JP7386507B2 - Muscle differentiation promoting agent, method for promoting muscle differentiation, and oligo DNA for promoting muscle differentiation - Google Patents

Muscle differentiation promoting agent, method for promoting muscle differentiation, and oligo DNA for promoting muscle differentiation Download PDF

Info

Publication number
JP7386507B2
JP7386507B2 JP2019142724A JP2019142724A JP7386507B2 JP 7386507 B2 JP7386507 B2 JP 7386507B2 JP 2019142724 A JP2019142724 A JP 2019142724A JP 2019142724 A JP2019142724 A JP 2019142724A JP 7386507 B2 JP7386507 B2 JP 7386507B2
Authority
JP
Japan
Prior art keywords
seq
muscle differentiation
oligo dna
muscle
promoting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019142724A
Other languages
Japanese (ja)
Other versions
JP2021024792A (en
Inventor
公二 梅澤
智英 ▲高▼谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinshu University NUC
Original Assignee
Shinshu University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinshu University NUC filed Critical Shinshu University NUC
Priority to JP2019142724A priority Critical patent/JP7386507B2/en
Publication of JP2021024792A publication Critical patent/JP2021024792A/en
Application granted granted Critical
Publication of JP7386507B2 publication Critical patent/JP7386507B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本開示は、筋萎縮症の予防・治療、横紋筋肉腫の増殖・転移の抑制、ES・iPS細胞もしくは体性幹細胞の筋分化誘導、筋疾患の再生医療、創薬のスクリーニングに供する骨格筋(幹)細胞の作成、食肉用家畜・家禽の飼料の添加物、食肉用家畜・家禽の骨格筋の形成・生育の促進に利用可能な筋分化促進剤および筋分化促進剤方法および筋分化促進オリゴDNAに関する。 The present disclosure relates to prevention and treatment of muscular atrophy, suppression of rhabdomyosarcoma growth and metastasis, induction of muscle differentiation of ES/iPS cells or somatic stem cells, regenerative medicine for muscle diseases, and skeletal muscle used for drug discovery screening. Muscle differentiation promoters and muscle differentiation promoters that can be used to create (stem) cells, feed additives for meat-producing livestock and poultry, and promoting the formation and growth of skeletal muscle in meat-producing livestock and poultry.Methods and muscle differentiation promotion Regarding oligo DNA.

超高齢社会では、加齢性の骨格筋萎縮(サルコペニア)を主徴とするロコモティブ症候群(運動器症候群)が急増しており、日本における要支援・要介護となった原因の第一位を占めている。また、日本人の死因の第一位である癌の患者の数十%が癌悪液質(カヘキシー)を合併するが、癌悪液質による骨格筋量の減少は生命予後と強く相関する。また、死因の第2、3位を占める心血管疾患の最終病像である心不全においては、骨格筋の萎縮は予後の独立した危険因子である。さらに、糖尿病患者の一部でも糖尿病性の筋萎縮が認められる。このように、骨格筋の萎縮は、老化や多様な疾患と連動している。したがって、日本を含む超高齢社会において、筋萎縮の予防および治療法の開発は、人々の運動機能を維持し、生活の質(QOL)を向上させ、健康寿命を延伸するために不可欠である。 In a super-aging society, locomotive syndrome (locomotor syndrome), whose main symptom is age-related skeletal muscle atrophy (sarcopenia), is rapidly increasing, and it is the number one cause of people requiring support and nursing care in Japan. ing. Additionally, several tens of percent of patients with cancer, which is the number one cause of death in Japan, develop cancer cachexia, and the decrease in skeletal muscle mass due to cancer cachexia is strongly correlated with life prognosis. Furthermore, in heart failure, which is the final manifestation of cardiovascular disease, which is the second or third leading cause of death, skeletal muscle atrophy is an independent risk factor for prognosis. Furthermore, diabetic muscle atrophy is also observed in some diabetic patients. In this way, skeletal muscle atrophy is linked to aging and various diseases. Therefore, in super-aging societies including Japan, the development of methods for preventing and treating muscle atrophy is essential for maintaining people's motor functions, improving quality of life (QOL), and extending healthy lifespans.

骨格筋は、衛星細胞と呼ばれる骨格筋幹細胞の増殖と分化によって、組織としての恒常性が保たれる。筋再生時には、衛星細胞は筋芽細胞と呼ばれる筋前駆細胞へと活性化される。筋芽細胞は数回の細胞分裂によって増殖した後、筋細胞へと分化する。筋細胞は互いに融合して多核の筋管を形成し、骨格筋組織を再生する。ところが老化が進行すると、筋組織中の衛星細胞の数が減少し、また、個々の衛星細胞の再生能力も低下する。衛星細胞の老化を抑制する、あるいは再生能力を活性化する機能性分子を探索・同定することは、筋萎縮症に対する新しい予防戦略の提唱につながると期待されている。 Skeletal muscle tissue homeostasis is maintained through the proliferation and differentiation of skeletal muscle stem cells called satellite cells. During muscle regeneration, satellite cells are activated into muscle precursor cells called myoblasts. Myoblasts proliferate through several rounds of cell division and then differentiate into muscle cells. Muscle cells fuse with each other to form multinucleated myotubes and regenerate skeletal muscle tissue. However, as aging progresses, the number of satellite cells in muscle tissue decreases, and the regenerative ability of individual satellite cells also decreases. Searching for and identifying functional molecules that suppress aging or activate the regenerative ability of satellite cells is expected to lead to the proposal of new preventive strategies for muscular atrophy.

老化防止という観点から、テロメア相同オリゴDNA(配列番号2、3)を細胞に曝露することにより、平均テロメア長を増加させる技術が開示されている(特許文献1)。また、最近では、乳酸菌ゲノム配列由来のテロメア配列を有する塩基長18のオリゴDNA(配列番号1)を筋芽細胞に曝露することにより、骨格筋への分化を促進する技術が提案されている(特許文献2)。 From the viewpoint of preventing aging, a technique has been disclosed in which the average telomere length is increased by exposing cells to telomere homologous oligo DNA (SEQ ID NO: 2, 3) (Patent Document 1). Furthermore, recently, a technology has been proposed that promotes differentiation into skeletal muscle by exposing myoblasts to an 18 base long oligo DNA (SEQ ID NO: 1) having a telomere sequence derived from the lactic acid bacteria genome sequence ( Patent Document 2).

特表2005-522520号公報Special Publication No. 2005-522520 WO2018/151225WO2018/151225

しかし、特許文献1の方法は現状維持に関する方法、すなわちテロメア長を維持することによる細胞の修復やDNA欠損に由来するガン化の抑制を目的としたものであり、筋分化を促進しようとするものではない。また、特許文献2のオリゴDNAは、乳酸菌ゲノム配列由来ではあるが実際に商品として生産するには化学合成的な手法を用いざるを得ず、コスト的な問題があった。 However, the method of Patent Document 1 is a method for maintaining the status quo, that is, a method aimed at repairing cells by maintaining telomere length and suppressing canceration resulting from DNA defects, and is aimed at promoting muscle differentiation. isn't it. Further, although the oligo DNA of Patent Document 2 is derived from the lactic acid bacterium genome sequence, chemical synthesis methods must be used to actually produce it as a commercial product, which poses a cost problem.

そこで本発明者らは、上記課題を解決するために鋭意検討を行い、新たな知見を見出すに至った。 Therefore, the present inventors conducted intensive studies to solve the above problems, and came to discover new knowledge.

本開示の一態様に係る筋分化促進剤は、3連グアニン配列と4連グアニン配列がアデニンかチミンのいずれか又は両方を含む1乃至3個の塩基を介して結合した塩基配列(配列番号20または配列番号21または配列番号22)を有し、前記3連グアニン配列と前記4連グアニン配列がそれぞれ対向する立体構造を有したオリゴDNAを含む。 The muscle differentiation promoting agent according to one aspect of the present disclosure has a base sequence (SEQ ID NO: 20 or SEQ ID NO: 21 or SEQ ID NO: 22), and includes an oligo DNA having a three-dimensional structure in which the triple guanine sequence and the quadruple guanine sequence face each other.

前記オリゴDNAの塩基長は8以上16以下であってもよい。 The oligo DNA may have a base length of 8 or more and 16 or less.

前記オリゴDNAの塩基長は14以下であってもよい。 The oligo DNA may have a base length of 14 or less.

前記オリゴDNAは、5’GGGTGGGG3’(配列番号4)または5’GGGTGAGGGG3’(配列番号5)のいずれかで表されてもよい。 The oligo DNA may be represented by either 5'GGGTGGGG3' (SEQ ID NO: 4) or 5'GGGTGAGGGG3' (SEQ ID NO: 5).

前記オリゴDNAは、5’TTGGGTGGGGAA3’(配列番号6)または5’TTGGGTGAGGGGAT3’(配列番号7)で表されてもよい。 The oligo DNA may be represented by 5'TTGGGTGGGGAA3' (SEQ ID NO: 6) or 5'TTGGGTGAGGGGAT3' (SEQ ID NO: 7).

前記オリゴDNAは、5’TTGGGTGGGGAA3’(配列番号8)または5’TTGGGTGAGGGGAA3’(配列番号10)で表されてもよい。 The oligo DNA may be represented by 5'TTGGGTGGGGAA3' (SEQ ID NO: 8) or 5'TTGGGTGAGGGGAA3' (SEQ ID NO: 10).

前記オリゴDNAは、5’TTTGGGTGGGGAAA3’(配列番号9)または5’TTTGGGTGAGGGGAAA3’(配列番号11)で表されてもよい。 The oligo DNA may be represented by 5'TTTGGGTGGGGAAA3' (SEQ ID NO: 9) or 5'TTTGGGTGAGGGGAAA3' (SEQ ID NO: 11).

前記筋分化促進剤は、哺乳類もしくは鳥類の細胞または個体に対して適用してもよい。 The muscle differentiation promoting agent may be applied to cells or individuals of mammals or birds.

前記細胞はマウス筋芽細胞またはニワトリ筋芽細胞またはヒト筋芽細胞であってもよい。 The cells may be mouse myoblasts or chicken myoblasts or human myoblasts.

前記個体はマウスまたはニワトリまたはヒトであってもよい。 Said individual may be a mouse or a chicken or a human.

本開示の一態様に係る筋分化促進方法は、前記筋分化促進剤を使用する。 A method for promoting muscle differentiation according to one aspect of the present disclosure uses the muscle differentiation promoting agent.

本開示の一態様に係る筋分化促進オリゴDNAは、3連グアニン配列と4連グアニン配列がアデニンかチミンのいずれか又は両方を含む1乃至3個の塩基を介して結合した塩基配列(配列番号20または配列番号21または配列番号22)を有し、前記3連グアニン配列と前記4連グアニン配列がそれぞれ対向する立体構造を有する。 The muscle differentiation-promoting oligo DNA according to one aspect of the present disclosure has a base sequence (SEQ ID NO: 20, SEQ ID NO: 21, or SEQ ID NO: 22), and has a three-dimensional structure in which the triple guanine sequence and the quadruple guanine sequence face each other.

前記筋分化促進オリゴDNAの塩基長は8以上16以下であってもよい。 The base length of the muscle differentiation-promoting oligo DNA may be 8 or more and 16 or less.

前記筋分化促進オリゴDNAの塩基長は14以下であってもよい。 The muscle differentiation promoting oligo DNA may have a base length of 14 or less.

前記筋分化促進オリゴDNAは、5’GGGTGGGG3’(配列番号4)または5’GGGTGAGGGG3’(配列番号5)のいずれかで表される塩基配列を有してもよい。 The muscle differentiation promoting oligo DNA may have a base sequence represented by either 5'GGGTGGGG3' (SEQ ID NO: 4) or 5'GGGTGAGGGG3' (SEQ ID NO: 5).

前記筋分化促進オリゴDNAは、5’TTGGGTGGGGAA3’(配列番号6)または5’TTGGGTGAGGGGAA3’(配列番号7)で表される塩基配列を有してもよい。 The muscle differentiation promoting oligo DNA may have a base sequence represented by 5'TTGGGTGGGGAA3' (SEQ ID NO: 6) or 5'TTGGGTGAGGGGAA3' (SEQ ID NO: 7).

前記筋分化促進オリゴDNAは、5’TTGGGTGGGGAA3’(配列番号8)または5’TTGGGTGAGGGGAA3’(配列番号10)で表されてもよい。 The muscle differentiation-promoting oligo DNA may be represented by 5'TTGGGTGGGGAA3' (SEQ ID NO: 8) or 5'TTGGGTGAGGGGAA3' (SEQ ID NO: 10 ).

前記筋分化促進オリゴDNAは、5’TTTGGGTGGGGAAA3’(配列番号)または5’TTTGGGTGAGGGGAAA3’(配列番号11)で表されてもよい。 The muscle differentiation-promoting oligo DNA may be represented by 5'TTTGGGTGGGGAAA3' (SEQ ID NO: 9 ) or 5'TTTGGGTGAGGGGAAA3' (SEQ ID NO: 11).

本開示の一態様によれば、塩基長12~16という、さらに好ましくは塩基長14以下という、比較的短くて安定な、化学合成に適した非テロメア型のオリゴDNAを用い、筋分化を強力に促進することが可能となる。 According to one aspect of the present disclosure, a relatively short and stable non-telomeric oligo DNA having a length of 12 to 16 bases, more preferably 14 bases or less, and suitable for chemical synthesis is used to strongly promote muscle differentiation. This makes it possible to promote

骨格筋の再生メカニズムを示す説明図Explanatory diagram showing the regeneration mechanism of skeletal muscle 筋分化促進効果を有するテロメア型オリゴDNAの構造的特徴を示す図Diagram showing the structural characteristics of telomere-type oligo DNA that has the effect of promoting muscle differentiation テロメア型オリゴDNAとその変異体を投与したマウス筋芽細胞のMHC陽性細胞出現率を示すグラフGraph showing the appearance rate of MHC-positive cells in mouse myoblasts administered with telomere-type oligo DNA and its variants 本開示の一実施形態におけるオリゴDNAの構造的特徴を示す図Diagram showing structural characteristics of oligo DNA in an embodiment of the present disclosure 本開示の一実施形態におけるオリゴDNAの構造的特徴を示す図Diagram showing structural characteristics of oligo DNA in an embodiment of the present disclosure 本開示の比較例におけるオリゴDNAの構造的特徴を示す図Diagram showing structural characteristics of oligo DNA in a comparative example of the present disclosure 本開示の実施例1におけるオリゴDNAと比較例を投与したヒト筋芽細胞のMHCシグナル強度を示すグラフGraph showing MHC signal intensity of human myoblasts administered with oligo DNA in Example 1 of the present disclosure and comparative example 本開示の実施例2におけるオリゴDNAと比較例を投与したヒト筋芽細胞のMHCシグナル強度を示すグラフGraph showing MHC signal intensity of human myoblasts administered with oligo DNA in Example 2 of the present disclosure and comparative example 本開示の実施例3におけるオリゴDNAと比較例を投与したマウス筋芽細胞のMHC陽性細胞出現率を示すグラフGraph showing the MHC-positive cell appearance rate of mouse myoblasts administered with oligo DNA in Example 3 of the present disclosure and comparative example 本開示の実施例4におけるオリゴDNAと比較例を投与したニワトリ筋芽細胞のMHCシグナル強度を示すグラフGraph showing MHC signal intensity of chicken myoblasts administered with oligo DNA in Example 4 of the present disclosure and comparative example

(本開示の実施形態)
以下、本開示の一態様に係る実施の形態(以下、本実施の形態)について図面を参照して詳細に説明する。
(Embodiments of the present disclosure)
Hereinafter, an embodiment (hereinafter referred to as the present embodiment) according to one aspect of the present disclosure will be described in detail with reference to the drawings.

その前に、まず骨格筋の再生メカニズムについて図1を参照しながら説明する。図1は、筋肉組織の一部に損傷もしくは劣化が生じたときの、骨格筋組織の再生および恒常性維持機構を示す説明図である。骨格筋は、衛星細胞と呼ばれる骨格筋幹細胞の増殖と分化によって、組織としての恒常性が保たれる。筋再生時には、衛星細胞は筋芽細胞と呼ばれる筋前駆細胞へと活性化される。筋芽細胞は数回の細胞分裂によって増殖した後、筋細胞へと分化する。筋細胞は互いに融合して多核の筋管を形成し、骨格筋組織を再生する。このように、筋芽細胞は骨格筋の維持・再生において中心的な役割を担っている。しかし、老化や様々な疾患によって筋芽細胞の分化能が低下することが報告されており、これが骨格筋萎縮の原因の一つと考えられていた。 Before that, the regeneration mechanism of skeletal muscle will first be explained with reference to FIG. 1. FIG. 1 is an explanatory diagram showing the regeneration and homeostasis mechanism of skeletal muscle tissue when damage or deterioration occurs in a part of the muscle tissue. Skeletal muscle tissue homeostasis is maintained through the proliferation and differentiation of skeletal muscle stem cells called satellite cells. During muscle regeneration, satellite cells are activated into muscle precursor cells called myoblasts. Myoblasts proliferate through several rounds of cell division and then differentiate into muscle cells. Muscle cells fuse with each other to form multinucleated myotubes and regenerate skeletal muscle tissue. Thus, myoblasts play a central role in the maintenance and regeneration of skeletal muscle. However, it has been reported that the differentiation ability of myoblasts decreases with aging and various diseases, and this was thought to be one of the causes of skeletal muscle atrophy.

そこで、発明者らは以前、乳酸菌Lactobacillus rhamnosus GGのゲノム配列に由来するオリゴDNAライブラリを用いて筋分化促進作用の検証実験を行った(特許文献2)。その結果、配列式1(5’AGATTAGGGTGAGGGTGA3’)で示される18塩基のオリゴDNA(iSN04)が筋芽細胞の分化を顕著に促進することが明らかとなった。なお、本実施の形態において、オリゴDNAとは6から25の塩基からなる短いDNAを意味する。好ましくは9から18の塩基からなる。また、配列式1においてTTAGGGはテロメア配列と呼ばれ、その繰り返し配列(TTAGGG)nは、真核生物の染色体の末端部に存在する。テロメアは細胞分裂すなわちDNA複製とともに短くなり、細胞の老化が進むとされる(特許文献1)。 Therefore, the inventors previously conducted an experiment to verify the muscle differentiation promoting effect using an oligo DNA library derived from the genome sequence of lactic acid bacterium Lactobacillus rhamnosus GG (Patent Document 2). As a result, it was revealed that the 18 base oligo DNA (iSN04) represented by the sequence formula 1 (5'AGATTAGGGTGAGGGGTGA3') significantly promoted myoblast differentiation. Note that in this embodiment, oligo DNA means short DNA consisting of 6 to 25 bases. Preferably it consists of 9 to 18 bases. Furthermore, in sequence formula 1, TTAGGG is called a telomere sequence, and its repeating sequence (TTAGGG)n is present at the end of a eukaryotic chromosome. It is said that telomeres become shorter with cell division, that is, DNA replication, and cell aging progresses (Patent Document 1).

iSN04による筋芽細胞の分化促進効果については以下のように考えられる。分子シミュレーションによるiSN04の立体構造解析(図2)ならびに塩基置換ないし欠失を導入した変異iSN04の活性測定(図3)から、13~15番目の塩基(GGG)が分子内で近接(スタック)しており、ここが活性に必須の部位であることがわかった。 The effect of iSN04 on promoting myoblast differentiation is thought to be as follows. Three-dimensional structural analysis of iSN04 by molecular simulation (Figure 2) and activity measurement of mutant iSN04 with base substitutions or deletions (Figure 3) revealed that the 13th to 15th bases (GGG) are close together (stacked) within the molecule. This was found to be an essential site for activity.

図3の実験結果について、より詳細に説明する。ここで、図中のオリゴDNAの配列において、「-」は塩基が削除され、その両端の塩基が直に結合していることを表す。本実験では、マウス骨格筋から採取した衛星細胞を初代培養して得られた筋芽細胞を用いた。コラーゲンコートした96-wellプレートに、1万個/wellのマウス筋芽細胞を播種する。翌日、10μMのiSN04および変異iSN04、または陰性対象(純水、図中Control)を投与する。48時間後に、骨格筋の最終分化マーカーであるミオシン重鎖(MHC)の抗体を用いて免疫染色する。このとき、DAPI染色によって細胞核を可視化する。イメージアナライザーを用いて、細胞の染色画像の撮影と、MHC陽性細胞の割合(MHC陽性細胞内に存在するDAPI陽性細胞核の数を、全てのDAPI陽性細胞核の数で除したもの)の算出を自動的に行う。 The experimental results shown in FIG. 3 will be explained in more detail. Here, in the oligo DNA sequence in the figure, "-" indicates that a base has been deleted and the bases at both ends are directly bonded. In this experiment, myoblasts obtained by primary culturing satellite cells collected from mouse skeletal muscle were used. 10,000 mouse myoblasts/well are seeded onto a collagen-coated 96-well plate. The next day, 10 μM of iSN04 and mutant iSN04, or a negative control (pure water, Control in the figure) is administered. After 48 hours, immunostaining is performed using an antibody for myosin heavy chain (MHC), which is a marker for terminal differentiation of skeletal muscle. At this time, cell nuclei are visualized by DAPI staining. An image analyzer is used to automatically capture stained images of cells and calculate the percentage of MHC-positive cells (the number of DAPI-positive cell nuclei present in MHC-positive cells divided by the number of all DAPI-positive cell nuclei). Do it on purpose.

実験の結果、陰性対象では約20%であるMHC陽性細胞率が、iSN04投与群では50%を超えていた。このことから、iSN04が筋芽細胞からMHC陽性の筋細胞ないし筋管への分化を促進していることがわかる。一方、iSN04の15番目のGを削除した変異iSN04(Δ15)、14~15番目のGGを削除したΔ14-15、13~15番目のGGGを削除したΔ13-15の順に、筋分化促進活性が低下した。これらの結果から、iSN04の13~15番目のGGGが筋分化促進活性に不可欠であることがわかった。 As a result of the experiment, the MHC positive cell rate was approximately 20% in the negative control group, but exceeded 50% in the iSN04 administration group. This shows that iSN04 promotes the differentiation of myoblasts into MHC-positive myocytes or myotubes. On the other hand, mutant iSN04 (Δ15) in which the 15th G of iSN04 was deleted, Δ14-15 in which the 14th to 15th GGs were deleted, and Δ13-15 in which the 13th to 15th GGG were deleted showed muscle differentiation promoting activity in the following order: decreased. These results revealed that GGG at positions 13 to 15 of iSN04 is essential for muscle differentiation promoting activity.

以上のiSN04を用いた結果から、iSN04の立体構造の特徴を有していれば、18塩基より短いオリゴDNAでも筋分化促進活性を発揮する可能性が考えられる。筋分化促進オリゴDNAの臨床応用を考えるとき、より短い(分子量の小さい)オリゴDNAの開発は、合成コストの低下や、摂取・吸収率の向上につながると期待される。また、安定性についても分子量が小さいほど有利であることが一般的に期待される。 From the above results using iSN04, it is considered possible that even oligo DNA shorter than 18 bases can exhibit muscle differentiation promoting activity if it has the three-dimensional structure characteristics of iSN04. When considering the clinical application of muscle differentiation-promoting oligo DNA, the development of shorter (lower molecular weight) oligo DNA is expected to lead to lower synthesis costs and improved uptake and absorption rates. In addition, it is generally expected that the smaller the molecular weight, the more advantageous it will be in terms of stability.

表1に本実施の形態におけるオリゴDNAの配列(配列番号8~15)を示す。なお、本実施形態における前記オリゴDNAは一本鎖であってもよい。また、核酸分解酵素に対して耐性を高めるためにホスホジエステル結合を有するオリゴDNAのリン酸基の酸素原子を硫黄原子で置換したもの(例えばホスホロチオエート結合)であってもよいが、これらに限定されない。

Table 1 shows the oligo DNA sequences (SEQ ID NOS: 8 to 15) in this embodiment. Note that the oligo DNA in this embodiment may be single-stranded. Furthermore, in order to increase the resistance to nucleolytic enzymes, the oxygen atom of the phosphoric acid group of an oligo DNA having a phosphodiester bond may be replaced with a sulfur atom (for example, a phosphorothioate bond), but the present invention is not limited to these. .

表1のオリゴDNA(iMyo01~08)の塩基配列は、上記の分子シミュレーションおよび実験結果を踏まえたものである。すなわちiSN04の13~15番目のGGGの立体構造の特徴を保持すべく設計されたものである。ただし、いずれのオリゴDNAにもテロメア配列(TTAGGG)は含まれていない。特に、iMyo01~04は、3連グアニン配列(GGG)と4連グアニン配列(GGGG)がアデニン(A)かチミン(T)のいずれか又は両方を含む1乃至3個の塩基を介して結合した塩基配列を有する、という特徴を有している。当該塩基配列はGGGWGGGG(配列番号20)またはGGGWWGGGG(配列番号21)またはGGGWNWGGGG(配列番号22)と表すこともできる。ここでWはアデニン(A)かチミン(T)を、Nはアデニン(A)かチミン(T)かグアニン(G)かシトシン(C)のいずれかを表す。さらにiMyo01~04の塩基長は8以上16以下となっている。 The base sequences of the oligo DNAs (iMyo01-08) in Table 1 are based on the above molecular simulation and experimental results. In other words, it was designed to maintain the three-dimensional structure characteristics of GGG at positions 13 to 15 of iSN04. However, none of the oligo DNAs contains a telomere sequence (TTAGGG). In particular, in iMyo01 to 04, a triple guanine sequence (GGG) and a quadruple guanine sequence (GGGG) are linked via 1 to 3 bases containing either adenine (A) or thymine (T), or both. It has the characteristic of having a base sequence. The base sequence can also be expressed as GGGWGGGG (SEQ ID NO: 20), GGGWWGGGG (SEQ ID NO: 21), or GGGWNWGGGG (SEQ ID NO: 22). Here, W represents adenine (A) or thymine (T), and N represents either adenine (A), thymine (T), guanine (G), or cytosine (C). Furthermore, the base length of iMyo01 to 04 is 8 or more and 16 or less.

例えば、iMyo01、02はコア配列GGGTGGGG(配列番号4)を、iMyo03、iMyo04はコア配列GGGTGAGGGG(配列番号5)を有することにより、より好ましくは、iMyo01、iMyo02はコア配列TTGGGTGGGGAA(配列番号6)を、iMyo03、iMyo04はコア配列TTGGGTGAGGGGAA(配列番号7)をそれぞれ有することにより、筋分化促進活性に有利な構造を有していると考えられる。 For example, iMyo01 and iMyo02 have the core sequence GGGTGGGG (SEQ ID NO: 4), and iMyo03 and iMyo04 have the core sequence GGGTGAGGGG (SEQ ID NO: 5), and more preferably, iMyo01 and iMyo02 have the core sequence TTGGGTGGGGAA (SEQ ID NO: 6). , iMyo03, and iMyo04 each have a core sequence TTGGGTGAGGGGAA (SEQ.

そこで、iMyo03(配列番号10)、iMyo04(配列番号11)、および比較例としてiMyo07(配列番号14)の、それぞれ分子シミュレーションによる立体構造解析を行った。立体構造の算出には単純軌跡和マルチカノニカル分子動力学(McMD)法(J. Ikebe et al., J. Comput. Chem., 2011)を用いた。McMD法は、高温から低温までを構造サンプリングすることで、効率的に室温付近における平衡状態の構造集団を求めることができる手法である。ここでは、310Kにおける構造集団を求め、解析に用いた。なお、本方法は前述のiSN04の立体構造計算と同じである。立体構造解析の結果を、それぞれ図4、図5、図6に示す。 Therefore, three-dimensional structure analysis was performed by molecular simulation of iMyo03 (SEQ ID NO: 10), iMyo04 (SEQ ID NO: 11), and iMyo07 (SEQ ID NO: 14) as a comparative example. A simple trajectory sum multicanonical molecular dynamics (McMD) method (J. Ikebe et al., J. Comput. Chem., 2011) was used to calculate the three-dimensional structure. The McMD method is a method that can efficiently obtain a structural population in an equilibrium state near room temperature by sampling structures from high temperatures to low temperatures. Here, the structural population at 310K was determined and used for analysis. Note that this method is the same as the three-dimensional structure calculation of iSN04 described above. The results of the three-dimensional structure analysis are shown in FIGS. 4, 5, and 6, respectively.

各図の左側に示した立体構造(水素原子を非表示、5’末端から3’ 末端へ、塩基ごとにグラジュエ―ションを施す)は310Kにおいて最も確率の高い(最安定な)計算構造である。図4のiMyo03(配列番号10)の立体構造は7~9番目TGAの部分で曲がった構造を示している。また、1番目のT(チミン)が曲がった部分に入り込み、全体的な立体構造の保持に働いているように見える。 The three-dimensional structure shown on the left side of each figure (hydrogen atoms hidden, gradient applied for each base from the 5' end to the 3' end) is the calculated structure with the highest probability (most stable) at 310 K. . The three-dimensional structure of iMyo03 (SEQ ID NO: 10) in FIG. 4 shows a bent structure at the 7th to 9th TGA portions. Additionally, the first T (thymine) seems to enter the curved part and work to maintain the overall three-dimensional structure.

図4の右側に、iMyo03分子内における各塩基間の接触確率を示す。濃い色の部分は接触確率が高く、塩基同士が近くに位置していることを表している。iMyo03内では特に4番目と11番目、5番目と10番目、6番目と9番目、7番目と9番目の塩基同士付近が濃い色を示し、それらのペアは近くに位置している確率が高い。これは両端が接触したヘアピン様の立体構造を表している。すなわち、iMyo03の立体構造的な特徴として、塩基配列の7~9番目で折れ曲がり、かつ両側の連続グアニンGGGが互いに逆平行に並んで対向している可能性が高い。 The right side of FIG. 4 shows the probability of contact between each base within the iMyo03 molecule. Dark colored areas have a high probability of contact, indicating that the bases are located close to each other. In iMyo03, the areas around the 4th and 11th, 5th and 10th, 6th and 9th, and 7th and 9th bases show a particularly dark color, and there is a high probability that these pairs are located nearby. . This represents a hairpin-like three-dimensional structure with both ends touching. That is, as a three-dimensional structural feature of iMyo03, it is highly likely that the base sequence is bent at positions 7 to 9, and continuous guanines GGG on both sides are arranged antiparallel to each other and face each other.

図5のiMyo04(配列番号11)では、iMyo03で見られたヘアピン様の特徴が明らかではない。図5中の左側において、iMyo04の最安定な立体構造はヘアピン様構造を形成している。しかし、1番目のチミン(T)は曲がった部分には入り込んでいない。加えて、図5中の右側の図(iMyo04内の各塩基間の接触確率)からiMyo03で見られた特徴が薄いことがわかる。 In iMyo04 (SEQ ID NO: 11) in FIG. 5, the hairpin-like feature seen in iMyo03 is not evident. On the left side of FIG. 5, the most stable conformation of iMyo04 forms a hairpin-like structure. However, the first thymine (T) does not enter the curved part. In addition, it can be seen from the diagram on the right side of FIG. 5 (contact probability between each base in iMyo04) that the features observed in iMyo03 are weak.

図6のiMyo07(配列番号14)立体構造はiMyo03(配列番号10)およびiMyo04(配列番号11)のものとは大きく異なる。また、右側の図(iMyo07内の各塩基間の接触確率)からはヘアピン様の特徴が見られない。つまり、iMyo07の立体構造的な特徴はiMyo03およびiMyo04のものとは異なり、iSN04とも異なることを示している。 The tertiary structure of iMyo07 (SEQ ID NO: 14) in Figure 6 is significantly different from that of iMyo03 (SEQ ID NO: 10) and iMyo04 (SEQ ID NO: 11). Moreover, no hairpin-like feature is seen in the figure on the right (contact probability between each base in iMyo07). In other words, the three-dimensional structural features of iMyo07 are different from those of iMyo03 and iMyo04, and also different from iSN04.

以上、まとめると、iMyo03はヘアピン様構造の安定性が高く、かつ、iSN04の3連グアニン(GGG)と同様な局所構造を保っている。iMyo04はiMyo03に比べて構造安定性が低く、立体構造にばらつきがある。iMyo07の立体構造はiSN04、iMyo03、iMyo04と異なる。以上の構造的特徴は、各オリゴDNAにおける筋分化促進活性効果と密接に関係している。これについては実施例で詳細に説明する。 In summary, iMyo03 has a highly stable hairpin-like structure and maintains a local structure similar to the triple guanine (GGG) of iSN04. iMyo04 has lower structural stability than iMyo03, and its steric structure has variations. The three-dimensional structure of iMyo07 is different from iSN04, iMyo03, and iMyo04. The above structural features are closely related to the muscle differentiation promoting activity of each oligo DNA. This will be explained in detail in Examples.

なお、本実施の形態におけるオリゴDNAを筋分化促進剤として使用する場合、個体を構成する細胞に対しても培養液で培養された細胞に対しても適用可能である。また、前記筋分化促進剤はマウス、ヒトを含む哺乳類もしくはニワトリを含む鳥類を対象とすることができるが、これらに限定されない。さらに、本実施の形態における筋分化促進剤は、注射薬、塗布薬、錠剤、カプセル剤、シロップ、座薬等に製剤化できるが、これらに限定されない。また、前記筋分化促進剤は、経口、静脈内、筋肉内、関節内、動脈内、髄内、髄腔内、心室内、経皮、皮下、腹腔内、経腸、局所、舌下または直腸手段によって投与することができるが、これらに限定されない。 In addition, when the oligo DNA in this embodiment is used as a muscle differentiation promoting agent, it is applicable to both cells constituting an individual and cells cultured in a culture solution. Furthermore, the muscle differentiation promoting agent can be used for mammals including mice and humans, or birds including chickens, but is not limited thereto. Furthermore, the muscle differentiation promoting agent in this embodiment can be formulated into injections, liniments, tablets, capsules, syrups, suppositories, etc., but is not limited thereto. The muscle differentiation promoting agent may be administered orally, intravenously, intramuscularly, intraarticularly, intraarterially, intramedullarily, intrathecally, intraventricularly, transdermally, subcutaneously, intraperitoneally, enterally, locally, sublingually, or rectally. It can be administered by, but not limited to, means.

以下、本開示の実施例について説明する。なお、以下の実験に用いたオリゴDNAのサンプル(iSN04(配列番号1)、iSN14(配列番号16)、iSN45(配列番号17)およびiMyo01~08(配列番号8~15)は、核酸分解酵素に対して耐性を高めるために、ヌクレオチド間のホスホジエステル結合をホスホロチオエート結合に置換して合成した後、HPLC精製したものである。
(実施例1)
図7に、市販の健常者ヒト筋芽細胞を用いた試験の結果を示す。まず、コラーゲンコートした96-wellプレートに、6千個/wellのヒト筋芽細胞を播種する。翌日、30μMのオリゴDNAまたは陰性対象(純水、図中Ctrl)を投与する。オリゴDNAは、試験対象としてiMyo01~08(配列番号8~16)、陽性対照としてiSN04(図中iSN-04)(配列番号1)、陰性対照としてiSN14(図中iSN-14)(配列番号16)およびiSN45(図中iSN-45)(配列番号17)を用いた。iSN14およびiSN45は従来、筋分化促進活性を有しないことがわかっている(特許文献2)。
Examples of the present disclosure will be described below. The oligo DNA samples (iSN04 (SEQ ID NO: 1), iSN14 (SEQ ID NO: 16), iSN45 (SEQ ID NO: 17), and iMyo01-08 (SEQ ID NO: 8-15) used in the following experiments are nucleolytic enzymes. The phosphodiester bond between nucleotides was replaced with a phosphorothioate bond in order to increase the resistance to phthalate, and the compound was synthesized and purified by HPLC.
(Example 1)
FIG. 7 shows the results of a test using commercially available healthy human myoblasts. First, 6,000 human myoblasts/well are seeded onto a collagen-coated 96-well plate. The next day, 30 μM of oligo DNA or a negative control (pure water, Ctrl in the figure) is administered. The oligo DNAs were iMyo01 to 08 (SEQ ID NOs: 8 to 16) as test targets, iSN04 (iSN-04 in the figure) (SEQ ID NO: 1) as a positive control, and iSN14 (iSN-14 in the figure) (SEQ ID NO: 16) as a negative control. ) and iSN45 (iSN-45 in the figure) (SEQ ID NO: 17) were used. It has been known that iSN14 and iSN45 do not have muscle differentiation promoting activity (Patent Document 2).

48時間後に、免疫染色によって骨格筋の最終分化マーカーであるミオシン重鎖(MHC)の発現を定量化する。このとき、DAPI染色によって細胞核を可視化する。さらにイメージアナライザーを用いて、細胞の染色画像の撮影と、MHCシグナル強度(画像中のMHCシグナル強度の総計を、DAPI陽性細胞核の数で除したもの)またはMHC陽性細胞率の算出を自動的に行った。陰性対照(純水群)とオリゴDNA投与群のMHCシグナル強度の差は、Dunnett’s testによって検定した。結果を図7に示す。 After 48 hours, the expression of myosin heavy chain (MHC), a marker of terminal differentiation of skeletal muscle, is quantified by immunostaining. At this time, cell nuclei are visualized by DAPI staining. Furthermore, an image analyzer is used to automatically capture stained images of cells and calculate MHC signal intensity (total MHC signal intensity in the image divided by the number of DAPI-positive cell nuclei) or MHC-positive cell percentage. went. The difference in MHC signal intensity between the negative control (pure water group) and the oligo DNA administration group was tested using Dunnett's test. The results are shown in FIG.

iSN04(配列番号1)、iMyo01(配列番号8)、iMyo03(配列番号10)を投与した群のMHCシグナル強度は、有意な差をもって純水群(Ctrl)のMHCシグナル強度を上回っていた。すなわち、iMyo01およびiMyo03はiSN04と同程度にヒト筋芽細胞の分化を促進することが示された。 The MHC signal intensity of the groups administered with iSN04 (SEQ ID NO: 1), iMyo01 (SEQ ID NO: 8), and iMyo03 (SEQ ID NO: 10) exceeded that of the pure water group (Ctrl) with a significant difference. In other words, iMyo01 and iMyo03 were shown to promote human myoblast differentiation to the same extent as iSN04.

(実施例2)
後日、ヒト筋芽細胞を用いた2回目の試験を、図7の実験と同様の方法で行った。結果を図8に示す。本実施例では、純水群(Ctrl)におけるMHCシグナル強度が低く(実施例1の約170に対し本実施例では約60)、ヒト筋芽細胞が分化誘導されにくい状態であったことがわかる。このような条件下においても、iSN04(配列番号1)およびiMyo03(配列番号10)を投与した群のMHCシグナル強度は、有意な差をもって純水群(Ctrl)のMHCシグナル強度を上回った。一方、1回目の試験で筋分化促進活性を示したiMyo01(配列番号8)は、本2回目の試験ではMHCシグナル強度を顕著には増強しなかった。以上の結果から、iMyo03の筋分化促進活性はiSN04と同程度であるが、iMyo01の活性はiMyo03よりも劣っている可能性があると考えられる。
(Example 2)
At a later date, a second test using human myoblasts was conducted in the same manner as the experiment in FIG. The results are shown in FIG. In this example, the MHC signal intensity in the pure water group (Ctrl) was low (approximately 60 in this example compared to approximately 170 in Example 1), indicating that human myoblasts were in a state where it was difficult to induce differentiation. . Even under these conditions, the MHC signal intensity of the groups administered with iSN04 (SEQ ID NO: 1) and iMyo03 (SEQ ID NO: 10) significantly exceeded that of the pure water group (Ctrl). On the other hand, iMyo01 (SEQ ID NO: 8), which showed muscle differentiation promoting activity in the first test, did not significantly enhance MHC signal intensity in the second test. From the above results, it is considered that the muscle differentiation promoting activity of iMyo03 is comparable to that of iSN04, but the activity of iMyo01 may be inferior to that of iMyo03.

(実施例3)
本実施例ではマウス筋芽細胞でのスクリーニング試験とその結果について説明する。本実施例も図7の実験と同様の方法で行った。陰性対照(純水群)とオリゴDNA投与群のMHC陽性細胞率の差を、Dunnett’s testによって検定した。結果を図9に示す。iSN04(配列番号1)、iMyo03(配列番号10)、iMyo04(配列番号11)を投与した群のMHC陽性細胞率は、有意な差をもって純水群(Ctrl)のMHC陽性細胞率を上回った。すなわち、iMyo03およびiMyo04はiSN04と同様にマウス筋芽細胞の分化を促進することが示された。
(Example 3)
This example describes a screening test using mouse myoblasts and its results. This example was also conducted in the same manner as the experiment shown in FIG. Differences in MHC-positive cell rates between the negative control (pure water group) and the oligo DNA administration group were tested using Dunnett's test. The results are shown in FIG. The MHC-positive cell rate of the groups administered with iSN04 (SEQ ID NO: 1), iMyo03 (SEQ ID NO: 10), and iMyo04 (SEQ ID NO: 11) exceeded the MHC-positive cell rate of the pure water group (Ctrl) with a significant difference. That is, iMyo03 and iMyo04 were shown to promote the differentiation of mouse myoblasts similarly to iSN04.

(実施例4)
本実施例ではニワトリ筋芽細胞でのスクリーニング試験とその結果について説明する。本実施例では、ニワトリ骨格筋から採取した衛星細胞を初代培養して得られた筋芽細胞を用いた。コラーゲンコートした96-wellプレートに、5千個/wellのニワトリ筋芽細胞を播種する。翌日、10μMのオリゴDNAまたは陰性対照(純水)を投与する。48時間後にMHCを免疫染色する。このとき、DAPI染色によって細胞核を可視化する。イメージアナライザーを用いて、細胞の染色画像の撮影と、MHCシグナル強度の算出を自動的に行った。陰性対照(純水群)とオリゴDNA投与群のMHCシグナル強度の差を、Dunnett’s testによって検定した。結果を図10に示す。
(Example 4)
This example describes a screening test using chicken myoblasts and its results. In this example, myoblasts obtained by primary culturing satellite cells collected from chicken skeletal muscle were used. 5,000 chicken myoblasts/well are seeded onto a collagen-coated 96-well plate. The next day, administer 10 μM oligo DNA or negative control (pure water). MHC is immunostained after 48 hours. At this time, cell nuclei are visualized by DAPI staining. Using an image analyzer, stained images of cells were photographed and MHC signal intensity was automatically calculated. The difference in MHC signal intensity between the negative control (pure water group) and the oligo DNA administration group was tested using Dunnett's test. The results are shown in FIG.

iSN04(配列番号1)、iMyo01~04(配列番号8~11)を投与した群のMHCシグナル強度は、有意な差をもって純水群(Ctrl)のMHCシグナル強度を上回った。以上の結果から、iMyo01~04はiSN04と同様にニワトリ筋芽細胞の分化を促進することが示された。 The MHC signal intensity of the groups administered with iSN04 (SEQ ID NO: 1) and iMyo01-04 (SEQ ID NO: 8-11) exceeded that of the pure water group (Ctrl) with a significant difference. The above results showed that iMyo01-04 promoted the differentiation of chicken myoblasts similarly to iSN04.

以上、実施例1~4の結果をまとめると、iSN04は、ヒト、マウス、ニワトリのいずれの筋芽細胞に対しても、安定して顕著な筋分化促進活性を示した。同様に、iMyo03は全ての試験において、いずれの筋芽細胞に対しても筋分化促進活性を示した。また、iMyo01はヒト筋芽細胞の、iMyo04はマウス筋芽細胞の分化を、それぞれ促進した。ニワトリ筋芽細胞に対しては、iMyo01~04が筋分化促進作用を示した。一方、iMyo05~08はいずれの筋芽細胞に対しても筋分化促進作用を示さなかった。 To summarize the results of Examples 1 to 4, iSN04 stably exhibited significant muscle differentiation-promoting activity against human, mouse, and chicken myoblasts. Similarly, iMyo03 showed muscle differentiation-promoting activity for all myoblasts in all tests. Furthermore, iMyo01 promoted the differentiation of human myoblasts, and iMyo04 promoted the differentiation of mouse myoblasts. For chicken myoblasts, iMyo01-04 showed a muscle differentiation promoting effect. On the other hand, iMyo05 to 08 did not show any muscle differentiation-promoting effect on any myoblasts.

以上の結果から、iMyo03(配列番号10)はiSN04(配列番号1)と極めて類似した筋分化促進活性を有する、すなわちiMyo03(配列番号10)とiSN04(配列番号1)の構造はよく似た特徴を示すことが考えられる。一方で、iMyo01(配列番号8)、iMyo02(配列番号9)、iMyo04(配列番号11)の筋分化促進活性には種特異性があることが強く示唆された。 From the above results, iMyo03 (SEQ ID NO: 10) has very similar muscle differentiation promoting activity as iSN04 (SEQ ID NO: 1), that is, the structures of iMyo03 (SEQ ID NO: 10) and iSN04 (SEQ ID NO: 1) have very similar characteristics. It is possible to show that On the other hand, it was strongly suggested that the muscle differentiation-promoting activity of iMyo01 (SEQ ID NO: 8), iMyo02 (SEQ ID NO: 9), and iMyo04 (SEQ ID NO: 11) is species-specific.

以上の実験結果は、先に示した各オリゴDNAの立体構造と密接に関係していると思われる。すなわち、iMyo03(配列番号10)の連続グアニン内において隣り合うグアニンGGGは接触確率が高く(図4右の各塩基間接触確率)、iSN04(配列番号1)の連続グアニンGGG(13~15番目)と同様のスタック構造を形成している。つまり、iSN04の活性に必須のGGGと同様な局所構造をiMyo03は有している。 The above experimental results are thought to be closely related to the three-dimensional structure of each oligo DNA shown above. In other words, adjacent guanines GGG in the consecutive guanines of iMyo03 (SEQ ID NO: 10) have a high contact probability (contact probability between each base on the right side of Figure 4), and consecutive guanines GGG (13th to 15th) in iSN04 (SEQ ID NO: 1) It forms a stack structure similar to . In other words, iMyo03 has a local structure similar to GGG, which is essential for the activity of iSN04.

これに対し、iMyo04(配列番号11)はiMyo03に比べて、ヘアピン様構造の安定性が低く(図5右の各塩基間接触確率)、両者の構造に大きなばらつきがある。この構造のばらつきのため、iMyo04はiMyo03に比べて全体的に活性が低く、種特異性が現れたことが考えられる。さらに、iMyo07(配列番号14)に至ってはヘアピン様構造状の立体構造を有しておらず、そのため活性がなかったものと考えられる。このように、筋分化促進活性に違いが現れた理由として、iMyoシリーズの立体構造的な特徴の違いが考えられる。 On the other hand, iMyo04 (SEQ ID NO: 11) has a hairpin-like structure with lower stability than iMyo03 (contact probability between each base on the right side of FIG. 5), and there is large variation in both structures. Due to this structural variation, iMyo04 has an overall lower activity than iMyo03, and it is thought that species specificity appears. Furthermore, iMyo07 (SEQ ID NO: 14) did not have a hairpin-like three-dimensional structure, and therefore it is thought that it had no activity. Thus, the reason for the difference in muscle differentiation promoting activity is thought to be the difference in the three-dimensional structural characteristics of the iMyo series.

なお、オリゴDNAが種特異性を示すことは珍しくなく、むしろiSN04のように、哺乳類と鳥類を含む幅広い種の細胞に活性を示す配列の方が少ない。例えば、CpG ODN 2006(配列番号18)はマウスとヒト両方のToll様受容体9(TLR9)を活性化するが、CpG ODN 1826(配列番号19)はマウスTLR9特異的でありヒトTLR9を活性化しない、といった報告がある(Pohar et al.,J Immunol,2015)。 Note that it is not uncommon for oligo DNA to exhibit species specificity; rather, there are fewer sequences like iSN04 that exhibit activity in cells of a wide range of species, including mammals and birds. For example, CpG ODN 2006 (SEQ ID NO: 18) activates both mouse and human Toll-like receptor 9 (TLR9), whereas CpG ODN 1826 (SEQ ID NO: 19) is specific for mouse TLR9 and activates human TLR9. There are reports that it does not (Pohar et al., J Immunol, 2015).

恐らく、iSN04(配列番号1)およびiMyo03(配列番号10)の共通した構造的特徴は、ヒト、マウス、ニワトリで共通する分子基盤を認識ないし標的とするのに適していると考えられる。他方、iMyo01、02、04の構造はiSN04やiMyo03と少し異なるため、その微細な差異により、動物種によっては活性を発揮しないと推測される。 Presumably, the common structural features of iSN04 (SEQ ID NO: 1) and iMyo03 (SEQ ID NO: 10) make them suitable for recognizing or targeting common molecular bases in humans, mice, and chickens. On the other hand, since the structures of iMyo01, 02, and 04 are slightly different from those of iSN04 and iMyo03, it is presumed that due to the minute differences, they do not exhibit activity depending on the animal species.

いずれの種の筋芽細胞において作用を示さなかったiMyo05~08(配列番号12~15)は、塩基配列後半のグアニンが3連であることがiMyo01~04(配列番号8~11)とは異なる。したがって、iMyo01~04の活性には塩基配列後半の4連グアニン(GGGG)が重要であることが強く示唆される。iMyo01~04の4連グアニンは、iSN04の活性に不可欠な13~15番目の3連グアニンと類似の立体構造に重要であると考えられる。 iMyo05-08 (SEQ ID NO: 12-15), which did not show any effect on myoblasts of any species, differs from iMyo01-04 (SEQ ID NO: 8-11) in that there are three guanines in the latter half of the base sequence. . Therefore, it is strongly suggested that the quadruple guanine (GGGG) in the latter half of the base sequence is important for the activity of iMyo01-04. The quadruple guanines of iMyo01 to 04 are considered to be important in a steric structure similar to the 13th to 15th triple guanines, which are essential for the activity of iSN04.

以上、本開示によれば、塩基長12~16のオリゴDNA、例えば塩基長14のiMyo03(配列番号10)で示されるオリゴDNAにより筋分化を強力に促進することが可能となる。すなわち筋分化を強力に促進する一連のオリゴDNA群を曝露した筋芽細胞では、ミオシン重鎖(MHC)陽性の筋細胞への分化および筋管の形成が促進されることが確認された。しかも、上記オリゴDNAは化学合成が可能で安定構造を有すため、将来的に大量に供給および保存ができる。 As described above, according to the present disclosure, it is possible to strongly promote muscle differentiation using an oligo DNA having a length of 12 to 16 bases, for example, an oligo DNA shown by iMyo03 (SEQ ID NO: 10) having a length of 14 bases. That is, it was confirmed that in myoblasts exposed to a series of oligo DNA groups that strongly promote muscle differentiation, differentiation into myosin heavy chain (MHC)-positive muscle cells and formation of myotubes were promoted. Furthermore, since the oligo DNA can be chemically synthesized and has a stable structure, it can be supplied and stored in large quantities in the future.

本発明は、加齢性筋萎縮症(サルコペニア)、癌悪液質(カヘキシー)による骨格筋量の減少、糖尿病性筋萎縮症などの、加齢性、疾患性および/または代謝性の筋萎縮の予防および/または治療、筋疾患の再生医療、横紋筋肉腫の増殖および/または転移の抑制、多能性幹細胞(ES細胞やiPS細胞)または体性幹細胞の筋分化誘導、創薬のスクリーニングに供する骨格筋幹細胞(衛星細胞)、骨格筋前駆細胞(筋芽細胞)および骨格筋細胞からなる群より選択される少なくとも1種の作成、食肉用家畜および/または家禽の飼料の添加物、食肉用家畜および/または家禽の骨格筋の発生、形成および/または生育の促進に利用することができる。
The present invention deals with age-related, disease-related, and/or metabolic muscle atrophy, such as age-related muscular atrophy (sarcopenia), decreased skeletal muscle mass due to cancer cachexia, and diabetic muscular atrophy. prevention and/or treatment of muscle diseases, regenerative medicine for muscle diseases, suppression of rhabdomyosarcoma growth and/or metastasis, induction of muscle differentiation of pluripotent stem cells (ES cells and iPS cells) or somatic stem cells, screening for drug discovery. Creation of at least one selected from the group consisting of skeletal muscle stem cells (satellite cells), skeletal muscle progenitor cells (myoblasts), and skeletal muscle cells, additives for livestock and/or poultry feed, and meat. It can be used to promote the development, formation and/or growth of skeletal muscle in livestock and/or poultry.

Claims (6)

3連グアニン配列と4連グアニン配列がアデニンかチミンのいずれか又は両方を含む1乃至3個の塩基を介して結合した塩基配列(配列番号20または配列番号21または配列番号22)を有し、前記3連グアニン配列と前記4連グアニン配列がそれぞれ対向する立体構造を有したオリゴDNAを含む筋分化促進剤であって、前記オリゴDNAは、5’TTGGGTGGGGAA3’(配列番号8)、5’TTGGGTGAGGGGAA3’(配列番号10)、5’TTTGGGTGGGGAAA3’(配列番号9)または5’TTTGGGTGAGGGGAAA3’(配列番号11)で表される、筋分化促進剤It has a base sequence (SEQ ID NO: 20, SEQ ID NO: 21, or SEQ ID NO: 22) in which a triple guanine sequence and a quadruple guanine sequence are linked via 1 to 3 bases containing either adenine or thymine, or both, A muscle differentiation promoting agent comprising an oligo DNA having a three-dimensional structure in which the triple guanine sequence and the quadruple guanine sequence face each other , the oligo DNA comprising 5'TTGGGTGGGGAA3' (SEQ ID NO: 8), 5'TTGGGTGAGGGGAA3 ' (SEQ ID NO: 10), 5'TTTGGGTGGGGAAA3' (SEQ ID NO: 9), or 5'TTTGGGTGAGGGGAAA3' (SEQ ID NO: 11). 哺乳類もしくは鳥類の細胞または哺乳類もしくは鳥類の個体に対して適用することを特徴とする請求項1に記載の筋分化促進剤。 The muscle differentiation promoting agent according to claim 1, which is applied to mammalian or avian cells or mammalian or avian individuals. 前記細胞はマウス筋芽細胞またはニワトリ筋芽細胞またはヒト筋芽細胞であることを特徴とする請求項に記載の筋分化促進剤。 The muscle differentiation promoting agent according to claim 2 , wherein the cells are mouse myoblasts, chicken myoblasts, or human myoblasts. 前記個体はマウスまたはニワトリまたはヒトであることを特徴とする請求項に記載の筋分化促進剤。 The muscle differentiation promoting agent according to claim 2 , wherein the individual is a mouse, a chicken, or a human. 請求項1乃至請求項のいずれかに記載の筋分化促進剤を使用する、哺乳類もしくは鳥類の細胞または哺乳類もしくは鳥類の個体に対する筋分化促進方法(ただし、人間を治療する方法を除く)A method for promoting muscle differentiation in mammalian or avian cells or mammalian or avian individuals (excluding methods for treating humans), using the muscle differentiation promoting agent according to any one of claims 1 to 4 . 3連グアニン配列と4連グアニン配列がアデニンかチミンのいずれか又は両方を含む1乃至3個の塩基を介して結合した塩基配列(配列番号20または配列番号21または配列番号22)を有し、前記3連グアニン配列と前記4連グアニン配列がそれぞれ対向する立体構造を有した筋分化促進オリゴDNAであって、5’TTGGGTGAGGGGAA3’(配列番号10)、5’TTTGGGTGGGGAAA3’(配列番号9)または5’TTTGGGTGAGGGGAAA3’(配列番号11)で表される、筋分化促進オリゴDNAIt has a base sequence (SEQ ID NO: 20, SEQ ID NO: 21, or SEQ ID NO: 22) in which a triple guanine sequence and a quadruple guanine sequence are linked via 1 to 3 bases containing either adenine or thymine, or both, A muscle differentiation-promoting oligo DNA having a three-dimensional structure in which the triple guanine sequence and the quadruple guanine sequence are opposed to each other , 5'TTGGGTGAGGGGAA3' (SEQ ID NO: 10), 5'TTTGGGTGGGGAAA3' (SEQ ID NO: 9) or 5' Myogenic differentiation promoting oligo DNA represented by 'TTTGGGTGAGGGGAAA3' (SEQ ID NO: 11) .
JP2019142724A 2019-08-02 2019-08-02 Muscle differentiation promoting agent, method for promoting muscle differentiation, and oligo DNA for promoting muscle differentiation Active JP7386507B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019142724A JP7386507B2 (en) 2019-08-02 2019-08-02 Muscle differentiation promoting agent, method for promoting muscle differentiation, and oligo DNA for promoting muscle differentiation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019142724A JP7386507B2 (en) 2019-08-02 2019-08-02 Muscle differentiation promoting agent, method for promoting muscle differentiation, and oligo DNA for promoting muscle differentiation

Publications (2)

Publication Number Publication Date
JP2021024792A JP2021024792A (en) 2021-02-22
JP7386507B2 true JP7386507B2 (en) 2023-11-27

Family

ID=74663777

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019142724A Active JP7386507B2 (en) 2019-08-02 2019-08-02 Muscle differentiation promoting agent, method for promoting muscle differentiation, and oligo DNA for promoting muscle differentiation

Country Status (1)

Country Link
JP (1) JP7386507B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001077384A2 (en) 2000-04-07 2001-10-18 Epigenomics Ag Detection of single nucleotide polymorphisms (snp's) and cytosine-methylations

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001077384A2 (en) 2000-04-07 2001-10-18 Epigenomics Ag Detection of single nucleotide polymorphisms (snp's) and cytosine-methylations

Also Published As

Publication number Publication date
JP2021024792A (en) 2021-02-22

Similar Documents

Publication Publication Date Title
d’Ydewalle et al. The antisense transcript SMN-AS1 regulates SMN expression and is a novel therapeutic target for spinal muscular atrophy
JP6753887B2 (en) Method for producing mesenchymal stem cells that secrete neurotrophic factors
CN104011210B (en) MicroRNA in Neurodegenerative conditions
Harris et al. Nuclear factor one transcription factors: divergent functions in developmental versus adult stem cell populations
Dong et al. CARMN Is an Evolutionarily Conserved Smooth Muscle Cell–Specific LncRNA That Maintains Contractile Phenotype by Binding Myocardin
CN109414448A (en) For reducing the nucleic acid molecules of PAPD5 or PAPD7 mRNA treatment hepatitis B infection
CN107429263A (en) The method of controlling gene group editor
Piccoli et al. Non-coding RNAs as modulators of the cardiac fibroblast phenotype
EA029137B1 (en) Modulation of hepatitis b virus (hbv) expression
CN104703609A (en) Stem cell microparticles
Jiang et al. Circular ribonucleic acid expression profile in mouse cortex after traumatic brain injury
CN105120879A (en) Stem cell microparticles and mirna
van Eif et al. Genome-wide analysis identifies an essential human TBX3 pacemaker enhancer
Xu et al. Angiogenic lncRNAs: A potential therapeutic target for ischaemic heart disease
van Eif et al. Gradual differentiation and confinement of the cardiac conduction system as indicated by marker gene expression
WO2019006512A1 (en) Cardiomyocyte regeneration
JP7386507B2 (en) Muscle differentiation promoting agent, method for promoting muscle differentiation, and oligo DNA for promoting muscle differentiation
US20240065988A1 (en) Combined use of ketamine and retigabine (ezogabine) for the treatment of psychiatric disorders
CN107881173A (en) A kind of small molecules of miRNA 21 and application thereof
Barreiro et al. Differences in micro-RNA expression profile between vastus lateralis samples and myotubes in COPD cachexia
KR20210052425A (en) miRNA associated with epilepsy and uses thereof
KR102248910B1 (en) miRNA associated with epilepsy and uses thereof
Chen et al. In vivo CRISPR screening identifies Fli1 as a transcriptional safeguard that restrains effector CD8 T cell differentiation during infection and cancer
CN113747903A (en) Central master regulator of glioblastoma stem cell
KR102508431B1 (en) Composition for diagnosis or treatment of a condition associated with increased activity of eIF4E comprising an eIF4E inhibitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220720

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20220720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230620

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230817

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231010

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231107

R150 Certificate of patent or registration of utility model

Ref document number: 7386507

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150