JP7387089B2 - Method for forming sulfur-resistant coating on refrigeration circuit equipment - Google Patents

Method for forming sulfur-resistant coating on refrigeration circuit equipment Download PDF

Info

Publication number
JP7387089B2
JP7387089B2 JP2019240116A JP2019240116A JP7387089B2 JP 7387089 B2 JP7387089 B2 JP 7387089B2 JP 2019240116 A JP2019240116 A JP 2019240116A JP 2019240116 A JP2019240116 A JP 2019240116A JP 7387089 B2 JP7387089 B2 JP 7387089B2
Authority
JP
Japan
Prior art keywords
copper
paint
refrigeration circuit
copper pipe
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019240116A
Other languages
Japanese (ja)
Other versions
JP2021096059A (en
Inventor
光宣 待鳥
Original Assignee
有限会社待鳥工業
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 有限会社待鳥工業 filed Critical 有限会社待鳥工業
Priority to JP2019240116A priority Critical patent/JP7387089B2/en
Publication of JP2021096059A publication Critical patent/JP2021096059A/en
Application granted granted Critical
Publication of JP7387089B2 publication Critical patent/JP7387089B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Protection Of Pipes Against Damage, Friction, And Corrosion (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Paints Or Removers (AREA)

Description

本発明は、イオウ成分を持つ雰囲気の暴露における冷凍回路において、前記冷凍回路装置における関連機器と銅パイプとの外表面に溶接部分を含めてエポキシ樹脂とポリウレタン樹脂の二層塗膜を形成した耐イオウ性塗膜形成する方法に関する。 The present invention provides a refrigeration circuit that is exposed to an atmosphere containing sulfur components, and which has a two-layer coating of epoxy resin and polyurethane resin formed on the outer surfaces of related equipment and copper pipes in the refrigeration circuit equipment, including the welded parts. This invention relates to a method for forming a sulfuric coating.

冷蔵庫に取付けられる冷凍回路は一般に知られているように、蒸発器、圧縮機、凝縮器、減圧器等を銅製配管で接続することで冷媒循環路を形成してなり、蒸発器内で低温の冷媒を蒸発させることで冷媒の気化熱により冷蔵庫内を冷却するようになっている。蒸発器は銅パイプ内を冷媒が流れるようになっており、この銅パイプと銅製配管とは溶接されている。また、蒸発器の銅パイプに接続される銅製配管は、蒸発器内を流れる冷媒の温度を低温に保つために断熱性チューブで被覆されている(特許文献1,2参照)。 As is generally known, the refrigeration circuit installed in a refrigerator consists of an evaporator, compressor, condenser, pressure reducer, etc. connected with copper piping to form a refrigerant circulation path. By evaporating the refrigerant, the inside of the refrigerator is cooled by the heat of vaporization of the refrigerant. In the evaporator, refrigerant flows through copper pipes, and the copper pipes are welded together. Further, the copper piping connected to the copper pipe of the evaporator is covered with a heat insulating tube in order to keep the temperature of the refrigerant flowing inside the evaporator at a low temperature (see Patent Documents 1 and 2).

銅表面の腐食については、銅線などの導体上に、ポリエステル樹脂やポリウレタン樹脂などの絶縁塗料の塗布焼付層を設けた通常の巻線の表面に、素線間の滑り性を低減し、コイル加工の際の撚りのくずれを防止した平角リッツ線を提供するために、静摩擦係数0.30以上の材料からなる表面層を設けた断面丸形の絶縁電線素線を多数本撚り合わせ、これを断面平角状に成形する方法が提案されている(特許文献3参照)。Regarding corrosion on the copper surface, the surface of ordinary winding wire is coated with a baked-on layer of insulating paint such as polyester resin or polyurethane resin on the conductor such as copper wire to reduce the slippage between the wires. In order to provide a rectangular litz wire that prevents twisting from becoming untwisted during processing, a large number of insulated wire strands with a round cross section and a surface layer made of a material with a coefficient of static friction of 0.30 or more are twisted together. A method of forming into a rectangular cross-section has been proposed (see Patent Document 3).

また銅表面の処理方法として、銅粉を用いた水性導電塗料を提供するために、平均粒子径が200nm以下のポリウレタン樹脂を分散した水性エマルジョン塗料に、親油性の表面処理した電解銅粉を混合分散した水性導電塗料が提案されている(特許文献4参照)。In addition, as a method for treating copper surfaces, in order to provide a water-based conductive paint using copper powder, electrolytic copper powder that has undergone lipophilic surface treatment is mixed into a water-based emulsion paint in which polyurethane resin with an average particle size of 200 nm or less is dispersed. A dispersed water-based conductive paint has been proposed (see Patent Document 4).

含窒素複素環、硫黄原子の少なくともいずれかを含有する有機化合物の銅塩である抗菌防黴剤含有の繊維状物質、有機繊維、吸着性物質を必須成分とする湿式不織布の少なくとも片面に不織布を貼り合わせ、好ましくは不織布の表面にウレタン系高分子化合物主体の組成物を塗布した靴中敷きである。湿式不織布の抗菌防黴剤含有の繊維状物質の代わりに、抗菌防黴剤Aと水不溶性高分子化合物Dを含有し、重量比A/Dが0.05~5である抗菌防黴剤組成物を湿式不織布に塗布又は含浸するか、貼り合わせる不織布に塗布又は含浸した靴中敷きであることが提案されている(特許文献5参照)。A nonwoven fabric is provided on at least one side of a wet-laid nonwoven fabric containing an antibacterial and antifungal agent that is a copper salt of an organic compound containing at least one of a nitrogen-containing heterocycle and a sulfur atom, an organic fiber, and an adsorbent substance as essential components. The shoe insole is made by laminating, preferably a non-woven fabric, and applying a composition mainly composed of a urethane-based polymer compound to the surface. An antibacterial and fungicide composition containing an antibacterial and fungicide A and a water-insoluble polymer compound D in place of the fibrous material containing an antibacterial and fungicide in a wet nonwoven fabric, and having a weight ratio A/D of 0.05 to 5. It has been proposed that a shoe insole is made by coating or impregnating a wet-laid nonwoven fabric, or by coating or impregnating a nonwoven fabric to be bonded together (see Patent Document 5).

銅表面の耐食を防いで、安定にする方法少なく、樹脂によって表面を処理する方法、或いは、樹脂と銅の結合物による特殊効果を持たらす方法は提案されているが、防錆効果を樹脂表面で覆う方法は提案されていない。特にイオウ成分を持つ雰囲気における冷凍回路において、前記蒸発器の外表面には前記銅パイプのうち前記銅製配管との溶接部分を除いてポリウレタン塗膜が形成された耐イオウ性冷凍回路は存在していない。There are few methods to prevent corrosion resistance on copper surfaces and make them stable.There are methods to treat the surface with resin, or methods to create a special effect using a combination of resin and copper. No method has been proposed to cover it. In particular, in a refrigeration circuit in an atmosphere containing sulfur components, there is no sulfur-resistant refrigeration circuit in which a polyurethane coating is formed on the outer surface of the evaporator except for the welded part of the copper pipe with the copper pipe. do not have.

特開2004-360069号公報Japanese Patent Application Publication No. 2004-360069 特開2007-255850号公報Japanese Patent Application Publication No. 2007-255850 特開平8-36922号公報Japanese Patent Application Publication No. 8-36922 特開平6-346006号公報Japanese Patent Application Publication No. 6-346006 特開2000-23711号公報Japanese Patent Application Publication No. 2000-23711

上記のものにおいては、蒸発器、圧縮機、凝縮器、減圧器等を銅製配管の外表面には、冷蔵庫内に収容された食品から発生する腐食性ガスによる腐食を防止するために焼付け塗膜が形成されているが、銅パイプのうち銅製配管との溶接部分には焼付け塗膜が形成されておらず、銅パイプが露出している。これは、予め焼付け塗膜を形成した場合には、溶接が不完全になるためである。また、銅製配管の端部は、蒸発器の銅パイプと溶接するために断熱性チューブから突出しており、銅製配管が露出した状態になっている。イオウ成分に弱い銅表面を露出することが多い。そのためにイオウの臭いを感ずる雰囲気地域では、冷凍回路装置の不具合が生じている。 In the above, the outer surface of the copper piping for the evaporator, compressor, condenser, pressure reducer, etc. is baked with a coating to prevent corrosion caused by corrosive gases generated from the food stored in the refrigerator. However, the baked coating film is not formed on the welded part of the copper pipe with the copper piping, and the copper pipe is exposed. This is because if a baked coating film is formed in advance, welding will be incomplete. Further, the end of the copper pipe protrudes from the heat insulating tube to be welded to the copper pipe of the evaporator, leaving the copper pipe exposed. The copper surface, which is sensitive to sulfur components, is often exposed. As a result, problems occur in refrigeration circuit equipment in areas where the smell of sulfur is felt.

一般に各機器を繋ぐ銅パイプ及び銅製配管に、溶接後に焼付け塗膜を形成することも考えられるが、断熱性チューブが焼付け時の溶接での熱により変質するため、この手法は採用できない。このため従来の冷凍回路においては、蒸発器の銅パイプと銅製配管との溶接部分は露出した状態のままであった。この状態では金属成分、銅成分と温泉源に含まれているイオウ成分との化学結合により、腐食現象がもたらされて、パイプ類の破損に繋がって、故障の原因になっている。イオウ成分を含む雰囲気の環境では、銅パイプを使用する機器の故障が頻繁に生じている。 Generally, it is possible to form a baking coating on the copper pipes and copper piping that connects each device after welding, but this method cannot be used because the heat insulating tubes will be altered by the heat from welding during baking. Therefore, in conventional refrigeration circuits, the welded portion between the copper pipe of the evaporator and the copper piping remains exposed. In this state, the chemical combination of metal components, copper components, and sulfur components contained in the hot spring source causes a corrosion phenomenon, leading to damage to pipes and causing malfunctions. In environments containing sulfur components, equipment that uses copper pipes frequently breaks down.

このため、温泉地帯のイオウ含有ガスの多い場所での腐食性ガスにより上記の溶接部分が腐食されてしまうため、その点の改良が望まれていた。特にイオウ化合物の二酸化イオウガス、硫化水素のガスなどに対して種々の機器、銅パイプ、配管などにはダメージを受けることが多い。本考案は上記のような事情に基づいて完成されたものであって、蒸発器の銅パイプと銅製配管との溶接部分の防食性を向上させた耐食性、緻密な膜層を形成するエポキシ樹脂と耐薬品性ポリウレタン塗装の二層塗装を施した冷凍回路を提供する冷凍回路装置における耐イオウ性塗膜形成の方法を確立することを目的とする。 For this reason, the above-mentioned welded parts are corroded by corrosive gases in hot spring areas where there is a lot of sulfur-containing gas, so improvements in this respect have been desired. In particular, various equipment, copper pipes, piping, etc. are often damaged by sulfur compounds such as sulfur dioxide gas and hydrogen sulfide gas. This invention was completed based on the above-mentioned circumstances, and has improved corrosion resistance of the welded part between the copper pipe of the evaporator and the copper piping, and an epoxy resin that forms a dense film layer. The purpose of this study is to establish a method for forming a sulfur-resistant coating in a refrigeration circuit device that provides a refrigeration circuit coated with two layers of chemical-resistant polyurethane coating.

上記の目的を達成するための手段として、本発明の装置は、蒸発器、圧縮機、凝縮器、減圧器、圧縮機と四方弁と蒸発器と熱交換器とを銅製配管、銅パイプ内に冷媒を流すようにした機器を備え、その機器を繋ぐ前記銅パイプの両端に銅製配管を溶接して冷媒循環路を構成すると共に、前記銅製配管の外面を断熱性チューブで被覆した冷凍回路において、前記蒸発器の外表面には前記銅パイプのうち前記銅製配管との溶接部分を除いて焼付け塗膜が形成され、前記機器側の銅パイプと前記銅製配管との溶接部分の外表面には常温硬化型の特殊塗料により防食塗膜が形成されている。 As a means to achieve the above object, the device of the present invention includes an evaporator, a compressor, a condenser, a pressure reducer, a compressor, a four-way valve, an evaporator, and a heat exchanger in copper piping or copper pipes. A refrigeration circuit comprising equipment for flowing refrigerant, in which a refrigerant circulation path is constructed by welding copper piping to both ends of the copper pipe connecting the equipment, and the outer surface of the copper piping is covered with a heat insulating tube, A baked coating is formed on the outer surface of the evaporator except for the welded part of the copper pipe with the copper pipe, and the outer surface of the welded part of the copper pipe on the equipment side with the copper pipe is heated at room temperature. An anti-corrosion coating is formed using a special hardening paint.

エアコン冷凍回路において銅パイプ内に冷媒を流すようにした圧縮機と四方弁と蒸発器と熱交換器とを備え、それらの機器を繋ぐ前記銅パイプの両端に銅製配管を溶接して冷媒循環路を構成すると共に、前記銅製配管の外面を、イオウ成分を持つ雰囲気の暴露における冷凍装置において、前記圧縮機と四方弁と蒸発器と熱交換器の機器の外表面と各機器を繋ぐ銅パイプと前記銅パイプのうち前記銅製配管との溶接部分とを、常温硬化型の塗料である下塗塗装のエポキシ樹脂塗料で外面を均一に塗布して、前記エポキシ樹脂の塗膜上にポリウレタン塗料によって上塗塗装のポリウレタン樹脂塗料の積層塗膜が形成され、前記機器の表面とそれらを繋ぐ銅パイプと前記銅パイプの銅製配管との溶接部分の外表面にはエポキシ成分―ポリウレタン成分の300~600μmの厚さの二層構造積層膜の防食塗膜を形成されている耐イオウ性塗膜形成の冷凍回路装置にするための冷凍回路装置に対する耐イオウ性塗膜形成の方法である。In an air conditioner refrigeration circuit, a refrigerant circulation path is provided with a compressor, a four-way valve, an evaporator, and a heat exchanger that allow refrigerant to flow through copper pipes, and copper piping is welded to both ends of the copper pipe that connects these devices. In addition, the outer surface of the copper pipe is connected to the outer surface of the compressor, four-way valve, evaporator, and heat exchanger and each device in a refrigeration system exposed to an atmosphere containing a sulfur component. The outer surface of the welded portion of the copper pipe to the copper piping is uniformly coated with an epoxy resin paint that cures at room temperature as an undercoat, and then a topcoat is applied on the epoxy resin coating with a polyurethane paint. A laminated coating film of polyurethane resin paint is formed, and the outer surface of the welded part between the surface of the equipment, the copper pipe connecting them, and the copper piping of the copper pipe is coated with an epoxy component and a polyurethane component with a thickness of 300 to 600 μm. This is a method for forming a sulfur-resistant coating film on a refrigeration circuit device, in which a sulfur-resistant coating film is formed on the anticorrosion coating film of a two-layer laminated film.

下塗塗装でのエポキシ樹脂塗料として、ビスフェノールAとエピクロルヒドリンからなる変性エポキシ樹脂塗料で、常温硬化型で分子中に複数個のエポキシ基を有する樹脂層を形成する二液型塗料として、銅パイプを主体にして機器の外面に250~500μm膜厚層にして、配管と電気・電子部品の防錆性、防食性、耐薬品性の用途のもので、緻密性、付着性に優れている成分である。刷毛塗り、またはスプレーガン塗布で行うことができるが、均一性を保つには両方法で行うのが好ましい。As an epoxy resin paint for undercoating, it is a modified epoxy resin paint consisting of bisphenol A and epichlorohydrin, and is a two-component paint that cures at room temperature and forms a resin layer with multiple epoxy groups in the molecule, mainly used on copper pipes. It is used as a 250-500 μm thick layer on the outside of equipment to provide rust prevention, corrosion protection, and chemical resistance for piping and electrical/electronic parts.It is a component with excellent density and adhesion. . It can be applied by brush or spray gun, but it is preferable to use both methods to maintain uniformity.

耐薬品性をもたらす上塗塗装でのポリウレタン樹脂塗料として硬化中にアクリルポリオールの主剤ベース材とウレタンのイソシアネート結合(-NH-CO-O-)を生成するイソシアネート結合を持っている塗料の硬化剤で、主剤と硬化剤を混ぜる2液型と油変性ポリウレタン樹脂、湿気硬化型ポリウレタン樹脂、ブロックイソシアネート硬化型ポリウレタン樹脂、ラッカー型ポリウレタン樹脂をビヒクルとする1液型、これらから選ばれたものを液状で銅パイプに50~100μmの膜厚層でエポキシ樹脂塗膜上に塗布する。主剤と硬化剤を混ぜる2液型と油変性ポリウレタン樹脂、湿気硬化型ポリウレタン樹脂、ブロックイソシアネート硬化型ポリウレタン樹脂、ラッカー型ポリウレタン樹脂をビヒクルとする1液型、これらから選ばれたものを液状で銅パイプに塗布する。A curing agent for paints that have an isocyanate bond (-NH-CO-O-) that forms an isocyanate bond (-NH-CO-O-) between the acrylic polyol base material and urethane during curing as a polyurethane resin paint for top coating that provides chemical resistance. , a two-component type in which the base resin and a curing agent are mixed, and a one-component type in which the vehicle is an oil-modified polyurethane resin, a moisture-curing polyurethane resin, a block isocyanate-curing polyurethane resin, or a lacquer-type polyurethane resin. Coat the epoxy resin coating on the copper pipe in a layer thickness of 50-100 μm. A two-component type that mixes the base resin and a curing agent, and a one-component type that uses an oil-modified polyurethane resin, moisture-curing polyurethane resin, block isocyanate-curing polyurethane resin, or lacquer-type polyurethane resin as a vehicle. Apply to the pipe.

前記二層膜塗料の塗布における乾燥方法は、それぞれの塗布において50~500μmの厚さ膜層に塗布して、ピンホールのない確認上での均一塗布面の状態である装置内の銅パイプ、並びに部品に対して、それぞれ常温~70℃、1~24時間で、迅速硬化させている。The drying method for applying the two-layer paint is to apply a film layer with a thickness of 50 to 500 μm in each application, and use a copper pipe in the equipment to ensure a uniformly coated surface with no pinholes. The parts were rapidly cured at room temperature to 70°C for 1 to 24 hours.

圧縮機と四方弁と蒸発器と熱交換器とそれを繋ぐ銅パイプと銅製配管との溶接部分には防食塗膜が形成されているから、この溶接部分の防食性が向上させる。上記の300~600μmのエポキシ樹脂ーウレタン樹脂の塗膜の防食塗膜は常温硬化型塗料により形成されているから、焼付け工程が不要となり、熱による断熱性チューブの変質を防止できる。また、エポキシ樹脂ーウレタン樹脂の塗装による塗膜でイオウ含有の成分の腐食性ガスに耐錆効果と耐久効果をもたらされ、エアコンなど冷凍回路装置に対して長時間の運転が可能になった。 Since an anticorrosive coating is formed on the welded parts of the compressor, four-way valve, evaporator, heat exchanger, and the copper pipes that connect them, the corrosion resistance of these welded parts is improved. Since the above-mentioned anticorrosive coating film of 300 to 600 μm epoxy resin-urethane resin coating film is formed from a room-temperature curing paint, a baking process is not necessary, and deterioration of the heat-insulating tube due to heat can be prevented. In addition, the epoxy resin-urethane resin coating provides rust resistance and durability against corrosive gases containing sulfur, making it possible to operate refrigeration circuit equipment such as air conditioners for long periods of time.

緻密で、均一なエポキシ樹脂ーウレタン樹脂の300~600μm厚膜層の塗装膜をなしていることにより、蒸発器の銅パイプと銅製配管との溶接部分の外表面に塗料が全体的に均一に塗布されているので、塗膜のムラもなく、ピンホールも存在しなく、銅配管、機器表面でイオウ成分の防御をもたらして、配管の腐食がなく、長期間故障を起こさない状態である。また各配管、装置の接続部である溶接部分の外表面に塗膜の厚さ方向に重なるように積層されており、これによりエポキシ樹脂ーウレタン樹脂塗装の効果をもたらした。とくに溶接部分の外表面を効率的に防錆性、耐衝撃性、対候性、耐久性の膜で覆うことができた。耐久性のある冷凍回路装置になった。By forming a dense and uniform epoxy resin-urethane resin coating with a thickness of 300 to 600 μm, the paint is evenly applied to the entire outer surface of the welded part between the copper pipe of the evaporator and the copper pipe. As a result, there is no uneven paint film, no pinholes, and the surface of copper piping and equipment is protected from sulfur components, so there is no corrosion of the piping, and there is no failure for a long time. It is also laminated on the outer surface of the welded parts that connect pipes and equipment so that they overlap in the thickness direction of the coating, which brings about the effect of epoxy resin-urethane resin coating. In particular, we were able to efficiently cover the outer surface of the welded area with a film that is rust-proof, impact-resistant, weather-resistant, and durable. It has become a durable refrigeration circuit device.

冷凍回路装置における概略構成図 A:室内機 B:室外機Schematic configuration diagram of refrigeration circuit device A: Indoor unit B: Outdoor unit 冷凍回路装置における実装置の一例状態図 A:平面図 B:正面図State diagram of an example of an actual device in a refrigeration circuit device A: Top view B: Front view 冷凍回路装置の概略塗装における冷凍回路装置に対する耐イオウ性塗膜形成の方法の工程図Process diagram of a method for forming a sulfur-resistant coating film on a refrigeration circuit device in schematic painting of a refrigeration circuit device 冷凍回路装置の銅パイプの塗装した状態図 A:パイプの塗膜状態図 B:塗膜パイプの断面図Diagram of painted copper pipes in refrigeration circuit equipment A: Diagram of coated pipes B: Cross-sectional view of coated pipes 冷凍回路装置の塗膜の状態を示す銅パイプーエポキシ樹脂層―ウレタン樹脂層での電子線マイクロアナライザー(EPMA)の測定による断面の状態拡大の写真図A photograph showing the state of the coating film of a refrigeration circuit device, showing an enlarged cross-sectional state of the copper pipe, epoxy resin layer, and urethane resin layer measured by an electron beam microanalyzer (EPMA). 冷凍回路装置の塗膜の状態を示すエポキシ樹脂層とウレタン樹脂層の樹脂間でのEPMA測定拡大の写真図A photograph of an enlarged EPMA measurement between the epoxy resin layer and the urethane resin layer showing the state of the coating film of the refrigeration circuit equipment. 冷凍回路装置の塗膜の状態を示すエポキシ樹脂層でのEPMA測定の拡大の写真図A photograph of an enlarged EPMA measurement on an epoxy resin layer showing the state of the coating film of a refrigeration circuit device 冷凍回路装置の塗膜の状態を示すウレタン樹脂層でのEPMA測定拡大の写真図A photograph of an enlarged EPMA measurement on a urethane resin layer showing the condition of the coating film of a refrigeration circuit device

本発明に係る冷凍回路を冷蔵庫に適用した実施形態の図を参照して説明する。本実施形態に係る冷凍回路は、冷蔵庫に配設されて、庫内の空気を冷却するようになっている。冷凍回路は、図1に示すように、冷媒を圧縮する圧縮機と、この圧縮機で圧縮された冷媒を凝縮させる凝縮器と、この凝縮器で凝縮した冷媒を減圧又は膨張させる減圧器と、減圧器で減圧された冷媒を蒸発させて周囲の温度を下げる蒸発器とを、銅製配管で接続することで冷媒の循環経路が形成されてなる。 DESCRIPTION OF THE PREFERRED EMBODIMENTS The refrigeration circuit according to the present invention will be described with reference to the drawings of an embodiment in which the refrigeration circuit is applied to a refrigerator. The refrigeration circuit according to this embodiment is installed in a refrigerator to cool the air inside the refrigerator. As shown in FIG. 1, the refrigeration circuit includes a compressor that compresses refrigerant, a condenser that condenses the refrigerant compressed by the compressor, and a pressure reducer that reduces or expands the refrigerant condensed by the condenser. A refrigerant circulation path is formed by connecting an evaporator, which lowers the ambient temperature by evaporating the refrigerant that has been depressurized with a pressure reducer, with copper piping.

エアコンなどの冷凍回路装置の耐イオウ性塗膜形成の操作において、図3に示すように、受け入れ検査として装置内の形状の変形、傷、錆がないかの目視を行い、その後塗装前の準備として、外板パネル、各部品を取り外しする。次に装置から取り外しが難しい部品についてはマスキングを行う。まず下地塗りとして、下塗塗装として、二液のエポキシ樹脂塗料によって吹付け塗装で、膜厚150~400μm程度にした。二液のエポキシ樹脂塗料を塗装した装置は、20~70℃で2~24時間乾燥する。その後乾燥したエポキシ樹脂塗料を被膜した装置は、アクリルウレタン樹脂塗料によって吹付け塗装を行い、30~100μmの厚さに塗装した。この二層膜塗装装置をさらに20~70℃で2~24時間乾燥する。乾燥後部品、配管を目視して塗膜の均一性を確認して、装置全体のマスキングと各部品、配管などを取り付け、さらに外板パネルを嵌め込み、さらに形状の変形、傷、錆がないかの目視の完了検査を行って、装置完成とする。方法は表1に示す。

Figure 0007387089000001
In the operation of forming a sulfur-resistant coating on refrigeration circuit equipment such as air conditioners, as shown in Figure 3, as an acceptance inspection, visual inspection is performed to check for deformation, scratches, and rust inside the equipment, and then preparations are made before painting. Then, remove the outer panel and each part. Next, mask parts that are difficult to remove from the device. First, as a base coat, a two-component epoxy resin paint was sprayed to a film thickness of about 150 to 400 μm. Equipment coated with two-component epoxy resin paint is dried at 20-70°C for 2-24 hours. The device coated with the dried epoxy resin paint was then spray-painted with acrylic urethane resin paint to a thickness of 30 to 100 μm. This two-layer film coating device is further dried at 20 to 70°C for 2 to 24 hours. After drying, visually inspect the parts and piping to confirm the uniformity of the paint film, mask the entire equipment, install each part, piping, etc., then fit the outer panel, and check for deformation, scratches, and rust. A visual completion inspection will be conducted to complete the device. The method is shown in Table 1.
Figure 0007387089000001

図1、図2に示すようなエアコン冷凍回路において銅パイプ内に冷媒を流すようにした圧縮機と四方弁と蒸発器と熱交換器とを備え、それらの機器を繋ぐ前記銅パイプの両端に銅製配管を溶接して冷媒循環路を構成すると共に、前記銅製配管の外面を、イオウ成分を持つ雰囲気の暴露における冷凍装置において、上記塗装工程で示すように、また図3の工程表に沿って、前記圧縮機と四方弁と蒸発器と熱交換器の機器の外表面と各機器を繋ぐ銅パイプと前記銅パイプのうち前記銅製配管との溶接部分とを、常温硬化型の塗料である下塗塗装のエポキシ樹脂塗料で外面を均一に塗布して、前記エポキシ樹脂の塗膜上にポリウレタン塗料によって上塗塗装のポリウレタン樹脂塗料の積層塗膜が形成され、前記機器の表面とそれらを繋ぐ銅パイプと前記銅パイプの銅製配管との溶接部分の外表面にはエポキシ成分―ポリウレタン成分の300μmの厚さの二層構造積層膜の防食塗膜を形成されて、耐イオウ性塗膜形成の冷凍回路装置の防錆対策を行った。The air conditioner refrigeration circuit shown in Figures 1 and 2 is equipped with a compressor, a four-way valve, an evaporator, and a heat exchanger that allow refrigerant to flow through copper pipes, and the copper pipes at both ends connecting these devices are equipped with a compressor, a four-way valve, an evaporator and a heat exchanger. Copper pipes are welded to form a refrigerant circulation path, and the outer surface of the copper pipes is coated in a refrigeration system exposed to an atmosphere containing sulfur as shown in the above painting process and according to the process chart in Figure 3. , coat the outer surfaces of the compressor, four-way valve, evaporator, and heat exchanger, the copper pipes connecting each device, and the welded portions of the copper pipes with the copper pipes with an undercoat that is a room-temperature curing paint. The outer surface is uniformly coated with epoxy resin paint, and a laminated coating film of polyurethane resin paint is formed on the epoxy resin paint film, and the surface of the equipment and the copper pipe connecting them are formed. A refrigeration circuit device with a sulfur-resistant coating film is formed by forming an anticorrosive coating of a two-layer laminated film of epoxy and polyurethane components with a thickness of 300 μm on the outer surface of the welded portion of the copper pipe with the copper piping. Anti-corrosion measures were taken.

図3に示す下塗塗装では、エポキシ樹脂塗料として、配管と電気・電子部品の防錆性、防食性、耐薬品性の用途のもので、緻密性、付着性に優れている成分であるビスフェノールAとエピクロルヒドリンからなる二液変性エポキシ樹脂塗料の吹付け塗装で製膜した。この塗膜では常温硬化型で分子中に複数個のエポキシ基を有する樹脂層を形成する二液型塗料として、銅パイプを主体にして機器の外面に約250μm膜厚層にした。乾燥は30℃で1時間で行った。The undercoat shown in Figure 3 is used as an epoxy resin paint for rust prevention, corrosion prevention, and chemical resistance for piping and electrical/electronic parts, and is a component of bisphenol A that has excellent density and adhesion. The film was formed by spray painting with a two-component modified epoxy resin paint consisting of and epichlorohydrin. This coating film is a two-component paint that cures at room temperature and forms a resin layer having a plurality of epoxy groups in the molecule, and is made of copper pipes as a main component and has a film thickness of about 250 μm on the outer surface of the device. Drying was performed at 30°C for 1 hour.

図3に示す上塗塗装では、耐薬品性をもたらす上塗塗装でのポリウレタン樹脂塗料として硬化中にアクリルポリオールの主剤ベース材とウレタンのイソシアネート結合(-NH-CO-O-)を生成するイソシアネート結合を持っている塗料の硬化剤で、主剤と硬化剤を混ぜる2液型と油変性ポリウレタン樹脂、湿気硬化型ポリウレタン樹脂、ブロックイソシアネート硬化型ポリウレタン樹脂、ラッカー型ポリウレタン樹脂をビヒクルとする1液型、これらから選ばれたものを液状で銅パイプに50μmの膜厚層でエポキシ樹脂塗膜上に塗布した。塗膜はスプレーガンによる吹付け塗布で行った。塗膜の乾燥は30℃で4時間で行った。In the top coat shown in Figure 3, as a polyurethane resin paint in the top coat that provides chemical resistance, an isocyanate bond that forms an isocyanate bond (-NH-CO-O-) between the main base material of acrylic polyol and urethane during curing is used. There are two types of curing agents for paints: two-component types that mix the main agent and curing agent, and one-component types that use oil-modified polyurethane resins, moisture-curing polyurethane resins, block isocyanate-curing polyurethane resins, and lacquer-type polyurethane resins as vehicles. A liquid selected from the following was applied to a copper pipe in a layer of 50 μm thick on an epoxy resin coating. The coating was applied by spraying with a spray gun. The coating film was dried at 30° C. for 4 hours.

前記二層膜塗料の塗布における乾燥方法は、それぞれの塗布において350μmの厚さ膜層に塗布して、ピンホールのない確認上での均一塗布面の状態である装置内の銅パイプ、並びに部品に対して、それぞれ30℃、1~4時間で、迅速硬化させている。エポキシ樹脂塗料として、分子中に複数個のエポキシ基を有する樹脂で、ビスフェノールAとエピクロルヒドリンからなる変性エポキシ樹脂塗料であり、常温硬化型で二液型塗料としてパイプ内外面、電気、電子部品の防食性、耐薬品性の用途のもので、耐水性、耐薬品性、付着性に優れている成分である。スプレーガン塗布で行うことができるが、均一性を保った。The drying method for applying the two-layer paint is to apply a film layer with a thickness of 350 μm in each application, and to dry the copper pipes and parts in the equipment with a uniformly coated surface with no pinholes. In contrast, rapid curing was performed at 30°C for 1 to 4 hours. As an epoxy resin paint, it is a resin with multiple epoxy groups in the molecule, and is a modified epoxy resin paint consisting of bisphenol A and epichlorohydrin.It is a two-component paint that hardens at room temperature, and is used to protect the inside and outside of pipes, as well as electrical and electronic parts. This component has excellent water resistance, chemical resistance, and adhesion. This can be done by spray gun application, but uniformity was maintained.

ポリウレタン樹脂塗料として硬化中にウレタン結合を生成するウレタン結合を持っている塗料で、主剤と硬化剤を混ぜる2液型と油変性ポリウレタン樹脂、湿気硬化型ポリウレタン樹脂、ブロックイソシアネート硬化型ポリウレタン樹脂、ラッカー型ポリウレタン樹脂をビヒクルとする1液型、これらから選ばれたものを液状で銅パイプに塗布する。前記塗料の塗布は乾燥方法として銅パイプに30℃、1時間以上で、350μmの厚さに塗布して、ピンホールを存在しないように多重塗布によって、この状態で硬化する。常温硬化型塗料の塗装方法については、図4に示すようになっており、さらに電子線マイクロアナライザー(EPMA)の測定による断面、表面の状態を観察したところ、図5,6,7,8のようになって均一に被覆していた。
温泉地域でイオウ成分雰囲気を持つ場所にあるエアコン冷凍回路の外表面にはエポキシ成分―ポリウレタン成分の二層構造積層膜の防食塗膜を施していないものは、半年で銅配管にピンホールによる稼働が難しくなり、使用不能になったが、上記の二層構造積層膜の防食塗膜を施した装置では、2年以上でも問題が生じなかった。
A polyurethane resin paint that has urethane bonds that generate urethane bonds during curing, including two-component types that mix the base agent and curing agent, oil-modified polyurethane resins, moisture-curing polyurethane resins, block isocyanate-curing polyurethane resins, and lacquers. A one-component type using a polyurethane resin as a vehicle, and a selected one from these is applied to the copper pipe in liquid form. The coating is dried by coating it on a copper pipe at 30° C. for 1 hour or more to a thickness of 350 μm, and by applying multiple coats to avoid pinholes, it is cured in this state. The method of applying the room-temperature curing paint is shown in Figure 4. Furthermore, when we observed the cross-section and surface conditions measured using an electron beam microanalyzer (EPMA), we found that the results shown in Figures 5, 6, 7, and 8. It was coated evenly.
Air conditioner refrigeration circuits located in hot spring areas with a sulfur component atmosphere that are not coated with a two-layer anti-corrosion coating consisting of epoxy and polyurethane components on the outer surface will be unable to operate due to pinholes in the copper piping within six months. However, with the equipment coated with the anticorrosive coating of the two-layer laminated film, no problems occurred even after two years or more.

実施例1と同様にエアコン冷凍回路において銅パイプ内に冷媒を流すようにした圧縮機と四方弁と蒸発器と熱交換器とを備え、それらの機器を繋ぐ前記銅パイプの両端に銅製配管を溶接して冷媒循環路を構成すると共に、前記銅製配管の外面を、イオウ成分を持つ雰囲気の暴露における冷凍装置において、上記塗装工程で示すように、また図3の工程表に沿って、前記圧縮機と四方弁と蒸発器と熱交換器の機器の外表面と各機器を繋ぐ銅パイプと前記銅パイプのうち前記銅製配管との溶接部分とを、常温硬化型の塗料である下塗塗装のエポキシ樹脂塗料で外面を均一に塗布して、前記エポキシ樹脂の塗膜上にポリウレタン塗料によって上塗塗装のポリウレタン樹脂塗料の積層塗膜が形成され、前記機器の表面とそれらを繋ぐ銅パイプと前記銅パイプの銅製配管との溶接部分の外表面にはエポキシ成分―ポリウレタン成分の約290μmの厚さの二層構造積層膜の防食塗膜を形成されて、耐イオウ性塗膜形成の冷凍回路装置の防錆対策を行った。As in Example 1, the air conditioner refrigeration circuit is equipped with a compressor, a four-way valve, an evaporator, and a heat exchanger that allow refrigerant to flow through copper pipes, and copper piping is installed at both ends of the copper pipe that connects these devices. Welding is performed to form a refrigerant circulation path, and the outer surface of the copper pipe is coated with the compressor as shown in the above painting process and in accordance with the process chart of FIG. The outer surfaces of the equipment, the four-way valve, the evaporator, and the heat exchanger, the copper pipes that connect each equipment, and the welded parts of the copper pipes to the copper pipes are coated with epoxy undercoat, which is a room-temperature curing paint. The outer surface is uniformly coated with a resin paint, and a laminated film of polyurethane resin paint is formed on the epoxy resin paint film with a top coat of polyurethane paint, and the copper pipe connecting the surface of the equipment and the copper pipe is formed. An anti-corrosion coating of a two-layer laminated film of epoxy and polyurethane components with a thickness of approximately 290 μm is formed on the outer surface of the welded part with the copper piping. Measures against rust were taken.

図3に示す下塗塗装では、エポキシ樹脂塗料として、配管と電気・電子部品の防錆性、防食性、耐薬品性の用途のもので、緻密性、付着性に優れている成分であるビスフェノールAとエピクロルヒドリンからなる二液変性エポキシ樹脂塗料の吹付け塗装で製膜した。この塗膜では常温硬化型で分子中に複数個のエポキシ基を有する樹脂層を形成する二液型塗料として、銅パイプを主体にして機器の外面に約200μm膜厚層にした。乾燥は常温で2時間で行った。The undercoat shown in Figure 3 is used as an epoxy resin paint for rust prevention, corrosion prevention, and chemical resistance for piping and electrical/electronic parts, and is a component of bisphenol A that has excellent density and adhesion. The film was formed by spray painting with a two-component modified epoxy resin paint consisting of and epichlorohydrin. This coating film is a two-component paint that cures at room temperature and forms a resin layer having a plurality of epoxy groups in the molecule, and is made of copper pipes as a main component and has a film thickness of about 200 μm on the outer surface of the device. Drying was performed at room temperature for 2 hours.

図3に示す上塗塗装では、耐薬品性をもたらす上塗塗装でのポリウレタン樹脂塗料として硬化中にアクリルポリオールの主剤ベース材とウレタンのイソシアネート結合(-NH-CO-O-)を生成するイソシアネート結合を持っている塗料の硬化剤で、主剤と硬化剤を混ぜる2液型と油変性ポリウレタン樹脂、湿気硬化型ポリウレタン樹脂、ブロックイソシアネート硬化型ポリウレタン樹脂、ラッカー型ポリウレタン樹脂をビヒクルとする1液型、これらから選ばれたものを液状で銅パイプに40μmの膜厚層でエポキシ樹脂塗膜上に塗布した。塗膜はスプレーガンによる吹付け塗布で行った。塗膜の乾燥は常温で5時間で行った。In the top coat shown in Figure 3, as a polyurethane resin paint in the top coat that provides chemical resistance, an isocyanate bond that forms an isocyanate bond (-NH-CO-O-) between the main base material of acrylic polyol and urethane during curing is used. There are two types of curing agents for paints: two-component types that mix the main agent and curing agent, and one-component types that use oil-modified polyurethane resins, moisture-curing polyurethane resins, block isocyanate-curing polyurethane resins, and lacquer-type polyurethane resins as vehicles. A liquid selected from the following was applied to a copper pipe in a layer with a thickness of 40 μm on an epoxy resin coating. The coating was applied by spraying with a spray gun. The coating film was dried at room temperature for 5 hours.

前記二層膜塗料の塗布における乾燥方法は、それぞれの塗布において350μmの厚さ膜層に塗布して、ピンホールのない確認上での均一塗布面の状態である装置内の銅パイプ、並びに部品に対して、それぞれ30℃、1~4時間で、迅速硬化させている。エポキシ樹脂塗料として、分子中に複数個のエポキシ基を有する樹脂で、ビスフェノールAとエピクロルヒドリンからなる変性エポキシ樹脂塗料であり、常温硬化型で二液型塗料としてパイプ内外面、電気、電子部品の防食性、耐薬品性の用途のもので、耐水性、耐薬品性、付着性に優れている成分である。スプレーガン塗布で行うことができるが、均一性を保った。The drying method for applying the two-layer paint is to apply a film layer with a thickness of 350 μm in each application, and to dry the copper pipes and parts in the equipment with a uniformly coated surface with no pinholes. In contrast, rapid curing was performed at 30°C for 1 to 4 hours. As an epoxy resin paint, it is a resin with multiple epoxy groups in the molecule, and is a modified epoxy resin paint consisting of bisphenol A and epichlorohydrin.It is a two-component paint that hardens at room temperature, and is used to protect the inside and outside of pipes, as well as electrical and electronic parts. This component has excellent water resistance, chemical resistance, and adhesion. This can be done by spray gun application, but uniformity was maintained.

ポリウレタン樹脂塗料として硬化中にウレタン結合を生成するウレタン結合を持っている塗料で、主剤と硬化剤を混ぜる2液型と油変性ポリウレタン樹脂、湿気硬化型ポリウレタン樹脂、ブロックイソシアネート硬化型ポリウレタン樹脂、ラッカー型ポリウレタン樹脂をビヒクルとする1液型、これらから選ばれたものを液状で銅パイプに塗布する。前記塗料の塗布は乾燥方法として銅パイプに常温で、1~5時間で、240μmの厚さに塗布して、ピンホールを存在しないように多重塗布によって、この状態で硬化する。常温硬化型塗料の塗装方法については、図4に示すようになっており、さらに電子線マイクロアナライザー(EPMA)の測定による表面、断面の状態変化を観察したところ、図5,6,7,8のようになって均一に被覆していた。
温泉地域でイオウ成分雰囲気を持つ場所にあるエアコン冷凍回路の外表面にはエポキシ成分―ポリウレタン成分の二層構造積層膜の防食塗膜を施していないものは、半年で銅配管にピンホールによる稼働が難しくなり、使用不能になったが、上記の二層構造積層膜の防食塗膜を施した装置では、2年以上でも問題が生じなかった。
A polyurethane resin paint that has urethane bonds that generate urethane bonds during curing, including two-component types that mix the base agent and curing agent, oil-modified polyurethane resins, moisture-curing polyurethane resins, block isocyanate-curing polyurethane resins, and lacquers. A one-component type using a polyurethane resin as a vehicle, and a selected one from these is applied to the copper pipe in liquid form. The coating material is dried by coating it on a copper pipe at room temperature for 1 to 5 hours to a thickness of 240 μm, applying multiple coatings to avoid pinholes, and curing in this state. The method of applying the room-temperature curing paint is shown in Figure 4.Furthermore, when we observed changes in the surface and cross-sectional conditions using an electron beam microanalyzer (EPMA), we found Figures 5, 6, 7, and 8. It looked like this and was evenly coated.
Air conditioner refrigeration circuits located in hot spring areas with a sulfur component atmosphere that are not coated with a two-layer anti-corrosion coating consisting of epoxy and polyurethane components on the outer surface will be unable to operate due to pinholes in the copper piping within six months. However, with the equipment coated with the anticorrosive coating of the two-layer laminated film, no problems occurred even after two years or more.

腐食性ガスによるガス漏れ試験
まず、腐食性ガスである硫化水素ガスの発生源を調製した。硫化水素ガスの発生源は、容量500mlのビーカーに水100gを注ぎ、この水に硫化ナトリウム24gを溶解し、硫化ナトリウムが完全に溶解した状態の水溶液にリン酸二水素カリウム5.44gを溶解することにより調製した。
上記の状態で、冷凍回路装置を冷却運転し、蒸発器の銅製パイプと銅製配管との溶接部分がイオウ含有腐食性ガスにより腐食して孔が開き、ガスが漏れ始めるまでの期間を調べた。なお、両腐食性ガスの発生源であるビーカーは、約200時間の運転毎に、新しく調製したものと交換した。また、冷凍回路装置内の腐食性ガスの濃度は、冷却運転中、硫化水素濃度約5ppmであった。
蒸発器のガス漏れについては、ガス漏れ用のチェック液を塗布した蒸発器及び銅製配管の内部にガス圧1MPaの窒素ガスを充填し、目視により確認した。なお、冷蔵庫の冷却運転は、蒸発器にガス漏れが確認された時点で中止するものとした。
Gas leak test using corrosive gas First, a source of hydrogen sulfide gas, which is a corrosive gas, was prepared. The source of hydrogen sulfide gas is to pour 100 g of water into a 500 ml beaker, dissolve 24 g of sodium sulfide in this water, and dissolve 5.44 g of potassium dihydrogen phosphate in the aqueous solution in which the sodium sulfide is completely dissolved. It was prepared by
Under the above conditions, the refrigeration circuit device was operated for cooling, and the period until the welded part between the copper pipe of the evaporator and the copper pipe was corroded by sulfur-containing corrosive gas, a hole opened, and gas began to leak was investigated. The beaker, which is the source of both corrosive gases, was replaced with a freshly prepared one every approximately 200 hours of operation. Further, the concentration of corrosive gas in the refrigeration circuit device was approximately 5 ppm of hydrogen sulfide during the cooling operation.
Gas leakage from the evaporator was visually confirmed by filling nitrogen gas at a gas pressure of 1 MPa inside the evaporator and copper piping coated with a gas leak check liquid. Note that the cooling operation of the refrigerator was to be stopped when gas leakage was confirmed in the evaporator.

腐食性ガスによる試験結果
本願の方法で処理した蒸発器冷凍回路装置の銅パイプと銅製配管との溶接部分からガス漏れが認められず、冷却運転開始後90日目以降でも安定であった。これに対し、一般の処理なしの冷凍回路装置では冷却運転開始後30日目にガス漏れが認められた。このように、冷凍回路の銅パイプと銅製配管との溶接部分に防食塗膜を形成することで、溶接部分の防食性を向上させることができる。
Test results using corrosive gases No gas leakage was observed from the welds between the copper pipes of the evaporator refrigeration circuit equipment treated by the method of the present application, and the test was stable even after 90 days after the start of cooling operation. On the other hand, gas leakage was observed in the refrigeration circuit device without general treatment on the 30th day after the start of cooling operation. In this way, by forming an anticorrosive coating on the welded portion between the copper pipe and the copper piping of the refrigeration circuit, the corrosion resistance of the welded portion can be improved.

1…耐イオウ性冷凍回路 20 アキュムレータ
2…二層塗膜 21 油分離器
3…配管 22 電子膨張弁
4…銅パイプ 23 閉鎖弁
5…ウレタン塗膜 24 冷媒調整器
6…エポキシ塗膜 25 フィン
7…下塗塗装 26 受液器
8…上塗塗装 27 四路切換弁
9・冷媒循環路 28 逆止弁
10 圧縮機、 29 ストレーナ
11 凝縮器、 30 サービスポート
12 減圧器、
13 二方弁
14 四方弁
15 蒸発器
16 熱交換器
17 ファン
18 電磁弁
19 モーター
1... Sulfur-resistant refrigeration circuit 20 Accumulator 2... Two-layer coating 21 Oil separator 3... Piping 22 Electronic expansion valve 4... Copper pipe 23 Closing valve 5... Urethane coating 24 Refrigerant regulator 6... Epoxy coating 25 Fin 7 ...undercoating 26 liquid receiver 8...top coating 27 four-way switching valve 9 refrigerant circulation path 28 check valve 10 compressor, 29 strainer 11 condenser, 30 service port 12 pressure reducer,
13 Two-way valve 14 Four-way valve 15 Evaporator 16 Heat exchanger 17 Fan 18 Solenoid valve 19 Motor

Claims (4)

エアコン冷凍回路において銅パイプ内に冷媒を流すようにした圧縮機と四方弁と蒸発器と熱交換器とを備え、それらの機器を繋ぐ前記銅パイプの両端に銅製配管を溶接して冷媒循環路を構成すると共に、前記銅製配管の外面を、イオウ成分を持つ雰囲気の暴露における冷凍装置において、前記圧縮機と四方弁と蒸発器と熱交換器の機器の外表面と各機器を繋ぐ銅パイプと前記銅パイプのうち前記銅製配管との溶接部分とを、常温硬化型の塗料である下塗塗装のエポキシ樹脂塗料で外面を均一に塗布して、前記エポキシ樹脂の塗膜上にポリウレタン塗料によって上塗塗装のポリウレタン樹脂塗料の積層塗膜が形成され、前記機器の表面とそれらを繋ぐ銅パイプと前記銅パイプの銅製配管との溶接部分の外表面にはエポキシ成分―ポリウレタン成分の300~600μmの厚さの二層構造積層膜の防食塗膜を形成されていることを特徴とする冷凍回路装置に対する耐イオウ性塗膜形成の方法。In an air conditioner refrigeration circuit, a refrigerant circulation path is provided with a compressor, a four-way valve, an evaporator, and a heat exchanger that allow refrigerant to flow through copper pipes, and copper piping is welded to both ends of the copper pipe that connects these devices. In addition, the outer surface of the copper pipe is connected to the outer surface of the compressor, four-way valve, evaporator, and heat exchanger and each device in a refrigeration system exposed to an atmosphere containing a sulfur component. The outer surface of the welded portion of the copper pipe to the copper piping is uniformly coated with an epoxy resin paint that cures at room temperature as an undercoat, and then a topcoat is applied on the epoxy resin coating with a polyurethane paint. A laminated coating film of polyurethane resin paint is formed, and the outer surface of the welded part between the surface of the equipment, the copper pipe connecting them, and the copper piping of the copper pipe is coated with an epoxy component and a polyurethane component with a thickness of 300 to 600 μm. A method for forming a sulfur-resistant coating film for a refrigeration circuit device, characterized in that the anticorrosion coating film is formed of a two-layer laminated film. 下塗塗装でのエポキシ樹脂塗料として、ビスフェノールAとエピクロルヒドリンからなる変性エポキシ樹脂塗料で、常温硬化型で分子中に複数個のエポキシ基を有する樹脂層を形成する二液型塗料として、銅パイプを主体にして機器の外面に250~500μm膜厚層にして、配管と電気・電子部品の防錆性、防食性、耐薬品性の用途のもので、緻密性、付着性に優れている成分であることを特徴とする請求項1に記載の冷凍回路装置に対する耐イオウ性塗膜形成の方法。As an epoxy resin paint for undercoating, it is a modified epoxy resin paint consisting of bisphenol A and epichlorohydrin, and is a two-component paint that cures at room temperature and forms a resin layer with multiple epoxy groups in the molecule, mainly used on copper pipes. It is used as a 250-500 μm thick layer on the outside of equipment to provide rust prevention, corrosion protection, and chemical resistance for piping and electrical/electronic parts.It is a component with excellent density and adhesion. A method for forming a sulfur-resistant coating film on a refrigeration circuit device according to claim 1. 耐薬品性をもたらす上塗塗装でのポリウレタン樹脂塗料として硬化中にアクリルポリオールの主剤ベース材とウレタンのイソシアネート結合(-NH-CO-O-)を生成するイソシアネート結合を持っている塗料の硬化剤で、主剤と硬化剤を混ぜる2液型と油変性ポリウレタン樹脂、湿気硬化型ポリウレタン樹脂、ブロックイソシアネート硬化型ポリウレタン樹脂、ラッカー型ポリウレタン樹脂をビヒクルとする1液型、これらから選ばれたものを液状で銅パイプに50~100μmの膜厚層でエポキシ樹脂塗膜上に塗布することを特徴とする請求項1に記載の冷凍回路装置に対する耐イオウ性塗膜形成の方法。A curing agent for paints that have an isocyanate bond (-NH-CO-O-) that forms an isocyanate bond (-NH-CO-O-) between the acrylic polyol base material and urethane during curing as a polyurethane resin paint for top coating that provides chemical resistance. , a two-component type in which the base resin and a curing agent are mixed, and a one-component type in which the vehicle is an oil-modified polyurethane resin, a moisture-curing polyurethane resin, a block isocyanate-curing polyurethane resin, or a lacquer-type polyurethane resin. The method for forming a sulfur-resistant coating film for a refrigeration circuit device according to claim 1, characterized in that the epoxy resin coating film is coated on a copper pipe in a layer thickness of 50 to 100 μm. 前記二層膜塗料の塗布における乾燥方法は、それぞれの塗布において50~500μmの厚さ膜層に塗布して、ピンホールのない確認上での均一塗布面の状態である装置内の銅パイプ、並びに部品に対して、それぞれ常温~70℃、1~24時間で、迅速硬化させていることを特徴とする請求項1~請求項3のいずれかに記載の冷凍回路装置に対する耐イオウ性塗膜形成の方法。The drying method for applying the two-layer paint is to apply a film layer with a thickness of 50 to 500 μm in each application, and use a copper pipe in the equipment to ensure a uniformly coated surface with no pinholes. and a sulfur-resistant coating film for a refrigeration circuit device according to any one of claims 1 to 3, characterized in that the parts are rapidly cured at room temperature to 70°C for 1 to 24 hours, respectively. Method of formation.
JP2019240116A 2019-12-13 2019-12-13 Method for forming sulfur-resistant coating on refrigeration circuit equipment Active JP7387089B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019240116A JP7387089B2 (en) 2019-12-13 2019-12-13 Method for forming sulfur-resistant coating on refrigeration circuit equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019240116A JP7387089B2 (en) 2019-12-13 2019-12-13 Method for forming sulfur-resistant coating on refrigeration circuit equipment

Publications (2)

Publication Number Publication Date
JP2021096059A JP2021096059A (en) 2021-06-24
JP7387089B2 true JP7387089B2 (en) 2023-11-28

Family

ID=76431015

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019240116A Active JP7387089B2 (en) 2019-12-13 2019-12-13 Method for forming sulfur-resistant coating on refrigeration circuit equipment

Country Status (1)

Country Link
JP (1) JP7387089B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005146179A (en) 2003-11-18 2005-06-09 Nippon Bee Chemical Co Ltd Low gloss two-component polyurethane coating composition for interior finishing and coated articles
JP2007255850A (en) 2006-03-24 2007-10-04 Hoshizaki Electric Co Ltd Refrigerating circuit
JP2009197106A (en) 2008-02-20 2009-09-03 Nkm Coatings Co Ltd Epoxy resin coating composition, method for forming coating film, and coated article
JP2019174088A (en) 2018-03-29 2019-10-10 株式会社神戸製鋼所 Surface treated fin material for heat exchanger, and manufacturing method therefor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005146179A (en) 2003-11-18 2005-06-09 Nippon Bee Chemical Co Ltd Low gloss two-component polyurethane coating composition for interior finishing and coated articles
JP2007255850A (en) 2006-03-24 2007-10-04 Hoshizaki Electric Co Ltd Refrigerating circuit
JP2009197106A (en) 2008-02-20 2009-09-03 Nkm Coatings Co Ltd Epoxy resin coating composition, method for forming coating film, and coated article
JP2019174088A (en) 2018-03-29 2019-10-10 株式会社神戸製鋼所 Surface treated fin material for heat exchanger, and manufacturing method therefor

Also Published As

Publication number Publication date
JP2021096059A (en) 2021-06-24

Similar Documents

Publication Publication Date Title
US9889469B2 (en) Process for coating the interior surfaces of pipes made of nonmetal materials
JP4416167B2 (en) Chemically treated ground treatment agent for anticorrosion coated steel, chemical groundwork treatment method for anticorrosive coated steel, and anticorrosive coated steel
AU2016374776A1 (en) Threaded connection for pipe or tube and method for producing the threaded connection for pipe or tube
EP2740564B1 (en) Methods and systems for coating and sealing inside piping systems
CN107795774A (en) Naval vessel dissimilar metal piping junction corrosion safeguard structure and construction method
JP3225576U (en) Refrigeration circuit device for forming sulfur-resistant coating film
JP7387089B2 (en) Method for forming sulfur-resistant coating on refrigeration circuit equipment
CN114144481A (en) Coating system
JP2024071419A (en) Coated and plated steel sheets
JP2007119858A (en) Chromium-free precoated steel plate
JP2010127272A (en) Compressor for refrigeration
US6562467B2 (en) Corrosion and UV resistant article and process for electrical equipment
JP5169627B2 (en) Repair liquid for cutting end face of precoated metal sheet and repair method using the same
CN207514444U (en) Naval vessel dissimilar metal piping junction corrosion safeguard structure
Farooq et al. The effect of chemical treatment on the adhesion strength and structural integrity of the epoxy coatings
JP2005028822A (en) Coated steel sheet containing no chromium
JP4324305B2 (en) Manufacturing method of hermetic compressor or hermetic container for refrigerant
Aksu et al. PRACTICAL IN-PLANT EVALUATION OF TWO FBE ABRASION-RESISTANT OVERCOAT SYSTEMS
Eguchi et al. Development of corrosion protection methods using S-shaped wire wrapping system
JP3796580B2 (en) Paint additive composition
JPH10138398A (en) Rustproofing treating method and steel material treated by this
TR201807775A2 (en) HEAT TRANSFER ELEMENT FOR COOLING DEVICES
Struemph et al. Correlation of two accelerated corrosion test methods to the actual exposure of finished panels
KR20170055620A (en) Adhesion Enhancing Agent with Anti-rust Additive Property for the Purpose of arc thermal spraying method
Stephenson et al. Corrosion-resistant materials for water and wastewater treatment plants at Fort Bragg: final report on AR-F-319 for FY05

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221102

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230927

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231021

R150 Certificate of patent or registration of utility model

Ref document number: 7387089

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150