JP7384183B2 - battery device - Google Patents

battery device Download PDF

Info

Publication number
JP7384183B2
JP7384183B2 JP2021028476A JP2021028476A JP7384183B2 JP 7384183 B2 JP7384183 B2 JP 7384183B2 JP 2021028476 A JP2021028476 A JP 2021028476A JP 2021028476 A JP2021028476 A JP 2021028476A JP 7384183 B2 JP7384183 B2 JP 7384183B2
Authority
JP
Japan
Prior art keywords
flow path
temperature
section
refrigerant
path section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021028476A
Other languages
Japanese (ja)
Other versions
JP2022129697A (en
Inventor
晃太 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP2021028476A priority Critical patent/JP7384183B2/en
Publication of JP2022129697A publication Critical patent/JP2022129697A/en
Application granted granted Critical
Publication of JP7384183B2 publication Critical patent/JP7384183B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Secondary Cells (AREA)

Description

本発明は、バッテリー装置に関する。 The present invention relates to a battery device.

電気自動車等の車両には、複数のバッテリーセルを有するバッテリー装置が搭載されている。このようなバッテリー装置においては、バッテリーセルが高温になって劣化することを抑制するために、バッテリーセルの端面を冷却するヒートシンクが設けられている。 A vehicle such as an electric vehicle is equipped with a battery device having a plurality of battery cells. In such a battery device, a heat sink is provided to cool the end face of the battery cell in order to prevent the battery cell from becoming high temperature and deteriorating.

特開2020-184486号公報Japanese Patent Application Publication No. 2020-184486

ヒートシンク内には冷媒が流れる流路が設けられており、冷媒がバッテリーセルとの間で熱交換することで、バッテリーセルを冷却する。しかし、流路内において入口から出口に向かって冷媒の温度分布が生じるため、複数のバッテリーセルを均一に冷却できない。これにより、各バッテリーセルの温度履歴にばらつきが発生し、劣化度合いに差が生じてしまうため、バッテリーの利用可能な容量が低下してしまうおそれがある。 A flow path through which a coolant flows is provided in the heat sink, and the coolant cools the battery cells by exchanging heat with the battery cells. However, since the temperature distribution of the coolant occurs in the flow path from the inlet to the outlet, it is not possible to uniformly cool the plurality of battery cells. This causes variations in the temperature history of each battery cell, resulting in differences in the degree of deterioration, which may reduce the usable capacity of the battery.

そこで、本発明はこれらの点に鑑みてなされたものであり、複数のバッテリーセルの劣化度合いのばらつきを抑制することを目的とする。 Therefore, the present invention has been made in view of these points, and an object of the present invention is to suppress variations in the degree of deterioration of a plurality of battery cells.

本発明の一の態様においては、複数のバッテリーセルと、前記複数のバッテリーセルの端面を冷却するための平板状のヒートシンクであって、冷媒が流れる第1流路部と、前記第1流路部に対して所定間隔だけ離れて設けられ、冷媒の流れが前記第1流路部の冷媒の流れの逆方向である第2流路部とを有するヒートシンクと、前記第1流路部及び前記第2流路部へ流れる冷媒の流量を調整する流量調整部と、前記第1流路部を流れる冷媒の第1温度と、前記第2流路部を流れる冷媒の第2温度とを検出する温度検出部と、前記温度検出部が検出した前記第1温度と前記第2温度の温度差に応じて、前記第1流路部と前記第2流路部を流れる冷媒の流量を調整するように前記流量調整部を動作させる制御部と、を備える、バッテリー装置を提供する。 In one aspect of the present invention, there is provided a flat heat sink for cooling a plurality of battery cells and an end surface of the plurality of battery cells, the first flow path portion through which a refrigerant flows, and the first flow path. a second flow path section that is provided at a predetermined distance from the first flow path section and in which the flow of refrigerant is in the opposite direction to the flow of refrigerant in the first flow path section; a flow rate adjustment unit that adjusts the flow rate of the refrigerant flowing to the second flow path portion, a first temperature of the refrigerant flowing through the first flow path portion, and a second temperature of the refrigerant flowing through the second flow path portion; A temperature detection section adjusts the flow rate of the refrigerant flowing through the first flow path section and the second flow path section according to the temperature difference between the first temperature and the second temperature detected by the temperature detection section. and a control section that operates the flow rate adjustment section.

また、前記制御部は、前記第1流路部の出口側での前記第1温度と、前記第2流路部の出口側での前記第2温度との温度差が、所定値以下になるように、前記流量調整部を動作させることとしてもよい。 Further, the control unit may cause a temperature difference between the first temperature at the outlet side of the first flow path section and the second temperature at the exit side of the second flow path section to be equal to or less than a predetermined value. The flow rate adjustment section may be operated as shown in FIG.

また、前記温度検出部は、前記第1流路部の入口側での第1入口温度、前記第1流路部の出口側での第1出口温度、前記第2流路部の入口側での第2入口温度、及び前記第2流路部の出口側での第2出口温度を検出し、前記制御部は、前記温度検出部が検出した前記第1入口温度、前記第1出口温度、前記第2入口温度及び前記第2出口温度に基づいて、前記流量調整部を動作させることとしてもよい。 Further, the temperature detection unit may have a first inlet temperature at the inlet side of the first flow path section, a first outlet temperature at the outlet side of the first flow path section, and a first outlet temperature at the inlet side of the second flow path section. and a second outlet temperature on the outlet side of the second flow path section, and the control section detects the first inlet temperature, the first outlet temperature detected by the temperature detection section, The flow rate adjustment section may be operated based on the second inlet temperature and the second outlet temperature.

また、前記流量調整部は、前記第1流路部と前記第2流路部の分岐部に設けられたバルブであることとしてもよい。 Further, the flow rate adjusting section may be a valve provided at a branching section between the first flow path section and the second flow path section.

本発明によれば、複数のバッテリーセルの劣化度合いのばらつきを抑制できるという効果を奏する。 According to the present invention, it is possible to suppress variations in the degree of deterioration of a plurality of battery cells.

バッテリー装置1のセル群10とヒートシンク20を説明するための模式図である。FIG. 2 is a schematic diagram for explaining a cell group 10 and a heat sink 20 of the battery device 1. FIG. バッテリー装置1の構成の一例を説明するためのブロック図である。1 is a block diagram for explaining an example of the configuration of a battery device 1. FIG. ヒートシンク20の構成の一例を説明するための模式図である。FIG. 2 is a schematic diagram for explaining an example of the configuration of a heat sink 20. FIG. 第1流路部24と第2流路部26の分岐部30及び合流部33の構成の一例を説明するための模式図である。FIG. 3 is a schematic diagram for explaining an example of a configuration of a branching portion 30 and a merging portion 33 of the first flow path portion 24 and the second flow path portion 26. FIG.

<バッテリー装置の構成>
本発明の一の実施形態に係るバッテリー装置の構成について、図1~図4を参照しながら説明する。
<Battery device configuration>
The configuration of a battery device according to one embodiment of the present invention will be described with reference to FIGS. 1 to 4.

図1は、バッテリー装置1のセル群10とヒートシンク20を説明するための模式図である。図2は、バッテリー装置1の構成の一例を説明するためのブロック図である。なお、図1では、説明の便宜上、セル群10とヒートシンク20を離して示している。また、図1の示すヒートシンク20は、簡略化して示されており、実際には厚みがある形状となっている。 FIG. 1 is a schematic diagram for explaining a cell group 10 and a heat sink 20 of a battery device 1. As shown in FIG. FIG. 2 is a block diagram for explaining an example of the configuration of the battery device 1. As shown in FIG. Note that, in FIG. 1, the cell group 10 and the heat sink 20 are shown separated from each other for convenience of explanation. Further, the heat sink 20 shown in FIG. 1 is shown in a simplified manner, and actually has a thick shape.

バッテリー装置1は、ここでは電気自動車等の車両に搭載されており、モータ等に電力を供給する。バッテリー装置1は、例えばリチウムイオンバッテリーであり、充電及び放電が可能である。バッテリー装置1は、図1に示すように、セル群10と、ヒートシンク20とを有する。 The battery device 1 is mounted on a vehicle such as an electric vehicle here, and supplies electric power to a motor and the like. The battery device 1 is, for example, a lithium ion battery, and can be charged and discharged. The battery device 1 includes a cell group 10 and a heat sink 20, as shown in FIG.

セル群10は、複数のバッテリーセル(以下、単にセルと呼ぶ)12を含む。セル12が単電池であり、セル群10が組電池である。複数のセル12は、図1に示すように、互いに隣接するように設けられている。複数のセル12は、それぞれ同じ大きさである。複数のセル12は、底面が同一面に位置するように配置されている。 The cell group 10 includes a plurality of battery cells (hereinafter simply referred to as cells) 12. The cell 12 is a single battery, and the cell group 10 is an assembled battery. As shown in FIG. 1, the plurality of cells 12 are provided adjacent to each other. Each of the plurality of cells 12 has the same size. The plurality of cells 12 are arranged so that their bottom surfaces are located on the same surface.

ヒートシンク20は、セル群10を冷却する。ヒートシンク20は、複数のセル12の端面(ここでは、下面)に対向するように配置されており、複数のセル12の下面を冷却する。ヒートシンク20は、内部を流れる冷媒がセル群10と熱交換することで、セル群10を冷却する。ヒートシンク20は、ここでは平板状の形状を成しており、セル群10よりも広い範囲に亘って設けられている。これにより、ヒートシンク20は、複数のセル12の全体を冷却する。 The heat sink 20 cools the cell group 10. The heat sink 20 is arranged so as to face the end surfaces (here, the bottom surfaces) of the plurality of cells 12, and cools the bottom surfaces of the plurality of cells 12. The heat sink 20 cools the cell group 10 by exchanging heat with the cell group 10 with the refrigerant flowing therein. The heat sink 20 has a flat plate shape here, and is provided over a wider area than the cell group 10. Thereby, the heat sink 20 cools the entire plurality of cells 12 .

図3は、ヒートシンク20の構成の一例を説明するための模式図である。ヒートシンク20は、図3に示すように、板部材22と、第1流路部24と、第2流路部26と、測温部34a、34b、36a、36bとを有する。 FIG. 3 is a schematic diagram for explaining an example of the configuration of the heat sink 20. As shown in FIG. 3, the heat sink 20 includes a plate member 22, a first flow path section 24, a second flow path section 26, and temperature measurement sections 34a, 34b, 36a, and 36b.

板部材22は、ここでは平板部材であり、一対設けられている。図3では、説明の便宜上、一対の板部材22のうちの一つのみが示されている。一対の板部材22は、第1流路部24及び第2流路部26を挟むように配置されている。 The plate members 22 are flat plate members here, and are provided in pairs. In FIG. 3, only one of the pair of plate members 22 is shown for convenience of explanation. The pair of plate members 22 are arranged so as to sandwich the first flow path section 24 and the second flow path section 26 .

第1流路部24及び第2流路部26は、冷媒が流れる流路である。第1流路部24と第2流路部26は、所定間隔だけ離れて設けられている。第1流路部24及び第2流路部26は、板部材22のほぼ全領域に位置するように、湾曲しながら配置されている。これにより、複数のセル12の全体を冷却できる。 The first flow path portion 24 and the second flow path portion 26 are flow paths through which the refrigerant flows. The first flow path section 24 and the second flow path section 26 are provided apart from each other by a predetermined interval. The first flow path section 24 and the second flow path section 26 are arranged in a curved manner so as to be located in almost the entire area of the plate member 22. Thereby, the entire plurality of cells 12 can be cooled.

第1流路部24の入口24aと第2流路部26の出口26bとが、板部材22の同じ側面に位置し、第1流路部24の出口24bと第2流路部26の入口26aとが、板部材22の同じ側面に位置している。このため、第2流路部26の冷媒の流れは、第1流路部24の冷媒の流れの逆方向である。すなわち、第1流路部24を流れる冷媒と、第2流路部26を流れる冷媒は、対向流となっている。 The inlet 24a of the first flow path part 24 and the outlet 26b of the second flow path part 26 are located on the same side of the plate member 22, and the outlet 24b of the first flow path part 24 and the inlet of the second flow path part 26 26a are located on the same side of the plate member 22. Therefore, the flow of the refrigerant in the second flow path portion 26 is opposite to the flow of the refrigerant in the first flow path portion 24 . That is, the refrigerant flowing through the first flow path section 24 and the refrigerant flowing through the second flow path section 26 are in opposing flows.

流路部が一つのみの場合には、流路部の出口側の冷媒の温度が、入口側の冷媒の温度よりも低くなる。これに対して、本実施形態のような第1流路部24及び第2流路部26を設けた場合には、第1流路部24を流れる冷媒と第2流路部26を流れる冷媒とが互いに熱交換を行うことで、入口側と出口側の温度差を小さくできる。これにより、第1流路部24と第2流路部26内で温度分布が生じることを抑制できるので、複数のセル12を均一に冷却しやすくなる。 When there is only one flow path, the temperature of the refrigerant on the outlet side of the flow path is lower than the temperature of the refrigerant on the inlet side. On the other hand, when the first flow path section 24 and the second flow path section 26 are provided as in this embodiment, the refrigerant flowing through the first flow path section 24 and the refrigerant flowing through the second flow path section 26 By exchanging heat with each other, the temperature difference between the inlet side and the outlet side can be reduced. As a result, it is possible to suppress temperature distribution within the first flow path section 24 and the second flow path section 26, so that it becomes easier to uniformly cool the plurality of cells 12.

測温部34a、34bは、例えば温度センサを有し、第1流路部24を流れる冷媒の温度を測定する。測温部34aは、第1流路部24の入口24aの近くに位置し、測温部34bは、第1流路部24の出口24bの近くに位置する。測温部36a、36bは、例えば温度センサを有し、第2流路部26を流れる冷媒の温度を測定する。測温部36aは、第2流路部26の入口26aの近くに位置し、測温部36bは、第2流路部26の出口26bの近くに位置する。 The temperature measurement units 34a and 34b each include, for example, a temperature sensor, and measure the temperature of the refrigerant flowing through the first flow path unit 24. The temperature measuring section 34a is located near the inlet 24a of the first channel section 24, and the temperature measuring section 34b is located near the outlet 24b of the first channel section 24. The temperature measurement units 36a and 36b include, for example, a temperature sensor, and measure the temperature of the refrigerant flowing through the second flow path unit 26. The temperature measurement section 36a is located near the inlet 26a of the second flow path section 26, and the temperature measurement section 36b is located near the exit 26b of the second flow path section 26.

図4は、第1流路部24と第2流路部26の分岐部30及び合流部33の構成の一例を説明するための模式図である。第1流路部24と第2流路部26は、図4(a)に示すように、共通流路部23から分岐部30で分岐している。また、第1流路部24と第2流路部26は、図4(b)に示すように、共通流路部27に合流部33で合流する。このように、第1流路部24及び第2流路部26には、同じ冷媒が分かれて流れる。分岐部30には、冷媒の流れを調整するためのバルブ32(図4(a))が設けられている。バルブ32は、例えば電磁バルブであり、第1流路部24へ流れる冷媒の流量と、第2流路部26へ流れる冷媒の流量とを調整する。 FIG. 4 is a schematic diagram for explaining an example of the configuration of the branching portion 30 and the merging portion 33 of the first flow path portion 24 and the second flow path portion 26. The first flow path portion 24 and the second flow path portion 26 are branched from the common flow path portion 23 at a branch portion 30, as shown in FIG. 4(a). Further, the first flow path portion 24 and the second flow path portion 26 merge into the common flow path portion 27 at a merging portion 33, as shown in FIG. 4(b). In this way, the same refrigerant flows separately into the first flow path section 24 and the second flow path section 26. The branch portion 30 is provided with a valve 32 (FIG. 4(a)) for adjusting the flow of the refrigerant. The valve 32 is, for example, an electromagnetic valve, and adjusts the flow rate of the refrigerant flowing into the first flow path section 24 and the flow rate of the refrigerant flowing into the second flow path section 26 .

バッテリー装置1は、上述したセル群10及びヒートシンク20以外の構成を有する。バッテリー装置1は、図2に示すように、冷媒供給部40と、温度検出部50と、流量調整部60と、制御部70とを有する。 The battery device 1 has a configuration other than the cell group 10 and heat sink 20 described above. As shown in FIG. 2, the battery device 1 includes a refrigerant supply section 40, a temperature detection section 50, a flow rate adjustment section 60, and a control section 70.

冷媒供給部40は、第1流路部24及び第2流路部26に冷媒を供給する。冷媒供給部40は、例えばポンプを含む。冷媒供給部40とヒートシンク20の間には、冷媒が循環する流路が設けられている。このため、冷媒供給部40によって循環する冷媒によって、セル12が冷却される。 The refrigerant supply section 40 supplies refrigerant to the first flow path section 24 and the second flow path section 26 . Refrigerant supply section 40 includes, for example, a pump. A flow path through which a refrigerant circulates is provided between the refrigerant supply section 40 and the heat sink 20. Therefore, the cells 12 are cooled by the refrigerant circulated by the refrigerant supply section 40.

温度検出部50は、ヒートシンク20内の冷媒の温度を検出する。具体的には、温度検出部50は、第1流路部24を流れる冷媒の第1温度と、第2流路部26を流れる冷媒の第2温度とを検出する。 The temperature detection unit 50 detects the temperature of the refrigerant within the heat sink 20. Specifically, the temperature detection section 50 detects a first temperature of the refrigerant flowing through the first flow path section 24 and a second temperature of the refrigerant flowing through the second flow path section 26 .

温度検出部50は、ここでは第1温度として、第1流路部24の入口24a側での冷媒の温度(以下、第1入口温度)と、第1流路部24の出口24b側での冷媒の温度(以下、第1出口温度)を検出する。また、温度検出部50は、第2温度として、第2流路部26の入口26a側での冷媒の温度(以下、第2入口温度)と、第2流路部26の出口26b側での冷媒の温度(以下、第2出口温度)を検出する。具体的には、温度検出部50は、測温部34a、34b、36a、36bの測定結果から、第1入口温度、第1出口温度、第2入口温度及び第2出口温度を検出する。ただし、上記に限定されず、例えば、温度検出部50は、第1温度として第1出口温度を検出し、第2温度として第2出口温度を検出してもよい。 The temperature detection unit 50 here determines, as the first temperature, the temperature of the refrigerant at the inlet 24a side of the first flow path portion 24 (hereinafter referred to as the first inlet temperature) and the temperature at the outlet 24b side of the first flow path portion 24. The temperature of the refrigerant (hereinafter referred to as the first outlet temperature) is detected. The temperature detection unit 50 also detects, as the second temperature, the temperature of the refrigerant at the inlet 26a side of the second flow path portion 26 (hereinafter referred to as second inlet temperature) and the temperature at the outlet 26b side of the second flow path portion 26. The temperature of the refrigerant (hereinafter referred to as second outlet temperature) is detected. Specifically, the temperature detection unit 50 detects a first inlet temperature, a first outlet temperature, a second inlet temperature, and a second outlet temperature from the measurement results of the temperature measurement units 34a, 34b, 36a, and 36b. However, the present invention is not limited to the above, and for example, the temperature detection unit 50 may detect the first outlet temperature as the first temperature and the second outlet temperature as the second temperature.

流量調整部60は、第1流路部24及び第2流路部26へ流れる冷媒の流量を調整する。流量調整部60は、第1流路部24へ流れる冷媒の流量と、第2流路部26へ流れる冷媒の流量とを、個別に調整可能である。流量調整部60が流量を調整することで、第1流路部24と第2流路部26を流れる冷媒の流量が変わることで、冷媒によるセル12の冷却の度合いが変化する。 The flow rate adjustment section 60 adjusts the flow rate of the refrigerant flowing to the first flow path section 24 and the second flow path section 26 . The flow rate adjustment section 60 can individually adjust the flow rate of the refrigerant flowing into the first flow path section 24 and the flow rate of the refrigerant flowing into the second flow path section 26 . The flow rate adjustment section 60 adjusts the flow rate, thereby changing the flow rate of the refrigerant flowing through the first flow path section 24 and the second flow path section 26, thereby changing the degree of cooling of the cells 12 by the refrigerant.

流量調整部60は、例えば、図4(a)に示す分岐部30に設けられたバルブ32である。これにより、一つのバルブ32によって、第1流路部24及び第2流路部26へ流れる冷媒の流量を調整できる。ただし、上記に限定されず、流量調整部60は、第1流路部24と第2流路部26の各々に個別に設けられたバルブであってもよい。 The flow rate adjustment section 60 is, for example, a valve 32 provided at the branch section 30 shown in FIG. 4(a). Thereby, the flow rate of the refrigerant flowing into the first flow path section 24 and the second flow path section 26 can be adjusted using one valve 32. However, the present invention is not limited to the above, and the flow rate adjustment section 60 may be a valve separately provided in each of the first flow path section 24 and the second flow path section 26.

制御部70は、バッテリー装置1の動作を制御する。制御部70は、ここでは、冷媒供給部40、温度検出部50及び流量調整部60の動作を制御して、複数のセル12を均一に冷却させる。 The control unit 70 controls the operation of the battery device 1. Here, the control unit 70 controls the operations of the refrigerant supply unit 40, the temperature detection unit 50, and the flow rate adjustment unit 60 to uniformly cool the plurality of cells 12.

本実施形態では、制御部70は、温度検出部50の検出結果に基づいて、流量調整部60を制御する。制御部70は、温度検出部50が検出した第1温度と第2温度の温度差に応じて、第1流路部24と第2流路部26を流れる冷媒の流量を調整するように流量調整部60を動作させる。例えば、制御部70は、第1流路部24の冷媒の第1温度と、第2流路部26の冷媒の第2温度との温度差が、所定値以下になるように、第1流路部24と第2流路部26を流れる流量を調整する。具体的には、第1温度が第2温度よりも大きい場合には、制御部70は、第1流路部24を流れる冷媒の流量を多くして、温度差が小さくなるようにする。これにより、第1流路部24を流れる冷媒の温度と、第2流路部26を流れる冷媒の温度との温度差が小さくなり、複数のセル12を均一に冷却しやすくなる。 In this embodiment, the control unit 70 controls the flow rate adjustment unit 60 based on the detection result of the temperature detection unit 50. The control section 70 controls the flow rate so as to adjust the flow rate of the refrigerant flowing through the first flow path section 24 and the second flow path section 26 according to the temperature difference between the first temperature and the second temperature detected by the temperature detection section 50. The adjustment section 60 is operated. For example, the control unit 70 controls the first flow path so that the temperature difference between the first temperature of the refrigerant in the first flow path section 24 and the second temperature of the refrigerant in the second flow path section 26 is equal to or less than a predetermined value. The flow rate flowing through the passage section 24 and the second passage section 26 is adjusted. Specifically, when the first temperature is higher than the second temperature, the control section 70 increases the flow rate of the refrigerant flowing through the first flow path section 24 so that the temperature difference becomes smaller. This reduces the temperature difference between the temperature of the refrigerant flowing through the first flow path section 24 and the temperature of the refrigerant flowing through the second flow path section 26, making it easier to uniformly cool the plurality of cells 12.

第1流路部24及び第2流路部26では、入口側での冷媒の温度はほとんど変化がないが、出口側での冷媒の温度は、流路部の途中でセル12と熱交換するため、変化しやすい。そこで、制御部70は、第1流路部24の出口側での第1温度と、第2流路部26の出口側での第2温度との温度差が、所定値(一例として、1.2℃)以下になるように、流量調整部60を動作させる。例えば、制御部70は、温度検出部50が検出した第1出口温度と第2出口温度との温度差が所定値以下になるように、流量調整部60を動作させる。これにより、セル12の冷却中に冷媒の温度が変化しても、温度差を所定値以下に維持するように流量を調整できる。 In the first flow path section 24 and the second flow path section 26, the temperature of the refrigerant on the inlet side hardly changes, but the temperature of the refrigerant on the outlet side exchanges heat with the cell 12 in the middle of the flow path section. Therefore, it is easy to change. Therefore, the control unit 70 controls the temperature difference between the first temperature at the exit side of the first flow path section 24 and the second temperature at the exit side of the second flow path section 26 to a predetermined value (for example, 1 The flow rate adjustment unit 60 is operated so that the temperature is below .2°C. For example, the control unit 70 operates the flow rate adjustment unit 60 so that the temperature difference between the first outlet temperature and the second outlet temperature detected by the temperature detection unit 50 becomes a predetermined value or less. Thereby, even if the temperature of the refrigerant changes while cooling the cell 12, the flow rate can be adjusted so as to maintain the temperature difference below a predetermined value.

制御部70は、第1出口温度及び第2出口温度だけでなく、温度検出部50が検出した第1入口温度及び第2入口温度も参照して、流量を調整してもよい。この場合には、第1流路部24と第2流路部26内の冷媒の温度分布を小さくするように、流量を調整可能となる。すなわち、制御部70は、温度検出部50が検出した第1入口温度、第1出口温度、第2入口温度及び第2出口温度に基づいて、第1流路部24と第2流路部26を流れる冷媒の流量を調整するように流量調整部60を動作させてもよい。これにより、複数のセル12をより均一に冷却しやすくなる。 The control unit 70 may adjust the flow rate by referring not only to the first outlet temperature and the second outlet temperature but also to the first inlet temperature and the second inlet temperature detected by the temperature detection unit 50. In this case, the flow rate can be adjusted so as to reduce the temperature distribution of the refrigerant within the first flow path section 24 and the second flow path section 26. That is, the control unit 70 controls the first flow path portion 24 and the second flow path portion 26 based on the first inlet temperature, first outlet temperature, second inlet temperature, and second outlet temperature detected by the temperature detection unit 50. The flow rate adjustment unit 60 may be operated to adjust the flow rate of the refrigerant flowing through the refrigerant. This makes it easier to cool the plurality of cells 12 more uniformly.

<本実施形態における効果>
上述した実施形態のバッテリー装置1は、冷媒の流れる方向が互いに逆方向である第1流路部24及び第2流路部26を有し、第1流路部24及び第2流路部26を流れる冷媒によって、複数のセル12を冷却する。バッテリー装置1は、第1流路部24の冷媒の温度と、第2流路部26の冷媒の温度との温度差に応じて、第1流路部24と第2流路部26を流れる冷媒の流量を調整する。
このように第1流路部24と第2流路部26の対向流である冷媒の流量を調整することで、複数のセル12を均一に冷却できる。これにより、複数のセル12の劣化のばらつきを抑制できるので、全てのセル12の利用可能容量を最大限に活用できる。この結果、劣化に伴うバッテリー装置1の容量低下を遅らせることができる。
<Effects of this embodiment>
The battery device 1 of the embodiment described above has a first flow path section 24 and a second flow path section 26 in which the coolant flows in opposite directions, and the first flow path section 24 and the second flow path section 26 The plurality of cells 12 are cooled by the refrigerant flowing therethrough. The battery device 1 allows the refrigerant to flow through the first flow path section 24 and the second flow path section 26 depending on the temperature difference between the temperature of the refrigerant in the first flow path section 24 and the temperature of the refrigerant in the second flow path section 26. Adjust the refrigerant flow rate.
By adjusting the flow rate of the refrigerant, which is a counterflow between the first flow path section 24 and the second flow path section 26, in this manner, the plurality of cells 12 can be uniformly cooled. This makes it possible to suppress variations in the deterioration of the plurality of cells 12, so that the usable capacity of all the cells 12 can be utilized to the fullest. As a result, the decrease in capacity of the battery device 1 due to deterioration can be delayed.

以上、本発明を実施の形態を用いて説明したが、本発明の技術的範囲は上記実施の形態に記載の範囲には限定されず、その要旨の範囲内で種々の変形及び変更が可能である。例えば、装置の全部又は一部は、任意の単位で機能的又は物理的に分散・統合して構成することができる。また、複数の実施の形態の任意の組み合わせによって生じる新たな実施の形態も、本発明の実施の形態に含まれる。組み合わせによって生じる新たな実施の形態の効果は、もとの実施の形態の効果を併せ持つ。 Although the present invention has been described above using the embodiments, the technical scope of the present invention is not limited to the scope described in the above embodiments, and various modifications and changes can be made within the scope of the gist. be. For example, all or part of the device can be functionally or physically distributed and integrated into arbitrary units. In addition, new embodiments created by arbitrary combinations of multiple embodiments are also included in the embodiments of the present invention. The effects of the new embodiment resulting from the combination have the effects of the original embodiment.

1 バッテリー装置
12 バッテリーセル
20 ヒートシンク
50 温度検出部
60 流量調整部
70 制御部
1 Battery device 12 Battery cell 20 Heat sink 50 Temperature detection section 60 Flow rate adjustment section 70 Control section

Claims (3)

複数のバッテリーセルと、
前記複数のバッテリーセルの端面を冷却するための平板状のヒートシンクであって、冷媒が流れる第1流路部と、前記第1流路部に対して所定間隔だけ離れて設けられ、冷媒の流れが前記第1流路部の冷媒の流れの逆方向である第2流路部とを有するヒートシンクと、
前記第1流路部及び前記第2流路部へ流れる冷媒の流量を調整する流量調整部と、
前記第1流路部を流れる冷媒の第1温度と、前記第2流路部を流れる冷媒の第2温度とを検出する温度検出部と、
前記温度検出部が検出した前記第1温度と前記第2温度の温度差に応じて、前記第1流路部と前記第2流路部を流れる冷媒の流量を調整するように前記流量調整部を動作させる制御部と、
を備える、バッテリー装置。
multiple battery cells;
A flat heat sink for cooling end surfaces of the plurality of battery cells, the heat sink having a first flow path portion through which a refrigerant flows, and a heat sink provided at a predetermined distance from the first flow path portion, and configured to cool an end surface of the plurality of battery cells. a second flow path portion in which the flow direction of the refrigerant is opposite to that of the first flow path portion;
a flow rate adjustment section that adjusts the flow rate of the refrigerant flowing to the first flow path section and the second flow path section;
a temperature detection unit that detects a first temperature of the refrigerant flowing through the first flow path portion and a second temperature of the refrigerant flowing through the second flow path portion;
The flow rate adjustment section adjusts the flow rate of the refrigerant flowing through the first flow path section and the second flow path section according to the temperature difference between the first temperature and the second temperature detected by the temperature detection section. a control unit that operates the
A battery device comprising:
前記制御部は、前記第1流路部の出口側での前記第1温度と、前記第2流路部の出口側での前記第2温度との温度差が、所定値以下になるように、前記流量調整部を動作させる、
請求項1に記載のバッテリー装置。
The control unit is configured such that a temperature difference between the first temperature at the exit side of the first flow path section and the second temperature at the exit side of the second flow path section is equal to or less than a predetermined value. , operating the flow rate adjustment section;
The battery device according to claim 1.
前記流量調整部は、前記第1流路部と前記第2流路部の分岐部に設けられたバルブである、
請求項1又は2に記載のバッテリー装置。
The flow rate adjustment part is a valve provided at a branching part of the first flow path part and the second flow path part,
The battery device according to claim 1 or 2 .
JP2021028476A 2021-02-25 2021-02-25 battery device Active JP7384183B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021028476A JP7384183B2 (en) 2021-02-25 2021-02-25 battery device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021028476A JP7384183B2 (en) 2021-02-25 2021-02-25 battery device

Publications (2)

Publication Number Publication Date
JP2022129697A JP2022129697A (en) 2022-09-06
JP7384183B2 true JP7384183B2 (en) 2023-11-21

Family

ID=83150940

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021028476A Active JP7384183B2 (en) 2021-02-25 2021-02-25 battery device

Country Status (1)

Country Link
JP (1) JP7384183B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7435680B1 (en) 2022-09-16 2024-02-21 いすゞ自動車株式会社 Control equipment and temperature control system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011049137A (en) 2009-07-31 2011-03-10 Sanyo Electric Co Ltd Battery pack
JP2013187159A (en) 2012-03-09 2013-09-19 Hitachi Ltd Battery system and temperature control method thereof
JP2014216298A (en) 2013-04-30 2014-11-17 日立オートモティブシステムズ株式会社 Battery module
WO2017033412A1 (en) 2015-08-27 2017-03-02 三洋電機株式会社 Battery system and electric vehicle equipped with same battery system
WO2019155810A1 (en) 2018-02-06 2019-08-15 パナソニックIpマネジメント株式会社 Cooling device and battery temperature control system
JP2020523745A (en) 2018-01-08 2020-08-06 エルジー・ケム・リミテッド battery pack

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011049137A (en) 2009-07-31 2011-03-10 Sanyo Electric Co Ltd Battery pack
JP2013187159A (en) 2012-03-09 2013-09-19 Hitachi Ltd Battery system and temperature control method thereof
JP2014216298A (en) 2013-04-30 2014-11-17 日立オートモティブシステムズ株式会社 Battery module
WO2017033412A1 (en) 2015-08-27 2017-03-02 三洋電機株式会社 Battery system and electric vehicle equipped with same battery system
CN108028446A (en) 2015-08-27 2018-05-11 三洋电机株式会社 Battery system and the electric vehicle with battery system
JP2020523745A (en) 2018-01-08 2020-08-06 エルジー・ケム・リミテッド battery pack
WO2019155810A1 (en) 2018-02-06 2019-08-15 パナソニックIpマネジメント株式会社 Cooling device and battery temperature control system

Also Published As

Publication number Publication date
JP2022129697A (en) 2022-09-06

Similar Documents

Publication Publication Date Title
US8835039B2 (en) Battery cooling plate and cooling system
CN105428749B (en) The direct refrigerant battery cooling of active suitching type
US11479079B2 (en) Circuit for the thermal management of a hybrid or electric vehicle
JP6063895B2 (en) Temperature control system for semiconductor manufacturing equipment
KR102394801B1 (en) Battery cooling device for vehicle
EP2637248A1 (en) Battery system and temperature control method therefor
JP7384183B2 (en) battery device
US11186164B2 (en) Thermal management system for an electric drive system, preferably for a vehicle
JP2012190675A (en) Battery unit
JP2012190674A (en) Battery unit
JP2020528647A (en) Battery system temperature controller and battery system
JP2011192537A (en) Battery pack
CN112687984A (en) Efficient battery thermal management system and method
JP2013122844A (en) Battery temperature control mechanism
CN114927793A (en) Liquid cooling board and battery package
JP2021051883A (en) Battery unit
KR20210059306A (en) Battery thermal management system using variable cooling flow path
US11289636B2 (en) Energy recovery unit for vehicle use
CN114303275B (en) Battery temperature regulating device
CN115498327A (en) Cooling device and battery module
GB2549123B (en) Energy recovery unit for vehicle use
CN113547896A (en) Vehicle-mounted air conditioning system with battery heating function
WO2017174698A1 (en) Valve arrangement for an energy recovery unit
KR20190136260A (en) Battery cooling apparatus
GB2549124B (en) Energy recovery unit for vehicle use

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220624

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230410

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230530

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230706

TRDD Decision of grant or rejection written
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20231006

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231010

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231023

R150 Certificate of patent or registration of utility model

Ref document number: 7384183

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150