JP7385117B2 - Glass fiber for resin reinforcement and glass fiber reinforced resin molded products - Google Patents
Glass fiber for resin reinforcement and glass fiber reinforced resin molded products Download PDFInfo
- Publication number
- JP7385117B2 JP7385117B2 JP2020008710A JP2020008710A JP7385117B2 JP 7385117 B2 JP7385117 B2 JP 7385117B2 JP 2020008710 A JP2020008710 A JP 2020008710A JP 2020008710 A JP2020008710 A JP 2020008710A JP 7385117 B2 JP7385117 B2 JP 7385117B2
- Authority
- JP
- Japan
- Prior art keywords
- glass fiber
- acid
- resin
- glass
- reinforced resin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000003365 glass fiber Substances 0.000 title claims description 140
- 229920005989 resin Polymers 0.000 title claims description 127
- 239000011347 resin Substances 0.000 title claims description 127
- 230000002787 reinforcement Effects 0.000 title claims description 29
- 239000011521 glass Substances 0.000 claims description 124
- 239000002253 acid Substances 0.000 claims description 84
- 239000006087 Silane Coupling Agent Substances 0.000 claims description 27
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 claims description 15
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 12
- 229910052799 carbon Inorganic materials 0.000 claims description 12
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 claims description 11
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 9
- 229920006259 thermoplastic polyimide Polymers 0.000 claims description 6
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 5
- 239000004695 Polyether sulfone Substances 0.000 claims description 5
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 claims description 5
- 229920010524 Syndiotactic polystyrene Polymers 0.000 claims description 5
- 150000001412 amines Chemical class 0.000 claims description 5
- 229910052739 hydrogen Inorganic materials 0.000 claims description 5
- 239000001257 hydrogen Substances 0.000 claims description 5
- 229920000412 polyarylene Polymers 0.000 claims description 5
- 229920006260 polyaryletherketone Polymers 0.000 claims description 5
- 229920000728 polyester Polymers 0.000 claims description 5
- 229920006393 polyether sulfone Polymers 0.000 claims description 5
- 229920006012 semi-aromatic polyamide Polymers 0.000 claims description 5
- 239000007788 liquid Substances 0.000 claims description 4
- 239000004973 liquid crystal related substance Substances 0.000 claims description 4
- 239000004744 fabric Substances 0.000 description 85
- 230000000052 comparative effect Effects 0.000 description 64
- 239000002131 composite material Substances 0.000 description 32
- 238000000034 method Methods 0.000 description 27
- 239000004697 Polyetherimide Substances 0.000 description 24
- 229920001601 polyetherimide Polymers 0.000 description 24
- 238000005452 bending Methods 0.000 description 21
- 238000011282 treatment Methods 0.000 description 19
- 239000003795 chemical substances by application Substances 0.000 description 13
- 239000000243 solution Substances 0.000 description 13
- -1 Aryl ether ketone Chemical class 0.000 description 11
- 239000004696 Poly ether ether ketone Substances 0.000 description 11
- 238000000465 moulding Methods 0.000 description 11
- 229920002530 polyetherether ketone Polymers 0.000 description 11
- 229920006015 heat resistant resin Polymers 0.000 description 10
- 238000004513 sizing Methods 0.000 description 10
- 229920001707 polybutylene terephthalate Polymers 0.000 description 9
- 239000000203 mixture Substances 0.000 description 8
- 239000002759 woven fabric Substances 0.000 description 8
- 238000009941 weaving Methods 0.000 description 7
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 6
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 6
- 239000000835 fiber Substances 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 5
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 5
- 239000012783 reinforcing fiber Substances 0.000 description 5
- 238000003892 spreading Methods 0.000 description 5
- WYTZZXDRDKSJID-UHFFFAOYSA-N (3-aminopropyl)triethoxysilane Chemical compound CCO[Si](OCC)(OCC)CCCN WYTZZXDRDKSJID-UHFFFAOYSA-N 0.000 description 4
- 229910004298 SiO 2 Inorganic materials 0.000 description 4
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 4
- 239000000284 extract Substances 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 230000003014 reinforcing effect Effects 0.000 description 4
- FZHAPNGMFPVSLP-UHFFFAOYSA-N silanamine Chemical compound [SiH3]N FZHAPNGMFPVSLP-UHFFFAOYSA-N 0.000 description 4
- 229910000077 silane Inorganic materials 0.000 description 4
- 239000012756 surface treatment agent Substances 0.000 description 4
- XDLMVUHYZWKMMD-UHFFFAOYSA-N 3-trimethoxysilylpropyl 2-methylprop-2-enoate Chemical compound CO[Si](OC)(OC)CCCOC(=O)C(C)=C XDLMVUHYZWKMMD-UHFFFAOYSA-N 0.000 description 3
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 239000012488 sample solution Substances 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 238000005160 1H NMR spectroscopy Methods 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 239000004372 Polyvinyl alcohol Substances 0.000 description 2
- 239000003125 aqueous solvent Substances 0.000 description 2
- 238000000071 blow moulding Methods 0.000 description 2
- XBDQKXXYIPTUBI-UHFFFAOYSA-N dimethylselenoniopropionate Natural products CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 238000010097 foam moulding Methods 0.000 description 2
- 239000006066 glass batch Substances 0.000 description 2
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 2
- 239000011976 maleic acid Substances 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 2
- 150000007524 organic acids Chemical class 0.000 description 2
- 239000005416 organic matter Substances 0.000 description 2
- 229920002451 polyvinyl alcohol Polymers 0.000 description 2
- 238000009987 spinning Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 2
- JXUKBNICSRJFAP-UHFFFAOYSA-N triethoxy-[3-(oxiran-2-ylmethoxy)propyl]silane Chemical compound CCO[Si](OCC)(OCC)CCCOCC1CO1 JXUKBNICSRJFAP-UHFFFAOYSA-N 0.000 description 2
- BPSIOYPQMFLKFR-UHFFFAOYSA-N trimethoxy-[3-(oxiran-2-ylmethoxy)propyl]silane Chemical compound CO[Si](OC)(OC)CCCOCC1CO1 BPSIOYPQMFLKFR-UHFFFAOYSA-N 0.000 description 2
- BJEPYKJPYRNKOW-REOHCLBHSA-N (S)-malic acid Chemical compound OC(=O)[C@@H](O)CC(O)=O BJEPYKJPYRNKOW-REOHCLBHSA-N 0.000 description 1
- OXYZDRAJMHGSMW-UHFFFAOYSA-N 3-chloropropyl(trimethoxy)silane Chemical compound CO[Si](OC)(OC)CCCCl OXYZDRAJMHGSMW-UHFFFAOYSA-N 0.000 description 1
- SJECZPVISLOESU-UHFFFAOYSA-N 3-trimethoxysilylpropan-1-amine Chemical compound CO[Si](OC)(OC)CCCN SJECZPVISLOESU-UHFFFAOYSA-N 0.000 description 1
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 1
- 239000004412 Bulk moulding compound Substances 0.000 description 1
- 239000005046 Chlorosilane Substances 0.000 description 1
- DWEBHICSCHGZAP-UHFFFAOYSA-N Cl.C1(=CC=CC=C1)NCCC[Si](OC)(OC)OC Chemical compound Cl.C1(=CC=CC=C1)NCCC[Si](OC)(OC)OC DWEBHICSCHGZAP-UHFFFAOYSA-N 0.000 description 1
- 239000013523 DOWSIL™ Substances 0.000 description 1
- 229920013731 Dowsil Polymers 0.000 description 1
- 229910018068 Li 2 O Inorganic materials 0.000 description 1
- 239000003677 Sheet moulding compound Substances 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- 229920004695 VICTREX™ PEEK Polymers 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 239000012670 alkaline solution Substances 0.000 description 1
- BJEPYKJPYRNKOW-UHFFFAOYSA-N alpha-hydroxysuccinic acid Natural products OC(=O)C(O)CC(O)=O BJEPYKJPYRNKOW-UHFFFAOYSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- JUPQTSLXMOCDHR-UHFFFAOYSA-N benzene-1,4-diol;bis(4-fluorophenyl)methanone Chemical compound OC1=CC=C(O)C=C1.C1=CC(F)=CC=C1C(=O)C1=CC=C(F)C=C1 JUPQTSLXMOCDHR-UHFFFAOYSA-N 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 239000007853 buffer solution Substances 0.000 description 1
- KDYFGRWQOYBRFD-NUQCWPJISA-N butanedioic acid Chemical compound O[14C](=O)CC[14C](O)=O KDYFGRWQOYBRFD-NUQCWPJISA-N 0.000 description 1
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 1
- 238000005251 capillar electrophoresis Methods 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- KOPOQZFJUQMUML-UHFFFAOYSA-N chlorosilane Chemical compound Cl[SiH3] KOPOQZFJUQMUML-UHFFFAOYSA-N 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000001962 electrophoresis Methods 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- NKSJNEHGWDZZQF-UHFFFAOYSA-N ethenyl(trimethoxy)silane Chemical compound CO[Si](OC)(OC)C=C NKSJNEHGWDZZQF-UHFFFAOYSA-N 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 238000009730 filament winding Methods 0.000 description 1
- 235000019253 formic acid Nutrition 0.000 description 1
- 238000002290 gas chromatography-mass spectrometry Methods 0.000 description 1
- 238000009787 hand lay-up Methods 0.000 description 1
- 150000003949 imides Chemical class 0.000 description 1
- 238000001802 infusion Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- 238000010813 internal standard method Methods 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 239000001630 malic acid Substances 0.000 description 1
- 235000011090 malic acid Nutrition 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000000401 methanolic extract Substances 0.000 description 1
- KBJFYLLAMSZSOG-UHFFFAOYSA-N n-(3-trimethoxysilylpropyl)aniline Chemical compound CO[Si](OC)(OC)CCCNC1=CC=CC=C1 KBJFYLLAMSZSOG-UHFFFAOYSA-N 0.000 description 1
- RMTGISUVUCWJIT-UHFFFAOYSA-N n-[3-[3-aminopropoxy(dimethoxy)silyl]propyl]-1-phenylprop-2-en-1-amine;hydrochloride Chemical compound Cl.NCCCO[Si](OC)(OC)CCCNC(C=C)C1=CC=CC=C1 RMTGISUVUCWJIT-UHFFFAOYSA-N 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 235000006408 oxalic acid Nutrition 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- 235000019260 propionic acid Nutrition 0.000 description 1
- IUVKMZGDUIUOCP-BTNSXGMBSA-N quinbolone Chemical compound O([C@H]1CC[C@H]2[C@H]3[C@@H]([C@]4(C=CC(=O)C=C4CC3)C)CC[C@@]21C)C1=CCCC1 IUVKMZGDUIUOCP-BTNSXGMBSA-N 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000001175 rotational moulding Methods 0.000 description 1
- 239000012086 standard solution Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- TXDNPSYEJHXKMK-UHFFFAOYSA-N sulfanylsilane Chemical compound S[SiH3] TXDNPSYEJHXKMK-UHFFFAOYSA-N 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 239000004753 textile Substances 0.000 description 1
- 238000003856 thermoforming Methods 0.000 description 1
- 238000001721 transfer moulding Methods 0.000 description 1
- DQZNLOXENNXVAD-UHFFFAOYSA-N trimethoxy-[2-(7-oxabicyclo[4.1.0]heptan-4-yl)ethyl]silane Chemical compound C1C(CC[Si](OC)(OC)OC)CCC2OC21 DQZNLOXENNXVAD-UHFFFAOYSA-N 0.000 description 1
- UKRDPEFKFJNXQM-UHFFFAOYSA-N vinylsilane Chemical compound [SiH3]C=C UKRDPEFKFJNXQM-UHFFFAOYSA-N 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Landscapes
- Reinforced Plastic Materials (AREA)
- Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
Description
本発明は、樹脂強化用ガラス繊維及びそれを用いるガラス繊維強化樹脂成形品に関する。 The present invention relates to resin-reinforced glass fibers and glass fiber-reinforced resin molded products using the same.
近年、金属の代替材料として、繊維強化樹脂材料が注目されている。ところが、樹脂の耐熱性は、金属に劣るため、高耐熱性が求められる用途においては、繊維強化樹脂材料による金属の代替が進んでいないという問題がある。 In recent years, fiber-reinforced resin materials have attracted attention as an alternative material to metals. However, since the heat resistance of resin is inferior to that of metal, there is a problem that metals have not been replaced by fiber-reinforced resin materials in applications that require high heat resistance.
前記問題を解決するために、高耐熱性が求められる用途でも使用可能な繊維強化樹脂材料として、熱変形温度が300℃以上である、ポリエーテルイミド樹脂(PEI)や、ポリエーテルエーテルケトン樹脂(PEEK)といった高耐熱性樹脂を含む、繊維強化樹脂成形品が検討されている(例えば、特許文献1、2参照)。 In order to solve the above problem, polyetherimide resin (PEI) and polyether ether ketone resin (polyether ether ketone resin), which have a heat deformation temperature of 300°C or higher, are used as fiber-reinforced resin materials that can be used in applications that require high heat resistance. Fiber-reinforced resin molded products containing highly heat-resistant resins such as PEEK) are being considered (see, for example, Patent Documents 1 and 2).
通常、繊維強化樹脂成形品に用いられる、強化繊維においては、強化繊維と樹脂との密着性を向上させ、繊維強化樹脂成形品の強度を向上させるために、有機物を強化繊維の表面に付着させることが行われている。しかし、高耐熱性樹脂は成形温度が高く、ほとんどの有機物が熱分解される。そこで、前記特許文献1、2に記載された発明では、高耐熱性樹脂強化用の強化繊維の表面に、高耐熱性樹脂自体を付着させることが提案されている。 Usually, in the reinforcing fibers used in fiber-reinforced resin molded products, organic matter is attached to the surface of the reinforcing fibers in order to improve the adhesion between the reinforcing fibers and the resin and improve the strength of the fiber-reinforced resin molded products. things are being done. However, the molding temperature of highly heat-resistant resins is high, and most of the organic substances are thermally decomposed. Therefore, in the inventions described in Patent Documents 1 and 2, it is proposed to attach a high heat resistant resin itself to the surface of reinforcing fibers for reinforcing the high heat resistant resin.
しかしながら、高耐熱性樹脂を強化繊維の表面に付着させるには、高耐熱性樹脂を高温で溶融させる必要があり、生産性が低減するという不都合がある。 However, in order to attach the highly heat resistant resin to the surface of the reinforcing fibers, it is necessary to melt the highly heat resistant resin at a high temperature, which is disadvantageous in that productivity is reduced.
本発明は、かかる不都合を解消して、生産性に優れ、かつ、荷重たわみ温度が120℃以上の高耐熱性樹脂を含む繊維強化樹脂成形品の機械的強度を向上することができる、樹脂強化用ガラス繊維及び、それを用いるガラス繊維強化樹脂成形品を提供することを目的とする。 The present invention solves such disadvantages, has excellent productivity, and is capable of improving the mechanical strength of a fiber-reinforced resin molded product containing a highly heat-resistant resin with a deflection temperature under load of 120°C or higher. The purpose of the present invention is to provide glass fibers for use in glass fibers and glass fiber reinforced resin molded products using the glass fibers.
かかる目的を達成するために、本発明の樹脂強化用ガラス繊維は、熱可塑性ポリイミド、ポリアリールエーテルケトン、ポリアリーレンサルファイド、液晶ポリエステル、ポリエーテルスルホン、半芳香族ナイロン、シンジオタクチックポリスチレンからなる群から選択される、荷重たわみ温度が120℃以上の樹脂の強化に用いられる、樹脂強化用ガラス繊維であって、表面に酸と、シランカップリング剤とが付着しており、前記酸は、カルボキシル基のα炭素位の平均水素数が0.5以上の酸であり、前記酸の付着量が樹脂強化用ガラス繊維の全量に対して42~400ppmの範囲であることを特徴とする。 In order to achieve this object, the resin-reinforcing glass fiber of the present invention is made of a group consisting of thermoplastic polyimide, polyaryletherketone, polyarylene sulfide, liquid crystal polyester, polyether sulfone, semi-aromatic nylon, and syndiotactic polystyrene. A resin-reinforcing glass fiber selected from The acid has an average number of hydrogen atoms at the alpha carbon position of the group of 0.5 or more, and is characterized in that the amount of the acid attached is in the range of 42 to 400 ppm based on the total amount of the resin-reinforcing glass fiber.
本発明の樹脂強化用ガラス繊維は、前記構成を備えることにより、該樹脂強化用ガラス繊維の表面に高耐熱性樹脂を付着させることなく、繊維強化樹脂成形品としたときに、該樹脂強化用ガラス繊維と、前記樹脂との密着性を向上させることができるので、該繊維強化樹脂成形品の生産性に優れており、しかも、該繊維強化樹脂成形品の強度を向上させることができる。 By having the above structure, the resin-reinforced glass fiber of the present invention can be made into a fiber-reinforced resin molded product without adhering a highly heat-resistant resin to the surface of the resin-reinforced glass fiber. Since the adhesion between the glass fiber and the resin can be improved, the productivity of the fiber-reinforced resin molded product is excellent, and the strength of the fiber-reinforced resin molded product can be improved.
本発明の樹脂強化用ガラス繊維において、前記酸の付着量が、樹脂強化用ガラス繊維の全量に対して42ppm未満であるときには、該樹脂強化用ガラス繊維と樹脂との密着性を向上させることができない。一方、前記酸の付着量を、樹脂強化用ガラス繊維の全量に対して400ppm超としても、それ以上に該樹脂強化用ガラス繊維と樹脂との密着性を向上させることができない。 In the resin-reinforcing glass fiber of the present invention, when the amount of the acid attached is less than 42 ppm based on the total amount of the resin-reinforcing glass fiber, the adhesion between the resin-reinforcing glass fiber and the resin can be improved. I can't. On the other hand, even if the amount of the acid attached exceeds 400 ppm based on the total amount of the resin-reinforcing glass fibers, it is not possible to further improve the adhesion between the resin-reinforcing glass fibers and the resin.
本発明の樹脂強化用ガラス繊維において、前記酸は、カルボキシル基のα炭素位の平均水素数が好ましくは1.2以上、さらに好ましくは2.0以上の酸である。本発明の樹脂強化用ガラス繊維において、前記酸としては、例えば、酢酸を用いることができる。 In the resin-reinforcing glass fiber of the present invention, the acid has an average hydrogen number of preferably 1.2 or more, more preferably 2.0 or more at the α carbon position of the carboxyl group. In the glass fiber for resin reinforcement of the present invention, for example, acetic acid can be used as the acid.
また、本発明の樹脂強化用ガラス繊維において、前記酸の付着量は、樹脂強化用ガラス繊維の全量に対して90~200ppmの範囲であることが好ましい。 Further, in the resin-reinforcing glass fiber of the present invention, the amount of the acid attached is preferably in the range of 90 to 200 ppm based on the total amount of the resin-reinforcing glass fiber.
また、本発明の樹脂強化用ガラス繊維において、前記シランカップリング剤は、アミンを含有するシランカップリング剤であることが好ましい。 Moreover, in the glass fiber for resin reinforcement of the present invention, it is preferable that the silane coupling agent is an amine-containing silane coupling agent.
また、本発明は、前記本発明の樹脂強化用ガラス繊維と、荷重たわみ温度が120℃以上の樹脂とを含むガラス繊維強化樹脂成形品にもある。 The present invention also resides in a glass fiber-reinforced resin molded product containing the resin-reinforcing glass fiber of the present invention and a resin having a deflection temperature under load of 120° C. or higher.
次に、本発明の実施の形態についてさらに詳しく説明する。 Next, embodiments of the present invention will be described in more detail.
本実施形態の樹脂強化用ガラス繊維は、熱可塑性ポリイミド、ポリアリールエーテルケトン、ポリアリーレンサルファイド、液晶ポリエステル、ポリエーテルスルホン、半芳香族ナイロン、シンジオタクチックポリスチレンからなる群から選択される、荷重たわみ温度が120℃以上の樹脂の強化に用いられる、樹脂強化用ガラス繊維であって、表面に酸と、シランカップリング剤とが付着しており、前記酸は、カルボキシル基のα炭素位の平均水素数が0.5以上、好ましくは1.2以上、さらに好ましくは2.0以上の酸であり、前記酸の付着量が樹脂強化用ガラス繊維の全量に対して42~400ppm、好ましくは90~200ppmの範囲にある。 The glass fiber for resin reinforcement of this embodiment is selected from the group consisting of thermoplastic polyimide, polyaryletherketone, polyarylene sulfide, liquid crystal polyester, polyether sulfone, semi-aromatic nylon, and syndiotactic polystyrene. A resin-reinforcing glass fiber used for reinforcing resins at a temperature of 120°C or higher, with an acid and a silane coupling agent attached to the surface, and the acid is an average of the α carbon position of the carboxyl group. The acid has a hydrogen number of 0.5 or more, preferably 1.2 or more, more preferably 2.0 or more, and the amount of the acid attached is 42 to 400 ppm, preferably 90 ppm based on the total amount of glass fiber for resin reinforcement. ~200ppm.
本実施形態の樹脂強化用ガラス繊維で強化される樹脂は、荷重たわみ温度が120℃以上の樹脂であり、好ましくは、荷重たわみ温度が150℃以上の樹脂であり、より好ましくは、荷重たわみ温度が、180℃以上の樹脂である。本実施形態の樹脂強化用ガラス繊維で強化される樹脂の荷重たわみ温度の上限としては、400℃を例示することができる。ここで、樹脂の荷重たわみ温度は、ASTM D648(1.8MPa)に準拠して測定することができる。 The resin reinforced with the resin-reinforcing glass fiber of the present embodiment is a resin having a deflection temperature under load of 120°C or higher, preferably a resin having a deflection temperature under load of 150°C or higher, and more preferably a deflection temperature under load of 150°C or higher. is a resin with a temperature of 180°C or higher. An example of the upper limit of the deflection temperature under load of the resin reinforced with the resin-reinforcing glass fiber of this embodiment is 400°C. Here, the deflection temperature under load of the resin can be measured in accordance with ASTM D648 (1.8 MPa).
前記荷重たわみ温度が120℃以上の樹脂としては、例えば、熱可塑性ポリイミド、ポリアリールエーテルケトン、ポリアリーレンサルファイド、液晶ポリエステル、ポリエーテルスルホン、半芳香族ナイロン、シンジオタクチックポリスチレン等の樹脂を挙げることができる。より耐熱性に優れ、より高い温度で成形してもガラス繊維強化樹脂成形品が劣化しにくいことから、本実施形態の樹脂強化用ガラス繊維で強化される樹脂は、熱可塑性ポリイミド、又は、ポリアリールエーテルケトンであることが好ましく、ポリエーテルイミド、又は、ポリエーテルエーテルケトンであることがより好ましく、本実施形態の樹脂強化用ガラス繊維を用いることによる、ガラス繊維強化樹脂成形品の強度向上効果が特に大きいことから、ポリエーテルイミドであることがさらに好ましい。 Examples of the resin having a deflection temperature under load of 120° C. or higher include resins such as thermoplastic polyimide, polyaryletherketone, polyarylene sulfide, liquid crystal polyester, polyether sulfone, semi-aromatic nylon, and syndiotactic polystyrene. Can be done. The resin reinforced with the glass fiber for resin reinforcement of this embodiment is a thermoplastic polyimide or a polyester resin, since it has better heat resistance and is less likely to deteriorate even when molded at a higher temperature. Aryl ether ketone is preferable, polyether imide or polyether ether ketone is more preferable, and the effect of improving the strength of glass fiber reinforced resin molded products by using the resin reinforcing glass fiber of this embodiment It is more preferable to use polyetherimide because it has a particularly large value.
前記酸としては、酢酸、マロン酸、クエン酸、マレイン酸、プロピオン酸、コハク酸、リンゴ酸等の有機酸を挙げることができるが、酢酸であることが好ましい。前記酸において、カルボキシル基のα炭素位の平均水素数が0.5以上であるとは、その酸の中に存在するそれぞれのカルボキシル基のα炭素位の水素数の平均が0.5以上であることを意味する。ここで、前記酸の化学構造は、前記樹脂強化用ガラス繊維表面に付着した酸を水系の溶媒で抽出し、1H-NMR等で分析することにより同定することができる。 Examples of the acid include organic acids such as acetic acid, malonic acid, citric acid, maleic acid, propionic acid, succinic acid, and malic acid, but acetic acid is preferred. In the acid, the average number of hydrogens at the α carbon position of the carboxyl group is 0.5 or more means that the average number of hydrogens at the α carbon position of each carboxyl group present in the acid is 0.5 or more. It means something. Here, the chemical structure of the acid can be identified by extracting the acid attached to the surface of the resin-reinforcing glass fiber with an aqueous solvent and analyzing it by 1 H-NMR or the like.
また、前記シランカップリング剤としては、例えば、アミノシラン(γ-アミノプロピルトリエトキシシラン、N-β-(アミノエチル)-γ-アミノプロピルトリメトキシシラン、N-β-(アミノエチル)-N’-β-(アミノエチル)-γ-アミノプロピルトリメトキシシラン、γ-アニリノプロピルトリメトキシシラン等)、クロルシラン(γ-クロロプロピルトリメトキシシラン等)、エポキシシラン(γ-グリシドキシプロピルトリメトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン等)、メルカプトシラン(γ-メルカプトトリメトキシシラン等)、ビニルシラン(ビニルトリメトキシシラン、N-β-(N-ビニルベンジルアミノエチル)-γ-アミノプロピルトリメトキシシラン等)、アクリルシラン(γ-メタクリロキシプロピルトリメトキシシラン等)、カチオニックシラン(N-(ビニルベンジル)-2-アミノエチル-3-アミノプロピルトリメトキシシラン塩酸塩、N-フェニル-3-アミノプロピルトリメトキシシラン塩酸塩等)が挙げられ、ガラス繊維強化樹脂成形品の強度向上の効果が大きいことから、アミンを含有するシランカップリング剤であることが好ましく、アミノシランであることがより好ましい。ここで、本実施形態の樹脂強化用ガラス繊維から、水系または有機系の溶媒を用いてシランカップリング剤を抽出した後、GC-MSを使用することにより、シランカップリング剤の化学構造の同定を行うことができる。 In addition, examples of the silane coupling agent include aminosilane (γ-aminopropyltriethoxysilane, N-β-(aminoethyl)-γ-aminopropyltrimethoxysilane, N-β-(aminoethyl)-N' -β-(aminoethyl)-γ-aminopropyltrimethoxysilane, γ-anilinopropyltrimethoxysilane, etc.), chlorosilane (γ-chloropropyltrimethoxysilane, etc.), epoxysilane (γ-glycidoxypropyltrimethoxysilane, etc.) silane, β-(3,4-epoxycyclohexyl)ethyltrimethoxysilane, etc.), mercaptosilane (γ-mercaptotrimethoxysilane, etc.), vinylsilane (vinyltrimethoxysilane, N-β-(N-vinylbenzylaminoethyl) -γ-aminopropyltrimethoxysilane, etc.), acrylic silane (γ-methacryloxypropyltrimethoxysilane, etc.), cationic silane (N-(vinylbenzyl)-2-aminoethyl-3-aminopropyltrimethoxysilane hydrochloride) , N-phenyl-3-aminopropyltrimethoxysilane hydrochloride, etc.), and amine-containing silane coupling agents are preferred because they are highly effective in improving the strength of glass fiber reinforced resin molded products. More preferred is aminosilane. Here, after extracting the silane coupling agent from the resin-reinforcing glass fiber of this embodiment using an aqueous or organic solvent, the chemical structure of the silane coupling agent is identified by using GC-MS. It can be performed.
本実施形態の樹脂強化用ガラス繊維には、前記酸及び前記シランカップリング剤以外に、界面活性剤、樹脂エマルジョン等が付着していてもよいが、樹脂との密着性が向上することから、前記酸と前記シランカップリング剤のみが付着していることが好ましい。 In addition to the acid and the silane coupling agent, a surfactant, a resin emulsion, etc. may be attached to the resin-reinforcing glass fiber of this embodiment, but since the adhesiveness with the resin is improved, Preferably, only the acid and the silane coupling agent are attached.
本実施形態の樹脂強化用ガラス繊維に用いるガラス繊維の形態としては、織物(ガラスクロス)、編物、ヤーン、チョップドストランド、ロービング、チョップドストランドマット、ペーパー、メッシュ、組布、ミルドファイバーなどを挙げることができるが、織物(ガラスクロス)であることが好ましい。 Examples of the form of the glass fiber used for the resin-reinforcing glass fiber of this embodiment include woven fabric (glass cloth), knitted fabric, yarn, chopped strand, roving, chopped strand mat, paper, mesh, braided fabric, and milled fiber. However, woven fabric (glass cloth) is preferable.
本実施形態の樹脂強化用ガラス繊維は、前記ガラス繊維が織物(ガラスクロス)である場合、例えば、次のようにして製造することができる。 When the glass fiber is a woven fabric (glass cloth), the resin-reinforced glass fiber of this embodiment can be manufactured, for example, as follows.
まず、所定のガラス組成となるように調整されたガラスバッチ(ガラス原材料)を溶融して繊維化することにより、ガラスフィラメントを得る。 First, glass filaments are obtained by melting and fiberizing a glass batch (glass raw material) that has been adjusted to have a predetermined glass composition.
前記所定のガラス組成としては、最も汎用的であるEガラス組成(ガラス繊維の全量に対し、酸化物換算で、52.0~56.0質量%の範囲のSiO2と、12.0~16.0質量%の範囲のAl2O3と、合計で20.0~25.0質量%の範囲のMgO及びCaOと、5.0~10.0質量%の範囲のB2O3とを含む組成)、高強度高弾性率ガラス組成(ガラス繊維の全量に対し64.0~66.0質量%の範囲のSiO2と、24.0~26.0質量%の範囲のAl2O3と、9.0~11.0質量%の範囲のMgOとを含む組成)、高弾性率易製造性ガラス組成(ガラス繊維の全量に対し、57.0~60.0質量%の範囲のSiO2と、17.5~20.0質量%の範囲のAl2O3と、8.5~12.0質量%の範囲のMgOと、10.0~13.0質量%の範囲のCaOと、0.5~1.5質量%の範囲のB2O3とを含み、かつ、SiO2、Al2O3、MgO及びCaOの合計量が98.0質量%以上である組成)、及び、低誘電率低誘電正接ガラス組成(ガラス繊維全量に対し、48.0~62.0質量%の範囲のSiO2と、17.0~26.0質量%の範囲のB2O3と、9.0~18.0質量%の範囲のAl2O3と、0.1~9.0質量%の範囲のCaOと、0~6.0質量%の範囲のMgOと、合計0.05~0.5質量%の範囲のNa2O、K2O及びLi2Oと、0~5.0質量%の範囲のTiO2と、0~6.0質量%の範囲のSrOと、合計0~3.0質量%の範囲のF2及びCl2と、0~6.0質量%の範囲のP2O5とを含む組成)を挙げることができる。 The predetermined glass composition includes the most general-purpose E glass composition (SiO 2 in the range of 52.0 to 56.0% by mass in terms of oxides, and 12.0 to 16% by mass based on the total amount of glass fibers). Al 2 O 3 in the range of .0 mass %, MgO and CaO in the range of 20.0 to 25.0 mass % in total, and B 2 O 3 in the range of 5.0 to 10.0 mass %. composition), high strength and high modulus glass composition (SiO 2 in the range of 64.0 to 66.0 mass % and Al 2 O 3 in the range of 24.0 to 26.0 mass % based on the total amount of glass fibers) and MgO in the range of 9.0 to 11.0 mass %), high elastic modulus easily manufacturable glass composition (SiO in the range of 57.0 to 60.0 mass % based on the total amount of glass fiber) 2 , Al 2 O 3 in the range of 17.5 to 20.0 mass %, MgO in the range of 8.5 to 12.0 mass %, and CaO in the range of 10.0 to 13.0 mass %. , B 2 O 3 in the range of 0.5 to 1.5 mass %, and the total amount of SiO 2 , Al 2 O 3 , MgO and CaO is 98.0 mass % or more), and , low dielectric constant and low dielectric loss tangent glass composition (SiO 2 in the range of 48.0 to 62.0 mass % and B 2 O 3 in the range of 17.0 to 26.0 mass % with respect to the total amount of glass fibers, Al 2 O 3 in the range of 9.0 to 18.0 mass %, CaO in the range of 0.1 to 9.0 mass %, MgO in the range of 0 to 6.0 mass %, and a total of 0.05 Na 2 O, K 2 O and Li 2 O in the range of ~0.5% by mass, TiO 2 in the range of 0 to 5.0% by mass, SrO in the range of 0 to 6.0% by mass, the total compositions containing F 2 and Cl 2 in the range from 0 to 3.0% by weight and P 2 O 5 in the range from 0 to 6.0% by weight).
前記ガラスフィラメントのフィラメント径は、特に限定されないが、例えば、30μm以下であることが好ましく、3~25μmの範囲であることがより好ましく、6~20μmの範囲であることが特に好ましい。 The filament diameter of the glass filament is not particularly limited, but is preferably, for example, 30 μm or less, more preferably in the range of 3 to 25 μm, and particularly preferably in the range of 6 to 20 μm.
前記ガラスフィラメントは、例えば、25~5000本、好ましくは、200~800本、より好ましくは、300~600本の範囲の本数で、それ自体公知の方法により集束され、ガラス繊維糸とされる。なお、ガラスバッチを溶融し、繊維化してガラスフィラメントを得て、次いで、このガラスフィラメント複数本を集束してガラス繊維糸を得ることを紡糸という。 The glass filaments, for example, in a number ranging from 25 to 5000, preferably from 200 to 800, more preferably from 300 to 600, are bundled by a method known per se to form a glass fiber thread. Note that spinning is a process in which a glass batch is melted and made into fibers to obtain glass filaments, and then a plurality of these glass filaments are bundled to obtain a glass fiber thread.
前記ガラス繊維糸の番手は、例えば、0.5~2500texであり、30~1500texであることが好ましく、40~500texであることがより好ましく、50~250texであることがさらに好ましく、60~135texであることが特に好ましい。なお、ガラス繊維糸の番手(tex)とは、ガラス繊維の1000mあたりの質量(g)に相当する。ここで、ガラス繊維糸の番手は、JIS R 3420:2013に準拠して測定することができる。 The count of the glass fiber yarn is, for example, 0.5 to 2500 tex, preferably 30 to 1500 tex, more preferably 40 to 500 tex, even more preferably 50 to 250 tex, and even more preferably 60 to 135 tex. It is particularly preferable that Note that the count (tex) of the glass fiber yarn corresponds to the mass (g) of the glass fiber per 1000 m. Here, the count of the glass fiber yarn can be measured in accordance with JIS R 3420:2013.
前記ガラス繊維糸は、0~2回/25mmの撚りがかけられていてもよい。ここで、ガラス繊維糸の撚数は、JIS R 3420:2013に準拠して測定することができる。 The glass fiber thread may be twisted 0 to 2 times/25 mm. Here, the number of twists of the glass fiber yarn can be measured in accordance with JIS R 3420:2013.
前記ガラス繊維糸は、例えば、2~5本のガラス繊維糸を撚り合わさずに束ねて用いることも、2~5本のガラス繊維糸を撚り合わせて用いることもできる。複数のガラス繊維糸を撚り合わせる際の撚り数としては、0~5回/25mmが挙げられる。 The glass fiber threads can be used, for example, by bundling 2 to 5 glass fiber threads without twisting them together, or by twisting 2 to 5 glass fiber threads together. The number of twists when twisting a plurality of glass fiber threads is 0 to 5 times/25 mm.
次に、前記ガラス繊維糸を経糸又は緯糸として製織することにより織物(ガラスクロス)を得る。前記製織の方法は、特に限定されないが、例えば、平織、朱子織、綾織、畝織、斜子織等を挙げることができ、平織であることが好ましい。前記製織の際の前記ガラス繊維糸の経糸及び緯糸の織密度は、特に限定されないが、例えば、10~150本/25mmとすることができ、15~65本/25mmであることが好ましく、20~45本/25mmであることがより好ましい。ここで、前記織密度は、JIS R 3420:2013に準拠して測定することができる。 Next, a woven fabric (glass cloth) is obtained by weaving the glass fiber yarn as warp or weft. The weaving method is not particularly limited, and examples thereof include plain weave, satin weave, twill weave, ribbed weave, and diagonal weave, and plain weave is preferred. The weaving density of the warp and weft of the glass fiber yarn during the weaving is not particularly limited, but can be, for example, 10 to 150 yarns/25 mm, preferably 15 to 65 yarns/25 mm, and 20 to 65 yarns/25 mm. It is more preferable that the number is 45 lines/25 mm. Here, the weave density can be measured in accordance with JIS R 3420:2013.
前記製織の際には、前記ガラスフィラメントの集束や経糸の整経等にサイズ剤を用いる。前記サイズ剤としては、例えば、被膜形成剤成分がデンプン系又はPVA(ポリビニルアルコール)系であるサイズ剤を挙げることができる。前記サイズ剤は、油剤又は柔軟剤等を含んでもよい。 During the weaving, a sizing agent is used to bundle the glass filaments and warp the warp threads. Examples of the sizing agent include sizing agents whose film-forming agent component is starch-based or PVA (polyvinyl alcohol)-based. The sizing agent may include an oil agent, a softener, or the like.
前記織物(ガラスクロス)における前記サイズ剤の付着量は、前記ガラス繊維糸100質量部に対して該サイズ剤の付着量が0.1~3質量部であることが好ましく、0.5~1.5質量部であることがより好ましい。なお、前記サイズ剤の付着量の範囲や特に指定しない場合のサイズ剤の付着量は、経糸又は緯糸に対するサイズ剤の付着量の平均を表したものである。 The amount of the sizing agent adhered to the textile (glass cloth) is preferably 0.1 to 3 parts by mass, and preferably 0.5 to 1 part by mass relative to 100 parts by mass of the glass fiber yarn. More preferably, the amount is .5 parts by mass. Note that the range of the amount of the sizing agent attached and the amount of the sizing agent attached unless otherwise specified represent the average amount of the sizing agent attached to the warp or weft.
前記織物(ガラスクロス)は、例えば、50~1500g/m2の範囲の重量を有し、好ましくは、110~800g/m2の範囲の質量を有し、より好ましくは、150~400g/m2の範囲の質量を有する。ここで、織物の質量は、JIS R 3420:2013に準拠して測定することができる。
次に、前記織物(ガラスクロス)に対して開繊処理を施してもよい。前記開繊処理としては、例えば、水流圧力による開繊、液体を媒体とした高周波の振動による開繊、面圧を有する流体の圧力による開繊、ロールによる加圧での開繊等を挙げることができる。前記開繊処理の中では、水流圧力による開繊、又は液体を媒体とした高周波の振動による開繊を使用することが、経糸及び緯糸のそれぞれにおいて、開繊処理後の糸幅のバラツキが低減されるので好ましい。また、前記開繊処理は、複数の処理方法を併用してもよい。
The woven fabric (glass cloth) has, for example, a weight in the range of 50 to 1500 g/m 2 , preferably a weight in the range of 110 to 800 g/m 2 , more preferably 150 to 400 g/m 2 It has a mass in the range of 2 . Here, the mass of the fabric can be measured in accordance with JIS R 3420:2013.
Next, the woven fabric (glass cloth) may be subjected to a fiber opening treatment. Examples of the fiber-spreading treatment include fiber-spreading using water pressure, fiber-spreading using high-frequency vibration using a liquid as a medium, fiber-spreading using the pressure of a fluid having a surface pressure, fiber-spreading using roll pressure, and the like. Can be done. Among the above-mentioned opening treatments, using opening using water pressure or opening using high-frequency vibration using liquid as a medium reduces the variation in yarn width after opening for each of the warp and weft. It is preferable because Further, the fiber opening treatment may be performed using a plurality of treatment methods in combination.
次に、前記織物(ガラスクロス)に対し、脱油処理を施す。前記脱油処理は、例えば、前記ガラスクロスを雰囲気温度が350℃~450℃の加熱炉内に40~80時間配置し、該ガラスクロスに付着している紡糸用集束剤と製織用集束剤とを加熱分解することにより行うことができる。 Next, the woven fabric (glass cloth) is subjected to oil removal treatment. The deoiling treatment is performed, for example, by placing the glass cloth in a heating furnace at an ambient temperature of 350° C. to 450° C. for 40 to 80 hours, and removing the spinning sizing agent and weaving sizing agent attached to the glass cloth. This can be done by thermally decomposing.
次に、前記脱油処理が施された織物(ガラスクロス)を、前記シランカップリング剤と、前記酸とを含む表面処理剤溶液に浸漬する。次いで前記表面処理剤溶液が付与された前記織物(ガラスクロス)から、余分な水分を絞液した後、80~180℃の範囲の温度で、1~30分間の時間、例えば110℃で5分間加熱乾燥することにより、本実施形態の樹脂強化用ガラス繊維としての表面処理ガラスクロスを得る。なお、前記表面処理剤溶液が付与された表面処理ガラスクロスにおいて、表面に付着している酸の一部は、該表面処理ガラスクロスを加熱乾燥した際に揮発する。 Next, the woven fabric (glass cloth) subjected to the oil removal treatment is immersed in a surface treatment agent solution containing the silane coupling agent and the acid. Next, after squeezing out excess water from the fabric (glass cloth) to which the surface treatment agent solution has been applied, it is heated at a temperature in the range of 80 to 180°C for 1 to 30 minutes, for example at 110°C for 5 minutes. By heating and drying, a surface-treated glass cloth as the resin-reinforced glass fiber of this embodiment is obtained. In addition, in the surface-treated glass cloth to which the surface treatment agent solution has been applied, a part of the acid adhering to the surface evaporates when the surface-treated glass cloth is heated and dried.
前記表面処理剤溶液の溶媒としては、水、エチレングリコール、エタノール等を挙げることができる。また、前記脱油処理後に、前記表面処理ガラスクロスに、2回目の開繊処理を行うことができる。 Examples of the solvent for the surface treatment agent solution include water, ethylene glycol, and ethanol. Further, after the oil removal treatment, the surface-treated glass cloth can be subjected to a second opening treatment.
得られた表面処理ガラスクロスの厚さは、例えば、50~1500μmの範囲にあり、好ましくは、110~700μmの範囲にあり、より好ましくは、140~400μmの範囲にあり、さらに好ましくは、160~250μmの範囲にある。ここで、表面処理ガラスクロスの厚さは、JIS R 3420:2013に準拠して測定することができる。 The thickness of the surface-treated glass cloth obtained is, for example, in the range of 50 to 1500 μm, preferably in the range of 110 to 700 μm, more preferably in the range of 140 to 400 μm, and even more preferably in the range of 160 μm. ~250 μm. Here, the thickness of the surface-treated glass cloth can be measured in accordance with JIS R 3420:2013.
本実施形態の樹脂強化用ガラス繊維において、前記シランカップリング剤の付着量は、樹脂強化用ガラス繊維の全量に対して、例えば、400~2000ppm、好ましくは500~1200ppm、より好ましくは600~1000ppmの範囲である。 In the glass fiber for resin reinforcement of the present embodiment, the amount of the silane coupling agent attached is, for example, 400 to 2000 ppm, preferably 500 to 1200 ppm, more preferably 600 to 1000 ppm, based on the total amount of the glass fiber for resin reinforcement. is within the range of
前記シランカップリング剤の付着量は次のようにして測定することができる。 The amount of the silane coupling agent attached can be measured as follows.
[シランカップリング剤付着量測定]
表面処理ガラスクロスを1cm×3cm程度の大きさに細かく切り、秤量後、スクリュー管に溶媒を入れ、ホットプレートで所定の温度まで加熱し、シランカップリング剤を抽出する。具体的には、塩化メチレン溶媒中、45℃で加熱することで洗浄したのち、不溶物を濾別し、70℃のメタノール及び80℃の水で2回ずつ抽出する。
[Measurement of silane coupling agent adhesion amount]
The surface-treated glass cloth is cut into pieces approximately 1 cm x 3 cm in size, weighed, and then a solvent is placed in a screw tube and heated to a predetermined temperature on a hot plate to extract the silane coupling agent. Specifically, after washing by heating at 45°C in a methylene chloride solvent, insoluble matter is filtered off, and extracted twice with methanol at 70°C and water at 80°C.
抽出液をそれぞれ濃縮したものの1H-NMR測定し、積分値から内部標準法(内部標準:1,4-ピラジン)にて各抽出液中のシランカップリング剤量を定量する。メタノール抽出液中のシランカップリング剤量と水抽出液中のシランカップリング剤とを合算したものと、表面処理ガラスクロスの重量とから、本実施例で得られた表面処理ガラスクロスのシランカップリング剤付着量を算出する。 Each concentrated extract is subjected to 1 H-NMR measurement, and the amount of silane coupling agent in each extract is determined from the integral value using the internal standard method (internal standard: 1,4-pyrazine). From the sum of the amount of silane coupling agent in the methanol extract and the silane coupling agent in the water extract and the weight of the surface-treated glass cloth, the silane cup of the surface-treated glass cloth obtained in this example was determined. Calculate the amount of ring agent attached.
また、本実施形態の樹脂強化用ガラス繊維において、強熱減量は、樹脂強化用ガラス繊維の全量に対して、例えば、500~5000ppm、好ましくは600~4800ppm、より好ましくは700~4500ppm、さらに好ましくは750~3000ppm、特に好ましくは800~2000ppm、最も好ましくは850~1500ppmの範囲である。前記強熱減量は、JIS R 3420:2013に準拠して測定することができる。 Further, in the resin-reinforcing glass fiber of the present embodiment, the ignition loss is, for example, 500 to 5000 ppm, preferably 600 to 4800 ppm, more preferably 700 to 4500 ppm, and even more preferably ranges from 750 to 3000 ppm, particularly preferably from 800 to 2000 ppm, most preferably from 850 to 1500 ppm. The ignition loss can be measured in accordance with JIS R 3420:2013.
本実施形態のガラス繊維強化樹脂成形品は、前述した本実施形態の荷重たわみ温度が120℃以上の樹脂と、前述した本実施形態の樹脂強化用ガラス繊維を含む。 The glass fiber-reinforced resin molded product of this embodiment includes the resin of this embodiment described above whose deflection temperature under load is 120° C. or higher and the resin-reinforcing glass fiber of this embodiment described above.
本実施形態のガラス繊維強化樹脂成形品は、前述した本実施形態の荷重たわみ温度が120℃以上の樹脂と、前述した本実施形態の樹脂強化用ガラス繊維を用いて、射出成形法、射出圧縮成形法、二色成形法、中空成形法、発泡成形法(超臨界流体発泡成形法を含む)、インサート成形法、インモールドコーティング成形法、押出成形法、シート成形法、熱成形法、回転成形法、積層成形法、プレス成形法、ブロー成形法、スタンピング成形法、インフュージョン法、ハンドレイアップ法、スプレイアップ法、レジントランスファーモールディング法、シートモールディングコンパウンド法、バルクモールディングコンパウンド法、プルトルージョン法、フィラメントワインディング法等の公知の成形法により成形することで得ることができる。 The glass fiber-reinforced resin molded product of this embodiment is produced by injection molding, injection compression, etc. using the resin with a deflection temperature under load of 120°C or higher of this embodiment described above, and the resin-reinforcing glass fiber of this embodiment described above. Molding method, two-color molding method, blow molding method, foam molding method (including supercritical fluid foam molding method), insert molding method, in-mold coating molding method, extrusion molding method, sheet molding method, thermoforming method, rotational molding method, lamination molding method, press molding method, blow molding method, stamping molding method, infusion method, hand lay-up method, spray-up method, resin transfer molding method, sheet molding compound method, bulk molding compound method, pultrusion method, It can be obtained by molding using a known molding method such as a filament winding method.
次に、本発明の実施例及び比較例を示す。 Next, examples and comparative examples of the present invention will be shown.
〔実施例1〕
本実施例では、まず、IPC規格で7628に相当するEガラスクロス(経糸及び緯糸に、フィラメント径9μmのEガラスフィラメントが集束されてなる68texのEガラス繊維糸を用い、経糸織密度が44本/25.4mm、緯糸織密度が31本/25.4mmである、200g/m2であり、厚さ175μmの平織ガラスクロス)を製織したあと、ヒートクリーニングによりガラスクロス表面に存在する有機物を除去したガラスクロスを用意した。
[Example 1]
In this example, first, E glass cloth corresponding to 7628 according to the IPC standard (68 tex E glass fiber yarn in which E glass filaments with a filament diameter of 9 μm are bundled in the warp and weft) is used, and the warp weave density is 44 fibers. /25.4mm, weft density is 31 threads/25.4mm, 200g/ m2 , 175μm thick plain weave glass cloth) After weaving, organic matter present on the surface of the glass cloth was removed by heat cleaning. I prepared a glass cloth.
次に、酸として酢酸が83.7mmol/kgとなるように調製した水溶液に、シランカップリング剤として3-アミノプロピルトリエトキシシラン(信越化学工業株式会社製、商品名:KBE-903)を0.5質量%となるように添加した水系処理溶液中に、前記ガラスクロスを浸漬させたあと、マングルにより絞液し、さらに110℃で5分間乾燥させて本実施例の樹脂強化用ガラス繊維としての表面処理ガラスクロスを得た。得られた表面処理ガラスクロスの酸付着量は120ppm、シランカップリング剤の付着量は830ppm、強熱減量は0.101%であった。 Next, 3-aminopropyltriethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., trade name: KBE-903) was added as a silane coupling agent to an aqueous solution prepared so that acetic acid was 83.7 mmol/kg. The glass cloth was immersed in an aqueous treatment solution containing .5% by mass, squeezed with a mangle, and further dried at 110°C for 5 minutes to obtain the resin-reinforcing glass fiber of this example. A surface-treated glass cloth was obtained. The resulting surface-treated glass cloth had an acid adhesion amount of 120 ppm, a silane coupling agent adhesion amount of 830 ppm, and an ignition loss of 0.101%.
次に、本実施例で得られた樹脂強化用ガラス繊維としての表面処理ガラスクロス10枚と、厚さ100μmのポリエーテルイミドフィルム(三菱樹脂株式会社製、商品名:スペリオUT Eタイプ、荷重たわみ温度200℃)18枚とを重ね合わせ、380℃にて、接圧で10分間保持したのち、面圧を30kgw/cm2にして5分間保持し、室温まで冷却することで、本実施例のガラス繊維強化樹脂成形品として、体積含有率40%厚さ2mmのポリエーテルイミド複合材料を得た。 Next, 10 sheets of surface-treated glass cloth as glass fibers for resin reinforcement obtained in this example and a polyetherimide film with a thickness of 100 μm (manufactured by Mitsubishi Plastics Co., Ltd., product name: Superio UT E type, deflection under load) were used. In this example, 18 sheets (temperature: 200°C) were stacked and held at 380°C for 10 minutes under contact pressure, then the surface pressure was set to 30kgw/ cm2 , held for 5 minutes, and cooled to room temperature. A polyetherimide composite material having a volume content of 40% and a thickness of 2 mm was obtained as a glass fiber reinforced resin molded product.
本実施例で得られた樹脂強化用ガラス繊維としての表面処理ガラスクロスについて、次のようにして酸付着量を算出する一方、本実施例で得られたガラス繊維強化樹脂成形品としてのポリエーテルイミド複合材料について、次のようにして常体曲げ強度を測定し、強度上昇率を算出した。結果を表1に示す。 Regarding the surface-treated glass cloth as resin-reinforced glass fiber obtained in this example, the amount of acid adhesion was calculated as follows. The normal bending strength of the imide composite material was measured as follows, and the rate of increase in strength was calculated. The results are shown in Table 1.
なお、表1において、「平均水素数」は、カルボキシル基のα炭素位の平均水素数を意味し、「アミノシラン」は、3-アミノプロピルトリエトキシシランを意味する。 In Table 1, "average number of hydrogens" means the average number of hydrogens at the α carbon position of a carboxyl group, and "aminosilane" means 3-aminopropyltriethoxysilane.
[酸付着量]
本実施例で得られた表面処理ガラスクロスを切り取り、秤量後、クロロホルムを添加し、超音波浴によって洗浄し、希アルカリ溶液にて振とう及び超音波浴による酸抽出を行った。抽出液を遠心分離処理し、水層部を試料溶液とした。次いで、電気泳動システム(Agilent Technologies社製、商品名:7100キャピラリー電気泳動システム、緩衝液:Agilent Technologies社製有機酸分析バッファ)を用いて、試料溶液および標準品溶液の測定を行い、1点検量線法により、試料溶液中の酸量を定量した。次いで、表面処理ガラスクロスの質量と定量した酸の質量から、前記表面処理ガラスクロスの酸付着量を算出した。
[Amount of acid adhesion]
The surface-treated glass cloth obtained in this example was cut, weighed, added with chloroform, washed in an ultrasonic bath, shaken in a dilute alkaline solution, and subjected to acid extraction in an ultrasonic bath. The extract was centrifuged, and the aqueous layer was used as a sample solution. Next, the sample solution and standard solution were measured using an electrophoresis system (manufactured by Agilent Technologies, product name: 7100 capillary electrophoresis system, buffer solution: organic acid analysis buffer manufactured by Agilent Technologies), and one-point calibration was performed. The amount of acid in the sample solution was determined by the line method. Next, the amount of acid attached to the surface-treated glass cloth was calculated from the mass of the surface-treated glass cloth and the determined mass of the acid.
[常体曲げ強度]
JIS K 7017:1999(A法・クラスIII試験片)に準拠し、精密万能試験機(株式会社島津製作所製、商品名:オートグラフAG-5000B)によって測定した。
[Normal bending strength]
Measurement was performed using a precision universal testing machine (manufactured by Shimadzu Corporation, trade name: Autograph AG-5000B) in accordance with JIS K 7017:1999 (Method A/Class III test piece).
[強度上昇率]
酸が付着していない表面処理ガラスクロスを用いた以外は、本実施例と全く同一にして得られたガラス繊維強化樹脂成形品(酸が付着していないガラス繊維強化樹脂成形品)について、前述の方法により常体曲げ強度を測定し、次式により算出した。なお、本実施例において、「酸が付着していないガラス繊維強化樹脂成形品」は、下記比較例1で得られたガラス繊維強化樹脂成形品に相当する。
[Strength increase rate]
A glass fiber-reinforced resin molded product (glass fiber-reinforced resin molded product to which no acid is attached) obtained in exactly the same manner as in this example except that a surface-treated glass cloth to which no acid is attached was used was as described above. The normal bending strength was measured by the method described above, and calculated by the following formula. In this example, the "glass fiber-reinforced resin molded product to which no acid is attached" corresponds to the glass fiber-reinforced resin molded product obtained in Comparative Example 1 below.
強度上昇率(%)=((本実施例で得られたガラス繊維強化樹脂成形品の常体曲げ強度-酸が付着していないガラス繊維強化樹脂成形品の常体曲げ強度)/酸が付着していないガラス繊維強化樹脂成形品の常体曲げ強度)×100
〔実施例2〕
本実施例では、前記水系処理溶液中に前記ガラスクロスを浸漬させ、マングルにより絞液した後に、さらに110℃で30分間乾燥させた以外は、実施例1と全く同一にして本実施例の樹脂強化用ガラス繊維としての表面処理ガラスクロスを得た。
Strength increase rate (%) = ((normal bending strength of the glass fiber reinforced resin molded product obtained in this example - normal bending strength of the glass fiber reinforced resin molded product to which no acid is attached)/acid attached Normal bending strength of glass fiber reinforced resin molded product without
[Example 2]
This example was carried out in the same manner as in Example 1, except that the glass cloth was immersed in the aqueous treatment solution, the liquid was squeezed out with a mangle, and then dried at 110°C for 30 minutes. A surface-treated glass cloth was obtained as a reinforcing glass fiber.
次に、本実施例で得られた表面処理ガラスクロスを用いた以外は、実施例1と全く同一にして、本実施例のガラス繊維強化樹脂成形品としてのポリエーテルイミド複合材料を得た。 Next, a polyetherimide composite material as a glass fiber-reinforced resin molded article of this example was obtained in exactly the same manner as in Example 1 except that the surface-treated glass cloth obtained in this example was used.
次に、実施例1と全く同一にして、本実施例で得られた樹脂強化用ガラス繊維としての表面処理ガラスクロスについて酸付着量を算出する一方、本実施例で得られたガラス繊維強化樹脂成形品としてのポリエーテルイミド複合材料について、常体曲げ強度を測定し、強度上昇率を算出した。結果を表1に示す。なお、本実施例において、「酸が付着していないガラス繊維強化樹脂成形品」は、下記比較例1で得られたガラス繊維強化樹脂成形品に相当する。 Next, in exactly the same manner as in Example 1, the amount of acid adhesion was calculated for the surface-treated glass cloth as the glass fiber for resin reinforcement obtained in this example, while the amount of acid adhesion was calculated for the glass fiber reinforced resin obtained in this example. The normal bending strength of the polyetherimide composite material as a molded article was measured, and the rate of increase in strength was calculated. The results are shown in Table 1. In this example, the "glass fiber-reinforced resin molded product to which no acid is attached" corresponds to the glass fiber-reinforced resin molded product obtained in Comparative Example 1 below.
〔実施例3〕
本実施例では、酸としてマロン酸が83.7mmol/kgとなるように調製した水系処理溶液を用いた以外は、実施例1と全く同一にして本実施例の樹脂強化用ガラス繊維としての表面処理ガラスクロスを得た。
[Example 3]
In this example, the surface of the glass fiber for resin reinforcement of this example was completely the same as Example 1, except that an aqueous treatment solution prepared so that malonic acid was 83.7 mmol/kg as the acid was used. A treated glass cloth was obtained.
次に、本実施例で得られた表面処理ガラスクロスを用いた以外は、実施例1と全く同一にして、本実施例のガラス繊維強化樹脂成形品としてのポリエーテルイミド複合材料を得た。 Next, a polyetherimide composite material as a glass fiber-reinforced resin molded article of this example was obtained in exactly the same manner as in Example 1 except that the surface-treated glass cloth obtained in this example was used.
次に、実施例1と全く同一にして、本実施例で得られた樹脂強化用ガラス繊維としての表面処理ガラスクロスについて酸付着量を算出する一方、本実施例で得られたガラス繊維強化樹脂成形品としてのポリエーテルイミド複合材料について、常体曲げ強度を測定し、強度上昇率を算出した。結果を表1に示す。なお、本実施例において、「酸が付着していないガラス繊維強化樹脂成形品」は、下記比較例1で得られたガラス繊維強化樹脂成形品に相当する。 Next, in exactly the same manner as in Example 1, the amount of acid adhesion was calculated for the surface-treated glass cloth as the glass fiber for resin reinforcement obtained in this example, while the amount of acid adhesion was calculated for the glass fiber reinforced resin obtained in this example. The normal bending strength of the polyetherimide composite material as a molded article was measured, and the rate of increase in strength was calculated. The results are shown in Table 1. In this example, the "glass fiber-reinforced resin molded product to which no acid is attached" corresponds to the glass fiber-reinforced resin molded product obtained in Comparative Example 1 below.
〔実施例4〕
本実施例では、酸としてクエン酸が83.7mmol/kgとなるように調製した水系処理溶液を用いた以外は、実施例1と全く同一にして本実施例の樹脂強化用ガラス繊維としての表面処理ガラスクロスを得た。
[Example 4]
In this example, the surface of the glass fiber for resin reinforcement of this example was completely the same as in Example 1 except that an aqueous treatment solution prepared so that citric acid was 83.7 mmol/kg as the acid was used. A treated glass cloth was obtained.
次に、本実施例で得られた表面処理ガラスクロスを用いた以外は、実施例1と全く同一にして、本実施例のガラス繊維強化樹脂成形品としてのポリエーテルイミド複合材料を得た。 Next, a polyetherimide composite material as a glass fiber-reinforced resin molded article of this example was obtained in exactly the same manner as in Example 1 except that the surface-treated glass cloth obtained in this example was used.
次に、実施例1と全く同一にして、本実施例で得られた樹脂強化用ガラス繊維としての表面処理ガラスクロスについて酸付着量を算出する一方、本実施例で得られたガラス繊維強化樹脂成形品としてのポリエーテルイミド複合材料について、常体曲げ強度を測定し、強度上昇率を算出した。結果を表1に示す。なお、本実施例において、「酸が付着していないガラス繊維強化樹脂成形品」は、下記比較例1で得られたガラス繊維強化樹脂成形品に相当する。 Next, in exactly the same manner as in Example 1, the amount of acid adhesion was calculated for the surface-treated glass cloth as the glass fiber for resin reinforcement obtained in this example, while the amount of acid adhesion was calculated for the glass fiber reinforced resin obtained in this example. The normal bending strength of the polyetherimide composite material as a molded article was measured, and the rate of increase in strength was calculated. The results are shown in Table 1. In this example, the "glass fiber-reinforced resin molded product to which no acid is attached" corresponds to the glass fiber-reinforced resin molded product obtained in Comparative Example 1 below.
〔実施例5〕
本実施例では、酸としてマレイン酸が83.7mmol/kgとなるように調製した水系処理溶液を用いた以外は、実施例1と全く同一にして本実施例の樹脂強化用ガラス繊維としての表面処理ガラスクロスを得た。
[Example 5]
This example was completely the same as Example 1 except that an aqueous treatment solution containing 83.7 mmol/kg of maleic acid as the acid was used. A treated glass cloth was obtained.
次に、本実施例で得られた表面処理ガラスクロスを用いた以外は、実施例1と全く同一にして、本実施例のガラス繊維強化樹脂成形品としてのポリエーテルイミド複合材料を得た。 Next, a polyetherimide composite material as a glass fiber-reinforced resin molded article of this example was obtained in exactly the same manner as in Example 1 except that the surface-treated glass cloth obtained in this example was used.
次に、実施例1と全く同一にして、本実施例で得られた樹脂強化用ガラス繊維としての表面処理ガラスクロスについて酸付着量を算出する一方、本実施例で得られたガラス繊維強化樹脂成形品としてのポリエーテルイミド複合材料について、常体曲げ強度を測定し、強度上昇率を算出した。結果を表1に示す。なお、本実施例において、「酸が付着していないガラス繊維強化樹脂成形品」は、下記比較例1で得られたガラス繊維強化樹脂成形品に相当する。 Next, in exactly the same manner as in Example 1, the amount of acid adhesion was calculated for the surface-treated glass cloth as the glass fiber for resin reinforcement obtained in this example, while the amount of acid adhesion was calculated for the glass fiber reinforced resin obtained in this example. The normal bending strength of the polyetherimide composite material as a molded article was measured, and the rate of increase in strength was calculated. The results are shown in Table 1. In this example, the "glass fiber-reinforced resin molded product to which no acid is attached" corresponds to the glass fiber-reinforced resin molded product obtained in Comparative Example 1 below.
〔実施例6〕
本実施例では、シランカップリング剤としてγ-メタクリロキシプロピルトリメトキシシラン(ダウ・東レ株式会社製、商品名:XIAMETER OFS6030)を0.5質量%となるように添加した水系処理溶液を用いた以外は、実施例1と全く同一にして本実施例の樹脂強化用ガラス繊維としての表面処理ガラスクロスを得た。得られた表面処理ガラスクロスの酸付着量は120ppm、シランカップリング剤の付着量は1050ppm、強熱減量は0.106%であった。
[Example 6]
In this example, an aqueous treatment solution was used in which 0.5% by mass of γ-methacryloxypropyltrimethoxysilane (manufactured by Dow Toray Industries, Inc., trade name: XIAMETER OFS6030) was added as a silane coupling agent. Except for this, a surface-treated glass cloth as a resin-reinforcing glass fiber of this example was obtained in exactly the same manner as in Example 1. The amount of acid attached to the obtained surface-treated glass cloth was 120 ppm, the amount of silane coupling agent attached was 1050 ppm, and the loss on ignition was 0.106%.
次に、本実施例で得られた表面処理ガラスクロスを用いた以外は、実施例1と全く同一にして、本実施例のガラス繊維強化樹脂成形品としてのポリエーテルイミド複合材料を得た。 Next, a polyetherimide composite material as a glass fiber-reinforced resin molded article of this example was obtained in exactly the same manner as in Example 1 except that the surface-treated glass cloth obtained in this example was used.
次に、実施例1と全く同一にして、本実施例で得られた樹脂強化用ガラス繊維としての表面処理ガラスクロスについて酸付着量を算出する一方、本実施例で得られたガラス繊維強化樹脂成形品としてのポリエーテルイミド複合材料について、常体曲げ強度を測定した。結果を表1に示す。 Next, in exactly the same manner as in Example 1, the amount of acid adhesion was calculated for the surface-treated glass cloth as the glass fiber for resin reinforcement obtained in this example, while the amount of acid adhesion was calculated for the glass fiber reinforced resin obtained in this example. The normal bending strength of the polyetherimide composite material as a molded article was measured. The results are shown in Table 1.
なお、表1において、「メタクリルシラン」は、γ-メタクリロキシプロピルトリメトキシシランを意味する。 In Table 1, "methacrylicsilane" means γ-methacryloxypropyltrimethoxysilane.
〔実施例7〕
本実施例では、3-グリシジルオキシプロピルトリエトキシシラン(ダウ・東レ株式会社製、商品名:DOWSIL Z-6040)を0.5質量%となるように添加した水系処理溶液を用いた以外は、実施例1と全く同一にして本実施例の樹脂強化用ガラス繊維としての表面処理ガラスクロスを得た。得られた表面処理ガラスクロスの酸付着量は120ppm、シランカップリング剤の付着量は1030ppm、強熱減量は0.090%であった。
[Example 7]
In this example, an aqueous treatment solution containing 0.5% by mass of 3-glycidyloxypropyltriethoxysilane (manufactured by Dow Toray Industries, Inc., trade name: DOWSIL Z-6040) was used. A surface-treated glass cloth as a resin-reinforcing glass fiber of this example was obtained in exactly the same manner as in Example 1. The amount of acid attached to the surface-treated glass cloth obtained was 120 ppm, the amount of silane coupling agent attached was 1030 ppm, and the loss on ignition was 0.090%.
次に、本実施例で得られた表面処理ガラスクロスを用いた以外は、実施例1と全く同一にして、本実施例のガラス繊維強化樹脂成形品としてのポリエーテルイミド複合材料を得た。 Next, a polyetherimide composite material as a glass fiber-reinforced resin molded article of this example was obtained in exactly the same manner as in Example 1 except that the surface-treated glass cloth obtained in this example was used.
次に、実施例1と全く同一にして、本実施例で得られた樹脂強化用ガラス繊維としての表面処理ガラスクロスについて酸付着量を算出する一方、本実施例で得られたガラス繊維強化樹脂成形品としてのポリエーテルイミド複合材料について、常体曲げ強度を測定した。結果を表1に示す。 Next, in exactly the same manner as in Example 1, the amount of acid adhesion was calculated for the surface-treated glass cloth as the glass fiber for resin reinforcement obtained in this example, while the amount of acid adhesion was calculated for the glass fiber reinforced resin obtained in this example. The normal bending strength of the polyetherimide composite material as a molded article was measured. The results are shown in Table 1.
なお、表1において、「エポキシシラン」は、3-グリシジルオキシプロピルトリエトキシシランを意味する。 In Table 1, "epoxysilane" means 3-glycidyloxypropyltriethoxysilane.
〔実施例8〕
本実施例では、実施例1と全く同一にして樹脂強化用ガラス繊維としての表面処理ガラスクロスを得た。
[Example 8]
In this example, a surface-treated glass cloth as a glass fiber for resin reinforcement was obtained in exactly the same manner as in Example 1.
次に、本実施例で得られた表面処理ガラスクロス10枚と、厚さ100μmのポリエーテルエーテルケトンフィルム(Victrex社製、商品名:APTIVフィルム1000、荷重たわみ温度156℃)13枚とを重ね合わせ、400℃にて、接圧で10分間保持したのち、面圧を10kgw/cm2にして5分間保持し、室温まで冷却することで、本実施例のガラス繊維強化樹脂成形品として、体積含有率40%厚さ2mmのポリエーテルエーテルケトン複合材料を得た。 Next, 10 sheets of the surface-treated glass cloth obtained in this example were stacked with 13 sheets of polyetheretherketone film (manufactured by Victrex, trade name: APTIV film 1000, deflection temperature under load of 156°C) with a thickness of 100 μm. After holding at 400°C for 10 minutes under contact pressure, the surface pressure was set to 10 kgw/cm 2 and held for 5 minutes, and then cooled to room temperature. A polyetheretherketone composite material having a content of 40% and a thickness of 2 mm was obtained.
次に、実施例1と全く同一にして、本実施例で得られた樹脂強化用ガラス繊維としての表面処理ガラスクロスについて酸付着量を算出する一方、本実施例で得られたガラス繊維強化樹脂成形品としてのポリエーテルエーテルケトン複合材料について、常体曲げ強度を測定し、強度上昇率を算出した。結果を表1に示す。なお、本実施例において、「酸が付着していないガラス繊維強化樹脂成形品」は、下記比較例4で得られたガラス繊維強化樹脂成形品に相当する。 Next, in exactly the same manner as in Example 1, the amount of acid adhesion was calculated for the surface-treated glass cloth as the glass fiber for resin reinforcement obtained in this example, while the amount of acid adhesion was calculated for the glass fiber reinforced resin obtained in this example. The normal bending strength of the polyetheretherketone composite material as a molded article was measured, and the rate of increase in strength was calculated. The results are shown in Table 1. In this example, the "glass fiber-reinforced resin molded product to which no acid is attached" corresponds to the glass fiber-reinforced resin molded product obtained in Comparative Example 4 below.
〔比較例1〕
本比較例では、酸を全く用いなかった以外は実施例1と全く同一にして、樹脂強化用ガラス繊維としての表面処理ガラスクロスを得た。
[Comparative example 1]
In this comparative example, a surface-treated glass cloth as a resin-reinforcing glass fiber was obtained in the same manner as in Example 1 except that no acid was used at all.
次に、本比較例で得られた表面処理ガラスクロスを用いた以外は、実施例1と全く同一にして、本比較例のガラス繊維強化樹脂成形品としてのポリエーテルイミド複合材料を得た。 Next, a polyetherimide composite material as a glass fiber reinforced resin molded article of this comparative example was obtained in exactly the same manner as in Example 1 except that the surface-treated glass cloth obtained in this comparative example was used.
次に、実施例1と全く同一にして、本比較例で得られた樹脂強化用ガラス繊維としての表面処理ガラスクロスについて酸付着量を算出する一方、本比較例で得られたガラス繊維強化樹脂成形品としてのポリエーテルイミド複合材料について、常体曲げ強度を測定した。結果を表2に示す。 Next, in exactly the same manner as in Example 1, the amount of acid adhesion was calculated for the surface-treated glass cloth as the resin-reinforcing glass fiber obtained in this comparative example. The normal bending strength of the polyetherimide composite material as a molded article was measured. The results are shown in Table 2.
なお、表2において、「平均水素数」は、カルボキシル基のα炭素位の平均水素数を意味し、「アミノシラン」は、3-アミノプロピルトリエトキシシランを意味する。 In Table 2, "average number of hydrogens" means the average number of hydrogens at the α carbon position of the carboxyl group, and "aminosilane" means 3-aminopropyltriethoxysilane.
〔比較例2〕
本比較例では、酸としてギ酸が83.7mmol/kgとなるように調製した水系処理溶液を用いた以外は、実施例1と全く同一にして、樹脂強化用ガラス繊維としての表面処理ガラスクロスを得た。
[Comparative example 2]
This comparative example was carried out in exactly the same manner as in Example 1, except that an aqueous treatment solution containing 83.7 mmol/kg of formic acid as the acid was used, and a surface-treated glass cloth was used as the resin-reinforcing glass fiber. Obtained.
次に、本比較例で得られた表面処理ガラスクロスを用いた以外は、実施例1と全く同一にして、本比較例のガラス繊維強化樹脂成形品としてのポリエーテルイミド複合材料を得た。 Next, a polyetherimide composite material as a glass fiber reinforced resin molded article of this comparative example was obtained in exactly the same manner as in Example 1 except that the surface-treated glass cloth obtained in this comparative example was used.
次に、実施例1と全く同一にして、本比較例で得られた樹脂強化用ガラス繊維としての表面処理ガラスクロスについて酸付着量を算出する一方、本比較例で得られたガラス繊維強化樹脂成形品としてのポリエーテルイミド複合材料について、常体曲げ強度を測定し、強度上昇率を算出した。結果を表2に示す。なお、本比較例において、「酸が付着していないガラス繊維強化樹脂成形品」は、前記比較例1で得られたガラス繊維強化樹脂成形品に相当する。 Next, in exactly the same manner as in Example 1, the amount of acid adhesion was calculated for the surface-treated glass cloth as the resin-reinforcing glass fiber obtained in this comparative example. The normal bending strength of the polyetherimide composite material as a molded article was measured, and the rate of increase in strength was calculated. The results are shown in Table 2. In this comparative example, the "glass fiber reinforced resin molded product to which no acid is attached" corresponds to the glass fiber reinforced resin molded product obtained in Comparative Example 1 above.
〔比較例3〕
本比較例では、酸としてシュウ酸が83.7mmol/kgとなるように調製した水系処理溶液を用いた以外は、実施例1と全く同一にして、樹脂強化用ガラス繊維としての表面処理ガラスクロスを得た。
[Comparative example 3]
In this comparative example, the same procedure was used as in Example 1 except that an aqueous treatment solution containing 83.7 mmol/kg of oxalic acid as the acid was used. I got it.
次に、本比較例で得られた表面処理ガラスクロスを用いた以外は、実施例1と全く同一にして、本比較例のガラス繊維強化樹脂成形品としてのポリエーテルイミド複合材料を得た。 Next, a polyetherimide composite material as a glass fiber reinforced resin molded article of this comparative example was obtained in exactly the same manner as in Example 1 except that the surface-treated glass cloth obtained in this comparative example was used.
次に、実施例1と全く同一にして、本比較例で得られた樹脂強化用ガラス繊維としての表面処理ガラスクロスについて酸付着量を算出する一方、本比較例で得られたガラス繊維強化樹脂成形品としてのポリエーテルイミド複合材料について、常体曲げ強度を測定し、強度上昇率を算出した。結果を表2に示す。なお、本比較例において、「酸が付着していないガラス繊維強化樹脂成形品」は、前記比較例1で得られたガラス繊維強化樹脂成形品に相当する。 Next, in exactly the same manner as in Example 1, the amount of acid adhesion was calculated for the surface-treated glass cloth as the resin-reinforcing glass fiber obtained in this comparative example. The normal bending strength of the polyetherimide composite material as a molded article was measured, and the rate of increase in strength was calculated. The results are shown in Table 2. In this comparative example, the "glass fiber reinforced resin molded product to which no acid is attached" corresponds to the glass fiber reinforced resin molded product obtained in Comparative Example 1 above.
〔比較例4〕
本比較例では、比較例1と全く同一にして樹脂強化用ガラス繊維としての表面処理ガラスクロスを得た。
[Comparative example 4]
In this comparative example, a surface-treated glass cloth as a resin-reinforcing glass fiber was obtained in exactly the same manner as in comparative example 1.
次に、本比較例で得られた表面処理ガラスクロスを用いた以外は、実施例8と全く同一にして、本比較例のガラス繊維強化樹脂成形品としてのポリエーテルエーテルケトン複合材料を得た。 Next, a polyether ether ketone composite material as a glass fiber reinforced resin molded article of this comparative example was obtained in exactly the same manner as in Example 8 except that the surface-treated glass cloth obtained in this comparative example was used. .
次に、実施例1と全く同一にして、本比較例で得られた樹脂強化用ガラス繊維としての表面処理ガラスクロスについて酸付着量を算出する一方、本比較例で得られたガラス繊維強化樹脂成形品としてのポリエーテルエーテルケトン複合材料について、常体曲げ強度を測定した。結果を表2に示す。 Next, in exactly the same manner as in Example 1, the amount of acid adhesion was calculated for the surface-treated glass cloth as the resin-reinforcing glass fiber obtained in this comparative example. The normal bending strength of the polyetheretherketone composite material as a molded article was measured. The results are shown in Table 2.
〔比較例5〕
本比較例では、比較例2と全く同一にして樹脂強化用ガラス繊維としての表面処理ガラスクロスを得た。
[Comparative example 5]
In this comparative example, a surface-treated glass cloth as a resin-reinforcing glass fiber was obtained in exactly the same manner as in comparative example 2.
次に、本比較例で得られた表面処理ガラスクロスを用いた以外は、実施例8と全く同一にして、本比較例のガラス繊維強化樹脂成形品としてのポリエーテルエーテルケトン複合材料を得た。 Next, a polyether ether ketone composite material as a glass fiber reinforced resin molded article of this comparative example was obtained in exactly the same manner as in Example 8 except that the surface-treated glass cloth obtained in this comparative example was used. .
次に、実施例1と全く同一にして、本比較例で得られた樹脂強化用ガラス繊維としての表面処理ガラスクロスについて酸付着量を算出する一方、本比較例で得られたガラス繊維強化樹脂成形品としてのポリエーテルエーテルケトン複合材料について、常体曲げ強度を測定し、強度上昇率を算出した。結果を表2に示す。なお、本比較例において、「酸が付着していないガラス繊維強化樹脂成形品」は、前記比較例4で得られたガラス繊維強化樹脂成形品に相当する。 Next, in exactly the same manner as in Example 1, the amount of acid adhesion was calculated for the surface-treated glass cloth as the resin-reinforcing glass fiber obtained in this comparative example. The normal bending strength of the polyetheretherketone composite material as a molded article was measured, and the rate of increase in strength was calculated. The results are shown in Table 2. In this comparative example, the "glass fiber reinforced resin molded product to which no acid is attached" corresponds to the glass fiber reinforced resin molded product obtained in Comparative Example 4.
〔比較例6〕
本比較例では、実施例1と全く同一にして樹脂強化用ガラス繊維としての表面処理ガラスクロスを得た。
[Comparative example 6]
In this comparative example, a surface-treated glass cloth as a resin-reinforcing glass fiber was obtained in exactly the same manner as in Example 1.
次に、本比較例で得られた表面処理ガラスクロス10枚と、厚さ100μmのポリブチレンテレフタレートフィルム(ポリプラスチックス社製、商品名:ジュラネックス2000、荷重たわみ温度68℃、)17枚とを重ね合わせ、260℃にて、接圧で5分間保持したのち、面圧を20kgw/cm2にして3分間保持し、室温まで冷却することで、本比較例のガラス繊維強化樹脂成形品として、体積含有率40%厚さ2mmのポリブチレンテレフタレート複合材料を得た。 Next, 10 sheets of surface-treated glass cloth obtained in this comparative example and 17 sheets of polybutylene terephthalate film (manufactured by Polyplastics, trade name: DURANEX 2000, deflection temperature under load of 68°C) with a thickness of 100 μm were used. were stacked together and held at 260°C for 5 minutes under contact pressure, then the surface pressure was set to 20 kgw/cm 2 and held for 3 minutes, and cooled to room temperature to form the glass fiber reinforced resin molded product of this comparative example. A polybutylene terephthalate composite material having a volume content of 40% and a thickness of 2 mm was obtained.
次に、実施例1と全く同一にして、本比較例で得られた樹脂強化用ガラス繊維としての表面処理ガラスクロスについて酸付着量を算出する一方、本比較例で得られたガラス繊維強化樹脂成形品としてのポリブチレンテレフタレート複合材料について、常体曲げ強度を測定し、強度上昇率を算出した。結果を表2に示す。なお、本比較例において、「酸が付着していないガラス繊維強化樹脂成形品」は、下記比較例7で得られたガラス繊維強化樹脂成形品に相当する。 Next, in exactly the same manner as in Example 1, the amount of acid adhesion was calculated for the surface-treated glass cloth as the resin-reinforcing glass fiber obtained in this comparative example. The normal bending strength of the polybutylene terephthalate composite material as a molded article was measured, and the rate of increase in strength was calculated. The results are shown in Table 2. In addition, in this comparative example, the "glass fiber reinforced resin molded product to which no acid is attached" corresponds to the glass fiber reinforced resin molded product obtained in Comparative Example 7 below.
なお、表2において、「PBT」は、ポリブチレンテレフタレートを意味する。 In addition, in Table 2, "PBT" means polybutylene terephthalate.
〔比較例7〕
本比較例では、比較例1と全く同一にして樹脂強化用ガラス繊維としての表面処理ガラスクロスを得た。
[Comparative example 7]
In this comparative example, a surface-treated glass cloth as a resin-reinforcing glass fiber was obtained in exactly the same manner as in comparative example 1.
次に、本比較例で得られた表面処理ガラスクロスを用いた以外は、比較例6と全く同一にして、本比較例のガラス繊維強化樹脂成形品としてのポリブチレンテレフタレート複合材料を得た。 Next, a polybutylene terephthalate composite material as a glass fiber reinforced resin molded article of this comparative example was obtained in exactly the same manner as in comparative example 6 except that the surface-treated glass cloth obtained in this comparative example was used.
次に、実施例1と全く同一にして、本比較例で得られた樹脂強化用ガラス繊維としての表面処理ガラスクロスについて酸付着量を算出する一方、本比較例で得られたガラス繊維強化樹脂成形品としてのポリブチレンテレフタレート複合材料について、常体曲げ強度を測定した。結果を表2に示す。 Next, in exactly the same manner as in Example 1, the amount of acid adhesion was calculated for the surface-treated glass cloth as the resin-reinforcing glass fiber obtained in this comparative example. The normal bending strength of the polybutylene terephthalate composite material as a molded article was measured. The results are shown in Table 2.
〔比較例8〕
本比較例では、比較例2と全く同一にして樹脂強化用ガラス繊維としての表面処理ガラスクロスを得た。
[Comparative example 8]
In this comparative example, a surface-treated glass cloth as a resin-reinforcing glass fiber was obtained in exactly the same manner as in comparative example 2.
次に、本比較例で得られた表面処理ガラスクロスを用いた以外は、比較例6と全く同一にして、本比較例のガラス繊維強化樹脂成形品としてのポリブチレンテレフタレート複合材料を得た。 Next, a polybutylene terephthalate composite material as a glass fiber reinforced resin molded article of this comparative example was obtained in exactly the same manner as in comparative example 6 except that the surface-treated glass cloth obtained in this comparative example was used.
次に、実施例1と全く同一にして、本比較例で得られた樹脂強化用ガラス繊維としての表面処理ガラスクロスについて酸付着量を算出する一方、本比較例で得られたガラス繊維強化樹脂成形品としてのポリブチレンテレフタレート複合材料について、常体曲げ強度を測定し、強度上昇率を算出した。結果を表2に示す。なお、本比較例において、「酸が付着していないガラス繊維強化樹脂成形品」は、前記比較例7で得られたガラス繊維強化樹脂成形品に相当する。 Next, in exactly the same manner as in Example 1, the amount of acid adhesion was calculated for the surface-treated glass cloth as the resin-reinforcing glass fiber obtained in this comparative example. The normal bending strength of the polybutylene terephthalate composite material as a molded article was measured, and the rate of increase in strength was calculated. The results are shown in Table 2. In this comparative example, the "glass fiber-reinforced resin molded product to which no acid is attached" corresponds to the glass fiber-reinforced resin molded product obtained in Comparative Example 7.
表1から、表面にカルボキシル基のα炭素位の平均水素数が0.5以上の酸と、アミンを含有するシランカップリング剤とが付着しており、前記酸の付着量が樹脂強化用ガラス繊維の全量に対して42~400ppmの範囲である実施例1~8のガラス繊維によれば、該ガラス繊維と、荷重たわみ温度が120℃以上高耐熱性樹脂とを用いるガラス繊維強化樹脂成形品の機械的強度を向上させることができることが明らかである。 From Table 1, it can be seen that an acid having an average hydrogen number of 0.5 or more at the alpha carbon position of a carboxyl group and a silane coupling agent containing an amine are attached to the surface of the resin-reinforced glass. According to the glass fibers of Examples 1 to 8, in which the content is in the range of 42 to 400 ppm based on the total amount of fibers, a glass fiber reinforced resin molded product using the glass fibers and a high heat resistant resin with a deflection temperature under load of 120° C. or higher. It is clear that the mechanical strength of
一方、表2から、表面にカルボキシル基のα炭素位の平均水素数が0.5未満の酸と、アミンを含有するシランカップリング剤とが付着しているか、又は、酸が全く付着していない比較例1~5のガラス繊維によれば、該ガラス繊維と、荷重たわみ温度が120℃以上の高耐熱性樹脂とを用いるガラス繊維強化樹脂成形品の機械的強度を向上させることができないことが明らかである。 On the other hand, Table 2 shows that either an acid with an average hydrogen number of less than 0.5 at the alpha carbon position of a carboxyl group and a silane coupling agent containing an amine are attached to the surface, or no acid is attached at all. According to the glass fibers of Comparative Examples 1 to 5 , the mechanical strength of glass fiber-reinforced resin molded products using the glass fibers and a highly heat-resistant resin with a deflection temperature under load of 120° C. or higher cannot be improved. is clear.
Claims (7)
表面に酸と、シランカップリング剤とが付着しており、
前記酸は、カルボキシル基のα炭素位の平均水素数が0.5以上の酸であり、
前記酸の付着量が樹脂強化用ガラス繊維の全量に対して42~400ppmの範囲であることを特徴とする、樹脂強化用ガラス繊維。 Used to strengthen resins with a deflection temperature under load of 120°C or higher, selected from the group consisting of thermoplastic polyimide, polyaryletherketone, polyarylene sulfide, liquid crystalline polyester, polyethersulfone, semi-aromatic nylon, and syndiotactic polystyrene. A glass fiber for resin reinforcement,
Acid and silane coupling agent are attached to the surface,
The acid is an acid in which the average number of hydrogen atoms at the α carbon position of the carboxyl group is 0.5 or more,
A glass fiber for resin reinforcement, characterized in that the amount of the acid attached is in the range of 42 to 400 ppm based on the total amount of the glass fiber for resin reinforcement.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020008710A JP7385117B2 (en) | 2020-01-22 | 2020-01-22 | Glass fiber for resin reinforcement and glass fiber reinforced resin molded products |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020008710A JP7385117B2 (en) | 2020-01-22 | 2020-01-22 | Glass fiber for resin reinforcement and glass fiber reinforced resin molded products |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2020158945A JP2020158945A (en) | 2020-10-01 |
JP7385117B2 true JP7385117B2 (en) | 2023-11-22 |
Family
ID=72642125
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020008710A Active JP7385117B2 (en) | 2020-01-22 | 2020-01-22 | Glass fiber for resin reinforcement and glass fiber reinforced resin molded products |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7385117B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6844684B1 (en) * | 2019-12-26 | 2021-03-17 | 日東紡績株式会社 | Surface treated glass cloth |
CN117730067A (en) | 2021-07-26 | 2024-03-19 | 日东纺绩株式会社 | Glass fiber for resin reinforcement and glass fiber-reinforced resin molded article |
WO2023058690A1 (en) | 2021-10-08 | 2023-04-13 | 旭化成株式会社 | Glass cloth, prepreg and printed wiring board |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011080170A (en) | 2009-10-09 | 2011-04-21 | Sumitomo Chemical Co Ltd | Method for producing impregnated glass cloth substrate and printed-wiring board |
JP2012116872A (en) | 2010-11-29 | 2012-06-21 | Sumitomo Chemical Co Ltd | Resin-impregnated sheet and method for producing resin-impregnated sheet laminate with metal foil |
JP2015166421A (en) | 2014-03-03 | 2015-09-24 | 日東紡績株式会社 | High intensity fiber-reinforced thermoplastic plastic using thermoplastic resin produced by using ionic liquid as matrix, and production method thereof |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4394418A (en) * | 1981-12-24 | 1983-07-19 | Ppg Industries, Inc. | Aqueous sizing composition and glass fibers made therewith for reinforcing thermosetting polymers |
JPH0352934A (en) * | 1989-07-19 | 1991-03-07 | Nitto Boseki Co Ltd | Glass fiber base material for laminated board of glass fiber-reinforced polyimide resin |
JP3448902B2 (en) * | 1993-06-25 | 2003-09-22 | 日東紡績株式会社 | Silane coupling agent and method for producing silane coupling agent |
JPH10624A (en) * | 1996-06-17 | 1998-01-06 | Kunishiro Kanagata Kogyo Kk | Manufacture of three-dimensional thermal transfer decorative mold |
JP4030167B2 (en) * | 1997-11-26 | 2008-01-09 | 旭化成エレクトロニクス株式会社 | Glass cloth and glass cloth reinforced synthetic resin laminate |
-
2020
- 2020-01-22 JP JP2020008710A patent/JP7385117B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011080170A (en) | 2009-10-09 | 2011-04-21 | Sumitomo Chemical Co Ltd | Method for producing impregnated glass cloth substrate and printed-wiring board |
JP2012116872A (en) | 2010-11-29 | 2012-06-21 | Sumitomo Chemical Co Ltd | Resin-impregnated sheet and method for producing resin-impregnated sheet laminate with metal foil |
JP2015166421A (en) | 2014-03-03 | 2015-09-24 | 日東紡績株式会社 | High intensity fiber-reinforced thermoplastic plastic using thermoplastic resin produced by using ionic liquid as matrix, and production method thereof |
Also Published As
Publication number | Publication date |
---|---|
JP2020158945A (en) | 2020-10-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7385117B2 (en) | Glass fiber for resin reinforcement and glass fiber reinforced resin molded products | |
CN113337934B (en) | Glass cloth, prepreg, and printed wiring board | |
JPS6316488B2 (en) | ||
WO2012081406A1 (en) | Carbon-fiber-reinforced plastic molded article | |
JP6361555B2 (en) | Resin coated carbon fiber and its carbon fiber reinforced composite material | |
JP7406131B2 (en) | Glass roving cloth and glass fiber reinforced resin sheet | |
CN114364838B (en) | Surface treated glass cloth | |
US11565967B2 (en) | Glass composition for glass fibers, glass fibers, glass fiber fabric, and glass fiber-reinforced resin composition | |
JP7560761B2 (en) | Glass composition for glass fiber, glass fiber, glass fiber fabric, and glass fiber reinforced resin composition | |
JP7460942B1 (en) | Glass composition for glass fiber, glass fiber, glass fiber fabric, and glass fiber reinforced resin composition | |
JP7283647B1 (en) | Glass composition for glass fiber, glass fiber, glass fiber fabric and glass fiber reinforced resin composition | |
JP7436946B1 (en) | Glass composition for glass fiber, glass fiber, glass fiber woven fabric and glass fiber reinforced resin composition | |
JP7131733B1 (en) | Glass composition for glass fiber, glass fiber, glass fiber fabric and glass fiber reinforced resin composition | |
EP4180402A1 (en) | Glass composition for glass fiber, glass fiber, glass fiber woven fabric, and glass fiber reinforced resin composition | |
JP2006188782A (en) | Carbon fiber strand and method for producing the same | |
EP4450467A1 (en) | Glass composition for glass fibers, glass fibers, woven glass fiber fabric, and glass-fiber-reinforced resin composition | |
JPH0811133A (en) | Molding sheet material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20220526 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20230428 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20230606 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230725 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20231010 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20231023 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7385117 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |