JP7387296B2 - vehicle charging system - Google Patents

vehicle charging system Download PDF

Info

Publication number
JP7387296B2
JP7387296B2 JP2019093901A JP2019093901A JP7387296B2 JP 7387296 B2 JP7387296 B2 JP 7387296B2 JP 2019093901 A JP2019093901 A JP 2019093901A JP 2019093901 A JP2019093901 A JP 2019093901A JP 7387296 B2 JP7387296 B2 JP 7387296B2
Authority
JP
Japan
Prior art keywords
control
charging
received power
vehicle
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019093901A
Other languages
Japanese (ja)
Other versions
JP2020188668A (en
Inventor
靖幸 三谷
Original Assignee
河村電器産業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 河村電器産業株式会社 filed Critical 河村電器産業株式会社
Priority to JP2019093901A priority Critical patent/JP7387296B2/en
Publication of JP2020188668A publication Critical patent/JP2020188668A/en
Application granted granted Critical
Publication of JP7387296B2 publication Critical patent/JP7387296B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • Y02B70/3225Demand response systems, e.g. load shedding, peak shaving
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles
    • Y02T90/167Systems integrating technologies related to power network operation and communication or information technologies for supporting the interoperability of electric or hybrid vehicles, i.e. smartgrids as interface for battery charging of electric vehicles [EV] or hybrid vehicles [HEV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems
    • Y04S20/222Demand response systems, e.g. load shedding, peak shaving
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S30/00Systems supporting specific end-user applications in the sector of transportation
    • Y04S30/10Systems supporting the interoperability of electric or hybrid vehicles
    • Y04S30/14Details associated with the interoperability, e.g. vehicle recognition, authentication, identification or billing

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Description

本発明は車両充電システムに関し、詳しくデマンド制御に対応しつつ複数の車両の充電を同時に実施できる車両充電システムに関する。 The present invention relates to a vehicle charging system, and more particularly to a vehicle charging system that can simultaneously charge a plurality of vehicles while supporting demand control.

EVやPHV等の複数の車両を同時に充電する車両充電システムとして、例えば特許文献1の充電システムが知られている。特許文献1では、複数の充電器(充電スタンド)に接続された車両に対して、車両の充電量や車種、電池容量を加味して優先順位を設定し、優先順位に従い個々に充電が成された。また、全体の充電電力の最大電力量が設定されて、この最大電力量を超えないよう制御を実施した。 As a vehicle charging system that charges multiple vehicles such as EVs and PHVs at the same time, for example, the charging system disclosed in Patent Document 1 is known. In Patent Document 1, priorities are set for vehicles connected to a plurality of chargers (charging stations), taking into account the amount of charge, vehicle type, and battery capacity of the vehicles, and charging is performed individually according to the priorities. Ta. In addition, a maximum amount of power for the entire charging power was set, and control was carried out so as not to exceed this maximum amount of power.

特開2013-85440号公報JP2013-85440A

上記特許文献1の車両充電システムは、複数の条件を基に充電の優先度が設定されたため、個々の車両の充電を効率良く実施できた。
しかしながら、全体を制御する1つの制御部が個々の充電スタンドを制御するため、高性能な制御部が必要であった。また、充電器の台数に拡張性が無く、充電スタンドの増設に際しては充電システム全体の変更が必要であった。
In the vehicle charging system disclosed in Patent Document 1, charging priorities are set based on a plurality of conditions, so that each vehicle can be charged efficiently.
However, since one overall control unit controls each charging station, a high-performance control unit is required. Additionally, there is no expandability in the number of chargers, and when adding more charging stations, it is necessary to change the entire charging system.

そこで、本発明はこのような問題点に鑑み、全体を一括制御することなく、充電器に設けた制御部が個々に充電器の充電電流を制御することで、充電器の増減に対応し易くし、且つ全体の充電電流も制御できる車両充電システムを提供することを目的としている。 Therefore, in view of these problems, the present invention allows the control section provided in the charger to individually control the charging current of the charger, without controlling the whole charger at once, so that it is easy to cope with the increase or decrease in the number of chargers. It is an object of the present invention to provide a vehicle charging system in which the overall charging current can also be controlled.

上記課題を解決する為に、請求項1の発明は、車両を充電するための複数の充電器と、充電器の充電電流を制御する充電制御部とを有する車両充電システムであって、充電制御部は、商用電力からの受電電力を計測する電力量計から受電電力情報を入手して所定の基準値と比較し、その差分情報を出力する制御親機と、充電器のそれぞれに設置されて、個々に充電器の充電電流を制御する制御子機とを有し、制御子機は、制御親機が出力した差分情報を基に、商用電力からの受電電力が基準値を超えないよう充電電流を制御すると共に、制御を一定時間待機させるための待機時間を記憶する子機記憶部を有し、充電している車両の充電量が所定の閾値に達した状態で、受電電力が基準値に達していないとする差分情報を制御親機から受信したら、待機時間の経過を待って充電電流を増加させることを特徴とする。
この構成によれば、制御子機は受電電力が基準値を超えないように制御するため、基準値を例えば最大デマンド値或いはそれより小さい電力値に設定すれば、全体を制御する中央制御部を持たなくてもデマンド制御も実施できる。そして、制御親機は受電電力の基準値に対する差分情報を出力するだけで良いため、充電器の設置数を変更する際に制御親機の設定を変更する必要が無く、容易に充電器の増減を実施できる。
In order to solve the above problem, the invention of claim 1 provides a vehicle charging system having a plurality of chargers for charging a vehicle, and a charging control section for controlling the charging current of the chargers, the system comprising: The unit is installed in each of the charger and the control base unit that obtains received power information from a watt-hour meter that measures the received power from commercial power, compares it with a predetermined reference value, and outputs the difference information. , and a control slave unit that individually controls the charging current of the charger, and the control slave unit charges the battery so that the received power from commercial power does not exceed the reference value based on the difference information output by the control master unit. It has a handset storage unit that controls the current and stores a standby time for making the control standby for a certain period of time, and when the amount of charge of the vehicle being charged reaches a predetermined threshold, the received power is set to the reference value. The charging current is characterized in that when the difference information indicating that the charging current has not been reached is received from the control base unit, the charging current is increased after waiting time has elapsed.
According to this configuration, the control slave unit controls the received power so that it does not exceed the reference value, so if the reference value is set to, for example, the maximum demand value or a power value smaller than that, the central control unit that controls the entire unit can be controlled. Demand control can also be performed without having one. In addition, since the control base unit only needs to output difference information with respect to the reference value of received power, there is no need to change the settings of the control base unit when changing the number of installed chargers, and it is easy to increase or decrease the number of chargers. can be carried out.

加えて、充電電流が閾値に達している車両に対しては、一定時間(待機時間)が経過するまでは電流を増加しない。そのため、充電量が閾値に達していない車両に対しては、その待機時間を利用して充電電力を振り分けて増やすことができ、それぞれの充電器の充電電流を独立に制御しても、個々の充電器に接続された車両に対してバランスの良い充電を実施できる。 In addition, for vehicles whose charging current has reached a threshold value, the current is not increased until a certain period of time (standby time) has elapsed. Therefore, for vehicles whose charging amount has not reached the threshold, charging power can be distributed and increased using the standby time, and even if the charging current of each charger is controlled independently, each individual Balanced charging can be performed for vehicles connected to the charger.

請求項の発明は、請求項に記載の構成において、制御親機及び制御子機は無線通信部を備え、制御子機は、制御親機と無線通信して差分情報を入手することを特徴とする。
この構成によれば、制御親機と制御子機との間は無線通信するため、両者の間に信号線を配設する必要が無く、システムの施工性が良い。
The invention according to claim 2 is the configuration according to claim 1 , in which the controlling master device and the controlling slave device are provided with a wireless communication unit, and the controlling slave device wirelessly communicates with the controlling master device to obtain the difference information. Features.
According to this configuration, since the control master device and the control slave device communicate wirelessly, there is no need to arrange a signal line between the two, and the system is easy to install.

本発明によれば、制御子機は受電電力が基準値を超えないように制御するため、全体を制御する中央制御部を持たなくてもデマンド制御を実施できる。そして、制御親機は受電電力の基準値に対する差分情報を出力するだけで良いため、充電器の設置数を変更する際に制御親機の設定を変更する必要が無く、容易に充電器の増減を実施できる。 According to the present invention, since the control slave unit controls the received power so that it does not exceed the reference value, demand control can be performed without having a central control unit that controls the entire unit. In addition, since the control base unit only needs to output difference information with respect to the reference value of received power, there is no need to change the settings of the control base unit when changing the number of installed chargers, and it is easy to increase or decrease the number of chargers. can be carried out.

本発明に係る車両充電システムの一例を示す概略構成図である。1 is a schematic configuration diagram showing an example of a vehicle charging system according to the present invention. 制御親機のブロック図である。FIG. 3 is a block diagram of a control master device. 制御子機のブロック図である。FIG. 3 is a block diagram of a control slave device. 充電制御の流れを示すフローチャートである。It is a flowchart which shows the flow of charge control.

以下、本発明を具体化した実施の形態を、図面を参照して詳細に説明する。図1は本発明に係る車両充電システムの一例を示す構成図であり、スマートメータ(電力量計)10から商用電力Pの受電電力情報を入手する制御親機1と、制御親機1と通信して充電器2の充電電流を制御する制御子機3とを有し、充電器2に車両4から延びた充電ケーブルL1が接続された状態を示している。制御子機3は充電器2毎に設置されている。 Hereinafter, embodiments embodying the present invention will be described in detail with reference to the drawings. FIG. 1 is a configuration diagram showing an example of a vehicle charging system according to the present invention, in which a control base unit 1 obtains received power information of commercial power P from a smart meter (wattmeter) 10, and a control base unit 1 communicates with the control base unit 1. The controller has a controller 3 that controls the charging current of the charger 2, and a charging cable L1 extending from the vehicle 4 is connected to the charger 2. A control handset 3 is installed for each charger 2.

尚、5(5a,5b)は高圧で受電した電力を低圧電力に変換する降圧変圧器、6は三相電力が供給される空調機等の負荷、7は単相100/200Vが供給される照明等の負荷を示している。5aは三相変圧器、5bは単相変圧器であり、各充電器2には単相変圧器5bが出力する単相200Vの電力が供給される構成を示している。 In addition, 5 (5a, 5b) is a step-down transformer that converts the power received at high voltage into low voltage power, 6 is a load such as an air conditioner that is supplied with three-phase power, and 7 is supplied with single-phase 100/200V. Indicates the load of lighting, etc. 5a is a three-phase transformer, 5b is a single-phase transformer, and each charger 2 is supplied with single-phase 200V power output from the single-phase transformer 5b.

図2は制御親機1のブロック図を示している。図2に示すように、制御親機1はスマートメータ10から受電電力情報を入手する親機計測部11、基準値等を記憶する親機記憶部12、制御親機1を制御する親機CPU13、制御子機3と無線通信する親機通信部14等を備えている。スマートメータ10とは通信線L2を介して接続されている。 FIG. 2 shows a block diagram of the control master device 1. As shown in FIG. As shown in FIG. 2, the control base unit 1 includes a base unit measurement unit 11 that obtains received power information from the smart meter 10, a base unit storage unit 12 that stores reference values, etc., and a base unit CPU 13 that controls the control base unit 1. , a base unit communication unit 14 that wirelessly communicates with the control slave unit 3, and the like. It is connected to the smart meter 10 via a communication line L2.

図3は制御子機3のブロック図を示している。図3に示すように、制御子機3は制御親機1と無線通信する子機通信部31、充電量の閾値、後述する持続時間、待機時間等を記憶する子機記憶部32、制御子機3を制御する子機CPU33、充電器2に制御信号を出力する充電器制御部34等を備えている。充電器2とは伝送線L3を介して接続されている。
尚、制御子機3と充電器2とは一体に形成しても良い。また、制御親機1及び制御子機3は、個々に単相電力が電源として供給される。
FIG. 3 shows a block diagram of the control slave device 3. As shown in FIG. As shown in FIG. 3, the control handset 3 includes a handset communication unit 31 that wirelessly communicates with the control master unit 1, a handset storage unit 32 that stores a charge amount threshold, a duration time to be described later, a standby time, etc. It includes a slave CPU 33 that controls the device 3, a charger control section 34 that outputs a control signal to the charger 2, and the like. It is connected to the charger 2 via a transmission line L3.
Note that the control handset 3 and the charger 2 may be formed integrally. Further, the control master device 1 and the control slave device 3 are individually supplied with single-phase power as a power source.

ここで、親機記憶部12に記憶される基準値を説明する。基準値は、最大デマンド値に対して例えば10%ほど小さい値で設定された値(電力値)であり、以下のような背景から設定される。
電気料金の基本料金には、過去1年間(当月と前11ヶ月)のデマンド値(30分毎の平均使用電力の1ヶ月間最大値)の最大値(最大デマンド値)が適用されるため、1ヶ月のうちで一度でも過去11ヶ月のデマンド値より大きなデマンド値が計測されると、その値を基準に以降一年間の電気料金の基本料金が決定されることになる。つまり、電気料金の抑制或いは削減には、最大デマンド値を抑える制御(デマンド制御)を行うことが有効になる。そのために最大デマンド値を超えない数値で設定された基準値が使用される。この基準値は需要家により設定される。
Here, the reference values stored in the base unit storage unit 12 will be explained. The reference value is a value (power value) set to be, for example, 10% smaller than the maximum demand value, and is set based on the following background.
The maximum value (maximum demand value) of the demand values (the maximum value of the average power consumption every 30 minutes in a month) for the past year (current month and previous 11 months) is applied to the basic electricity rate. If a demand value larger than the demand value of the past 11 months is measured even once in a month, the basic electricity rate for the next year will be determined based on that value. In other words, in order to suppress or reduce electricity charges, it is effective to perform control (demand control) to suppress the maximum demand value. For this purpose, a reference value set as a numerical value that does not exceed the maximum demand value is used. This standard value is set by the consumer.

このように構成された車両充電システムの充電制御は、以下のように実施される。
まず、制御親機1がスマートメータ10から受電電力の情報を入手して、逸脱情報(差分情報)を例えば1秒間隔等一定の間隔で各制御子機3に通知する。
逸脱情報は、基準値に対して現在の受電電力がどういう値であるか(受電電力から算出した30分間の電力量の予想値がどういう値であるか)示す情報であり、基準値以上か未満かで制御は大きく変化する。親機CPU13は、現在の受電電力がほぼ基準値である場合は逸脱情報として「0」の情報を親機通信部14から出力し、基準値を超えている場合は「プラス」の情報を出力する。更に、基準値に達していない場合は「マイナス」の情報を各制御子機3に出力する。
尚、受電電力がほぼ基準値とは、例えば基準値に対して受電電力の値が2%差以内の場合を言う。
Charging control of the vehicle charging system configured as described above is performed as follows.
First, the control master device 1 obtains information on the received power from the smart meter 10, and notifies each control slave device 3 of deviation information (difference information) at regular intervals, such as every second.
Deviation information is information that indicates what value the current received power is with respect to the standard value (what value is the expected value of the amount of electricity for 30 minutes calculated from the received power), and whether it is above or below the standard value. The control changes greatly depending on the situation. The base unit CPU 13 outputs "0" information as deviation information from the base unit communication unit 14 when the current received power is approximately the reference value, and outputs "plus" information when it exceeds the reference value. do. Furthermore, if the reference value has not been reached, "minus" information is output to each control slave device 3.
Note that the received power is approximately at the reference value when the received power is within a 2% difference from the reference value, for example.

制御親機1から逸脱情報を受信した個々の制御子機3は次のような制御を実施する。
図4は、制御子機3の子機CPU33が行う電流制御の流れを示すフローチャートを示し、このフローを参照して説明する。この制御は逸脱情報を受信する毎に実施され、逸脱情報を受信(S1)すると、まず充電量の状態を判断し(S2)、充電を開始してからの充電量が一定値(閾値)に達したかどうかで異なる制御を実施する。
充電量が予め設定された閾値に達していなければS3に進み、達していたらS7に進む。
Each control subunit 3 that receives the deviation information from the control master unit 1 performs the following control.
FIG. 4 shows a flowchart showing the flow of current control performed by the slave unit CPU 33 of the control slave unit 3, and will be described with reference to this flow. This control is carried out every time deviation information is received. When deviation information is received (S1), the state of the charging amount is first determined (S2), and the charging amount after starting charging becomes a constant value (threshold value). Different controls are implemented depending on whether the target is reached or not.
If the amount of charge has not reached the preset threshold, the process proceeds to S3, and if it has, the process proceeds to S7.

充電が閾値に達していない状態(S2でNO)で逸脱情報がマイナス、即ち受電電力が基準値に達しておらず(S3でNO)充電電流を増加可能な場合は、増加電流を次式(式1)で算出し、充電電流を増加させる(S6)。尚、充電電流には最大値が設定されており、最大値に達している場合はそれ以上増加しない。
増加電流=最大電流値(A)×充電量(Wh)/閾値(Wh) ・・・(式1)
If the charging current has not reached the threshold value (NO in S2) and the deviation information is negative, that is, the received power has not reached the reference value (NO in S3) and the charging current can be increased, the increased current can be calculated using the following formula ( Calculate using equation 1) and increase the charging current (S6). Note that a maximum value is set for the charging current, and when the maximum value is reached, the charging current does not increase any further.
Increased current = Maximum current value (A) x Charge amount (Wh) / Threshold (Wh) (Formula 1)

逸脱情報がゼロ、即ちほぼ受電電力が基準値である場合(S4でYES)は、充電電流を変更しない信号を充電器2に出力(S14)して終了する。
逸脱情報がプラス、即ち受電電力が基準値を超えて(S4でNO)、充電電流を減らすよう制御しなければならない場合は、削減電流を次式(式2)で算出し、充電電流を削減する(S5)。尚、充電電流には最小値が設定されており、最小値に達している場合はそれ以上削減しない。
削減電流=最大電流値(A)×(閾値(Wh)-充電量(Wh))/閾値(Wh)
・・・(式2)
こうして設定された新しい電流値が充電器2に通知(S14)され、充電器2は受けた通知に従い充電電流を変更する。
If the deviation information is zero, that is, if the received power is approximately the reference value (YES in S4), a signal that does not change the charging current is output to the charger 2 (S14), and the process ends.
If the deviation information is positive, that is, the received power exceeds the reference value (NO in S4), and the charging current must be controlled to be reduced, the reduced current is calculated using the following formula (Formula 2), and the charging current is reduced. (S5). Note that a minimum value is set for the charging current, and when the minimum value is reached, no further reduction is made.
Reduction current = maximum current value (A) × (threshold value (Wh) - charge amount (Wh)) / threshold value (Wh)
...(Formula 2)
The new current value thus set is notified to the charger 2 (S14), and the charger 2 changes the charging current according to the received notification.

一方、逸脱情報を受信した段階で、閾値以上に充電が進んでいる場合(S2でYES)は以下のように制御する。
逸脱情報がマイナス、即ち受電電力が基準値に達していなければ(S7でNO)、子機記憶部32に記憶している持続時間を読み取り、持続時間が60秒等の設定された待機時間に達していなければ(S8でNO)、持続時間を1単位(逸脱情報を受信する時間間隔)加算して(S10)保存し、電流を変更しない信号を充電器2に出力(S14)して終了する。
そして、持続時間が待機時間に達していたら(S8でYES)、現在の電流に最小増加電流を追加する(S9)信号を充電器2に出力(S14)して終了する。
On the other hand, if charging has progressed beyond the threshold at the time of receiving the deviation information (YES in S2), the following control is performed.
If the deviation information is negative, that is, the received power has not reached the reference value (NO in S7), the duration stored in the handset storage unit 32 is read, and the duration is set to a set standby time such as 60 seconds. If the current has not been reached (NO in S8), the duration is added by one unit (the time interval for receiving deviation information) and saved (S10), and a signal that does not change the current is output to the charger 2 (S14) and the process ends. do.
If the duration has reached the standby time (YES in S8), a signal for adding the minimum increased current to the current current (S9) is output to the charger 2 (S14), and the process ends.

この制御により、充電電流が閾値に達している車両は、設定されている待機時間が経過するまでは充電電流の増加を停止するため、充電量が閾値に達していない車両があれば、この待機時間を利用して充電電流を増加させて充電を進めることが可能となり、充電器2を一括管理する制御部を持たなくてもバランスの取れた電流制御ができる。 With this control, vehicles whose charging current has reached the threshold will stop increasing their charging current until the set standby time has elapsed, so if there is a vehicle whose charging amount has not reached the threshold, the It becomes possible to proceed with charging by increasing the charging current using time, and it is possible to perform balanced current control without having a control unit that collectively manages the charger 2.

また、逸脱情報がゼロ或いはプラス、即ち受電電力が基準値以上であったら(S7でYES)、以下の制御が行われる。逸脱情報がゼロ、即ち受電電力がほぼ基準値である場合(S11でYES)は、記憶している持続時間をリセット(S13)してゼロにし、電流を変更しない信号を充電器2に出力(S14)して終了する。
逸脱情報がプラス、即ち受電電力が基準値を超えている場合(S11でNO)は、充電電流をゼロにすると共に、記憶している持続時間を0にリセットする(S13)。結果、充電電流を0にする信号を充電器2に出力して終了する。
Further, if the deviation information is zero or positive, that is, if the received power is equal to or higher than the reference value (YES in S7), the following control is performed. If the deviation information is zero, that is, the received power is approximately the reference value (YES in S11), the stored duration is reset to zero (S13) and a signal that does not change the current is output to the charger 2 ( S14) and ends.
If the deviation information is positive, that is, if the received power exceeds the reference value (NO in S11), the charging current is set to zero, and the stored duration is reset to zero (S13). As a result, a signal that sets the charging current to 0 is output to the charger 2, and the process ends.

この制御により、受電電力が基準値を超えている場合は、待機時間にかかわらず閾値以上に充電が進んでいる車両の充電を停止するためデマンド制御を行うことができる。また、待機時間のカウントはリセットされるため、十分な待機時間(持続時間)を設定でき、その間に充電量が閾値に達していない車両の充電を継続することができる。よって、充電電流の振り分けをバランスよく実施できる。 With this control, if the received power exceeds the reference value, demand control can be performed to stop charging the vehicle that has been charged beyond the threshold value regardless of the standby time. Further, since the standby time count is reset, a sufficient standby time (duration time) can be set, and during that time, it is possible to continue charging a vehicle whose charging amount has not reached the threshold value. Therefore, charging current can be distributed in a well-balanced manner.

このように、制御子機3は受電電力が基準値を超えないように制御するため、全体を制御する中央制御部を持たなくてもデマンド制御も実施できる。そして、制御親機1は受電電力の基準値に対する差分情報を出力するだけで良いため、充電器2の設置数を変更する際に制御親機1の設定を変更する必要が無く、充電器2の増減がし易い。
また、それぞれの充電器2の充電電流を独立に制御しても、個々の充電器2に接続された車両に対してバランスの良い充電を実施できる。
更に、制御親機1と制御子機3との間は無線通信するため、両者の間に信号線を配設する必要が無く、システムの施工性が良い。
In this way, since the control handset 3 controls the received power so that it does not exceed the reference value, demand control can also be performed without having a central control unit that controls the entire system. Since the control base unit 1 only needs to output the difference information with respect to the reference value of the received power, there is no need to change the settings of the control base unit 1 when changing the number of installed chargers 2, and the charger 2 It is easy to increase or decrease.
Further, even if the charging current of each charger 2 is controlled independently, well-balanced charging can be performed for vehicles connected to each charger 2.
Furthermore, since the control master device 1 and the control slave device 3 communicate wirelessly, there is no need to arrange a signal line between them, and the system is easy to install.

尚、上記実施形態では、制御親機1と制御子機3との間の通信を無線で実施しているが、有線接続しても良い。 In the above embodiment, communication between the control master device 1 and the control slave device 3 is carried out wirelessly, but a wired connection may also be used.

1・・制御親機(充電制御部)、2・・充電器、3・・制御子機(充電制御部)、4・・車両、10・・電力量計、11・・親機計測部、14・・親機通信部(無線通信部)、12・・親機記憶部、31・・子機通信部(無線通信部)、32・・子機記憶部。 1. Control master device (charging control section), 2. Charger, 3. Control slave device (charging control section), 4. Vehicle, 10. Electric energy meter, 11. Master device measurement section. 14...Base device communication section (wireless communication section), 12...Base device storage section, 31...Slave device communication section (wireless communication section), 32...Slave device storage section.

Claims (2)

車両を充電するための複数の充電器と、前記充電器の充電電流を制御する充電制御部とを有する車両充電システムであって、
前記充電制御部は、商用電力からの受電電力を計測する電力量計から受電電力情報を入手して所定の基準値と比較し、その差分情報を出力する制御親機と、
前記充電器のそれぞれに設置されて、個々に前記充電器の充電電流を制御する制御子機とを有し、
前記制御子機は、前記制御親機が出力した前記差分情報を基に、商用電力からの受電電力が前記基準値を超えないよう充電電流を制御すると共に、
制御を一定時間待機させるための待機時間を記憶する子機記憶部を有し、
充電している車両の充電量が所定の閾値に達した状態で、受電電力が前記基準値に達していないとする前記差分情報を前記制御親機から受信したら、前記待機時間の経過を待って充電電流を増加させることを特徴とする車両充電システム。
A vehicle charging system comprising a plurality of chargers for charging a vehicle and a charging control unit controlling a charging current of the chargers,
The charging control unit obtains received power information from a power meter that measures received power from commercial power, compares it with a predetermined reference value, and outputs difference information;
a control cordless unit installed in each of the chargers to individually control the charging current of the charger;
The control slave device controls the charging current so that the received power from commercial power does not exceed the reference value based on the difference information output by the control master device , and
It has a handset storage unit that stores a standby time for making the control standby for a certain period of time,
When receiving the difference information indicating that the received power has not reached the reference value while the amount of charge of the vehicle being charged has reached a predetermined threshold value, wait for the standby time to elapse. A vehicle charging system characterized by increasing charging current .
前記制御親機及び前記制御子機は無線通信部を備え、
前記制御子機は、前記制御親機と無線通信して前記差分情報を入手することを特徴とする請求項記載の車両充電システム。
The control master device and the control slave device include a wireless communication section,
The vehicle charging system according to claim 1 , wherein the control slave unit obtains the difference information by wirelessly communicating with the control master unit.
JP2019093901A 2019-05-17 2019-05-17 vehicle charging system Active JP7387296B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019093901A JP7387296B2 (en) 2019-05-17 2019-05-17 vehicle charging system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019093901A JP7387296B2 (en) 2019-05-17 2019-05-17 vehicle charging system

Publications (2)

Publication Number Publication Date
JP2020188668A JP2020188668A (en) 2020-11-19
JP7387296B2 true JP7387296B2 (en) 2023-11-28

Family

ID=73222988

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019093901A Active JP7387296B2 (en) 2019-05-17 2019-05-17 vehicle charging system

Country Status (1)

Country Link
JP (1) JP7387296B2 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011188657A (en) 2010-03-10 2011-09-22 Hitachi Electronics Service Co Ltd Electric vehicle charging system and method for multistory parking lot
WO2012099160A1 (en) 2011-01-21 2012-07-26 日本電気株式会社 Charge control apparatus, charge control method, and program
JP2012257436A (en) 2011-06-10 2012-12-27 Hitachi Automotive Systems Ltd Method and system for controlling charging of electric vehicle
JP2013066372A (en) 2011-08-30 2013-04-11 Toyota Industries Corp Vehicle charging system
JP2013153601A (en) 2012-01-25 2013-08-08 Toyota Industries Corp Charging system
JP2013225971A (en) 2012-04-20 2013-10-31 Panasonic Corp Charge controller and vehicle charging system
JP2014023204A (en) 2012-07-13 2014-02-03 Hitachi Ltd Charging device, charging system, charge control unit, and charge control method
JP2014128181A (en) 2012-12-27 2014-07-07 Sumitomo Electric Ind Ltd Network type charge system and charge facility
JP2015106962A (en) 2013-11-29 2015-06-08 株式会社デンソー Charge discharge controller and charge discharge system

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011188657A (en) 2010-03-10 2011-09-22 Hitachi Electronics Service Co Ltd Electric vehicle charging system and method for multistory parking lot
WO2012099160A1 (en) 2011-01-21 2012-07-26 日本電気株式会社 Charge control apparatus, charge control method, and program
JP2012257436A (en) 2011-06-10 2012-12-27 Hitachi Automotive Systems Ltd Method and system for controlling charging of electric vehicle
JP2013066372A (en) 2011-08-30 2013-04-11 Toyota Industries Corp Vehicle charging system
JP2013153601A (en) 2012-01-25 2013-08-08 Toyota Industries Corp Charging system
JP2013225971A (en) 2012-04-20 2013-10-31 Panasonic Corp Charge controller and vehicle charging system
JP2014023204A (en) 2012-07-13 2014-02-03 Hitachi Ltd Charging device, charging system, charge control unit, and charge control method
JP2014128181A (en) 2012-12-27 2014-07-07 Sumitomo Electric Ind Ltd Network type charge system and charge facility
JP2015106962A (en) 2013-11-29 2015-06-08 株式会社デンソー Charge discharge controller and charge discharge system

Also Published As

Publication number Publication date
JP2020188668A (en) 2020-11-19

Similar Documents

Publication Publication Date Title
CN110015123B (en) Charge and discharge management device
US9906025B2 (en) Electric power supply apparatus and system
WO2017009978A1 (en) V2g system and charging/discharging control method
EP3038851B1 (en) Method for programming energy flow between a grid and an accumulator of an electric vehicle, and corresponding device for programming
WO2016051722A1 (en) Electric power storage device, control device, electric power storage system, method for controlling electric power storage device, and non-transitory computer-readable medium storing control program
JP2012085372A (en) Power supply/demand system
JP2013225971A (en) Charge controller and vehicle charging system
US20180178669A1 (en) Server device
JP2012253952A (en) Fast charger, fast charging apparatus and fast charging method
JP2013030394A (en) Storage battery charging apparatus
EP3297116B1 (en) Charge/discharge control apparatus
WO2013062025A1 (en) Electricity storage device and power supply system
JP6947896B2 (en) Power storage device
JP7387296B2 (en) vehicle charging system
JP2013158146A (en) Charging system
ES2785093T3 (en) Power management procedure in electrical installations
JP5817556B2 (en) Charging system
WO2022172043A1 (en) Charge/discharge loss reduction method and charge/discharge loss reduction device
JP7387297B2 (en) vehicle charging system
WO2022172044A1 (en) Charging/discharging control method and charging/discharging control device
JP2023056898A (en) vehicle charging system
JP2013115898A (en) Charge control device and charge control method
JP2016103890A (en) Power control unit and power control system
JP5882443B1 (en) Solar power storage system
JP2013236517A (en) Power monitoring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230606

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230721

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231017

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231115

R150 Certificate of patent or registration of utility model

Ref document number: 7387296

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150