP7387909B2 publication Critical patent/JP7387909B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H25/00Switches with compound movement of handle or other operating part
    • H01H25/04Operating part movable angularly in more than one plane, e.g. joystick
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H25/00Switches with compound movement of handle or other operating part
    • H01H25/06Operating part movable both angularly and rectilinearly, the rectilinear movement being along the axis of angular movement

Description

本発明は、多方向入力装置に関する。 The present invention relates to a multi-directional input device.

従来より、内部に空間を有するケースと、前記ケースから一部を露出し操作者による操作を受け付ける操作部材と、前記ケース内に互いに直交する方向に配設されると共に前記操作部材に対する傾動操作に応じて回動する第1及び第2の駆動部材と、前記第1及び第2の駆動部材の回動を検出する回動検出機構とを具備する多方向入力装置がある。前記回動検出機構は、前記第1及び第2の駆動部材に連結されると共に磁石を保持するホルダと、前記ホルダに保持された前記磁石と対向配置される磁気検出素子と、前記ホルダを回転可能に収容すると共に前記磁気検出素子を所定位置に位置決めした状態で前記ケースの外側から取り付けられるカバーとを有する(例えば、特許文献1参照)。 Conventionally, a case having a space inside, an operating member partially exposed from the case to receive operation by an operator, and an operating member disposed within the case in directions perpendicular to each other and capable of tilting the operating member are provided. There is a multi-directional input device that includes first and second drive members that rotate in response to the input signal, and a rotation detection mechanism that detects rotation of the first and second drive members. The rotation detection mechanism includes a holder connected to the first and second drive members and holding a magnet, a magnetic detection element disposed facing the magnet held by the holder, and a rotation detection mechanism that rotates the holder. and a cover that can be attached from the outside of the case with the magnetic detection element positioned at a predetermined position (for example, see Patent Document 1).

特開2008-299755号公報Japanese Patent Application Publication No. 2008-299755

ところで、操作部材を操作する際に、磁石と磁気センサとの間隔が変化すると、操作状態によって磁気センサが検出する磁界の強度が変化するため、操作量を正確に検出できない場合がある。 By the way, when the operating member is operated, if the distance between the magnet and the magnetic sensor changes, the strength of the magnetic field detected by the magnetic sensor changes depending on the operating state, so the amount of operation may not be accurately detected.

そこで、操作量を正確に検出できる多方向入力装置を提供することを目的とする。 Therefore, it is an object of the present invention to provide a multidirectional input device that can accurately detect the amount of operation.

本発明の実施形態の多方向入力装置は、開口部を有する筐体と、前記開口部に差し込まれる軸部を有し、前記筐体に対して傾倒する操作が可能な操作部材と、前記操作軸の下方に配置される板状部材と、前記軸部内に挿通され、下端が前記板状部材に当接する筒状の可動軸と、前記可動軸の内部に配置され、前記板状部材に当接するスペーサと、前記可動軸の内部で前記スペーサの上に配置される磁石と、前記スペーサの下方に配置される磁気センサと、前記操作部材と前記可動軸との間に設けられ、前記操作部材に対して前記可動軸を下方に付勢する第1ばねと、前記操作部材と前記磁石との間に設けられ、前記操作部材に対して前記磁石を下方に付勢する第2ばねとを含む。 A multi-directional input device according to an embodiment of the present invention includes a housing having an opening, an operating member having a shaft inserted into the opening and capable of being tilted with respect to the housing, and an operating member that can be operated by tilting with respect to the housing. a plate-like member disposed below the shaft; a cylindrical movable shaft that is inserted into the shaft portion and whose lower end abuts the plate-like member; and a movable shaft disposed inside the movable shaft and abuts the plate-like member. a spacer in contact with the movable shaft; a magnet disposed on the spacer inside the movable shaft; a magnetic sensor disposed below the spacer; and a spacer provided between the operating member and the movable shaft, the operating member a first spring that biases the movable shaft downward against the operating member; and a second spring that is provided between the operating member and the magnet and biases the magnet downward with respect to the operating member. .

操作量を正確に検出できる多方向入力装置を提供することができる。 A multidirectional input device that can accurately detect the amount of operation can be provided.

実施形態の多方向入力装置100を示す例示的な図である。FIG. 1 is an exemplary diagram showing a multi-directional input device 100 according to an embodiment. 多方向入力装置100を分解した状態を例示的に示す図である。FIG. 2 is a diagram illustrating an exploded state of the multi-directional input device 100. FIG. 図1のA-A矢視断面の一例を示す図である。FIG. 2 is a diagram showing an example of a cross section taken along the line AA in FIG. 1. FIG. 図1のB-B矢視断面の一例を示す図である。FIG. 2 is a diagram showing an example of a cross section taken along the line BB in FIG. 1. FIG. 多方向入力装置100の動作を説明する図である。FIG. 2 is a diagram illustrating the operation of the multi-directional input device 100. 多方向入力装置100の動作を説明する図である。FIG. 2 is a diagram illustrating the operation of the multi-directional input device 100. 多方向入力装置100の動作を説明する図である。FIG. 2 is a diagram illustrating the operation of the multi-directional input device 100. 第2実施形態に係る多方向入力装置の外観斜視図である。FIG. 7 is an external perspective view of a multidirectional input device according to a second embodiment. 第2実施形態に係る多方向入力装置(フレームが取り外された状態)の外観斜視図である。FIG. 7 is an external perspective view of a multidirectional input device (with a frame removed) according to a second embodiment. 第2実施形態に係る多方向入力装置の分解斜視図である。FIG. 3 is an exploded perspective view of a multidirectional input device according to a second embodiment. 第2実施形態に係る多方向入力装置の斜視断面図である。FIG. 3 is a perspective cross-sectional view of a multidirectional input device according to a second embodiment. 第2実施形態に係る多方向入力装置(フレームおよびアクチュエータを取り除いた状態)の上面図である。FIG. 7 is a top view of the multidirectional input device (with the frame and actuator removed) according to the second embodiment. 第2実施形態に係る多方向入力装置の動作を説明するための図である。FIG. 7 is a diagram for explaining the operation of the multidirectional input device according to the second embodiment.

以下、本発明の多方向入力装置を適用した実施形態について説明する。 Embodiments to which the multi-directional input device of the present invention is applied will be described below.

<実施形態>
図1は、実施形態の多方向入力装置100を示す例示的な図である。図2は、多方向入力装置100を分解した状態を例示的に示す図である。図3は、図1のA-A矢視断面の一例を示す図である。図4は、図1のB-B矢視断面の一例を示す図である。
<Embodiment>
FIG. 1 is an exemplary diagram showing a multi-directional input device 100 according to an embodiment. FIG. 2 is a diagram illustrating an exploded state of the multi-directional input device 100. FIG. 3 is a diagram showing an example of a cross section taken along the line AA in FIG. FIG. 4 is a diagram showing an example of a cross section taken along the line BB in FIG.

以下では、XYZ座標系を定義して説明する。また、以下では、説明の便宜上、平面視とはXY面視をいい、Z軸負方向側を下側又は下、Z軸正方向側を上側又は上と称すが、普遍的な上下関係を表すものではない。 In the following, the XYZ coordinate system will be defined and explained. Furthermore, in the following, for convenience of explanation, planar view refers to XY plane view, the negative side of the Z-axis is referred to as the lower side or below, and the side in the positive direction of the Z-axis is referred to as upper side or above, but this represents a universal vertical relationship. It's not a thing.

多方向入力装置100は、ケース110、フレーム120、FPC(Flexible printed circuits)125、メタルコンタクト130A、磁気センサ130B、ステム140、プレート150、アクチュエータ160A、160B、スペーサ160C、ばね160D、ばね160E、磁石170、カバー180、磁気シールド185、レバー190、キャップ195を含む。 The multidirectional input device 100 includes a case 110, a frame 120, an FPC (Flexible printed circuits) 125, a metal contact 130A, a magnetic sensor 130B, a stem 140, a plate 150, actuators 160A, 160B, a spacer 160C, a spring 160D, a spring 160E, and a magnet. 170, a cover 180, a magnetic shield 185, a lever 190, and a cap 195.

多方向入力装置100は、レバー190を傾倒させる操作と、レバー190を下方向に押し込む操作とが可能な入力装置である。このような多方向入力装置100は、例えば、ゲーム機の操作部に利用することができる。 The multi-directional input device 100 is an input device that allows an operation of tilting a lever 190 and an operation of pushing the lever 190 downward. Such a multi-directional input device 100 can be used, for example, as an operation section of a game machine.

ケース110は、一例として樹脂製であり、本体111及びドーム部112を有する。本体111は、略直方体状で底を有しない部材である。本体111は、下側からフレーム120が取り付けられた状態で有底の部材になる。ケース110及びフレーム120は、筐体の一例であり、本体111及びフレーム120は、筐体本体の一例である。 The case 110 is made of resin, for example, and includes a main body 111 and a dome portion 112. The main body 111 is a member having a substantially rectangular parallelepiped shape and having no bottom. The main body 111 becomes a bottomed member with the frame 120 attached from below. The case 110 and the frame 120 are examples of a housing, and the main body 111 and the frame 120 are examples of a housing main body.

ドーム部112は、本体111の上面の中央部から上方向にドーム状に突出した部分であり、頂部に開口部112Aを有する。ドーム部112の上面は、球面状の形状を有する。 The dome portion 112 is a dome-shaped portion that projects upward from the center of the upper surface of the main body 111, and has an opening 112A at the top. The upper surface of the dome portion 112 has a spherical shape.

フレーム120は、一例として金属の軟質磁性体製であり、ケース110の本体111の側面から突出した係合部111Aが嵌め込まれる開口部121と、図1に示すように本体111に取り付けられた状態で折り曲げられて本体111に係合する係合部122とを有する。フレーム120は、磁気シールド185と同様に磁気遮蔽効果を有するため、磁気センサ130Bに対する外乱磁場の影響を低減し、内蔵する磁石170の外部への磁気漏れを抑制することができる。 The frame 120 is made of a metal soft magnetic material, for example, and has an opening 121 into which the engaging portion 111A protruding from the side surface of the main body 111 of the case 110 is fitted, and a state where the frame 120 is attached to the main body 111 as shown in FIG. It has an engaging part 122 that is bent at a position and engages with the main body 111. Since the frame 120 has a magnetic shielding effect like the magnetic shield 185, it is possible to reduce the influence of a disturbance magnetic field on the magnetic sensor 130B and suppress magnetic leakage of the built-in magnet 170 to the outside.

フレーム120の中央のXY平面に平行な部分の上面には、FPC125が配置される。フレーム120とケース110によって閉じられる空間内には、FPC125、メタルコンタクト130A、磁気センサ130B、ステム140、プレート150、アクチュエータ160A、アクチュエータ160Bの一部、磁石170の一部が収納される。 The FPC 125 is arranged on the upper surface of the central portion of the frame 120 that is parallel to the XY plane. In the space closed by frame 120 and case 110, FPC 125, metal contact 130A, magnetic sensor 130B, stem 140, plate 150, actuator 160A, part of actuator 160B, and part of magnet 170 are housed.

フレーム120は、ケース110の本体111に下側から取り付けられ、上述のような収納空間を実現できる部材であれば、ケース110への取り付け構造は、どのようなものであってもよい。 The frame 120 is attached to the main body 111 of the case 110 from below, and any structure for attaching it to the case 110 may be used as long as it is a member that can realize the storage space as described above.

FPC125は、一例としてポリイミド等の表面に配線パターンを形成した部材であり、配線部125Aを有する。FPC125には、電子部品125B、メタルコンタクト130A、磁気センサ130Bが実装される。 The FPC 125 is, for example, a member made of polyimide or the like with a wiring pattern formed on its surface, and has a wiring part 125A. An electronic component 125B, a metal contact 130A, and a magnetic sensor 130B are mounted on the FPC 125.

メタルコンタクト130Aは、押圧センサの一例であり、FPC125の上面の-X方向側に実装されている。メタルコンタクト130Aは、反転動作が可能な金属製のドームを有しており、ドームは上方向に凸の形状を有し、ステム140によって下方向に押圧されると反転動作によって下方向に凸の状態になり、これによってZ方向の押し込み操作が検出される。 The metal contact 130A is an example of a pressure sensor, and is mounted on the −X direction side of the upper surface of the FPC 125. The metal contact 130A has a metal dome capable of reversing operation, and the dome has an upwardly convex shape, and when pressed downward by the stem 140, the reversing operation causes the dome to convex downwardly. state, whereby a pushing operation in the Z direction is detected.

磁気センサ130Bは、FPC125の上面の略中央に実装されている。磁気センサ130Bは、X方向における磁界の変化を検出するセンサと、Y方向における磁界の変化を検出するセンサとを内蔵しており、磁石170のX方向及びY方向への変位を検出する。 The magnetic sensor 130B is mounted approximately at the center of the upper surface of the FPC 125. The magnetic sensor 130B includes a sensor that detects changes in the magnetic field in the X direction and a sensor that detects changes in the magnetic field in the Y direction, and detects displacement of the magnet 170 in the X and Y directions.

ステム140は、一例として樹脂製の部材であり、メタルコンタクト130Aを下方向に押圧するために設けられている。 The stem 140 is, for example, a member made of resin, and is provided to press the metal contact 130A downward.

プレート150は、一例として金属製であり、基部151、脚部152、延在部153を有する。プレート150は、板状部材の一例である。基部151は、プレート150の中央に位置し、アクチュエータ160Bが載置される。基部151の四方には、下方に延在する脚部152が設けられている。脚部152の下端がFPC125の上面に当接することにより、基部151は、脚部152の高さの分だけFPC125よりも高い位置にある。基部151の下部には、磁気センサ130Bや電子部品125Bのうちの一部のものが配置されているが、基部151が脚部152の高さの分だけFPC125よりも高い位置にあるため、アクチュエータ160Bが下方向に押圧されても、磁気センサ130B等を保護できる構成になっている。プレート150は、基部151から平面視で外側に延在する延在部153によってケース110に固定されている。 The plate 150 is made of metal, for example, and has a base 151, legs 152, and an extension 153. Plate 150 is an example of a plate-like member. The base 151 is located at the center of the plate 150, and the actuator 160B is placed thereon. Legs 152 extending downward are provided on all sides of the base 151 . Since the lower ends of the legs 152 come into contact with the upper surface of the FPC 125, the base 151 is located at a higher position than the FPC 125 by the height of the legs 152. Some of the magnetic sensors 130B and electronic components 125B are arranged at the bottom of the base 151, but since the base 151 is located higher than the FPC 125 by the height of the legs 152, the actuator The configuration is such that even if 160B is pressed downward, the magnetic sensor 130B etc. can be protected. The plate 150 is fixed to the case 110 by an extending portion 153 that extends outward from the base 151 in plan view.

アクチュエータ160Aは、一例として樹脂製であり、可動部の一例である。アクチュエータ160Aは、基部161A、開口部162A、軸部163A、164A、側部165A、貫通孔166Aを有する。 The actuator 160A is made of resin, for example, and is an example of a movable part. The actuator 160A has a base portion 161A, an opening portion 162A, shaft portions 163A and 164A, a side portion 165A, and a through hole 166A.

アクチュエータ160Aは、レバー190をX軸方向に傾倒可能に保持するとともに、ケース110に対してY軸方向に傾倒可能である。X軸は第1軸の一例であり、Y軸は第2軸の一例である。X軸方向に傾倒可能とは、図3に示す矢印のようにY軸を回転軸として、X方向にレバー190を傾倒可能にすることである。Y方向に傾倒可能とは、アクチュエータ160Aが図4に示す矢印のようにX軸を回転軸として、Y方向に傾倒可能であることをいう。Y方向に傾倒可能であることは、第2軸方向に傾倒可能であることの一例である。 The actuator 160A holds the lever 190 so as to be tiltable in the X-axis direction, and is also tiltable in the Y-axis direction with respect to the case 110. The X-axis is an example of a first axis, and the Y-axis is an example of a second axis. Being able to tilt in the X-axis direction means that the lever 190 can be tilted in the X-direction with the Y-axis as the rotation axis as indicated by the arrow in FIG. Being able to tilt in the Y direction means that the actuator 160A can be tilted in the Y direction with the X axis as the rotation axis, as indicated by the arrow in FIG. Being able to tilt in the Y direction is an example of being able to tilt in the second axis direction.

基部161Aは、アクチュエータ160Aの本体であり、ドーム状の形状を有する。基部161Aのドーム形状は、ケース110のドーム部112の下面側の球面に対応した形状である。基部161Aの頂部には開口部162Aが設けられている。開口部162Aは、図4に示すX方向の長さの方が、図3に示すY方向の長さよりも長い。 The base 161A is the main body of the actuator 160A and has a dome-like shape. The dome shape of the base portion 161A corresponds to the spherical surface of the lower surface of the dome portion 112 of the case 110. An opening 162A is provided at the top of the base 161A. The length of the opening 162A in the X direction shown in FIG. 4 is longer than the length in the Y direction shown in FIG.

基部161Aの-X方向側には、軸部163Aが設けられており、+X方向側には軸部164Aが設けられている。軸部163Aは第1軸部の一例であり、軸部164Aは第2軸部の一例である。また、基部161Aの±Y方向側の側面は、XZ平面に平行な側面であり、ドーム形状を切り落としたような形状になっている。側部165Aには、貫通孔166Aが設けられている。 A shaft portion 163A is provided on the −X direction side of the base portion 161A, and a shaft portion 164A is provided on the +X direction side. The shaft portion 163A is an example of a first shaft portion, and the shaft portion 164A is an example of a second shaft portion. Further, the side surfaces of the base portion 161A on the ±Y direction sides are parallel to the XZ plane, and have a shape similar to a cut-off dome shape. A through hole 166A is provided in the side portion 165A.

軸部163A及び164Aは、アクチュエータ160Aをケース110に対してY方向に傾倒可能にするために設けられている。軸部163A及び164Aの上側の面は、X軸を中心軸とする円筒の側面のように湾曲している。 The shaft portions 163A and 164A are provided to enable the actuator 160A to be tilted in the Y direction with respect to the case 110. The upper surfaces of the shaft portions 163A and 164A are curved like the side surfaces of a cylinder whose central axis is the X-axis.

軸部163Aは、図4に示すようにケース110の本体111の内側の凹部111Bに嵌め込まれている。凹部111BのY軸方向の幅は、軸部163AのY軸方向の幅に合わされている。軸部163Aは、凹部111Bによって、X軸を回転軸としてYZ平面内で回動可能なように保持されている。 The shaft portion 163A is fitted into a recess 111B inside the main body 111 of the case 110, as shown in FIG. The width of the recessed portion 111B in the Y-axis direction is matched to the width of the shaft portion 163A in the Y-axis direction. The shaft portion 163A is held by the recess 111B so as to be rotatable within the YZ plane with the X axis as the rotation axis.

軸部164Aは、図4に示すようにケース110の本体111の内側の凹部111Cに嵌め込まれている。軸部164Aは、図4に示すように、軸部163AよりもZ方向に長い。 The shaft portion 164A is fitted into a recess 111C inside the main body 111 of the case 110, as shown in FIG. As shown in FIG. 4, the shaft portion 164A is longer in the Z direction than the shaft portion 163A.

軸部164Aの上側の面は、X軸を中心軸とする円筒の側面のように湾曲している。凹部111CのY軸方向の幅は、軸部164AのY軸方向の幅に合わされている。軸部164Aは、凹部111Cによって、X軸を回転軸としてYZ平面内で回動可能なように保持されている。 The upper surface of the shaft portion 164A is curved like the side surface of a cylinder whose central axis is the X-axis. The width of the recessed portion 111C in the Y-axis direction is matched to the width of the shaft portion 164A in the Y-axis direction. The shaft portion 164A is held by the recessed portion 111C so as to be rotatable within the YZ plane with the X axis as the rotation axis.

貫通孔166Aには、レバー190の軸部193が挿入され、レバー190をY軸を回転軸としてX方向に傾倒可能に保持する。X方向に傾倒可能であることは、第1軸方向に傾倒可能であることの一例である。 The shaft portion 193 of the lever 190 is inserted into the through hole 166A, and the lever 190 is held so as to be tiltable in the X direction with the Y axis as the rotation axis. Being able to tilt in the X direction is an example of being able to tilt in the first axis direction.

また、アクチュエータ160Aは、レバー190が下方向に押し込まれる(押圧される)と、図4において軸部163Aが斜め下方向にずれるように移動して、ステム140を下方向に押圧する。この結果、メタルコンタクト130Aが反転動作を行う。 Further, when the lever 190 is pushed downward (pressed), the actuator 160A moves so that the shaft portion 163A is shifted diagonally downward in FIG. 4, and presses the stem 140 downward. As a result, metal contact 130A performs a reversal operation.

アクチュエータ160Bは、可動軸の一例であり、ケース110の底部に対してレバー190を支持する部材である。アクチュエータ160Bは、円筒部161B、台座部162B、突出部163B、及び切欠部164Bを有する。 Actuator 160B is an example of a movable shaft, and is a member that supports lever 190 on the bottom of case 110. The actuator 160B has a cylindrical portion 161B, a pedestal portion 162B, a protruding portion 163B, and a notch portion 164B.

円筒部161Bは、レバー190の内側に保持されている。円筒部161Bの下側には台座部162Bが設けられている。円筒部161Bは、アクチュエータ160Bの上端から下端まで延在しており、円柱状にくり抜かれた収納部161B1及び161B2と凸部161B3とを有する。収納部161B1は円筒部161Bの円柱状にくり抜かれた内部空間のうちの凸部161B3よりも下側の空間であり、収納部161B2は円筒部161Bの円柱状にくり抜かれた内部空間のうちの凸部161B3よりも上側の空間である。凸部161B3は、円筒部161Bの円柱状にくり抜かれた内部空間の上下方向における中間よりも少し上側において、内側に向けて円環状に突出した部分である。凸部161B3は、平面視における中央に貫通孔があるため、収納部161B1及び161B2は連通している。 The cylindrical portion 161B is held inside the lever 190. A pedestal portion 162B is provided below the cylindrical portion 161B. The cylindrical portion 161B extends from the upper end to the lower end of the actuator 160B, and includes cylindrical hollow storage portions 161B1 and 161B2 and a convex portion 161B3. The storage part 161B1 is a space below the convex part 161B3 in the hollowed out columnar internal space of the cylindrical part 161B, and the storage part 161B2 is a space in the hollowed out columnar internal space of the cylindrical part 161B. This is a space above the convex portion 161B3. The convex portion 161B3 is a portion that protrudes inward in an annular shape slightly above the middle in the vertical direction of the internal space hollowed out in a cylindrical shape of the cylindrical portion 161B. Since the convex portion 161B3 has a through hole at the center in a plan view, the storage portions 161B1 and 161B2 are in communication with each other.

また、収納部161B1は、下端側161B11と上端側161B12とで内径が異なり、下端側161B11の内径の方が上端側161B12の内径よりも僅かに大きい。下端側161B11と上端側161B12との間には僅かな段差がある。上端側161B12の内径は、円柱状の磁石170の外径より僅かに大きく、したがって磁石170はばね160Eの伸縮方向に移動可能である。下端側161B11は磁石170を差し込みやすくするために上端側161B12よりも僅かに内径を大きくしている。 Moreover, the inner diameter of the storage portion 161B1 is different between the lower end side 161B11 and the upper end side 161B12, and the inner diameter of the lower end side 161B11 is slightly larger than the inner diameter of the upper end side 161B12. There is a slight step between the lower end side 161B11 and the upper end side 161B12. The inner diameter of the upper end side 161B12 is slightly larger than the outer diameter of the cylindrical magnet 170, so the magnet 170 is movable in the direction of expansion and contraction of the spring 160E. The inner diameter of the lower end side 161B11 is slightly larger than that of the upper end side 161B12 to facilitate insertion of the magnet 170.

収納部161B1にはスペーサ160Cと磁石170が収納され、収納部161B2にはばね160D及び160Eの一部が収納される。凸部161B3の中央の貫通孔にはばね160Eの下端が挿通される。 The spacer 160C and the magnet 170 are stored in the storage portion 161B1, and a portion of the springs 160D and 160E are stored in the storage portion 161B2. The lower end of the spring 160E is inserted into the through hole at the center of the convex portion 161B3.

台座部162Bは、円筒部161Bよりも大きな直径を有する円盤状の部分であり、円筒部161Bの貫通孔に連通する貫通孔を中心部に有する。台座部162Bは、プレート150の上に配置され、プレート150の上面に当接している。 The pedestal portion 162B is a disk-shaped portion having a larger diameter than the cylindrical portion 161B, and has a through hole in the center that communicates with the through hole of the cylindrical portion 161B. The pedestal portion 162B is placed on the plate 150 and is in contact with the upper surface of the plate 150.

突出部163Bは、円筒部161Bの下端側において、±Y方向に直方体状に突出している部分である。突出部163BのX方向の幅は、円筒部161Bの幅よりも狭い。突出部163Bは、レバー190の軸部192の内部でアクチュエータ160Bが回転しないようにするために設けられている。 The protruding portion 163B is a portion that protrudes in the shape of a rectangular parallelepiped in the ±Y direction on the lower end side of the cylindrical portion 161B. The width of the protruding portion 163B in the X direction is narrower than the width of the cylindrical portion 161B. The protruding portion 163B is provided to prevent the actuator 160B from rotating inside the shaft portion 192 of the lever 190.

切欠部164Bは、アクチュエータ160Bの円筒部161Bの下端の両側が±Y方向に切り欠かれた部分である。2つの切欠部164BのX方向の幅の中心同士を結ぶ直線は、円筒部161Bの中心軸を通り、Y軸に平行である。 The cutout portion 164B is a portion where both sides of the lower end of the cylindrical portion 161B of the actuator 160B are cut out in the ±Y direction. A straight line connecting the centers of the widths of the two notches 164B in the X direction passes through the central axis of the cylindrical portion 161B and is parallel to the Y axis.

スペーサ160Cは、基部161C、球面状の曲面である湾曲部162C、及び突出部163Cを有する。基部161Cは円筒状の部分であり、基部161Cの下側には湾曲部162Cが設けられ、基部161Cの側面には±Y方向に突出する2つの突出部163Cが設けられている。 The spacer 160C has a base portion 161C, a curved portion 162C that is a spherical curved surface, and a protrusion portion 163C. The base 161C is a cylindrical portion, and a curved portion 162C is provided on the lower side of the base 161C, and two protrusions 163C that protrude in the ±Y direction are provided on the side surfaces of the base 161C.

湾曲部162Cは、基部161Cの下面から下方に突出しており、球状に湾曲した湾曲面を有する。湾曲部162Cの湾曲面はプレート150の基部151に当接する。湾曲部162Cの湾曲面は、基部161Cの上面の中心からの曲率半径が一定の湾曲面である。図3に曲率半径を破線の矢印で示す。基部161Cと磁石170は、円筒形状の中心軸を一致させて配置してあるため、湾曲部162Cの湾曲面は、磁石170の下面の中心からの曲率半径が一定の湾曲面である。このような湾曲面を有する湾曲部162Cを設けることにより、レバー190を様々な方向に傾倒する操作が行われたときに、磁石170とプレート150の基部151の下面側に配置される磁気センサ130Bとの間隔が一定になるようにしてある。 The curved portion 162C protrudes downward from the lower surface of the base portion 161C, and has a spherically curved curved surface. The curved surface of the curved portion 162C contacts the base 151 of the plate 150. The curved surface of the curved portion 162C has a constant radius of curvature from the center of the upper surface of the base portion 161C. In FIG. 3, the radius of curvature is indicated by a dashed arrow. Since the base portion 161C and the magnet 170 are arranged with their cylindrical central axes aligned, the curved surface of the curved portion 162C has a constant radius of curvature from the center of the lower surface of the magnet 170. By providing the curved portion 162C having such a curved surface, when the lever 190 is tilted in various directions, the magnet 170 and the magnetic sensor 130B disposed on the lower surface side of the base 151 of the plate 150 are The distance between them is kept constant.

2つの突出部163CのX方向の幅の中心同士を結ぶ直線は、基部の平面視における中心を通り、Y軸に平行である。突出部163CのX方向の幅は、アクチュエータ160Bの切欠部164Bに合わせられており、切欠部164Bに嵌め込まれる。突出部163Cは、アクチュエータ160Bに対してスペーサ160CがXY平面内で回転しないようにするために設けられている。 A straight line connecting the centers of the widths of the two protrusions 163C in the X direction passes through the center of the base in plan view and is parallel to the Y axis. The width of the protrusion 163C in the X direction matches the notch 164B of the actuator 160B, and is fitted into the notch 164B. The protrusion 163C is provided to prevent the spacer 160C from rotating within the XY plane with respect to the actuator 160B.

ばね160Dは、第1ばねの一例であり、アクチュエータ160Bの凸部161B3とレバー190の操作部191の凹部191Aの上端面との間に設けられている。ばね160Dは、図3及び図4に示すようにレバー190の操作が行われていない中立位置にある状態で、凸部161B3と凹部191Aの上端面との間で自然長よりも収縮されており、レバー190に対してアクチュエータ160Bを下方に付勢している。ばね160Dは、レバー190を操作前の位置に復帰させるために設けられている。 The spring 160D is an example of a first spring, and is provided between the convex portion 161B3 of the actuator 160B and the upper end surface of the concave portion 191A of the operating portion 191 of the lever 190. As shown in FIGS. 3 and 4, the spring 160D is contracted from its natural length between the convex portion 161B3 and the upper end surface of the concave portion 191A when the lever 190 is in the neutral position where the lever 190 is not operated. , biases the actuator 160B downward with respect to the lever 190. Spring 160D is provided to return lever 190 to its pre-operation position.

ばね160Eは、第2ばねの一例であり、磁石170の上面と、レバー190の操作部191の凹部191Bの上端面との間に設けられている。ばね160Eの下端は、凸部161B3の中央の貫通孔を挿通した状態で磁石170の上面に当接している。ばね160Eは、図3及び図4に示すようにレバー190の操作が行われていない中立位置にある状態で、磁石170の上面と凹部191Bの上端面との間で自然長よりも収縮されており、レバー190に対して磁石170を下方に付勢している。ばね160Eは、スペーサ160C及びプレート150に対する磁石170の高さ方向の位置を一定に保つために設けられている。 The spring 160E is an example of a second spring, and is provided between the upper surface of the magnet 170 and the upper end surface of the recess 191B of the operating portion 191 of the lever 190. The lower end of the spring 160E is in contact with the upper surface of the magnet 170 while being inserted through the central through hole of the convex portion 161B3. As shown in FIGS. 3 and 4, the spring 160E is contracted from its natural length between the upper surface of the magnet 170 and the upper end surface of the recess 191B when the lever 190 is in the neutral position where the lever 190 is not operated. This biases the magnet 170 downward with respect to the lever 190. The spring 160E is provided to keep the heightwise position of the magnet 170 constant with respect to the spacer 160C and the plate 150.

磁石170は、棒状の永久磁石であり、一例として、上半分がS極、下半分がN極である。磁石170は、上端がアクチュエータ160Bの収納部161B1の上端側161B12に差し込まれており、下半分がアクチュエータ160Bの収納部161B1の下端側161B11の内部に差し込まれている。 The magnet 170 is a rod-shaped permanent magnet, and as an example, the upper half is an S pole and the lower half is an N pole. The upper end of the magnet 170 is inserted into the upper end side 161B12 of the storage section 161B1 of the actuator 160B, and the lower half is inserted into the inside of the lower end side 161B11 of the storage section 161B1 of the actuator 160B.

カバー180は、カバー部材の一例であり、レバー190よりも強度が高い構成になっている。カバー180は、基部181及びドーム部182を有する。基部181は、円筒状の部分であり、Z方向に貫通する貫通孔181Aを有する。貫通孔181Aは、図2に示すように、X軸方向に短く、Y方向に長い形状を有する。 The cover 180 is an example of a cover member, and has a structure higher in strength than the lever 190. Cover 180 has a base portion 181 and a dome portion 182. The base portion 181 is a cylindrical portion and has a through hole 181A penetrating in the Z direction. As shown in FIG. 2, the through hole 181A has a shape that is short in the X-axis direction and long in the Y direction.

貫通孔181Aには、レバー190の軸部192が挿通されている。基部181の下側には、ドーム部182が設けられている。基部181は、ドーム部182の頂部に連続的に設けられている。 A shaft portion 192 of a lever 190 is inserted through the through hole 181A. A dome portion 182 is provided below the base portion 181. The base portion 181 is continuously provided at the top of the dome portion 182.

カバー180は、貫通孔181Aがレバー190の軸部192に挿通されることによって、レバー190の操作部191の下側に取り付けられている。 The cover 180 is attached to the lower side of the operating portion 191 of the lever 190 by inserting the shaft portion 192 of the lever 190 into the through hole 181A.

ドーム部182は、当接部の一例である。ドーム部182の上面(+Z方向側の湾曲した面)と、下面(-Z方向側の湾曲した面)とは、球面状の形状を有する。ドーム部182と、ケース110のドーム部112とは、2つの同心球の一部分に相当する形状を有する。2つの同心球とは、互いの中心が同一の2つの球である。ドーム部182と、ケース110のドーム部112とは、このような2つの中空の球体の一部分に相当する形状を有する。 The dome portion 182 is an example of a contact portion. The upper surface (the curved surface on the +Z direction side) and the lower surface (the curved surface on the −Z direction side) of the dome portion 182 have a spherical shape. The dome portion 182 and the dome portion 112 of the case 110 have shapes corresponding to portions of two concentric spheres. Two concentric spheres are two spheres whose centers are the same. The dome portion 182 and the dome portion 112 of the case 110 have shapes corresponding to parts of these two hollow spheres.

図3及び図4のように、レバー190が中立位置にある場合には、ドーム部182と、ケース110のドーム部112との間には隙間がある。中立位置とは、レバー190がX方向及びY方向のいずれの方向にも傾倒されておらず、かつ、レバー190が下方向に押し込まれていない状態のときにある位置である。 As shown in FIGS. 3 and 4, when the lever 190 is in the neutral position, there is a gap between the dome portion 182 and the dome portion 112 of the case 110. The neutral position is a position when the lever 190 is not tilted in either the X direction or the Y direction, and the lever 190 is not pushed downward.

レバー190が下方向に押し込まれると、カバー180のドーム部182の下面がケース110のドーム部112の上面に当接する。カバー180はレバー190の操作部191の下面に取り付けられているため、レバー190が下方向に押し込まれると、カバー180は操作部191の下面とケース110のドーム部112の上面との間に挟まれる。このときに、レバー190がアクチュエータ160Aを下方向に押圧し、ステム140がメタルコンタクト130Aを押圧し、メタルコンタクト130Aは反転する。また、このときに、ばね160D及び160Eが収縮し、磁石170と磁気センサ130Bとの間隔は一定に保たれる。 When the lever 190 is pushed downward, the lower surface of the dome portion 182 of the cover 180 comes into contact with the upper surface of the dome portion 112 of the case 110. Since the cover 180 is attached to the lower surface of the operating section 191 of the lever 190, when the lever 190 is pushed downward, the cover 180 is sandwiched between the lower surface of the operating section 191 and the upper surface of the dome section 112 of the case 110. It will be done. At this time, the lever 190 presses the actuator 160A downward, the stem 140 presses the metal contact 130A, and the metal contact 130A is reversed. Also, at this time, the springs 160D and 160E contract, and the distance between the magnet 170 and the magnetic sensor 130B is kept constant.

カバー180のドーム部182の下面がケース110のドーム部112の上面に当接して、カバー180が操作部191の下面とケース110のドーム部112の上面との間に挟まれることにより、メタルコンタクト130Aが反転する以上にレバー190を下方向に押し込むことはできないようになっている。このため、磁気センサ130Bや電子部品125B等の破損を抑制することができる。 The lower surface of the dome section 182 of the cover 180 comes into contact with the upper surface of the dome section 112 of the case 110, and the cover 180 is sandwiched between the lower surface of the operation section 191 and the upper surface of the dome section 112 of the case 110, so that a metal contact is formed. The lever 190 cannot be pushed down further than 130A is reversed. Therefore, damage to the magnetic sensor 130B, electronic component 125B, etc. can be suppressed.

また、カバー180は、レバー190よりも強度が高いため、ドーム部182の厚さを薄くできる。このようなカバー180は、一例として硬度の高い合成樹脂で作製すればよい。 Further, since the cover 180 has higher strength than the lever 190, the thickness of the dome portion 182 can be made thinner. Such a cover 180 may be made of, for example, a synthetic resin with high hardness.

操作部191の直径が軸部192の直径よりも大きいため、成形加工でレバー190とカバー180を一体で作製することはできず、別体で製作している。レバー190とカバー180を別体にすると、別々の材料で作製できるので、カバー180をレバー190よりも強度の高い材料で作製することにより、一体で作製する場合よりも、カバー180の強度を低下させることなく薄く作製することができる。 Since the diameter of the operating portion 191 is larger than the diameter of the shaft portion 192, the lever 190 and the cover 180 cannot be integrally manufactured by molding, and are manufactured separately. If the lever 190 and the cover 180 are separated, they can be made from different materials, so by making the cover 180 from a material stronger than the lever 190, the strength of the cover 180 is lower than when they are made in one piece. It can be made thin without causing any damage.

レバー190は、操作部材の一例であり、操作部191及び軸部192を有する。操作部191は、円盤状の部材であり、軸部192よりも大きな直径を有する。操作部191の上面にはキャップ195が取り付けられる。操作部191は、内側に凹部191A及び凹部191Bを有する。凹部191Aは円筒状の軸部192の内壁192Bに連通して上側に凹んでいる部分であり、凹部191Bは凹部191Aの上端面の中央からさらに上側に凹んでいる。凹部191Aの上端面にはばね160Dの上端が当接し、凹部191Bの上端面にはばね160Eの上端が当接する。 The lever 190 is an example of an operating member, and includes an operating section 191 and a shaft section 192. The operating section 191 is a disc-shaped member and has a larger diameter than the shaft section 192. A cap 195 is attached to the upper surface of the operating section 191. The operating portion 191 has a recess 191A and a recess 191B inside. The recess 191A is a portion that communicates with the inner wall 192B of the cylindrical shaft portion 192 and is recessed upward, and the recess 191B is recessed further upward from the center of the upper end surface of the recess 191A. The upper end of the spring 160D contacts the upper end surface of the recess 191A, and the upper end of the spring 160E contacts the upper end surface of the recess 191B.

軸部192は、操作部191の下面の中央から下方向に延在している円筒状の部分である。軸部192は、図3に示すように下側におけるY方向の両側から突出した突出部192Aを有する。2つの突出部192Aは、円筒状の軸部192の下側におけるY方向の両側から平面視で直方体状に突出している。突出部192AのX方向の幅は、軸部192の円筒の幅よりも狭い。突出部192AのX方向の幅の中心は、軸部192の円筒の幅の中心と一致している。突出部192Aの内壁192A1は、突出部192Aの外形形状と同様に円筒状の軸部192の内壁192BからY方向に直方体状に凹んでいる。 The shaft portion 192 is a cylindrical portion extending downward from the center of the lower surface of the operating portion 191 . As shown in FIG. 3, the shaft portion 192 has protrusions 192A protruding from both sides in the Y direction on the lower side. The two protrusions 192A protrude from both sides of the lower side of the cylindrical shaft portion 192 in the Y direction in a rectangular parallelepiped shape when viewed from above. The width of the protruding portion 192A in the X direction is narrower than the width of the cylinder of the shaft portion 192. The center of the width of the protruding portion 192A in the X direction coincides with the center of the width of the cylinder of the shaft portion 192. The inner wall 192A1 of the protruding portion 192A is recessed in the Y direction from the inner wall 192B of the cylindrical shaft portion 192 in the shape of a rectangular parallelepiped, similar to the outer shape of the protruding portion 192A.

突出部192Aの内側には、アクチュエータ160Bの突出部163Bが嵌め込まれる。レバー190に対してアクチュエータ160BがXY平面内で回転しないようにするためである。アクチュエータ160Bの凸部161B3の上面にはばね160Dの下端が当接するため、レバー190の操作に伴ってアクチュエータ160Bが円筒部161Bの中心軸を中心として回転すると、ばね160Dの端部によって凸部161B3の上面が削られることを抑制するためである。また、レバー190は、図3及び図4に示す中立状態よりも下方に押し込むことが可能であるため、中立状態では突出部192Aの内壁192A1がアクチュエータ160Bの突出部163Bよりも上側まで延在するように構成されている。レバー190が押し込まれたときに、突出部192Aの内部で突出部163Bが相対的に上方向に移動可能にするためである。 The protrusion 163B of the actuator 160B is fitted inside the protrusion 192A. This is to prevent the actuator 160B from rotating within the XY plane with respect to the lever 190. Since the lower end of the spring 160D contacts the upper surface of the convex portion 161B3 of the actuator 160B, when the actuator 160B rotates around the central axis of the cylindrical portion 161B as the lever 190 is operated, the end of the spring 160D causes the convex portion 161B3 to This is to prevent the top surface from being scraped. In addition, since the lever 190 can be pushed downward more than in the neutral state shown in FIGS. 3 and 4, in the neutral state, the inner wall 192A1 of the protrusion 192A extends above the protrusion 163B of the actuator 160B. It is configured as follows. This is to allow the protrusion 163B to move relatively upward within the protrusion 192A when the lever 190 is pushed in.

軸部192は、図2に示すように、カバー180の貫通孔181AのY方向側に突出部192Aを位置させて、上側から貫通孔181Aに挿入される。これにより、カバー180とレバー190が固定される。 As shown in FIG. 2, the shaft portion 192 is inserted into the through hole 181A from above with the protruding portion 192A positioned on the Y direction side of the through hole 181A of the cover 180. Thereby, cover 180 and lever 190 are fixed.

2つの突出部192Aには、円筒状にY方向の外側に突出する軸部193がそれぞれ設けられている。また、軸部193は、アクチュエータ160Aの貫通孔166Aに挿入されており、貫通孔166AによってY軸を回転軸として回動自在に保持されている。これにより、レバー190は、アクチュエータ160Aに取り付けられ、かつ、アクチュエータ160Aに対してX方向(図3に示す矢印の方向)に傾倒可能になっている。 The two protrusions 192A are each provided with a cylindrical shaft portion 193 that protrudes outward in the Y direction. Further, the shaft portion 193 is inserted into the through hole 166A of the actuator 160A, and is rotatably held by the through hole 166A with the Y axis as the rotation axis. As a result, the lever 190 is attached to the actuator 160A and can be tilted in the X direction (the direction of the arrow shown in FIG. 3) with respect to the actuator 160A.

また、磁石170は、スペーサ160Cを介してプレート150の基部151に当接しており、スペーサ160Cは磁石170の下面の中心からの曲率半径が一定の湾曲面を持つ湾曲部162Cを有するため、レバー190を下方向に押し込まずにX方向及びY方向に傾倒させた場合に、磁気センサ130Bと磁石170の間の距離を一定に保つことができるため、磁気センサ130Bで磁石170が傾倒される方向を正確に検出することができる。磁石170が傾倒する方向は、レバー190の軸部192が傾倒する方向に等しい。 Further, the magnet 170 is in contact with the base 151 of the plate 150 via the spacer 160C, and the spacer 160C has a curved portion 162C having a curved surface with a constant radius of curvature from the center of the lower surface of the magnet 170. When tilting the magnet 190 in the X and Y directions without pushing it downward, the distance between the magnetic sensor 130B and the magnet 170 can be kept constant, so the direction in which the magnet 170 is tilted by the magnetic sensor 130B can be detected accurately. The direction in which the magnet 170 is tilted is the same as the direction in which the shaft portion 192 of the lever 190 is tilted.

磁気センサ130Bで磁石170が傾倒される方向を正確に検出する理由は次の通りである。レバー190が中立状態のとき、磁石170の磁界はZ軸方向を向いており、X軸とY軸成分の磁界は存在しない。レバー190を傾倒させると、傾倒角度に応じてX軸成分又はY軸成分の磁界が大きくなるので、磁気センサ130Bで傾倒角度を正確に検出することができる。 The reason why the magnetic sensor 130B accurately detects the direction in which the magnet 170 is tilted is as follows. When the lever 190 is in a neutral state, the magnetic field of the magnet 170 is oriented in the Z-axis direction, and the magnetic fields of the X-axis and Y-axis components do not exist. When the lever 190 is tilted, the magnetic field of the X-axis component or the Y-axis component increases depending on the tilt angle, so that the magnetic sensor 130B can accurately detect the tilt angle.

例えば、レバー190を傾倒させたときに、レバー190の下端の揺動に伴って磁石170が持ち上がって磁石170と磁気センサ130Bとの距離が変化してしまう場合には、傾倒角度と距離の両方の変化によって、X軸成分又はY軸成分の磁界の強度が変化するので、傾倒角度を正確に検出することができない。 For example, when the lever 190 is tilted, if the magnet 170 is lifted up as the lower end of the lever 190 swings and the distance between the magnet 170 and the magnetic sensor 130B changes, both the tilt angle and the distance Since the intensity of the magnetic field of the X-axis component or the Y-axis component changes due to the change in , the tilt angle cannot be detected accurately.

このような理由から、実施形態では、磁石170とプレート150の基部151との間にスペーサ160Cを介在させている。 For this reason, in the embodiment, a spacer 160C is interposed between the magnet 170 and the base 151 of the plate 150.

また、磁石170と基部151との間にはスペーサ160Cが介在しており、磁石170とレバー190の間にばね160Eを設けているため、レバー190が下方に押し込まれても、磁石170と磁気センサ130Bと間隔は不変である。中立状態からレバー190を押し込んだときにも、中立状態からレバー190を傾倒させてから押し込んだときにも、磁石170と磁気センサ130Bと間隔は不変である。このため、レバー190を押し込んでも磁気センサ130Bと磁石170の間の距離を一定に保つことができ、レバー190を押し込んでも磁気センサ130Bで磁石170が傾倒される方向を正確に検出することができる。 Furthermore, since a spacer 160C is interposed between the magnet 170 and the base 151, and a spring 160E is provided between the magnet 170 and the lever 190, even if the lever 190 is pushed downward, the magnet 170 and the magnetic The sensor 130B and the spacing remain unchanged. The distance between the magnet 170 and the magnetic sensor 130B remains unchanged even when the lever 190 is pushed in from the neutral state or when the lever 190 is tilted from the neutral state and then pushed in. Therefore, even if the lever 190 is pushed in, the distance between the magnetic sensor 130B and the magnet 170 can be kept constant, and even if the lever 190 is pushed in, the magnetic sensor 130B can accurately detect the direction in which the magnet 170 is tilted. .

また、開口部162Aは、図3に示すY方向の長さの方が、図4に示すX方向の長さよりも短く、軸部192の突出部192AはY方向側に突出しているため、軸部192は、アクチュエータ160Aから上方向に抜けないようになっている。 Further, the length of the opening 162A in the Y direction shown in FIG. 3 is shorter than the length in the X direction shown in FIG. The portion 192 is configured not to come off upward from the actuator 160A.

キャップ195は、一例として、円盤状の部材であって、樹脂製である。キャップ195は、レバー190の操作部191に取り付けられている。 The cap 195 is, for example, a disc-shaped member made of resin. The cap 195 is attached to the operating portion 191 of the lever 190.

磁気シールド185は、磁石170の磁界が外部へ漏れ出すのを防ぎ、外部の電磁波等のノイズから磁気センサ130Bをシールド(遮蔽)し、操作量を正確に検出するために設けられている。また、磁気シールド185は、フレーム120を補強する役割も担っており、磁気センサ130Bや電子部品125Bの破損抑制にも役立っている。磁気シールド185は、金属の軟質磁性体製であり、フレーム120と同様に板金を折り曲げることで作製される。磁気シールド185は、開口部185A、凸部185Bを有する。開口部185Aは、アクチュエータ160Aを挿通するために設けられている。凸部185Bは、磁気シールド185の±Y方向側の下部から突出しており、フレーム120に接触させるために設けられている。磁気シールド185は、図2に示すようにケース110の下側からケース110の内部に組み込まれ、フレーム120との間の空間にある磁気センサ130Bを外部の電磁波等のノイズからシールドしている。 The magnetic shield 185 is provided to prevent the magnetic field of the magnet 170 from leaking to the outside, shield the magnetic sensor 130B from noise such as external electromagnetic waves, and accurately detect the manipulated variable. The magnetic shield 185 also plays a role in reinforcing the frame 120, and also helps prevent damage to the magnetic sensor 130B and electronic component 125B. The magnetic shield 185 is made of a soft magnetic metal, and is manufactured by bending a sheet metal in the same way as the frame 120. The magnetic shield 185 has an opening 185A and a convex portion 185B. The opening 185A is provided for inserting the actuator 160A. The convex portion 185B protrudes from the lower portion of the magnetic shield 185 on the ±Y direction side, and is provided to contact the frame 120. As shown in FIG. 2, the magnetic shield 185 is incorporated into the case 110 from below, and shields the magnetic sensor 130B located in the space between the frame 120 and the magnetic sensor 130B from noise such as external electromagnetic waves.

次に、図5乃至図7を用いて、多方向入力装置100を操作したときの動作について説明する。図5乃至図7は、多方向入力装置100の動作を説明する図である。図5には、レバー190を下方向に押し込まずに-X方向に傾倒させた状態をXZ断面で示す。 Next, the operation when operating the multi-directional input device 100 will be described using FIGS. 5 to 7. 5 to 7 are diagrams illustrating the operation of the multidirectional input device 100. FIG. 5 shows a state in which the lever 190 is tilted in the -X direction without being pushed downwards, in an XZ cross section.

レバー190を-X方向に傾倒させると、軸部192がケース110のドーム部112の開口部112Aに当接することによって、レバー190の動きが規制される。これは、レバー190を+X方向に傾倒させたときも同様である。 When the lever 190 is tilted in the −X direction, the shaft portion 192 comes into contact with the opening 112A of the dome portion 112 of the case 110, thereby restricting the movement of the lever 190. This also applies when the lever 190 is tilted in the +X direction.

また、図3から分かるように、レバー190を±Y方向に傾倒させると、軸部192がケース110のドーム部112の開口部112Aに当接することによって、レバー190の動きが規制される。また、このときに磁気センサ130Bと磁石170の間の距離は変わらず、一定に保つことができる。曲率半径が一定の湾曲部162Cをスペーサ160Cが有するからである。 Further, as can be seen from FIG. 3, when the lever 190 is tilted in the ±Y direction, the shaft portion 192 comes into contact with the opening 112A of the dome portion 112 of the case 110, thereby restricting the movement of the lever 190. Further, at this time, the distance between the magnetic sensor 130B and the magnet 170 does not change and can be kept constant. This is because the spacer 160C has a curved portion 162C with a constant radius of curvature.

図6には、レバー190を下方向に押し込んだ状態を示す。図6には、XZ断面を示す。一例として、レバー190を中立位置から下方向に一定量押し込むと、ばね160D及び160Eが圧縮されてレバー190が下方向に移動するとともに、アクチュエータ160AがXZ断面で斜め下方向にずれるように移動して、ステム140を下方向に押圧する。この結果、メタルコンタクト130Aが反転動作を行う。 FIG. 6 shows a state in which the lever 190 is pushed downward. FIG. 6 shows an XZ cross section. As an example, when the lever 190 is pushed down a certain amount from the neutral position, the springs 160D and 160E are compressed, the lever 190 moves downward, and the actuator 160A moves diagonally downward in the XZ cross section. and press the stem 140 downward. As a result, metal contact 130A performs a reversal operation.

また、このようにレバー190を一定量押し込んだときに、カバー180のドーム部182の下面がケース110のドーム部112の上面に当接することにより、レバー190を下方向に一定量以上押し込むことはできない。このため、磁気センサ130Bや電子部品125B等の破損を抑制することができる。 Further, when the lever 190 is pushed in a certain amount in this way, the lower surface of the dome portion 182 of the cover 180 comes into contact with the upper surface of the dome portion 112 of the case 110, so that it is impossible to push the lever 190 downward by more than a certain amount. Can not. Therefore, damage to the magnetic sensor 130B, electronic component 125B, etc. can be suppressed.

なお、このようにレバー190を下方向に押し込む操作は、レバー190を2軸方向に傾倒させたどのような状態からでも行うことができる。レバー190が傾倒していても、中立位置にある場合と同様に、レバー190を下方向に一定量押し込むと、ばね160D及び160Eが圧縮されてレバー190が下方向に移動するとともに、アクチュエータ160AがXZ断面で斜め下方向にずれるように移動して、ステム140を下方向に押圧する。この結果、メタルコンタクト130Aが反転動作を行う。また、このときに磁気センサ130Bと磁石170の間の距離は変わらず、一定に保つことができる。曲率半径が一定の湾曲部162Cをスペーサ160Cが有し、かつ、レバー190の押し込みによる変位はばね160D及び160Eによって吸収され、磁石170は変位しないからである。 Note that the operation of pushing the lever 190 downward in this manner can be performed from any state in which the lever 190 is tilted in two axial directions. Even if the lever 190 is tilted, pushing the lever 190 downward a certain amount will compress the springs 160D and 160E, causing the lever 190 to move downward and actuator 160A to move downward. The stem 140 is pressed downward by moving obliquely downward in the XZ cross section. As a result, metal contact 130A performs a reversal operation. Further, at this time, the distance between the magnetic sensor 130B and the magnet 170 does not change and can be kept constant. This is because the spacer 160C has a curved portion 162C with a constant radius of curvature, and the displacement caused by pushing the lever 190 is absorbed by the springs 160D and 160E, so that the magnet 170 is not displaced.

以上のように、中立状態からレバー190を傾倒させても、磁気センサ130Bと磁石170の間の距離を一定に保つことができるため、磁気センサ130Bが検出する磁界の強度の変化量に基づいてレバー190を傾倒させた量を正確に検出できる。 As described above, even if the lever 190 is tilted from the neutral state, the distance between the magnetic sensor 130B and the magnet 170 can be kept constant. The amount by which the lever 190 is tilted can be accurately detected.

したがって、操作量を正確に検出できる多方向入力装置100を提供することがきる。 Therefore, it is possible to provide a multidirectional input device 100 that can accurately detect the amount of operation.

また、中立状態からレバー190を傾倒させた状態でレバー190が下方に押し込まれても、磁気センサ130Bと磁石170の間の距離を一定に保つことができるため、磁気センサ130Bが検出する磁界の強度の変化量に基づいてレバー190を傾倒させた量を正確に検出できる。また、レバー190が押し込まれたことは、メタルコンタクト130Aによって検出可能である。 Furthermore, even if the lever 190 is pushed downward in a state where the lever 190 is tilted from the neutral state, the distance between the magnetic sensor 130B and the magnet 170 can be kept constant, so that the magnetic field detected by the magnetic sensor 130B is The amount by which the lever 190 is tilted can be accurately detected based on the amount of change in strength. Moreover, the fact that the lever 190 has been pushed can be detected by the metal contact 130A.

したがって、中立状態からレバー190を傾倒させた状態でレバー190が下方に押し込まれても、レバー190を傾倒する操作量を正確に検出できる多方向入力装置100を提供することがきる。 Therefore, it is possible to provide a multi-directional input device 100 that can accurately detect the amount of operation for tilting the lever 190 even if the lever 190 is pushed downward in a state where the lever 190 is tilted from a neutral state.

また、カバー180のドーム部182の下面がケース110のドーム部112の上面に当接するときには、図7に示すように、ドーム部112よりも半径が大きいドーム部182の下面182Aがドーム部112の上面112Bに当接する。このような構成により、レバー190が中立位置から下方向に押し込まれても、又は、2軸方向のいずれかの方向に傾倒された状態から下方向に押し込まれても、ドーム部112の上面に、ドーム部182の下面が当接することになる。 Furthermore, when the lower surface of the dome section 182 of the cover 180 comes into contact with the upper surface of the dome section 112 of the case 110, as shown in FIG. It comes into contact with the upper surface 112B. With this configuration, even if the lever 190 is pushed downward from the neutral position or pushed downward from a state where it is tilted in either of the two axial directions, the upper surface of the dome portion 112 is , the lower surface of the dome portion 182 comes into contact.

このため、レバー190が下方向に押し込まれたときに、レバー190の操作量を一定量にすることができるとともに、操作量を安定的に規制することができる。また、レバー190が一定量以上押し込まれることを効果的に抑制することができる。 Therefore, when the lever 190 is pushed downward, the amount of operation of the lever 190 can be set to a constant amount, and the amount of operation can be stably regulated. Further, it is possible to effectively prevent the lever 190 from being pushed in more than a certain amount.

以上のように、レバー190を下方向に押し込むと、カバー180のドーム部182の下面182Aがケース110のドーム部112の上面112Bに当接することにより、メタルコンタクト130Aが反転する以上にレバー190を下方向に押し込むことはできないようになっている。このため、磁気センサ130Bや電子部品125B等の破損を抑制することができる。 As described above, when the lever 190 is pushed downward, the lower surface 182A of the dome portion 182 of the cover 180 comes into contact with the upper surface 112B of the dome portion 112 of the case 110, and the lever 190 is pushed more than the metal contact 130A is reversed. It is designed so that it cannot be pushed downward. Therefore, damage to the magnetic sensor 130B, electronic component 125B, etc. can be suppressed.

<第2実施形態>
以下、本発明の第2実施形態について説明する。
<Second embodiment>
A second embodiment of the present invention will be described below.

(多方向入力装置200の概要)
図8は、第2実施形態に係る多方向入力装置200の外観斜視図である。なお、以降の説明では、便宜上、図中Z軸方向を、上下方向とし、図中X軸方向および図中Y軸方向を、水平方向とする。
(Overview of multi-directional input device 200)
FIG. 8 is an external perspective view of a multidirectional input device 200 according to the second embodiment. In addition, in the following description, for convenience, the Z-axis direction in the figure is assumed to be the vertical direction, and the X-axis direction in the figure and the Y-axis direction in the figure are assumed to be the horizontal direction.

図8に示す多方向入力装置200は、ゲーム機等のコントローラ等に用いられる。図8に示すように、多方向入力装置200は、フレーム210とケース230とが組み合わされることにより、概ね直方体形状を有する容器状を有する。また、図8に示すように、多方向入力装置200は、フレーム210の開口部210Aから上方に向って延在する柱状の、傾倒操作可能なレバー220を有する。多方向入力装置200は、レバー220によるX軸方向(図中矢印D1,D2方向)およびY軸方向(図中矢印D3,D4方向)のみならず、これらの方向の間の全方向への傾倒操作が可能である。また、多方向入力装置200は、レバー220の傾倒操作(傾倒方向および傾倒角度)に応じた操作信号を、ケース230から下方に突出して設けられた金属端子262を介して外部へ出力することができる。また、多方向入力装置200は、レバー220による押下操作が可能であり、プッシュスイッチ234によって、当該押下操作を検出可能である。また、多方向入力装置200は、レバー220の押下操作に応じた操作信号を、プッシュスイッチ234から下方に突出して設けられた金属端子234Aを介して外部へ出力することができる。 A multidirectional input device 200 shown in FIG. 8 is used as a controller for a game machine or the like. As shown in FIG. 8, the multi-directional input device 200 has a container shape having an approximately rectangular parallelepiped shape due to the combination of the frame 210 and the case 230. Further, as shown in FIG. 8, the multi-directional input device 200 includes a column-shaped lever 220 that extends upward from the opening 210A of the frame 210 and is tiltable. The multi-directional input device 200 can be tilted not only in the X-axis direction (arrows D1 and D2 directions in the figure) and the Y-axis direction (arrows D3 and D4 directions in the figure) by the lever 220, but also in all directions between these directions. Operation is possible. Furthermore, the multi-directional input device 200 can output an operation signal corresponding to a tilting operation (tilting direction and tilting angle) of the lever 220 to the outside via a metal terminal 262 provided to protrude downward from the case 230. can. Furthermore, the multi-directional input device 200 can be operated by pressing the lever 220, and the push switch 234 can detect the pressing operation. Further, the multi-directional input device 200 can output an operation signal corresponding to a pressing operation of the lever 220 to the outside via a metal terminal 234A provided to protrude downward from the push switch 234.

(多方向入力装置200の構成)
図9は、第2実施形態に係る多方向入力装置200(フレーム210が取り外された状態)の外観斜視図である。図10は、第2実施形態に係る多方向入力装置200の分解斜視図である。図11は、第2実施形態に係る多方向入力装置200の斜視断面図である。図12は、第2実施形態に係る多方向入力装置200(フレーム210およびアクチュエータ240を取り除いた状態)の上面図である。
(Configuration of multi-directional input device 200)
FIG. 9 is an external perspective view of the multidirectional input device 200 (with the frame 210 removed) according to the second embodiment. FIG. 10 is an exploded perspective view of a multidirectional input device 200 according to the second embodiment. FIG. 11 is a perspective cross-sectional view of a multidirectional input device 200 according to the second embodiment. FIG. 12 is a top view of the multidirectional input device 200 (with the frame 210 and actuator 240 removed) according to the second embodiment.

図9~図11に示すように、多方向入力装置200は、フレーム210、レバー220、ケース230、アクチュエータ240、ホルダユニット250、基板260、付勢体270、コイルばね271、および当接部材280を備える。 As shown in FIGS. 9 to 11, the multidirectional input device 200 includes a frame 210, a lever 220, a case 230, an actuator 240, a holder unit 250, a substrate 260, a biasing body 270, a coil spring 271, and a contact member 280. Equipped with.

フレーム210は、下部が開口したカバー状の部材である。フレーム210は、概ね下部が開口した直方体形状を有する。フレーム210は、金属板が各種加工方法(例えば、パンチング加工、折り曲げ加工等のプレス加工)によって加工されることによって形成される。フレーム210は、水平且つ平面視において矩形状を有する平板部211と、平板部211の4辺の各々から下方に垂下して設けられた4つの垂直壁部212とを有する。平板部211は、その中央部に、平面視において円形状をなす開口部210Aが形成されている。 The frame 210 is a cover-like member with an open bottom. The frame 210 has a generally rectangular parallelepiped shape with an open bottom. The frame 210 is formed by processing a metal plate using various processing methods (for example, pressing processing such as punching processing and bending processing). The frame 210 includes a flat plate part 211 having a rectangular shape in a horizontal and plan view, and four vertical walls 212 provided to hang downward from each of the four sides of the flat plate part 211. The flat plate portion 211 has an opening 210A formed in the center thereof, which is circular in plan view.

レバー220は、操作者によって傾倒操作がなされる部材である。レバー220は、レバー部221、軸部222、回転軸部223、およびフランジ部224を有する。レバー部221は、フレーム210の開口部210Aから上方に向って延在する概ね円柱状の部分であって、操作者によって傾倒操作がなされる部分である。軸部222は、フレーム210の内部においてレバー220の下端部を支持し、レバー部221の傾倒操作に伴って、回転軸部223を回転中心として回動する、概ねレバー部221よりも太い円柱状の部分である。回転軸部223は、軸部222の外周側面における下端部の近傍から、Y軸正方向およびY軸負方向の各々に突出して設けられている。回転軸部223は、アクチュエータ240によって支持されることにより、レバー220をX軸方向に傾動可能にする。フランジ部224は、軸部222の外周側面における下端部から、外側に張り出して設けられた円盤状の部分である。レバー220の軸部222の内部には、円柱状の収容部225が形成されている。収容部225は、下方が開口した空間である。収容部225には、ホルダユニット250が組み込まれる。 The lever 220 is a member that can be tilted by the operator. The lever 220 has a lever portion 221 , a shaft portion 222 , a rotating shaft portion 223 , and a flange portion 224 . The lever portion 221 is a generally cylindrical portion that extends upward from the opening 210A of the frame 210, and is a portion that is tilted by the operator. The shaft portion 222 supports the lower end portion of the lever 220 inside the frame 210, and rotates around a rotating shaft portion 223 as the lever portion 221 is tilted. This is the part. The rotating shaft portion 223 is provided so as to protrude in the Y-axis positive direction and the Y-axis negative direction from near the lower end portion of the outer circumferential side surface of the shaft portion 222 . The rotating shaft portion 223 is supported by the actuator 240, thereby allowing the lever 220 to tilt in the X-axis direction. The flange portion 224 is a disk-shaped portion extending outward from the lower end of the outer circumferential side of the shaft portion 222 . A cylindrical housing portion 225 is formed inside the shaft portion 222 of the lever 220 . The housing portion 225 is a space that is open at the bottom. A holder unit 250 is incorporated into the accommodating portion 225 .

ケース230は、上部が開口した概ね薄型の直方体形状を有する部材である。ケース230は、樹脂素材が射出成型されることによって形成される。ケース230は、底板部231、4つの垂直壁部232、および4本のスライドリブ233(「ガイド部」の一例)を有する。底板部231は、平面視において矩形状を有する、水平な平板状の部分である。4つの垂直壁部232は、底板部231の4辺の各々から、上方に起立して設けられている。4本のスライドリブ233は、底板部231の4つ角の各々から、上方に延在して設けられている。4本のスライドリブ233の各々は、内側の縁部が、ケース230の中心を向いて設けられている。ケース230の一の垂直壁部232には、プッシュスイッチ234およびプッシュスイッチホルダ235が設けられる。プッシュスイッチ234は、アクチュエータ240の一の回動軸241に下側に配置される。プッシュスイッチ234は、レバー220の押下操作がなされたときに、アクチュエータ240の一の回動軸241によって押下され、スイッチオン状態となる。プッシュスイッチ234は、底面から突出して設けられた、複数の金属端子234Aを有する。プッシュスイッチ234は、複数の金属端子234Aを介して、レバー220の押下操作に応じた操作信号を、外部へ出力することができる。プッシュスイッチホルダ235は、保持部235Aによって、プッシュスイッチ234を上方から保持する。また、プッシュスイッチホルダ235は、下側から略円形状に切り欠かれた切り欠き部235Bによって、アクチュエータ240の一の回動軸241を、回動可能且つ下方に移動可能に支持する。 The case 230 is a generally thin rectangular parallelepiped member with an open top. Case 230 is formed by injection molding a resin material. The case 230 has a bottom plate part 231, four vertical wall parts 232, and four slide ribs 233 (an example of a "guide part"). The bottom plate portion 231 is a horizontal flat plate-like portion having a rectangular shape in plan view. The four vertical wall sections 232 are provided to stand upward from each of the four sides of the bottom plate section 231 . The four slide ribs 233 are provided extending upward from each of the four corners of the bottom plate portion 231 . Each of the four slide ribs 233 is provided with an inner edge facing toward the center of the case 230. A push switch 234 and a push switch holder 235 are provided on one vertical wall portion 232 of the case 230. The push switch 234 is arranged below one rotation shaft 241 of the actuator 240 . When the lever 220 is pressed down, the push switch 234 is pressed down by one rotating shaft 241 of the actuator 240, and is turned on. The push switch 234 has a plurality of metal terminals 234A protruding from the bottom surface. The push switch 234 can output an operation signal corresponding to the pressing operation of the lever 220 to the outside via the plurality of metal terminals 234A. The push switch holder 235 holds the push switch 234 from above using a holding portion 235A. Further, the push switch holder 235 supports one rotation shaft 241 of the actuator 240 so as to be rotatable and movable downward through a cutout portion 235B cut out in a substantially circular shape from the lower side.

アクチュエータ240は、レバー220をX軸方向に傾動可能に支持する。また、アクチュエータ240は、ケース230およびフレーム210によってY軸方向に傾動可能に支持されることにより、レバー220とともにY軸方向に傾動可能である。アクチュエータ240は、X軸方向における両端部の各々に外側に突出して設けられた回動軸241を有しており、当該回動軸241がケース230およびフレーム210によって支持されることにより、当該回動軸241を回転中心として、Y軸方向に回動可能に設けられる。また、アクチュエータ240は、X軸方向に延在する長穴形状の開口部242を有する。開口部242には、レバー220が挿通される。また、アクチュエータ240は、Y軸方向における両端部の各々に、下方に突出して設けられた軸受部243を有する。軸受部243は、レバー220の回転軸部223を、回動可能に軸支する。 Actuator 240 supports lever 220 so as to be tiltable in the X-axis direction. In addition, the actuator 240 is supported by the case 230 and the frame 210 so as to be tiltable in the Y-axis direction, so that the actuator 240 can be tilted in the Y-axis direction together with the lever 220. The actuator 240 has a rotation shaft 241 provided at each end in the X-axis direction so as to protrude outward. It is provided so as to be rotatable in the Y-axis direction about the moving shaft 241 as the rotation center. Further, the actuator 240 has an opening 242 in the shape of a long hole extending in the X-axis direction. The lever 220 is inserted through the opening 242. Further, the actuator 240 has bearing portions 243 provided at each of both ends in the Y-axis direction so as to protrude downward. The bearing portion 243 rotatably supports the rotating shaft portion 223 of the lever 220 .

ホルダユニット250は、ホルダ251、コイルばね252、および磁石253を有する。ホルダ251は、「可動軸部材」の一例であり、上下方向を長手方向とする円筒状の部材である。ホルダ251は、レバー220の収容部225に、上下方向に移動可能に設けられる。ホルダ251の筒内部251Aには、コイルばね252および磁石253が組み込まれる(図11参照)。ホルダ251は、樹脂素材が用いられて形成される。ホルダ251の下側の一部は、収容部225から下方に突出する。ホルダ251の底部には、曲面状凸部251Bが形成されている。曲面状凸部251Bは、レバー220の回転中心を中心とする所定の半径の球の球面の一部によって形成されている。コイルばね252は、「第1の付勢部材」の一例である。ホルダ251の外周側面には、上下方向に延在するリブ251Cが形成されている。リブ251Cは、レバー220の収容部225の内周面に上下方向に延在して形成されたスリット225Aに係合することにより、ホルダ251の回転を防止する。コイルばね252は、ホルダ251の筒内部251Aにおいて、磁石253の上側に配置される。コイルばね252の上端は、レバー220の収容部225の天井面に当接する。コイルばね252の下端は、磁石253の上面に当接する。コイルばね252は、ホルダ251を下方に付勢する。磁石253は、永久磁石であり、ホルダ251の筒内部251Aの底部に配置される。磁石253は、上側の半分がS極に着磁されており、下側の半分がN極に着磁されている。なお、磁石253のN極とS極の着磁の上下構成は、これと逆であってよく、磁気センサ261の構成によって適宜変更可能である。 Holder unit 250 includes a holder 251, a coil spring 252, and a magnet 253. The holder 251 is an example of a "movable shaft member" and is a cylindrical member whose longitudinal direction is the vertical direction. The holder 251 is provided in the accommodating portion 225 of the lever 220 so as to be movable in the vertical direction. A coil spring 252 and a magnet 253 are incorporated into the cylindrical interior 251A of the holder 251 (see FIG. 11). The holder 251 is formed using a resin material. A portion of the lower side of the holder 251 protrudes downward from the accommodating portion 225. A curved convex portion 251B is formed at the bottom of the holder 251. The curved convex portion 251B is formed by a part of the spherical surface of a sphere having a predetermined radius centered on the rotation center of the lever 220. The coil spring 252 is an example of a "first biasing member." A rib 251C extending in the vertical direction is formed on the outer peripheral side surface of the holder 251. The rib 251C prevents the holder 251 from rotating by engaging with a slit 225A formed on the inner peripheral surface of the housing portion 225 of the lever 220 and extending in the vertical direction. The coil spring 252 is arranged above the magnet 253 in the cylindrical interior 251A of the holder 251. The upper end of the coil spring 252 contacts the ceiling surface of the housing portion 225 of the lever 220. The lower end of the coil spring 252 contacts the upper surface of the magnet 253. Coil spring 252 urges holder 251 downward. The magnet 253 is a permanent magnet, and is arranged at the bottom of the cylindrical interior 251A of the holder 251. The upper half of the magnet 253 is magnetized to the south pole, and the lower half is magnetized to the north pole. Note that the vertical configuration of the magnetization of the N and S poles of the magnet 253 may be reversed, and can be changed as appropriate depending on the configuration of the magnetic sensor 261.

基板260は、各種電子部品が実装される、平板状の部材である。基板260の上面の中央には、磁気センサ261が実装されている。磁気センサ261は、磁石253による磁場の変化を検出する。例えば、磁気センサ261は、X軸方向の磁場の変化を検出する素子と、Y軸方向の磁場の変化を検出する素子と、Z軸方向の磁場の変化を検出する素子を有して構成されている。また、基板260には、複数本の金属端子262が下方に突出して設けられている。金属端子262は、磁気センサ261によって検出された、磁石253による磁場の変化を示す信号を、レバー220の傾倒操作に応じた操作信号として、外部へ向けて出力する。基板260には、例えば、PWB(Printed Wiring Board)等が用いられる。 The board 260 is a flat member on which various electronic components are mounted. A magnetic sensor 261 is mounted at the center of the upper surface of the substrate 260. Magnetic sensor 261 detects changes in the magnetic field caused by magnet 253. For example, the magnetic sensor 261 includes an element that detects changes in the magnetic field in the X-axis direction, an element that detects changes in the magnetic field in the Y-axis direction, and an element that detects changes in the magnetic field in the Z-axis direction. ing. Furthermore, a plurality of metal terminals 262 are provided on the substrate 260 and protrude downward. The metal terminal 262 outputs a signal indicating a change in the magnetic field caused by the magnet 253 detected by the magnetic sensor 261 to the outside as an operation signal corresponding to the tilting operation of the lever 220. For example, a PWB (Printed Wiring Board) or the like is used as the substrate 260.

付勢体270は、レバー220の下側に、上下方向に移動可能に設けられる、樹脂製の部材である。付勢体270は、ホルダ251が挿通される開口270Aを中央部に有する。付勢体270は、レバー220の傾倒に伴って、レバー220に設けられたフランジ部224によって、開口270Aの周辺部において押し下げられる。図12に示すように、本実施形態では、付勢体270は、当該付勢体270の中心から90度間隔で4方向に延在する4つ腕部270Bを有する。また、図12に示すように、付勢体270は、4つの腕部270Bの各々の先端部に、上下方向(Z軸方向)に延在するスライド溝270C(「被ガイド部」の一例)が設けられている。図12に示すように、各スライド溝270Cは、ケース230に設けられた各スライドリブ233に係合する。これにより、付勢体270の上下方向(Z軸方向)の移動は、4つ腕部270Bの各々の先端部分において、スライド溝270Cおよびスライドリブ233によってガイドされる。 The biasing body 270 is a resin member provided below the lever 220 so as to be movable in the vertical direction. The biasing body 270 has an opening 270A in the center thereof through which the holder 251 is inserted. The biasing body 270 is pushed down around the opening 270A by the flange portion 224 provided on the lever 220 as the lever 220 is tilted. As shown in FIG. 12, in this embodiment, the biasing body 270 has four arm portions 270B extending in four directions at 90 degree intervals from the center of the biasing body 270. Further, as shown in FIG. 12, the biasing body 270 has a slide groove 270C (an example of a "guided part") extending in the vertical direction (Z-axis direction) at the tip of each of the four arm parts 270B. is provided. As shown in FIG. 12, each slide groove 270C engages with each slide rib 233 provided on the case 230. As a result, movement of the biasing body 270 in the vertical direction (Z-axis direction) is guided by the slide groove 270C and the slide rib 233 at the tip portion of each of the four arm portions 270B.

コイルばね271は、「第2の付勢部材」の一例である。コイルばね271は、付勢体270の下側に設けられ、付勢体270を上方に付勢することにより、付勢体270を介して、レバー220のフランジ部224を押し上げて、レバー220を中立状態に復帰させる。本実施形態では、多方向入力装置200は、付勢体270の4つの腕部270Bの各々の下側に、4つのコイルばね271の各々を備える。これにより、付勢体270は、4つのコイルばね271によって、4つの腕部270Bの各々が均等に付勢される。 The coil spring 271 is an example of a "second biasing member". The coil spring 271 is provided below the biasing body 270, and by biasing the biasing body 270 upward, the flange portion 224 of the lever 220 is pushed up via the biasing body 270, and the lever 220 is moved. Return to neutral state. In this embodiment, the multidirectional input device 200 includes four coil springs 271 below each of the four arm portions 270B of the biasing body 270. As a result, each of the four arm portions 270B of the biasing body 270 is equally biased by the four coil springs 271.

当接部材280は、付勢体270の下側に設けられる、樹脂製の部材である。当接部材280は、その中央部(すなわち、ホルダ251の曲面状凸部251Bと対向する位置)に、曲面状凹部281を有する。曲面状凹部281は、概ね半球状に凹んだ形状を有する。曲面状凹部281は、ホルダ251の曲面状凸部251Bと同様に、レバー220の回転中心を中心とする所定の半径の円の円周に沿って形成されている。曲面状凹部281は、上方からホルダ251の曲面状凸部251Bが当接し、レバー220の傾倒に伴って、曲面状凸部251Bが摺動する。なお、曲面状凹部281の曲率半径は、曲面状凸部251Bの曲率半径と等しい。当接部材280は、当該当接部材280の中心に対して90度間隔で4方向に突出して設けられたホルダ部282を有する。各ホルダ部282は、上方に向かって突出した円柱状の凸部283を有しており、当該凸部283がコイルばね271の内側に下側から入り込んだ状態で、コイルばね271の下端部を支持する。コイルばね271からの下方への付勢力は、基板260の上面に作用することで、基板260をケース230に固定する。 The contact member 280 is a resin member provided below the biasing body 270. The abutting member 280 has a curved recess 281 at its center (that is, at a position facing the curved protrusion 251B of the holder 251). The curved recess 281 has a generally hemispherical recessed shape. The curved concave portion 281, like the curved convex portion 251B of the holder 251, is formed along the circumference of a circle having a predetermined radius centered on the rotation center of the lever 220. The curved convex portion 251B of the holder 251 contacts the curved concave portion 281 from above, and as the lever 220 is tilted, the curved convex portion 251B slides. Note that the radius of curvature of the curved concave portion 281 is equal to the radius of curvature of the curved convex portion 251B. The abutting member 280 has holder portions 282 that are provided to protrude in four directions at 90 degree intervals with respect to the center of the abutting member 280 . Each holder portion 282 has a cylindrical convex portion 283 that protrudes upward, and when the convex portion 283 enters inside the coil spring 271 from below, it holds the lower end of the coil spring 271. To support. The downward biasing force from the coil spring 271 acts on the upper surface of the board 260, thereby fixing the board 260 to the case 230.

(多方向入力装置200の動作)
図13は、第2実施形態に係る多方向入力装置200の動作を説明するための図である。図13は、多方向入力装置200のレバー220の傾倒操作がなされた状態を示す。図13に示すように、第2実施形態に係る多方向入力装置200は、レバー220の傾倒操作がなされると、レバー220とともにホルダ251が傾倒する。この際、多方向入力装置200は、ホルダ251内に設けられた磁石253による磁界の変化を、当該磁石253の下側に設けられた磁気センサ261によって検出することにより、レバー220の傾倒操作の方向および角度を高精度に検出することができる。
(Operation of multi-directional input device 200)
FIG. 13 is a diagram for explaining the operation of the multidirectional input device 200 according to the second embodiment. FIG. 13 shows a state in which the lever 220 of the multidirectional input device 200 is tilted. As shown in FIG. 13, in the multidirectional input device 200 according to the second embodiment, when the lever 220 is tilted, the holder 251 is tilted together with the lever 220. As shown in FIG. At this time, the multidirectional input device 200 detects changes in the magnetic field caused by the magnet 253 provided in the holder 251 with the magnetic sensor 261 provided below the magnet 253, thereby controlling the tilting operation of the lever 220. Direction and angle can be detected with high precision.

この際、ホルダ251の曲面状凸部251Bが、当接部材280の曲面状凹部281に摺動することにより、レバー220に対するホルダ251の下方への移動が規制される。ここで、ホルダ251の曲面状凸部251Bと、当接部材280の曲面状凹部281とは、いずれも、レバー220の回転中心を中心とする円の円周に沿って形成されている。また、曲面状凸部251Bおよび曲面状凹部281は、曲率半径が互いに等しい。このため、レバー220およびホルダ251の傾倒角度に依らず、レバー220に対するホルダ251の下方への突出量は一定である。 At this time, the curved convex portion 251B of the holder 251 slides into the curved concave portion 281 of the abutment member 280, thereby restricting the downward movement of the holder 251 relative to the lever 220. Here, the curved convex portion 251B of the holder 251 and the curved concave portion 281 of the abutting member 280 are both formed along the circumference of a circle centered on the rotation center of the lever 220. Further, the curved convex portion 251B and the curved concave portion 281 have the same radius of curvature. Therefore, the amount of downward protrusion of the holder 251 relative to the lever 220 is constant regardless of the tilt angle of the lever 220 and the holder 251.

これにより、第2実施形態に係る多方向入力装置200は、レバー220およびホルダ251が傾倒した際に、磁石253と磁気センサ261との間の距離が殆ど変化しないようになっている。よって、第2実施形態に係る多方向入力装置200は、磁石253による磁界の不要な変動を抑制することができ、磁気センサ261による検出精度の低下を抑制できる。 Thereby, in the multidirectional input device 200 according to the second embodiment, when the lever 220 and the holder 251 are tilted, the distance between the magnet 253 and the magnetic sensor 261 hardly changes. Therefore, the multidirectional input device 200 according to the second embodiment can suppress unnecessary fluctuations in the magnetic field caused by the magnet 253, and can suppress a decrease in detection accuracy by the magnetic sensor 261.

また、第2実施形態に係る多方向入力装置200は、ホルダ251の曲面状凸部251Bと、当接部材280の曲面状凹部281と摺動する構成を採用しているため、ホルダ251の曲面状凸部251Bを平面に摺動させる構成と比較して、レバー220の傾倒操作が解除された際に、レバー220およびホルダ251を中立状態に復帰し易くすることができる。 Furthermore, since the multidirectional input device 200 according to the second embodiment is configured to slide on the curved convex portion 251B of the holder 251 and the curved concave portion 281 of the contact member 280, the curved surface of the holder 251 Compared to a configuration in which the convex portion 251B is slid on a plane, the lever 220 and the holder 251 can be more easily returned to the neutral state when the tilting operation of the lever 220 is released.

また、図13に示すように、第2実施形態に係る多方向入力装置200は、レバー220の傾倒操作がなされると、レバー220のフランジ部224が、付勢体270を押し下げる。この際、付勢体270は、4本の腕部270Bの各々が、4つのコイルばね271の各々によって均等に付勢されているため、4つのコイルばね271を均等に押し縮めながら、水平状態を維持したまま、下方へ移動することができる。そして、付勢体270は、4本の腕部270Bの各々が、4つのコイルばね271の各々によって均等に付勢されているため、押下操作が解除されたときに、水平状態を維持したまま、上方へ移動して、レバー220を中立状態に復帰させることができる。なお、付勢体270の上下方向への移動は、当該付勢体270に設けられた4つのスライド溝270Cと、ケース230に設けられた4つのスライドリブ233とによってガイドされるため、これによっても、付勢体270は、水平状態を維持したまま、下方へ移動することができる。 Further, as shown in FIG. 13, in the multi-directional input device 200 according to the second embodiment, when the lever 220 is tilted, the flange portion 224 of the lever 220 pushes down the biasing body 270. At this time, since each of the four arm portions 270B is equally urged by each of the four coil springs 271, the urging body 270 maintains the horizontal state while compressing the four coil springs 271 evenly. You can move downward while maintaining the . Since each of the four arm parts 270B is equally biased by each of the four coil springs 271, the biasing body 270 maintains a horizontal state when the pressing operation is released. , the lever 220 can be returned to the neutral state by moving upward. Note that the vertical movement of the biasing body 270 is guided by the four slide grooves 270C provided in the biasing body 270 and the four slide ribs 233 provided in the case 230. Also, the biasing body 270 can move downward while maintaining the horizontal state.

また、第2実施形態に係る多方向入力装置200は、レバー220が中立状態にあるときに、4つのコイルばね271の付勢力により、水平状態にある付勢体270を、レバー220のフランジ部224の下面に押し当てることができる。これにより、第2実施形態に係る多方向入力装置200は、レバー220が中立状態にあるときに、当該レバー220の中立状態を安定的に維持することができる。 Furthermore, when the lever 220 is in the neutral state, the multi-directional input device 200 according to the second embodiment uses the urging force of the four coil springs 271 to move the urging body 270 in the horizontal state to the flange portion of the lever 220. It can be pressed against the bottom surface of 224. Thereby, the multi-directional input device 200 according to the second embodiment can stably maintain the neutral state of the lever 220 when the lever 220 is in the neutral state.

また、第2実施形態に係る多方向入力装置200は、レバー220が中立状態のまま、レバー220の押下操作がなされた場合、レバー220によってアクチュエータ240の一の回動軸241が押し下げられ、当該一の回動軸241によって、プッシュスイッチ234が押下される。これにより、第2実施形態に係る多方向入力装置200は、レバー220の押下操作がなされたことを検知することができる。 Further, in the multi-directional input device 200 according to the second embodiment, when the lever 220 is pressed down while the lever 220 is in the neutral state, one rotation shaft 241 of the actuator 240 is pushed down by the lever 220, and the corresponding The push switch 234 is pressed down by the first rotating shaft 241 . Thereby, the multidirectional input device 200 according to the second embodiment can detect that the lever 220 has been pressed down.

この際、レバー220内に設けられているホルダ251の下方への移動は、当接部材280の曲面状凹部281によって規制される。このため、レバー220の下方への移動に伴って、レバー220とホルダ251との間に設けられたコイルばね252が押し縮められることにより、ホルダ251の高さ位置が変化することなく、レバー220が下方に移動する。 At this time, the downward movement of the holder 251 provided within the lever 220 is restricted by the curved recess 281 of the abutment member 280. Therefore, as the lever 220 moves downward, the coil spring 252 provided between the lever 220 and the holder 251 is compressed, so that the height position of the holder 251 does not change and the lever 220 moves downward.

これにより、第2実施形態に係る多方向入力装置200は、レバー220の押下操作がなされた際に、ホルダ251内に設けられている磁石253と磁気センサ261との間の距離が変化しないようになっている。よって、第2実施形態に係る多方向入力装置200は、レバー220の押下操作がなされた際の、磁石253による磁界の不要な変動を抑制することができ、よって、磁気センサ261による傾倒操作の誤検出を抑制できる。 As a result, the multi-directional input device 200 according to the second embodiment prevents the distance between the magnet 253 provided in the holder 251 and the magnetic sensor 261 from changing when the lever 220 is pressed down. It has become. Therefore, the multi-directional input device 200 according to the second embodiment can suppress unnecessary fluctuations in the magnetic field caused by the magnet 253 when the lever 220 is pressed down, and therefore the tilting operation caused by the magnetic sensor 261 can be suppressed. False detection can be suppressed.

また、図13に示すように、第2実施形態に係る多方向入力装置200は、レバー220が最大に傾斜した状態において、磁石253の最下端となる部分(底面の周縁部の一部)が、磁気センサ261の真上に位置する。すなわち、図13に示すように、磁石253の最下端となる部分を通る垂線L1が、磁気センサ261の上面と交差する。 Further, as shown in FIG. 13, in the multidirectional input device 200 according to the second embodiment, when the lever 220 is tilted to the maximum, the lowest end of the magnet 253 (part of the peripheral edge of the bottom surface) is , located directly above the magnetic sensor 261. That is, as shown in FIG. 13, a perpendicular line L1 passing through the lowest end of the magnet 253 intersects with the upper surface of the magnetic sensor 261.

これにより、第2実施形態に係る多方向入力装置200は、レバー220が最大に傾斜させた場合であっても、磁石253による磁界の変化を、磁気センサ261によって高感度に検出することができる。 Thereby, in the multidirectional input device 200 according to the second embodiment, even when the lever 220 is tilted to the maximum, the change in the magnetic field caused by the magnet 253 can be detected with high sensitivity by the magnetic sensor 261. .

また、図13に示すように、第2実施形態に係る多方向入力装置200において、レバー220のフランジ部224は、レバー220において、ホルダ251の曲面状凸部251Bよりも高い位置に設けられている。これにより、第2実施形態に係る多方向入力装置200は、レバー220の傾倒操作がなされた際に、フランジ部224を曲面状凸部251Bと同位置に設ける場合と比較して、フランジ部224の振れ幅を小さくすることができる。 Further, as shown in FIG. 13, in the multidirectional input device 200 according to the second embodiment, the flange portion 224 of the lever 220 is provided at a higher position than the curved convex portion 251B of the holder 251. There is. As a result, in the multi-directional input device 200 according to the second embodiment, when the lever 220 is tilted, the flange portion 224 is provided at the same position as the curved convex portion 251B. The amplitude of fluctuation can be reduced.

また、図13に示すように、第2実施形態に係る多方向入力装置200において、付勢体270は、レバー220の傾倒に伴ってフランジ部224によって押し下げられる。これにより、第2実施形態に係る多方向入力装置200は、レバー220の傾倒操作がなされた際に、付勢体270の開口270A内でレバー220とともに傾倒したホルダ251の最外側部が開口270Aの内周縁部に当接する前に、付勢体270がホルダ251の下方へ押し下げられるため、ホルダ251の最外側部251Dと開口270Aの内周縁部との当接が回避される。 Further, as shown in FIG. 13, in the multidirectional input device 200 according to the second embodiment, the biasing body 270 is pushed down by the flange portion 224 as the lever 220 is tilted. As a result, in the multi-directional input device 200 according to the second embodiment, when the lever 220 is tilted, the outermost part of the holder 251 that is tilted together with the lever 220 within the opening 270A of the biasing body 270 is Since the biasing body 270 is pushed down below the holder 251 before contacting the inner peripheral edge of the opening 270A, contact between the outermost part 251D of the holder 251 and the inner peripheral edge of the opening 270A is avoided.

なお、第2実施形態では、腕部270B、スライド溝270C、およびスライドリブ233が設けられている「4方向」を、いずれも、X軸とY軸との間の中間方向(45度異なる方向)としてるが、これに限らない。例えば、当該「4方向」を、いずれも、X軸またはY軸と同方向としてもよい。 In addition, in the second embodiment, the "four directions" in which the arm portion 270B, the slide groove 270C, and the slide rib 233 are provided are all intermediate directions between the X axis and the Y axis (directions different by 45 degrees). ), but it is not limited to this. For example, all of the "four directions" may be the same direction as the X axis or the Y axis.

また、第2実施形態では、腕部270B、スライド溝270C、およびスライドリブ233を、「4方向」の各々に設けているが、これに限らない。例えば、腕部270B、スライド溝270C、およびスライドリブ233を、3方向の各々に設けてもよい。 Further, in the second embodiment, the arm portion 270B, the slide groove 270C, and the slide rib 233 are provided in each of the "four directions", but the present invention is not limited thereto. For example, the arm portion 270B, the slide groove 270C, and the slide rib 233 may be provided in each of the three directions.

また、第2実施形態では、ケース230側の「ガイド部」をスライドリブ233とし、付勢体270側の「被ガイド部」をスライド溝270Cとしているが、これに限らない。例えば、ケース230側の「ガイド部」をスライド溝とし、付勢体270側の「被ガイド部」をスライドリブとしてもよい。 Furthermore, in the second embodiment, the "guide section" on the case 230 side is the slide rib 233, and the "guided section" on the biasing body 270 side is the slide groove 270C, but the present invention is not limited thereto. For example, the "guide section" on the case 230 side may be a slide groove, and the "guided section" on the biasing body 270 side may be a slide rib.

また、第2実施形態では、付勢体270が4つの腕部270Bの各々にスライド溝270Cを有する構成としているが、これに限らず、4つの腕部270Bを有さずに、4つのスライド溝270Cを有する構成としてもよい。例えば、付勢体270は、平面視において矩形状を有し、4つ角部の各々に、スライド溝270Cを有する構成としてもよい)。 Further, in the second embodiment, the biasing body 270 is configured to have the slide groove 270C in each of the four arm portions 270B, but the present invention is not limited to this. A configuration having a groove 270C may also be used. For example, the biasing body 270 may have a rectangular shape in plan view, and may have a slide groove 270C at each of the four corners).

以上、本発明の例示的な実施形態の多方向入力装置について説明したが、本発明は、具体的に開示された実施形態、用途に限定されるものではなく、特許請求の範囲から逸脱することなく、種々の変形や変更が可能であり、一例として本発明に係る多方向入力装置はゲームコントローラに用いられてもよい。 Although the multi-directional input device according to the exemplary embodiment of the present invention has been described above, the present invention is not limited to the specifically disclosed embodiments and applications, and may depart from the scope of the claims. However, various modifications and changes are possible, and for example, the multidirectional input device according to the present invention may be used as a game controller.

本国際出願は、2020年9月9日に出願した日本国特許出願第2020-151597号、および、2021年2月24日に出願した日本国特許出願第2021-027511号に基づく優先権を主張するものであり、当該出願の全内容を本国際出願に援用する。 This international application claims priority based on Japanese Patent Application No. 2020-151597 filed on September 9, 2020 and Japanese Patent Application No. 2021-027511 filed on February 24, 2021. The entire content of the application is hereby incorporated by reference into this international application.

100 多方向入力装置
110 ケース
120 フレーム
130A メタルコンタクト
130B 磁気センサ
160A、160B アクチュエータ
160C スペーサ
162C 湾曲部
160D、160E ばね
170 磁石
180 カバー
185 磁気シールド
190 レバー
200 多方向入力装置
210 フレーム
220 レバー(操作部材)
221 レバー部
222 軸部
223 回転軸部
224 フランジ部
230 ケース
233 スライドリブ(ガイド部)
240 アクチュエータ
250 ホルダユニット
251 ホルダ(可動軸部材)
251B 曲面状凸部
252 コイルばね(第1の付勢部材)
253 磁石
260 基板
261 磁気センサ
270 付勢体
270A 開口
270B 腕部
270C スライド溝(被ガイド部)
271 コイルばね(第2の付勢部材)
280 当接部材
281 曲面状凹部
100 Multidirectional input device 110 Case 120 Frame 130A Metal contact 130B Magnetic sensor 160A, 160B Actuator 160C Spacer 162C Curved portion 160D, 160E Spring 170 Magnet 180 Cover 185 Magnetic shield 190 Lever 200 Multidirectional input device 210 Frame 220 Lever (operation member)
221 Lever part 222 Shaft part 223 Rotating shaft part 224 Flange part 230 Case 233 Slide rib (guide part)
240 Actuator 250 Holder unit 251 Holder (movable shaft member)
251B Curved convex portion 252 Coil spring (first biasing member)
253 Magnet 260 Substrate 261 Magnetic Sensor 270 Urging Body 270A Opening 270B Arm 270C Slide Groove (Guided Part)
271 Coil spring (second biasing member)
280 Contact member 281 Curved recess

Claims (14)

開口部を有する筐体と、
前記開口部に差し込まれる軸部を有し、前記筐体に対して傾倒する操作が可能な操作部材と、
前記操作部材の下方に配置される板状部材と、
前記軸部内に挿通され、下端が前記板状部材に当接する筒状の可動軸と、
前記可動軸の内部に配置され、前記板状部材に当接するスペーサと、
前記可動軸の内部で前記スペーサの上に配置される磁石と、
前記スペーサの下方に配置される磁気センサと、
前記操作部材と前記可動軸との間に設けられ、前記操作部材に対して前記可動軸を下方に付勢する第1ばねと、
前記操作部材と前記磁石との間に設けられ、前記操作部材に対して前記磁石を下方に付勢する第2ばねと
を含む、多方向入力装置。
a casing having an opening;
an operating member having a shaft inserted into the opening and capable of being tilted relative to the housing;
a plate-like member disposed below the operating member;
a cylindrical movable shaft that is inserted into the shaft portion and whose lower end abuts the plate-like member;
a spacer disposed inside the movable shaft and abutting the plate member;
a magnet disposed on the spacer inside the movable shaft;
a magnetic sensor disposed below the spacer;
a first spring provided between the operating member and the movable shaft and urging the movable shaft downward with respect to the operating member;
a second spring provided between the operating member and the magnet and biasing the magnet downward with respect to the operating member.
前記スペーサは、前記板状部材に当接する湾曲面を有する、請求項1に記載の多方向入力装置。 The multidirectional input device according to claim 1, wherein the spacer has a curved surface that comes into contact with the plate-like member. 前記湾曲面は、前記磁石の下端面の中央を中心として所定の曲率半径で湾曲する湾曲面である、請求項2に記載の多方向入力装置。 The multidirectional input device according to claim 2, wherein the curved surface is a curved surface that curves at a predetermined radius of curvature centered on the center of the lower end surface of the magnet. 前記磁石は円柱状であり、
前記可動軸は、前記磁石が収納される円柱状の内部空間を有し、
前記内部空間は、上部と下部を有し、前記下部の内径は前記上部の内径よりも大きい、請求項1乃至3のいずれか1項に記載の多方向入力装置。
the magnet is cylindrical;
The movable shaft has a cylindrical internal space in which the magnet is housed,
The multidirectional input device according to any one of claims 1 to 3, wherein the internal space has an upper part and a lower part, and the inner diameter of the lower part is larger than the inner diameter of the upper part.
前記操作部材の前記軸部は、前記可動軸に対して下方に移動可能であり、
前記操作部材が下方に押圧されると、前記第1ばね及び前記第2ばねが収縮することによって前記軸部が前記可動軸に対して下方に移動する、請求項1乃至4のいずれか1項に記載の多方向入力装置。
The shaft portion of the operating member is movable downward with respect to the movable shaft,
5. Any one of claims 1 to 4, wherein when the operating member is pressed downward, the first spring and the second spring contract, thereby moving the shaft portion downward with respect to the movable shaft. The multi-directional input device described in .
軸部を有する傾倒操作可能な操作部材と、
前記軸部の内部に上下方向に移動可能に設けられ、一部が前記軸部から下方に突出し、底部に曲面状凸部を有する可動軸部材と、
前記軸部の内部に設けられ、前記可動軸部材を下方に付勢する第1の付勢部材と、
前記可動軸部材の内部に配置された磁石と、
前記可動軸部材の下方に配置された磁気センサと、
前記可動軸部材の前記曲面状凸部と対向する位置に設けられ、前記操作部材の傾倒に伴って、前記曲面状凸部が摺動する曲面状凹部を有する当接部材と、
上下方向に移動可能に設けられ、前記可動軸部材が挿通される開口を中央部に有し、前記操作部材の傾倒に伴って、前記操作部材に設けられたフランジ部によって、前記開口の周辺部において押し下げられる付勢体と、
前記付勢体を上方に付勢することにより、前記付勢体を介して、前記操作部材を中立状態に復帰させる第2の付勢部材と
を備える多方向入力装置。
an operating member having a shaft portion and capable of being tilted;
a movable shaft member that is provided inside the shaft part so as to be movable in the vertical direction, a part of which protrudes downward from the shaft part, and has a curved convex part at the bottom;
a first biasing member provided inside the shaft portion and biasing the movable shaft member downward;
a magnet disposed inside the movable shaft member;
a magnetic sensor disposed below the movable shaft member;
an abutment member provided at a position facing the curved convex portion of the movable shaft member and having a curved concave portion on which the curved convex portion slides as the operating member is tilted;
It is provided to be movable in the vertical direction and has an opening in the center through which the movable shaft member is inserted, and as the operating member is tilted, a flange portion provided on the operating member moves the peripheral area of the opening. a biasing body that is pushed down at the
and a second biasing member that returns the operating member to a neutral state via the biasing body by biasing the biasing body upward.
前記付勢体の外側に上下方向に延在して設けられた複数のガイド部をさらに備え、
前記付勢体は、
前記複数のガイド部の各々と係合する複数の被ガイド部を有し、上下方向の移動が、前記複数のガイド部および前記複数の被ガイド部によってガイドされる
請求項6に記載の多方向入力装置。
further comprising a plurality of guide portions extending vertically outside the biasing body,
The biasing body is
The multi-directional device according to claim 6, further comprising a plurality of guided parts that engage with each of the plurality of guide parts, and vertical movement is guided by the plurality of guide parts and the plurality of guided parts. input device.
前記付勢体は、
当該付勢体の中心から90度間隔を有する4方向の各々に、前記被ガイド部が設けられている
請求項7に記載の多方向入力装置。
The biasing body is
The multi-directional input device according to claim 7, wherein the guided portion is provided in each of four directions spaced apart by 90 degrees from the center of the biasing body.
前記付勢体は、
前記4方向の各々に延在する4つの腕部を有し、当該4つの腕部の各々の先端部に、前記被ガイド部が設けられている
請求項8記載の多方向入力装置。
The biasing body is
The multi-directional input device according to claim 8, comprising four arm portions extending in each of the four directions, and the guided portion is provided at a distal end portion of each of the four arm portions.
前記付勢体は、
前記4方向に設けられた4つの前記第2の付勢部材によって、均等に付勢される
請求項8または9に記載の多方向入力装置。
The biasing body is
The multidirectional input device according to claim 8 or 9, wherein the multidirectional input device is equally biased by the four second biasing members provided in the four directions.
前記操作部材が最大に傾斜した状態において、
前記磁石の最下端となる部分が、前記磁気センサの真上に位置する
請求項6から10のいずれか一項に記載の多方向入力装置。
When the operating member is at its maximum inclination,
The multidirectional input device according to any one of claims 6 to 10, wherein a lowermost portion of the magnet is located directly above the magnetic sensor.
前記フランジ部は、
前記操作部材において、前記可動軸部材の前記曲面状凸部よりも高い位置に設けられている
請求項6から11のいずれか一項に記載の多方向入力装置。
The flange portion is
The multi-directional input device according to any one of claims 6 to 11, wherein the operating member is provided at a higher position than the curved convex portion of the movable shaft member.
前記付勢体は、
前記操作部材の傾倒に伴って前記フランジ部によって前記可動軸部材の下方へ押し下げられることにより、前記付勢体の前記開口内で前記操作部材とともに傾倒した前記可動軸部材の最外側部と、前記付勢体の前記開口の内周縁部との当接が回避される
請求項6から12のいずれか一項に記載の多方向入力装置。
The biasing body is
The outermost part of the movable shaft member is pushed down by the flange portion as the operating member is tilted, and thereby is tilted together with the operating member within the opening of the biasing body; The multidirectional input device according to any one of claims 6 to 12, wherein contact between the biasing body and the inner peripheral edge of the opening is avoided.
前記操作部材は、押下操作がさらに可能であり、
前記操作部材の前記押下操作を検出するプッシュスイッチをさらに備え、
前記押下操作がなされた際に、前記第1の付勢部材が押し縮められることにより、前記磁石と前記磁気センサとの距離が変化しない
請求項6から13のいずれか一項に記載の多方向入力装置。
The operating member is further operable to press down;
further comprising a push switch that detects the pressing operation of the operating member,
The multidirectional magnetic sensor according to any one of claims 6 to 13, wherein the distance between the magnet and the magnetic sensor does not change because the first biasing member is compressed when the pressing operation is performed. input device.
JP2022547585A 2020-09-09 2021-09-06 multi-directional input device Active JP7387909B2 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2020151597 2020-09-09
JP2020151597 2020-09-09
JP2021027511 2021-02-24
JP2021027511 2021-02-24
PCT/JP2021/032675 WO2022054759A1 (en) 2020-09-09 2021-09-06 Multi-directional input device

Publications (2)

Publication Number Publication Date
JPWO2022054759A1 JPWO2022054759A1 (en) 2022-03-17
JP7387909B2 true JP7387909B2 (en) 2023-11-28

Family

ID=80631837

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022547585A Active JP7387909B2 (en) 2020-09-09 2021-09-06 multi-directional input device

Country Status (3)

Country Link
JP (1) JP7387909B2 (en)
CN (1) CN115917691A (en)
WO (1) WO2022054759A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5160918A (en) 1990-07-10 1992-11-03 Orvitek, Inc. Joystick controller employing hall-effect sensors
US5831554A (en) 1997-09-08 1998-11-03 Joseph Pollak Corporation Angular position sensor for pivoted control devices
JP2007323859A (en) 2006-05-30 2007-12-13 Toyo Denso Co Ltd Joystick type switching device
JP2012221342A (en) 2011-04-12 2012-11-12 Toyo Denso Co Ltd Joystick device
WO2019169086A1 (en) 2018-02-28 2019-09-06 Bourns, Inc. Non-contact hall-effect joystick

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5160918A (en) 1990-07-10 1992-11-03 Orvitek, Inc. Joystick controller employing hall-effect sensors
US5831554A (en) 1997-09-08 1998-11-03 Joseph Pollak Corporation Angular position sensor for pivoted control devices
JP2007323859A (en) 2006-05-30 2007-12-13 Toyo Denso Co Ltd Joystick type switching device
JP2012221342A (en) 2011-04-12 2012-11-12 Toyo Denso Co Ltd Joystick device
WO2019169086A1 (en) 2018-02-28 2019-09-06 Bourns, Inc. Non-contact hall-effect joystick

Also Published As

Publication number Publication date
JPWO2022054759A1 (en) 2022-03-17
CN115917691A (en) 2023-04-04
WO2022054759A1 (en) 2022-03-17

Similar Documents

Publication Publication Date Title
JP4551915B2 (en) Combined operation type input device
JP5385165B2 (en) Input device
JP2020181039A (en) Optical unit with shaking correction function
KR20080106098A (en) Multidirectional input device
US8378858B2 (en) Rotationally-operated input device
KR100689688B1 (en) Multi directional input device
KR101575631B1 (en) Driving assembly for image stabilization of digital camera
CN217484666U (en) Actuator for camera and camera module
JP2011119177A (en) Combined operation input device
JP7387909B2 (en) multi-directional input device
US11215900B2 (en) Shake correction device, optical unit with shake correction function, and method of manufacturing same
JP7367066B2 (en) multi-directional input device
US20070141920A1 (en) Lock mechanism for stage apparatus
JP5216030B2 (en) Multi-directional input device
CN115701643A (en) Multi-directional input device
JP4684217B2 (en) Multi-directional input device
JP2023000994A (en) Optical unit with shake correction function
JP2001155601A (en) Sensor for detecting tilt angle
CN109143721B (en) Tilting device for optical component, imaging device, optical device, and electronic apparatus
WO2023079967A1 (en) Multi-directional input device
CN115701644A (en) Multi-directional input device
JP7402288B2 (en) Image sensor drive device, camera device, and electronic equipment
JP2024013400A (en) Optical unit with shake correction function
CN220586385U (en) Actuator for optical image stabilization and camera module
CN115220281B (en) Optical unit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231115

R150 Certificate of patent or registration of utility model

Ref document number: 7387909

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150