JP7382705B2 - Sliding type constant velocity universal joint for propeller shaft - Google Patents

Sliding type constant velocity universal joint for propeller shaft Download PDF

Info

Publication number
JP7382705B2
JP7382705B2 JP2018082972A JP2018082972A JP7382705B2 JP 7382705 B2 JP7382705 B2 JP 7382705B2 JP 2018082972 A JP2018082972 A JP 2018082972A JP 2018082972 A JP2018082972 A JP 2018082972A JP 7382705 B2 JP7382705 B2 JP 7382705B2
Authority
JP
Japan
Prior art keywords
constant velocity
joint member
velocity universal
universal joint
ball
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018082972A
Other languages
Japanese (ja)
Other versions
JP2019190547A (en
Inventor
正純 小林
智茂 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp filed Critical NTN Corp
Priority to JP2018082972A priority Critical patent/JP7382705B2/en
Priority to DE112019002125.7T priority patent/DE112019002125T5/en
Priority to PCT/JP2019/016030 priority patent/WO2019208277A1/en
Priority to US17/045,277 priority patent/US11835096B2/en
Priority to CN201980028078.5A priority patent/CN112020613B/en
Publication of JP2019190547A publication Critical patent/JP2019190547A/en
Priority to US18/383,285 priority patent/US20240052893A1/en
Application granted granted Critical
Publication of JP7382705B2 publication Critical patent/JP7382705B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Motor Power Transmission Devices (AREA)
  • Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)

Description

この発明は、プロペラシャフト専用の摺動式等速自在継手に関する。 The present invention relates to a sliding constant velocity universal joint exclusively for a propeller shaft.

四輪駆動車(4WD車)やフロントエンジン後輪駆動車(FR車)などの自動車に使用されるプロペラシャフトには軸方向変位と角度変位に対応できる摺動式等速自在継手が使用されている。この摺動式等速自在継手として、ダブルオフセット型摺動式等速自在継手(DOJ)や、トリポード型摺動式等速自在継手(TJ)、クロスグルーブ型摺動式等速自在継手(LJ)などが使用されている。 Sliding constant velocity universal joints that can accommodate axial and angular displacement are used in propeller shafts used in automobiles such as four-wheel drive vehicles (4WD vehicles) and front-engine rear-wheel drive vehicles (FR vehicles). There is. These sliding constant velocity universal joints include double offset type sliding constant velocity universal joints (DOJ), tripod type sliding type constant velocity universal joints (TJ), and cross groove type sliding type constant velocity universal joints (LJ). ) etc. are used.

近年、自動車の低燃費化に伴い、プロペラシャフトにおいても小型、軽量化が求められている。従来においては、構成部品の共通化という観点からドライブシャフト用に使用されている各部品(外側継手部材、内側継手部材、保持器など)が、外側継手部材の取付け部形状を変えて、その他の部品は、そのままプロペラシャフト用に用いられてきた。 In recent years, as automobiles have become more fuel efficient, propeller shafts have also been required to be smaller and lighter. Conventionally, in order to standardize the components, each part used for the drive shaft (outer joint member, inner joint member, retainer, etc.) was changed by changing the shape of the attachment part of the outer joint member, and was used for other parts. The parts have been used as is for propeller shafts.

プロペラシャフトに用いられる摺動式等速自在継手の一つとしてダブルオフセット型摺動式等速自在継手(以下、DOJともいう)がある。下記の特許文献1には、DOJのボール個数を8個として小型、軽量化を図ったものが提案されている。 A double offset type sliding constant velocity universal joint (hereinafter also referred to as DOJ) is one of the sliding constant velocity universal joints used in propeller shafts. Patent Document 1 listed below proposes a DOJ with eight balls in order to reduce its size and weight.

特開平10-73129号公報Japanese Patent Application Publication No. 10-73129

DOJは、軸方向のスライド量を比較的大きく取ることができ、使用実績が豊富で性能が安定しており、さらに、ボール個数を8個とすることで小型、軽量化を図ることができる。本発明者らは、自動車の更なる低燃費化、プロペラシャフトの小型、軽量化、高速回転化の要求に対応すべく、プロペラシャフトに用いられている現行のDOJを種々検討した。 DOJ can have a relatively large sliding amount in the axial direction, has been used extensively and has stable performance, and can be made smaller and lighter by having eight balls. The present inventors have studied various types of DOJ currently used in propeller shafts in order to meet the demands for further improvement in fuel efficiency of automobiles and for propeller shafts to be smaller, lighter, and rotate at higher speeds.

本発明は、自動車の更なる低燃費化、プロペラシャフトの高速回転化の要求に貢献できる小型、軽量なプロペラシャフト専用の摺動式等速自在継手を提供することを目的とする。 SUMMARY OF THE INVENTION An object of the present invention is to provide a small, lightweight sliding type constant velocity universal joint exclusively for propeller shafts that can contribute to the demands for further lower fuel consumption in automobiles and higher rotation speeds for propeller shafts.

本発明者らは、上記の目的を達成するために種々検討し、以下の知見と着想によって、本発明に至った。
(1)図11、図12に示す現行の8個ボールタイプのプロペラシャフト用DOJは、ドライブシャフトにも使用できるように最大作動角を25°程度としているが、本発明者らは、DOJを、プロペラシャフト用としての必要特性に特化させることで、DOJの機能が限定できる点に着目した。具体的には、DOJをプロペラシャフト専用とすることで、最大作動角を低く制限する(例えば15°以下とする)ことができ、これによりDOJの小型、軽量化を達成できることを見出した。
(2)プロペラシャフト専用のDOJの最大作動角を低く制限することにより、次の具体的な技術的効果を得ることができる。
(a)各構成部品(外側継手部材、内側継手部材、保持器)の肉厚の低減による半径方向のコンパクト化、軽量化
(b)ボールの軸方向移動量の低減による内側継手部材の軸方向のコンパクト化、軽量化
(c)ボールの周方向移動量の低減による保持器の半径方向のコンパクト化、軽量化
(d)ポケット荷重の低減による保持器の軸方向のコンパクト化、軽量化
(3)加えて、プロペラシャフト用DOJの作動角が小さく、かつ略一定で、高速回転という動的な要因に着目して更なる軽量・コンパクト化の可能性を検討した。その結果、保持器のオフセット量を小さくすることを着想し、これが、上記の(2)の技術的効果を飛躍的に促進させ、従来とは質的に異なる軽量・コンパクト化が達成できることが判明した。
(4)さらに性能面で、保持器のポケットとボールとの間の軸方向のポケットすきまδ1と、保持器と内側継手部材の球面間の軸方向すきまδ2を併用することを着想し、プロペラシャフト専用DOJとしての寿命の向上、高速回転化、スライド抵抗の低減、車両の振動特性の効果を検証し、本発明の有利な構成に至った。
The present inventors have conducted various studies to achieve the above object, and have arrived at the present invention based on the following findings and ideas.
(1) The current 8-ball type DOJ for propeller shafts shown in Figures 11 and 12 has a maximum operating angle of about 25° so that it can also be used for drive shafts. We focused on the fact that the functions of DOJ can be limited by specializing in the characteristics required for propeller shafts. Specifically, it has been found that by dedicating the DOJ to the propeller shaft, the maximum operating angle can be limited to a low value (for example, 15 degrees or less), and thereby the DOJ can be made smaller and lighter.
(2) By limiting the maximum operating angle of the DOJ dedicated to the propeller shaft to a low value, the following specific technical effects can be obtained.
(a) Compactness and weight reduction in the radial direction by reducing the wall thickness of each component (outer joint member, inner joint member, cage) (b) Axial direction of the inner joint member by reducing the amount of axial movement of the ball (c) Making the cage more compact and lighter in the radial direction by reducing the circumferential movement of the balls (d) Making the cage more compact and lighter in the axial direction by reducing the pocket load (3) ) In addition, we focused on the dynamic factors of the small and nearly constant operating angle of DOJ for propeller shafts and high speed rotation, and investigated the possibility of further weight reduction and compactness. As a result, we came up with the idea of reducing the amount of offset of the cage, and found that this would dramatically promote the technical effect of (2) above, and achieve a lighter weight and more compact design, which is qualitatively different from conventional methods. did.
(4) Furthermore, in terms of performance, we came up with the idea of using both the axial pocket clearance δ1 between the pockets of the cage and the balls and the axial clearance δ2 between the spherical surfaces of the cage and the inner joint member. The advantageous configuration of the present invention was achieved by verifying the effects of improving the life of a dedicated DOJ, increasing rotation speed, reducing sliding resistance, and improving vehicle vibration characteristics.

前述の目的を達成するための技術的手段として、本発明は、プロペラシャフト用摺動式等速自在継手であって、円筒状内周面に8本の直線状トラック溝が軸方向に沿って形成された外側継手部材と、球状外周面に前記外側継手部材の直線状トラック溝に対向する8本の直線状トラック溝が軸方向に沿って形成されると共に、雌スプラインが形成された連結孔を有する内側継手部材と、前記外側継手部材の直線状トラック溝と前記内側継手部材の直線状トラック溝との間に組み込まれた8個のトルク伝達ボールと、前記トルク伝達ボールをポケットに収容し、前記外側継手部材の円筒状内周面で接触案内される球状外周面及び前記内側継手部材の球状外周面で接触案内される球状内周面を有する保持器とを備え、前記保持器の球状外周面の曲率中心と球状内周面の曲率中心とが、それぞれ前記ポケットの中心に対して軸方向の反対側に等しいオフセット量(f)を有するダブルオフセット型摺動式等速自在継手で構成され、前記内側継手部材の肉厚Tiと前記トルク伝達ボールのボール径Dbとの比Ti/Dbが0.30以上、0.45以下であり、前記トルク伝達ボールのピッチ円直径PCDBALLと前記トルク伝達ボールの直径Dbとの比PCDBALL/Dbが3.3~3.6であることを特徴とする。 As a technical means to achieve the above-mentioned object, the present invention provides a sliding constant velocity universal joint for a propeller shaft, in which eight linear track grooves are formed along the axial direction on the cylindrical inner peripheral surface. a connecting hole in which eight linear track grooves facing the linear track grooves of the outer joint member are formed in the axial direction on the outer joint member formed, and a female spline is formed on the spherical outer circumferential surface thereof; an inner joint member having an inner joint member, eight torque transmission balls incorporated between a linear track groove of the outer joint member and a linear track groove of the inner joint member, and the torque transmission balls are accommodated in a pocket. , a cage having a spherical outer circumferential surface that is guided in contact with the cylindrical inner circumferential surface of the outer joint member and a spherical inner circumferential surface that is guided in contact with the spherical outer circumferential surface of the inner joint member, the spherical shape of the cage being Consisting of a double offset type sliding constant velocity universal joint in which the center of curvature of the outer circumferential surface and the center of curvature of the spherical inner circumferential surface have an equal offset amount (f) on the opposite side in the axial direction with respect to the center of the pocket. and the ratio Ti/Db of the wall thickness Ti of the inner joint member and the ball diameter Db of the torque transmission ball is 0.30 or more and 0.45 or less, and the pitch circle diameter PCD BALL of the torque transmission ball and the It is characterized in that the ratio PCD BALL /Db to the diameter Db of the torque transmission ball is 3.3 to 3.6.

ボールを介してトルクを伝達するボールタイプの等速自在継手では、作動角0°のときは各ボールが均等に負荷を受けるが、作動角を取ると各ボールに不均等な荷重が掛かり、作動角が高くなるほどその差が大きくなる。したがって、高い作動角の場合には、1か所のボールに掛かる最大荷重も大きくなるため、ボールと接触する内側継手部材、外側継手部材、及び保持器は、ボールから受ける荷重に耐え得るだけの厚い肉厚が要求される。 In a ball-type constant velocity universal joint that transmits torque through balls, when the operating angle is 0°, each ball receives an equal load, but when the operating angle is changed, each ball receives an uneven load, causing The higher the angle, the greater the difference. Therefore, in the case of a high operating angle, the maximum load applied to one ball increases, so the inner joint member, outer joint member, and cage that come into contact with the ball must be able to withstand the load received from the ball. Thick wall thickness is required.

そこで、DOJをプロペラシャフト専用とすることで、最大作動角を低く制限することができるため、1か所のボールにかかる最大荷重が小さくなる。これにより、内側継手部材や外側継手部材がボールから受ける荷重が小さくなるため、これらの肉厚を小さくすることができ、DOJの半径方向のコンパクト化、軽量化を達成することができる。 Therefore, by using the DOJ exclusively for the propeller shaft, the maximum operating angle can be limited to a low value, and the maximum load applied to one ball can be reduced. As a result, the load that the inner joint member and the outer joint member receive from the ball is reduced, so that their wall thicknesses can be reduced, and the DOJ can be made more compact and lightweight in the radial direction.

また、DOJの最大作動角を低く制限することにより、保持器のポケット内のボールの周方向移動量が小さくなるので、ポケットの周方向長さを短くすることができる。これにより、保持器を小径化することが可能になるため、ボールのピッチ円直径PCDBALL、ひいては、外側継手部材の外径を小さくすることができるため、DOJの半径方向のさらなるコンパクト化、軽量化を達成することができる。 Furthermore, by limiting the maximum operating angle of the DOJ to a low value, the amount of circumferential movement of the balls in the pocket of the retainer becomes small, so the length of the pocket in the circumferential direction can be shortened. This makes it possible to reduce the diameter of the retainer, thereby reducing the pitch circle diameter PCD BALL of the balls and, in turn, the outer diameter of the outer joint member, making the DOJ more compact in the radial direction and lighter in weight. can be achieved.

また、DOJの最大作動角を低く制限することにより、内側継手部材の強度に余裕ができるため、シャフトが連結される内側継手部材の連結孔の内径、すなわち、雌スプラインのピッチ円径を大きくすることができる。これにより、低作動角時の最弱部品であるシャフトを大径化して強化することができるため、プロペラシャフトの耐久性が向上する。 In addition, by limiting the maximum operating angle of the DOJ to a low value, the strength of the inner joint member can be increased, so the inner diameter of the connecting hole of the inner joint member to which the shaft is connected, that is, the pitch circle diameter of the female spline, is increased. be able to. This allows the shaft, which is the weakest component at low operating angles, to be strengthened by increasing its diameter, thereby improving the durability of the propeller shaft.

DOJでは、保持器の球状外周面の曲率中心と球状内周面の曲率中心を軸方向でオフセットさせることで、あらゆる作動角においてボールを作動角の二等分面上に保持し、これにより等速でのトルク伝達を実現している。プロペラシャフトのDOJは、作動角が小さくかつ略一定であるため、保持器の外周面の曲率中心と内周面の曲率中心とのオフセット量(f)を小さくしても、スムーズなトルク伝達が可能となる。本発明者らは、保持器のオフセット量(f)を小さくすることで、DOJの機能や耐久性を阻害することなく、保持器の軸方向寸法や半径方向肉厚を低減することが可能となることを見出し、これによりDOJのさらなる小型軽量化を実現した。また、保持器のオフセット量(f)を小さくすることで、保持器のポケットや外側継手部材の内周面に作用する力が低減されるため、高速回転で使用されるプロペラシャフト用のDOJにおいて発熱量を抑制することができる。 In DOJ, by offsetting the center of curvature of the spherical outer circumferential surface and the center of curvature of the spherical inner circumferential surface of the cage in the axial direction, the balls are held on the bisector of the operating angle at all operating angles. It realizes torque transmission at high speed. The DOJ of the propeller shaft has a small and approximately constant operating angle, so even if the offset amount (f) between the center of curvature of the outer circumferential surface of the retainer and the center of curvature of the inner circumferential surface is small, smooth torque transmission is not possible. It becomes possible. The present inventors have found that by reducing the offset amount (f) of the cage, it is possible to reduce the axial dimension and radial wall thickness of the cage without impairing the function or durability of the DOJ. This led to the realization of an even smaller and lighter DOJ. In addition, by reducing the offset amount (f) of the cage, the force acting on the pockets of the cage and the inner circumferential surface of the outer joint member is reduced, so in DOJ for propeller shafts used at high speeds, The amount of heat generated can be suppressed.

上記のプロペラシャフト用摺動式等速自在継手では、保持器のポケットの軸方向壁面(軸方向で対向する面)とトルク伝達ボールとの間に軸方向のポケットすきまδ1を設けると共に、上記の保持器の球状内周面と内側継手部材の球状外周面との間に軸方向すきまδ2を設けることが望ましい。これにより、保持器とボールとの摺動、及び、保持器と内側継手部材との摺動による温度上昇が抑制されるため、継手の寿命の向上や高速回転化に有効であると共に、継手のスライド抵抗が低減される。また、上記のポケットすきまδ1及び軸方向すきまδ2により、エンジンからの振動を吸収することができるため、車両の振動特性の向上を図ることができる。特に、ポケットすきまδ1を0~0.050mmとすると共に、軸方向すきまδ2を0.5~1.5mmとすることが望ましい。 In the above sliding type constant velocity universal joint for a propeller shaft, an axial pocket clearance δ1 is provided between the axial wall surface (an axially opposing surface) of the cage pocket and the torque transmission ball, and the above-mentioned It is desirable to provide an axial clearance δ2 between the spherical inner circumferential surface of the retainer and the spherical outer circumferential surface of the inner joint member. This suppresses the temperature rise caused by sliding between the cage and the balls and between the cage and the inner joint member, which is effective in increasing the life of the joint and increasing rotation speed. Slide resistance is reduced. Further, the pocket clearance δ1 and the axial clearance δ2 described above can absorb vibrations from the engine, thereby improving the vibration characteristics of the vehicle. In particular, it is desirable that the pocket clearance δ1 be 0 to 0.050 mm and the axial clearance δ2 be 0.5 to 1.5 mm.

本発明によれば、自動車の更なる低燃費化、プロペラシャフトの高速回転化の要求に貢献できる、小型、軽量なプロペラシャフト専用の摺動式等速自在継手を実現することができる。 According to the present invention, it is possible to realize a small and lightweight sliding type constant velocity universal joint exclusively for propeller shafts, which can contribute to the demands for further lower fuel consumption of automobiles and higher rotation speeds of propeller shafts.

本発明の一実施形態に係るプロペラシャフト用摺動式等速自在継手が装着されたプロペラシャフトを示す図である。1 is a diagram showing a propeller shaft equipped with a sliding type constant velocity universal joint for a propeller shaft according to an embodiment of the present invention. 本発明の一実施形態に係るプロペラシャフト用摺動式等速自在継手を示し、(a)図は(b)図のB-N-B線における縦断面図であり、(b)図は(a)図のA-A線における横断面図である。A sliding constant velocity universal joint for a propeller shaft according to an embodiment of the present invention is shown, in which (a) is a vertical cross-sectional view taken along the line BNB in (b); a) A cross-sectional view taken along line AA in the figure. 本実施形態に係るプロペラシャフト用摺動式等速自在継手とプロペラシャフトに用いられている現行の摺動式等速自在継手のそれぞれの縦断面を対比したもので、(a)図は、図2(a)の摺動式等速自在継手の軸線N-Nより上半分の縦断面を上側に示し、図11(a)の摺動式等速自在継手の軸線N-Nより上半分の縦断面を反転させて下側に示した図である。(b)図は、図2(a)の摺動式等速自在継手の軸線N-Nより下半分の縦断面を反転させて上側に示し、図11(a)の摺動式等速自在継手の軸線N-Nより下半分の縦断面を下側に示した図である。Figure (a) is a comparison of longitudinal sections of the sliding type constant velocity universal joint for a propeller shaft according to this embodiment and the current sliding type constant velocity universal joint used for propeller shafts. The longitudinal section of the upper half of the sliding type constant velocity universal joint shown in Figure 11(a) above the axis NN is shown on the upper side, and It is the figure which reversed the longitudinal section and showed it on the lower side. (b) The figure shows the longitudinal cross-section of the lower half of the sliding type constant velocity universal joint in Figure 2(a) reversed from the axis line N-N on the upper side, and the sliding type constant velocity universal joint in Figure 11(a). FIG. 3 is a diagram showing a vertical cross section of the lower half of the joint from the axis NN on the lower side. 図2(a)の摺動式等速自在継手(上半分)と図11(a)の摺動式等速自在継手(下半分)の内側継手部材及びボールとの軸方向移動状態を対比した断面図である。Comparison of the axial movement state of the inner joint member and ball of the sliding type constant velocity universal joint (upper half) in Figure 2(a) and the sliding type constant velocity universal joint (lower half) in Figure 11(a) FIG. 図2(a)の内側継手部材、保持器およびボールを拡大した縦断面図である。FIG. 3 is an enlarged vertical cross-sectional view of the inner joint member, retainer, and ball of FIG. 2(a). (a)図は、図5のC部の拡大図であり、(b)図は、図5のD部の拡大図である。(a) is an enlarged view of section C in FIG. 5, and (b) is an enlarged view of section D in FIG. 5. (a)図は、ポケットすきまδ1及び軸方向すきまδ2を設けていない標準仕様の内側継手部材、保持器およびボールを示す縦断面図である。(b)図は、ポケットすきまδ1と軸方向すきまδ2を設けた仕様の内側継手部材、保持器およびボール示す縦断面図である。(c)図は、ポケットすきまδ1と軸方向すきまδ2を設けた別の仕様の内側継手部材、保持器およびボール示す縦断面図である。(a) is a longitudinal cross-sectional view showing an inner joint member, a retainer, and a ball of standard specifications in which pocket clearance δ1 and axial clearance δ2 are not provided. (b) is a longitudinal cross-sectional view showing the inner joint member, retainer, and balls with specifications in which a pocket clearance δ1 and an axial clearance δ2 are provided. (c) is a longitudinal sectional view showing an inner joint member, a retainer, and a ball of another specification in which a pocket clearance δ1 and an axial clearance δ2 are provided. 図2の摺動式等速自在継手の最大作動角を示す縦断面図である。FIG. 3 is a longitudinal cross-sectional view showing the maximum operating angle of the sliding constant velocity universal joint in FIG. 2; 図2の摺動式等速自在継手のブーツ装着状態で取れる作動角を示す縦断面図である。FIG. 3 is a longitudinal sectional view showing the operating angle of the sliding constant velocity universal joint shown in FIG. 2 when the boot is attached. 図2(b)の摺動式等速自在継手の横断面と図11(b)の摺動式等速自在継手の横断面とを比較した図である。It is a diagram comparing the cross section of the sliding type constant velocity universal joint in FIG. 2(b) with the cross section of the sliding type constant velocity universal joint in FIG. 11(b). 現行の摺動式等速自在継手を示し、(a)図は(b)図のF-N-F線における縦断面図であり、(b)図は(a)図のE-E線における横断面図である。The current sliding type constant velocity universal joint is shown, and (a) is a vertical cross-sectional view taken along the line FNF in (b), and (b) is a vertical cross-sectional view taken along the line EE in (a). FIG. 図11の摺動式等速自在継手を組み立てた状態を示す縦断面図である。FIG. 12 is a longitudinal sectional view showing an assembled state of the sliding constant velocity universal joint of FIG. 11. FFベースの4WD車の駆動系の概要を示す平面図である。1 is a plan view showing an outline of a drive system of an FF-based 4WD vehicle. FRベースの4WD車の駆動系の概要を示す平面図である。FIG. 2 is a plan view showing an outline of a drive system of an FR-based 4WD vehicle.

本発明の実施の形態を図面に基づいて説明する。 Embodiments of the present invention will be described based on the drawings.

まず、プロペラシャフトを用いた四輪駆動車(以下、4WD車ともいう)を例にして駆動系の概要を図13、図14に基づいて説明する。 First, an outline of a drive system will be explained based on FIGS. 13 and 14 using a four-wheel drive vehicle (hereinafter also referred to as a 4WD vehicle) using a propeller shaft as an example.

図13に示すように、FF(フロントエンジン前輪駆動)ベースの4WD車の駆動系は、エンジン100→トランスアクスル113→デファレンシャル111→トランスファ112→プロペラシャフト(リヤプロペラシャフト)102→デファレンシャル103→ドライブシャフト104→リヤ側車輪105という駆動力の伝達が行われる。また、フロント側において、エンジン100→トランスアクスル113→デファレンシャル111→ドライブシャフト109→フロント側車輪110という駆動力の伝達が行われる。 As shown in Figure 13, the drive system of a 4WD vehicle based on FF (front engine front wheel drive) is engine 100 → transaxle 113 → differential 111 → transfer 112 → propeller shaft (rear propeller shaft) 102 → differential 103 → drive shaft The driving force is transmitted from 104 to the rear wheels 105. Further, on the front side, driving force is transmitted from the engine 100 to the transaxle 113 to the differential 111 to the drive shaft 109 to the front wheels 110.

図14に示すように、FR(フロントエンジン後輪駆動)ベースの4WD車の駆動系は、エンジン100→トランスミッション101→プロペラシャフト(リヤプロペラシャフト)102→デファレンシャル103→ドライブシャフト104→リヤ側車輪105という駆動力の伝達が行われる。また、フロント側において、エンジン100→トランスミッション101→トランスファ106→プロペラシャフト(フロントプロペラシャフト)107→デファレンシャル108→ドライブシャフト109→フロント側車輪110という駆動力の伝達が行われる。 As shown in FIG. 14, the drive system of an FR (front engine rear wheel drive) based 4WD vehicle is as follows: engine 100 → transmission 101 → propeller shaft (rear propeller shaft) 102 → differential 103 → drive shaft 104 → rear wheels 105 The driving force is transmitted. Further, on the front side, driving force is transmitted as follows: engine 100 → transmission 101 → transfer 106 → propeller shaft (front propeller shaft) 107 → differential 108 → drive shaft 109 → front wheels 110.

FFベース、FRベースのいずれの4WD車においも、最終減速機となるデファレンシャル103、108、111を経たドライブシャフト104、109に用いられる等速自在継手45、46、47は、最大回転数が2000min-1程度、常用最大作動角が15°程度である。作動角の挙動として、ドライブシャフト104、109に用いられる等速自在継手45、46、47では、車輪105、110の上下動があるので、これに追従する作動角が必要で、かつ、作動角が常時変動する。加えて、フロント側車輪110の場合は、車輪側の固定式等速自在継手46には転舵のための大きな作動角が必要になる。本実施形態では、フロント側車輪110に取り付けられる固定式等速自在継手46の最大作動角は45°程度であり、それ以外の等速自在継手46、47の最大作動角は20~25°程度である。 In both FF-based and FR-based 4WD vehicles, constant velocity universal joints 45, 46, and 47 used for drive shafts 104 and 109 that pass through differentials 103, 108, and 111, which serve as the final reduction gears, have a maximum rotation speed of 2000 min. -1 , and the normal maximum operating angle is about 15°. As for the behavior of the operating angle, in the constant velocity universal joints 45, 46, 47 used for the drive shafts 104, 109, since the wheels 105, 110 move up and down, an operating angle that follows this is required. is constantly changing. In addition, in the case of the front wheel 110, the fixed constant velocity universal joint 46 on the wheel side requires a large operating angle for steering. In this embodiment, the maximum operating angle of the fixed constant velocity universal joint 46 attached to the front wheel 110 is about 45 degrees, and the maximum operating angle of the other constant velocity universal joints 46 and 47 is about 20 to 25 degrees. It is.

一方、プロペラシャフト102、107は、最終減速機となるデファレンシャル103、108、111の手前に配置されるので、高速回転で使用され、具体的には最大回転数が8000min-1程度である。また、デファレンシャル103、108、111は独立懸架車では車体側に取付けられ、かつ、プロペラシャフト102、107の全長は長いので、プロペラシャフト102、107に用いられる等速自在継手1の作動角は、小さく、かつ略一定である。具体的には、等速自在継手1の常用最大作動角は10°以下であり、最大作動角は15°程度である。さらに、プロペラシャフト102、107に用いられる等速自在継手1は、ドライブシャフト104、109に用いられる等速自在継手45、46、47より、伝達トルクが大幅に小さい。尚、図13、図14では、プロペラシャフト102、107に用いられる自在継手43、44、48、49をクロスジョイントで例示したが、これらの自在継手43、44、48、49の少なくとも一部は、等速自在継手が用いられる場合もある。 On the other hand, the propeller shafts 102 and 107 are disposed before the differentials 103, 108, and 111, which serve as the final reduction gears, so they are used at high speed rotations, and specifically, the maximum rotation speed is about 8000 min -1 . In addition, the differentials 103, 108, 111 are attached to the vehicle body side in an independent suspension vehicle, and the overall length of the propeller shafts 102, 107 is long, so the operating angle of the constant velocity universal joint 1 used for the propeller shafts 102, 107 is: It is small and approximately constant. Specifically, the normal maximum operating angle of the constant velocity universal joint 1 is 10 degrees or less, and the maximum operating angle is about 15 degrees. Furthermore, the constant velocity universal joint 1 used for the propeller shafts 102 and 107 has significantly smaller transmitted torque than the constant velocity universal joints 45, 46, and 47 used for the drive shafts 104 and 109. 13 and 14, the universal joints 43, 44, 48, 49 used in the propeller shafts 102, 107 are illustrated as cross joints, but at least some of these universal joints 43, 44, 48, 49 are , constant velocity universal joints may be used.

FFベースの4WD車のプロペラシャフトを例にして、プロペラシャフトの概要を図1に基づいて説明する。プロペラシャフト102は、前方(図中右側、図13のエンジン100側)に位置する第1のプロペラシャフト41と、後方(図中左側、図13のデファレンシャル103側)に位置する第2のプロペラシャフト42とから構成されている。 An overview of a propeller shaft will be explained based on FIG. 1, taking the propeller shaft of a FF-based 4WD vehicle as an example. The propeller shaft 102 includes a first propeller shaft 41 located at the front (right side in the figure, engine 100 side in FIG. 13) and a second propeller shaft located at the rear (left side in the figure, side toward the differential 103 in FIG. 13). It consists of 42.

第1のプロペラシャフト41は、主要部が中空パイプ64で構成され、一端(前端)が、クロスジョイント43を介してエンジン100の出力側(トランスファ112、図13参照)に連結されている。第1プロペラシャフト41の中空パイプ64の他端(後端)には、摺動式等速自在継手1が接続されている。この摺動式等速自在継手1が、本実施形態に係るプロペラシャフト用摺動式等速自在継手である。 The main part of the first propeller shaft 41 is composed of a hollow pipe 64, and one end (front end) is connected to the output side of the engine 100 (transfer 112, see FIG. 13) via a cross joint 43. The sliding constant velocity universal joint 1 is connected to the other end (rear end) of the hollow pipe 64 of the first propeller shaft 41 . This sliding type constant velocity universal joint 1 is a sliding type constant velocity universal joint for a propeller shaft according to this embodiment.

第2のプロペラシャフト42は、主要部が中空パイプ65で構成され、一端(前端)が、ベアリングサポート60により回転自在に支持されている。具体的には、ベアリングサポート60は、ブラケット61、弾性部材62および転がり軸受63とからなり、弾性部材62の外環62aがブラケット61に嵌合し、弾性部材62の内環62bが転がり軸受63に嵌合している。第2のプロペラシャフト42の一端にはシャフト20が設けられ、シャフト20の外周が転がり軸受63に嵌合して半径方向に弾性支持されている。シャフト20の一端(前端)は、摺動式等速自在継手1の内側継手部材の連結孔に連結されている。第2のプロペラシャフト42の他端(後端)は、クロスジョイント44を介してデファレンシャル103(図13参照)に接続されている。以上のように、第1のプロペラシャフト41と第2のプロペラシャフト42とは、軸方向に連結した構成となっている。 The main part of the second propeller shaft 42 is composed of a hollow pipe 65, and one end (front end) is rotatably supported by a bearing support 60. Specifically, the bearing support 60 includes a bracket 61, an elastic member 62, and a rolling bearing 63. An outer ring 62a of the elastic member 62 fits into the bracket 61, and an inner ring 62b of the elastic member 62 fits into the rolling bearing 63. is fitted. A shaft 20 is provided at one end of the second propeller shaft 42, and the outer periphery of the shaft 20 fits into a rolling bearing 63 and is elastically supported in the radial direction. One end (front end) of the shaft 20 is connected to a connection hole of an inner joint member of the sliding constant velocity universal joint 1 . The other end (rear end) of the second propeller shaft 42 is connected to the differential 103 (see FIG. 13) via a cross joint 44. As described above, the first propeller shaft 41 and the second propeller shaft 42 are connected in the axial direction.

本実施形態に係るプロペラシャフト用摺動式等速自在継手1の全体構成を図2(a)、図2(b)に基づいて説明する。 The overall configuration of the sliding type constant velocity universal joint 1 for propeller shafts according to this embodiment will be explained based on FIGS. 2(a) and 2(b).

本実施形態に係るプロペラシャフト用摺動式等速自在継手(以下、単に摺動式等速自在継手ともいう)1は、いわゆる、ダブルオフセット型摺動式等速自在継手(以下、DOJともいう)であり、外側継手部材2、内側継手部材3、トルク伝達ボール4および保持器5を主な構成とする。外側継手部材2の円筒状内周面6には、8本の直線状トラック溝7が円周方向に等間隔で、かつ軸方向に沿って形成されている。内側継手部材3の球状外周面8には、外側継手部材2のトラック溝7と対向する8本の直線状トラック溝9が円周方向に等間隔で、かつ軸方向に沿って形成されている。外側継手部材2の直線状トラック溝7と内側継手部材3の直線状トラック溝9との間にトルク伝達ボール(以下、単にボールともいう)4が1個ずつ組み込まれている。ボール4は保持器5のポケット5aに収容されている。 A sliding type constant velocity universal joint (hereinafter also simply referred to as a sliding type constant velocity universal joint) 1 for a propeller shaft according to the present embodiment is a so-called double offset type sliding type constant velocity universal joint (hereinafter also referred to as a DOJ). ), whose main components include an outer joint member 2, an inner joint member 3, a torque transmission ball 4, and a retainer 5. Eight linear track grooves 7 are formed in the cylindrical inner circumferential surface 6 of the outer joint member 2 at equal intervals in the circumferential direction and along the axial direction. On the spherical outer circumferential surface 8 of the inner joint member 3, eight linear track grooves 9 facing the track grooves 7 of the outer joint member 2 are formed at equal intervals in the circumferential direction and along the axial direction. . One torque transmission ball (hereinafter also simply referred to as a ball) 4 is installed between the linear track groove 7 of the outer joint member 2 and the linear track groove 9 of the inner joint member 3. The balls 4 are housed in pockets 5a of the retainer 5.

保持器5は、球状外周面12と球状内周面13を有し、球状外周面12は外側継手部材2の円筒状内周面6と嵌合して接触案内され、球状内周面13は内側継手部材3の球状外周面8と嵌合して接触案内されている。保持器5の球状外周面12は曲率中心O1を有し、球状内周面13は曲率中心O2を有している。曲率中心O1、O2は、保持器5のポケット5aの中心O3に対して軸方向の反対側に等しいオフセット量fを有する。ここで、ポケット5aの中心O3は、8個のポケット5aのそれぞれの軸方向の中心を含む平面と継手の軸線N-Nとの交点を意味する。これにより、継手が作動角を取った場合、外側継手部材2と内側継手部材3の両軸線がなす角度を二等分する平面上にボール4が常に案内され、二軸間で回転トルクが等速で伝達される。 The cage 5 has a spherical outer circumferential surface 12 and a spherical inner circumferential surface 13. The spherical outer circumferential surface 12 is fitted and guided in contact with the cylindrical inner circumferential surface 6 of the outer joint member 2, and the spherical inner circumferential surface 13 is It is fitted into and guided in contact with the spherical outer circumferential surface 8 of the inner joint member 3. The spherical outer peripheral surface 12 of the cage 5 has a center of curvature O1, and the spherical inner peripheral surface 13 has a center of curvature O2. The centers of curvature O1 and O2 have an equal offset amount f on the opposite side in the axial direction with respect to the center O3 of the pocket 5a of the retainer 5. Here, the center O3 of the pocket 5a means the intersection of the plane containing the axial centers of each of the eight pockets 5a and the axis NN of the joint. As a result, when the joint takes an operating angle, the ball 4 is always guided on a plane that bisects the angle formed by the axes of the outer joint member 2 and the inner joint member 3, and the rotational torque is equalized between the two axes. transmitted at high speed.

図2(a)に示すように、外側継手部材2の一端〔図2(a)の右端〕に第1のプロペラシャフト41の中空パイプ64と接合される大径部2aが形成され、大径部2aの近傍の内周孔にシールカバー16が装着されている。内側継手部材3の軸心を貫通する連結孔10には雌スプライン(セレーションを含む)11が形成されており、シャフト20(図1、図8参照)の雄スプライン21が嵌合連結され、止め輪22により軸方向に固定されている。 As shown in FIG. 2(a), a large diameter portion 2a is formed at one end of the outer joint member 2 (the right end in FIG. 2(a)) to be joined to the hollow pipe 64 of the first propeller shaft 41. A seal cover 16 is attached to the inner peripheral hole near the portion 2a. A female spline (including serrations) 11 is formed in a connecting hole 10 passing through the axis of the inner joint member 3, and a male spline 21 of a shaft 20 (see FIGS. 1 and 8) is fitted and connected to the connecting hole 10 to prevent a stop. It is fixed in the axial direction by a ring 22.

外側継手部材2の他端(開口側端部)の内周には止め輪溝14が設けられる。この止め輪溝14に装着された止め輪23(図8参照)により、内側継手部材3、ボール4および保持器5からなる内側組立体が、外側継手部材2の開口側端部から抜け出すのを防止する。保持器5の大径側端部〔図2(a)の右側端部〕の内周には、内側継手部材3を組み込むための円筒面状の切欠き5cが設けられている。外側継手部材2の開口側端部の外周にブーツ装着溝15が設けられている。図9に示すように、外側継手部材2のブーツ装着溝15とシャフト20のブーツ装着溝20aにブーツ25が装着され、ブーツバンド27、26により締付け固定されている。ブーツ25とシールカバー16とが協働して、継手内部に封入されたグリースの外部漏洩や継手外部からの異物侵入が防止される。 A retaining ring groove 14 is provided on the inner periphery of the other end (opening side end) of the outer joint member 2 . The retaining ring 23 (see FIG. 8) installed in the retaining ring groove 14 prevents the inner assembly consisting of the inner joint member 3, balls 4, and retainer 5 from slipping out from the open end of the outer joint member 2. To prevent. A cylindrical notch 5c for incorporating the inner joint member 3 is provided on the inner periphery of the large-diameter end (the right end in FIG. 2(a)) of the retainer 5. A boot mounting groove 15 is provided on the outer periphery of the open end of the outer joint member 2 . As shown in FIG. 9, a boot 25 is attached to the boot attachment groove 15 of the outer joint member 2 and the boot attachment groove 20a of the shaft 20, and is fastened and fixed by boot bands 27 and 26. The boot 25 and the seal cover 16 cooperate to prevent the grease sealed inside the joint from leaking to the outside and to prevent foreign matter from entering from outside the joint.

本実施形態の摺動式等速自在継手1の全体的な構成は以上のとおりであるが。次に特徴的な構成を説明する。本実施形態の摺動式等速自在継手1の特徴的な構成に至った開発過程の知見と着想は次のとおりである。
(1)ダブルオフセット型摺動式等速自在継手(DOJ)は、軸方向のスライド量を比較的に大きく取ることができ、使用実績が豊富で性能が安定しており、さらに、ボール個数を8個とすることで小型、軽量化を図ることができる。これらの点に着目し、自動車の更なる低燃費化、プロペラシャフトの小型、軽量化、高速回転化の要求に対応すべく、図11、図12に示す現行のプロペラシャフトに用いられているDOJを種々検討した。その結果、現行のDOJは、ドライブシャフトにも使用できるように最大作動角を25°程度としているが、プロペラシャフト用としての必要特性に特化させることで、DOJの機能が限定できる点に着目した。具体的には、DOJをプロペラシャフト専用とすることで、最大作動角を低く制限する(例えば15°以下とする)ことができ、これによりDOJの小型、軽量化を達成できることを見出した。
(2)プロペラシャフト専用のDOJの最大作動角を低く制限することにより、次の具体的な技術的効果を得ることができる。
(a)各構成部品(外側継手部材、内側継手部材、保持器)の半径方向肉厚の低減による半径方向のコンパクト化、軽量化
(b)ボールの軸方向移動量の低減による内側継手部材の軸方向のコンパクト化、軽量化
(c)ボールの周方向移動量の低減による保持器の半径方向のコンパクト化、軽量化
(d)ポケット荷重の低減による保持器の軸方向のコンパクト化、軽量化
(3)加えて、プロペラシャフト用DOJの作動角が小さく、かつ略一定で、高速回転という動的な要因に着目して更なる軽量・コンパクト化の可能性を検討した。その結果、保持器のオフセット量を小さくすることを着想し、これが、上記の(2)の技術的効果を促進させ、DOJのさらなる軽量・コンパクト化が達成できることが判明した。
The overall configuration of the sliding type constant velocity universal joint 1 of this embodiment is as described above. Next, the characteristic configuration will be explained. The findings and ideas of the development process that led to the characteristic configuration of the sliding type constant velocity universal joint 1 of this embodiment are as follows.
(1) Double offset type sliding constant velocity universal joints (DOJ) can have a relatively large sliding amount in the axial direction, have a rich track record of use, have stable performance, and can reduce the number of balls. By using eight pieces, it is possible to achieve a reduction in size and weight. Focusing on these points, in order to meet the demands for further fuel efficiency of automobiles, smaller size, lighter weight, and higher rotation speed of propeller shafts, we developed DOJ, which is used in current propeller shafts as shown in Figures 11 and 12. We investigated various aspects. As a result, the current DOJ has a maximum operating angle of about 25° so that it can also be used for drive shafts, but we focused on the point that the functions of DOJ can be limited by specializing in the characteristics required for propeller shafts. did. Specifically, it has been found that by dedicating the DOJ to the propeller shaft, the maximum operating angle can be limited to a low value (for example, 15 degrees or less), and thereby the DOJ can be made smaller and lighter.
(2) By limiting the maximum operating angle of the DOJ dedicated to the propeller shaft to a low value, the following specific technical effects can be obtained.
(a) Compactness and weight reduction in the radial direction by reducing the radial wall thickness of each component (outer joint member, inner joint member, retainer) (b) Reducing the axial movement of the balls in the inner joint member Making the cage more compact and lighter in the axial direction (c) Making the cage more compact and lighter in the radial direction by reducing the circumferential movement of the balls (d) Making the cage more compact and lighter in the axial direction by reducing the pocket load (3) In addition, we focused on the dynamic factors of the small and nearly constant operating angle of DOJ for propeller shafts and high speed rotation, and investigated the possibility of further weight reduction and compactness. As a result, we came up with the idea of reducing the amount of offset of the retainer, and found that this promoted the technical effect (2) above, making it possible to further reduce the weight and size of the DOJ.

上記の特徴的な構成について、図11、図12に示す現行の摺動式等速自在継手と比較して説明する。図11、図12に示すように、現行の摺動式等速自在継手201は、8個のトルク伝達ボール204を使用したダブルオフセット型摺動式等速自在継手で、外側継手部材202、内側継手部材203、トルク伝達ボール204および保持器205を主な構成とし、最大作動角は25°程度である。本実施形態に係る摺動式等速自在継手1のトルク伝達ボール4の直径Dbと、現行の摺動式等速自在継手201のトルク伝達ボール204の直径Db’とは等しい。基本的な内部構成は、本実施形態のプロペラシャフト用摺動式等速自在継手1と同様であるので、本実施形態のプロペラシャフト用摺動式等速自在継手1と同じ機能を有する部位には本実施形態に付した符号に200を加算した符号を付し、ポケットの中心、曲率中心、オフセット量などのアルファベット符号については本実施形態の符号にダッシュ(’)を付している。 The above characteristic configuration will be explained in comparison with the current sliding type constant velocity universal joint shown in FIGS. 11 and 12. As shown in FIGS. 11 and 12, the current sliding type constant velocity universal joint 201 is a double offset type sliding type constant velocity universal joint using eight torque transmission balls 204. The main components are a joint member 203, a torque transmission ball 204, and a retainer 205, and the maximum operating angle is about 25°. The diameter Db of the torque transmission ball 4 of the sliding type constant velocity universal joint 1 according to this embodiment is equal to the diameter Db' of the torque transmission ball 204 of the existing sliding type constant velocity universal joint 201. The basic internal configuration is the same as that of the sliding type constant velocity universal joint 1 for propeller shaft of this embodiment, so the parts having the same functions as the sliding type constant velocity universal joint 1 for propeller shaft of this embodiment are 200 is added to the code given to this embodiment, and alphabetical codes such as the center of the pocket, the center of curvature, and the amount of offset are given a dash (') to the code of this embodiment.

本実施形態に係る摺動式等速自在継手1と現行の摺動式等速自在継手201のそれぞれの縦断面を図3(a)、図3(b)に基づいて対比して説明する。図3(a)は、図2(a)の軸線N-Nより上半分の縦断面を上側に示し、図11(a)の軸線N-Nより上半分の縦断面を反転させて下側に示した図である。図3(b)は、図2(a)の軸線N-Nより下半分の縦断面を反転させて上側に示し、図11(a)の軸線N-Nより下半分の縦断面を下側に示した図である。 The longitudinal sections of the sliding type constant velocity universal joint 1 according to this embodiment and the current sliding type constant velocity universal joint 201 will be compared and explained based on FIGS. 3(a) and 3(b). 3(a) shows the vertical cross section of the upper half above the axis NN in FIG. 2(a) on the upper side, and the vertical cross section of the upper half above the axis NN in FIG. 11(a) is reversed and shows the lower side. FIG. 3(b) shows the longitudinal section of the lower half below the axis NN in FIG. 2(a) inverted and shown on the upper side, and the longitudinal section of the lower half below the axis NN in FIG. 11(a) is shown on the lower side. FIG.

図3(b)の継手の軸線N-Nの上側に示す本実施形態の摺動式等速自在継手1の最大作動角は15°に設定されている。これに伴い、保持器5の外周の円錐状ストッパ面5dの傾斜角βは、最大作動角15°の1/2である7.5°に形成されている。そのため、図8に示すように、摺動式等速自在継手1は、ブーツを装着前の状態で最大作動角θmax=15°を取ることができる。ただし、最大作動角は15°以下の適宜の角度に設定してもよい。このように、作動角を取ったとき、外側継手部材2の円筒状内周面6と保持器5の外周の円錐状ストッパ面5dが当接することにより最大作動角が規制される。本明細書において最大作動角とは上記の意味を有する。なお、摺動式等速自在継手1にブーツを装着した完成状態では、図9に示すように、作動角を取ったとき、ブーツ25とシャフト20が当接することにより、取れる作動角が規制され、上記の最大作動角より小さくなる。 The maximum operating angle of the sliding constant velocity universal joint 1 of this embodiment shown above the joint axis NN in FIG. 3(b) is set to 15°. Accordingly, the inclination angle β of the conical stopper surface 5d on the outer periphery of the retainer 5 is set to 7.5°, which is 1/2 of the maximum operating angle of 15°. Therefore, as shown in FIG. 8, the sliding constant velocity universal joint 1 can take the maximum operating angle θmax=15° before the boot is attached. However, the maximum operating angle may be set to an appropriate angle of 15° or less. In this manner, when the operating angle is determined, the cylindrical inner circumferential surface 6 of the outer joint member 2 and the conical stopper surface 5d on the outer periphery of the retainer 5 come into contact with each other, thereby regulating the maximum operating angle. In this specification, the maximum working angle has the above meaning. In addition, in the completed state where the sliding type constant velocity universal joint 1 is equipped with a boot, as shown in FIG. 9, when the operating angle is taken, the boot 25 and the shaft 20 come into contact, so that the available operating angle is restricted. , smaller than the maximum working angle above.

上記に対して、図3(b)の継手の軸線N-Nの下側に示す現行の摺動式等速自在継手201の最大作動角はドライブシャフトに使用可能なように25°程度に設定されており、保持器205の外周面の円錐状ストッパ面205dの傾斜角β’は、最大作動角25°の1/2である12.5°に形成されている。 In contrast to the above, the maximum operating angle of the current sliding type constant velocity universal joint 201 shown below the joint axis N-N in Fig. 3(b) is set to about 25° so that it can be used for drive shafts. The inclination angle β' of the conical stopper surface 205d on the outer peripheral surface of the retainer 205 is set to 12.5°, which is 1/2 of the maximum operating angle of 25°.

ボールタイプの等速自在継手では、作動角0°のときは各ボールが均等に負荷を受けるが、作動角を取ると各ボールに不均等な荷重が掛かり、作動角が高くなるほど、その差が大きくなる。したがって、高い作動角の場合には、1か所のボールに掛かる最大荷重も大きくなるために、ボールと接触する内側継手部材、外側継手部材、及び保持器は、ボールから受ける最大荷重に耐え得るだけの厚い肉厚が要求される。これに対し、本実施形態の摺動式等速自在継手1では、最大作動角を低く制限することにより、構成部品である外側継手部材2、内側継手部材3および保持器5の必要強度を抑制できるため、これらの肉厚を薄くすることができる。また、最大作動角を低く制限することで、最大作動角時の保持器5のポケット5a内におけるボール4の半径方向移動量も小さくなることから、保持器5の肉厚を薄くすることができる。 In a ball type constant velocity universal joint, when the operating angle is 0°, each ball receives an equal load, but as the operating angle increases, each ball receives an uneven load, and the higher the operating angle, the greater the difference. growing. Therefore, in the case of a high operating angle, the maximum load applied to one ball increases, so the inner joint member, outer joint member, and retainer that come into contact with the ball cannot withstand the maximum load received from the ball. A thick wall thickness is required. In contrast, in the sliding constant velocity universal joint 1 of the present embodiment, the required strength of the outer joint member 2, inner joint member 3, and retainer 5, which are the component parts, is suppressed by limiting the maximum operating angle to a low value. Therefore, these wall thicknesses can be made thinner. Furthermore, by limiting the maximum operating angle to a low value, the amount of radial movement of the balls 4 within the pockets 5a of the cage 5 at the maximum operating angle is also reduced, so the wall thickness of the cage 5 can be made thinner. .

具体的には、図3(a)、図3(b)に示すように、本実施形態の摺動式等速自在継手1の外側継手部材2の肉厚To(詳しくは、外側継手部材2のトラック溝7の溝底と外周面との半径方向距離)、内側継手部材3の肉厚Ti(詳しくは、内側継手部材3のトラック溝9の溝底と雌スプライン11のピッチ円との半径方向距離)は、現行の摺動式等速自在継手201の外側継手部材202の肉厚To’、内側継手部材203の肉厚Ti’より、それぞれ薄くなっている。最適値としては、内側継手部材3の肉厚Tiとボール径Dbとの比Ti/Dbは0.30~0.45である。また、外側継手部材2の肉厚Toとボール径Dbとの比To/Dbは0.25~0.29である。 Specifically, as shown in FIGS. 3(a) and 3(b), the wall thickness To of the outer joint member 2 of the sliding type constant velocity universal joint 1 of this embodiment (in detail, the outer joint member 2 ), the wall thickness Ti of the inner joint member 3 (more specifically, the radius between the groove bottom of the track groove 9 of the inner joint member 3 and the pitch circle of the female spline 11) direction distance) is thinner than the wall thickness To' of the outer joint member 202 and the wall thickness Ti' of the inner joint member 203 of the current sliding type constant velocity universal joint 201. As an optimum value, the ratio Ti/Db between the wall thickness Ti of the inner joint member 3 and the ball diameter Db is 0.30 to 0.45. Further, the ratio To/Db between the wall thickness To of the outer joint member 2 and the ball diameter Db is 0.25 to 0.29.

ボールタイプの等速自在継手では、作動角が高くなるほど、保持器に対するボールの周方向移動量が大きくなる。現行の8個ボールを使用した摺動式等速自在継手201では、最大作動角を25°程度に設定しているため、保持器205に対するボール204の周方向移動量が大きく、ボール204を収容する保持器205のポケット205aの周方向長さを長くする必要がある。また、保持器205の柱部205b〔図11(b)参照〕の強度を確保するために、柱部205bの周方向寸法の縮小には限界がある。その結果、保持器205の外径が大きくなり、摺動式等速自在継手201の十分な小型化ができなかった。また、それに伴って、内側継手部材203の肉厚Ti’も必要以上に厚いものとなっていた。 In a ball type constant velocity universal joint, the higher the operating angle, the greater the amount of movement of the ball in the circumferential direction relative to the retainer. In the current sliding type constant velocity universal joint 201 that uses eight balls, the maximum operating angle is set to about 25 degrees, so the amount of movement in the circumferential direction of the balls 204 relative to the retainer 205 is large, making it difficult to accommodate the balls 204. It is necessary to increase the circumferential length of the pocket 205a of the retainer 205. Further, in order to ensure the strength of the column portions 205b (see FIG. 11(b)) of the cage 205, there is a limit to the reduction in the circumferential dimension of the column portions 205b. As a result, the outer diameter of the retainer 205 became large, and the sliding constant velocity universal joint 201 could not be sufficiently miniaturized. Further, accordingly, the wall thickness Ti' of the inner joint member 203 has also become thicker than necessary.

これに対し、上記のように摺動式等速自在継手1の最大作動角を低く制限することにより、保持器5のポケット5a内のボール4の周方向移動量が小さくなるので、ポケット5aの周方向長さを短くすることができ、保持器5の小径化、ひいては摺動式等速自在継手1の半径方向のコンパクト化が可能になる。また、保持器5を小径化することにより、内側継手部材3の肉厚を適正化して、ボール4のピッチ円直径PCDBALLを小さくすることができる。これに伴って、外側継手部材2の外径Doを小さくすることができる。最適値としては、ボール4のピッチ円直径PCDBALLとボール4の直径Dbとの比PCDBALL/Dbが3.3以上、3.6以下である。 On the other hand, by limiting the maximum operating angle of the sliding constant velocity universal joint 1 to a low value as described above, the amount of movement in the circumferential direction of the balls 4 in the pockets 5a of the retainer 5 becomes small, so that The circumferential length can be shortened, the diameter of the retainer 5 can be reduced, and the sliding constant velocity universal joint 1 can be made more compact in the radial direction. Further, by reducing the diameter of the retainer 5, the wall thickness of the inner joint member 3 can be optimized, and the pitch circle diameter PCD BALL of the balls 4 can be reduced. Accordingly, the outer diameter Do of the outer joint member 2 can be reduced. As an optimum value, the ratio PCD BALL /Db between the pitch circle diameter PCD BALL of the ball 4 and the diameter Db of the ball 4 is 3.3 or more and 3.6 or less.

本実施形態の摺動式等速自在継手1と現行の摺動式等速自在継手201のそれぞれの横断面を図10に対比して示す。本実施形態の摺動式等速自在継手1は、現行の摺動式等速自在継手201に比べて、外側継手部材2の外径Doで5%以上のコンパクト化を実現した。外側継手部材2の外径Doと雌スプライン11のピッチ円直径PCD SPL との比Do/PCD SPL の最適値は、2.7以上、3.0以下である。 Cross sections of the sliding type constant velocity universal joint 1 of this embodiment and the current sliding type constant velocity universal joint 201 are shown in comparison with FIG. 10 . The sliding type constant velocity universal joint 1 of this embodiment has realized a 5% or more compactness in the outer diameter Do of the outer joint member 2 compared to the current sliding type constant velocity universal joint 201. The optimum value of the ratio Do/ PCD SPL between the outer diameter Do of the outer joint member 2 and the pitch circle diameter PCD SPL of the female spline 11 is 2.7 or more and 3.0 or less.

また、上記のように摺動式等速自在継手1の最大作動角を低く制限することにより、内側継手部材3の強度に余裕ができ、低作動角時の最弱部品であるシャフト20を強化することができる。すなわち、内側継手部材3の雌スプライン11のピッチ円直径(PCDSPL)をアップさせることができ、その結果、低作動角時のプロペラシャフトの強度向上を図ることができる。最適値としては、雌スプライン11のピッチ円直径PCDSPLとボール4の直径Dbとの比PCDSPL/Dbが1.75以上、1.85以下である。一方、雌スプライン11のピッチ円直径(PCDSPL)を現行のままとし、内側継手部材3の半径方向のコンパクト化の促進を図ることも可能である。 In addition, by limiting the maximum operating angle of the sliding constant velocity universal joint 1 to a low value as described above, the strength of the inner joint member 3 can be increased, and the shaft 20, which is the weakest component at low operating angles, is strengthened. can do. That is, the pitch circle diameter (PCD SPL ) of the female spline 11 of the inner joint member 3 can be increased, and as a result, the strength of the propeller shaft at low operating angles can be improved. As an optimum value, the ratio PCD SPL /Db between the pitch circle diameter PCD SPL of the female spline 11 and the diameter Db of the ball 4 is 1.75 or more and 1.85 or less. On the other hand, it is also possible to maintain the pitch circle diameter (PCD SPL ) of the female spline 11 as it is, thereby promoting compactness of the inner joint member 3 in the radial direction.

また、上記のように摺動式等速自在継手1の最大作動角を低く制限することにより、内側継手部材3、保持器5の軸方向幅を短縮することができ、摺動式等速自在継手1の軽量化、軸方向のコンパクト化が図られる。図3(a)、図3(b)に示すように、摺動式等速自在継手1の内側継手部材3の軸方向幅Wi、保持器5の軸方向幅Wcは、現行の摺動式等速自在継手201の内側継手部材203の軸方向幅Wi’、保持器205の軸方向幅Wc’に比べて大幅に短縮されている。 In addition, by limiting the maximum operating angle of the sliding type constant velocity universal joint 1 to a low value as described above, the axial width of the inner joint member 3 and the retainer 5 can be shortened, and the sliding type constant velocity universal joint 1 can be The joint 1 can be made lighter and more compact in the axial direction. As shown in FIGS. 3(a) and 3(b), the axial width Wi of the inner joint member 3 of the sliding type constant velocity universal joint 1 and the axial width Wc of the retainer 5 are different from those of the current sliding type This is significantly shorter than the axial width Wi' of the inner joint member 203 of the constant velocity universal joint 201 and the axial width Wc' of the retainer 205.

上記の摺動式等速自在継手1では、最大作動角によってボール4の軸方向移動量が決まってくるため、それに合わせて内側継手部材3の軸方向幅Wiを設定すればよい。ボール4の軸方向移動量と内側継手部材3の軸方向幅Wiの関係を図4に基づいて具体的に説明する。図4は、本実施形態に係る摺動式等速自在継手1と、プロペラシャフトに用いられている現行の摺動式等速自在継手201とにおいて、それぞれの内側継手部材とボールとの軸方向移動状態を対比した図である。摺動式等速自在継手1におけるボール4の軸方向移動量はZiであり、現行の摺動式等速自在継手201におけるボール204の軸方向移動量はZi’である。軸方向移動量Ziは、最大作動角が低い分、軸方向移動量Zi’に比べて短くなる。内側継手部材3の軸方向幅Wi、内側継手部材203の軸方向幅Wi’は、軸方向移動量Zi、Zi’のそれぞれに合わせて設定されているので、摺動式等速自在継手1の内側継手部材3の軸方向幅Wiは、現行の摺動式等速自在継手201の内側継手部材203の軸方向幅Wi’に比べて大幅に短縮される。 In the sliding constant velocity universal joint 1 described above, the axial movement amount of the ball 4 is determined by the maximum operating angle, so the axial width Wi of the inner joint member 3 may be set accordingly. The relationship between the axial movement amount of the ball 4 and the axial width Wi of the inner joint member 3 will be specifically explained based on FIG. 4. FIG. 4 shows the axial direction of the inner joint member and the ball in the sliding type constant velocity universal joint 1 according to the present embodiment and the current sliding type constant velocity universal joint 201 used in a propeller shaft. It is a diagram comparing moving states. The amount of axial movement of the ball 4 in the sliding type constant velocity universal joint 1 is Zi, and the amount of axial movement of the ball 204 in the current sliding type constant velocity universal joint 201 is Zi'. The axial movement amount Zi is shorter than the axial movement amount Zi' due to the lower maximum operating angle. Since the axial width Wi of the inner joint member 3 and the axial width Wi' of the inner joint member 203 are set according to the axial movement amounts Zi and Zi', the sliding type constant velocity universal joint 1 is The axial width Wi of the inner joint member 3 is significantly reduced compared to the axial width Wi' of the inner joint member 203 of the current sliding type constant velocity universal joint 201.

内側継手部材3の軸方向幅Wiが短すぎると、内側継手部材3の雌スプライン11とシャフト20の雄スプライン21とのスプライン嵌合長さが不足し、内側継手部材3とシャフト20との結合強度不足が生じる。しかし、上記のように摺動式等速自在継手1の最大作動角を低く制限することで、内側継手部材3の強度に余裕ができるため、雌スプライン11のピッチ円直径(PCDSPL)を通常より大きく設定できる。これが、低作動角時の最弱部品であるシャフト20の捩り強度、並びにスプライン歯面圧について有利に働くことで、スプライン嵌合長さを短縮することができるため、内側継手部材の軸方向幅Wiを短縮して軽量化を図ることができる。最適値としては、内側継手部材3の軸方向幅Wiとボール径Dbとの比Wi/Dbは1.2~1.4である。 If the axial width Wi of the inner joint member 3 is too short, the spline fitting length between the female spline 11 of the inner joint member 3 and the male spline 21 of the shaft 20 will be insufficient, and the connection between the inner joint member 3 and the shaft 20 will be insufficient. A lack of strength occurs. However, by limiting the maximum operating angle of the sliding constant velocity universal joint 1 to a low value as described above, there is a margin in the strength of the inner joint member 3, so the pitch circle diameter (PCD SPL ) of the female spline 11 is normally Can be set larger. This has an advantageous effect on the torsional strength of the shaft 20, which is the weakest component at low operating angles, and on the spline tooth surface pressure, making it possible to shorten the spline fitting length, thereby reducing the axial width of the inner joint member. It is possible to reduce the weight by shortening Wi. As an optimum value, the ratio Wi/Db between the axial width Wi of the inner joint member 3 and the ball diameter Db is 1.2 to 1.4.

上記のように摺動式等速自在継手1の最大作動角を制限することにより、保持器5のポケット5aに掛かるボール荷重が低減される。これにより、ポケット5aの軸方向壁面と保持器5の端面との間の軸方向肉厚(すなわち、ポケット5aの軸方向両側に設けられた環状部分の軸方向肉厚)を低減でき、もって軽量化が図られる。具体的には、図3(b)に示すように、摺動式等速自在継手1の保持器5の軸方向幅Wcは、現行の摺動式等速自在継手201の保持器205の軸方向幅Wc’に比べて大幅に短縮されている。最適値としては、保持器5の軸方向幅Wcとボール径Dbとの比Wc/Dbは1.8~2.0である。 By limiting the maximum operating angle of the sliding constant velocity universal joint 1 as described above, the ball load applied to the pockets 5a of the retainer 5 is reduced. As a result, the axial wall thickness between the axial wall surface of the pocket 5a and the end surface of the retainer 5 (that is, the axial wall thickness of the annular portion provided on both sides of the pocket 5a in the axial direction) can be reduced, resulting in a lighter weight. will be promoted. Specifically, as shown in FIG. 3(b), the axial width Wc of the retainer 5 of the sliding type constant velocity universal joint 1 is the same as the axial width Wc of the retainer 205 of the current sliding type constant velocity universal joint 201. This is significantly reduced compared to the direction width Wc'. As an optimum value, the ratio Wc/Db of the axial width Wc of the cage 5 to the ball diameter Db is 1.8 to 2.0.

以上に説明した本実施形態の摺動式等速自在継手1の軽量化、コンパクト化の技術的効果を飛躍的に促進させた保持器の小オフセット量化について、図3(b)に基づいて説明する。開発過程において、プロペラシャフト用摺動式等速自在継手1の最大作動角が小さく、かつ角度が略一定で、高速回転という動的な要因に着目し、軽量・コンパクト化の可能性を抜本的に検討した。その結果、保持器5のオフセット量fを小さくすることが可能であることを着想し、これが上述した技術的効果を飛躍的に促進させ、摺動式等速自在継手1のさらなる軽量・コンパクト化が達成できることが判明した。 The small offset amount of the cage, which has dramatically promoted the technical effects of weight reduction and compactness of the sliding type constant velocity universal joint 1 of the present embodiment described above, will be explained based on FIG. 3(b). do. During the development process, we focused on the dynamic factors of the sliding constant velocity universal joint 1 for propeller shafts, which have a small maximum operating angle, a nearly constant angle, and high speed rotation, and radically explored the possibility of making it lighter and more compact. We considered this. As a result, we came up with the idea that it is possible to reduce the offset amount f of the retainer 5, which dramatically promotes the above-mentioned technical effects and makes the sliding type constant velocity universal joint 1 even lighter and more compact. It turned out that it can be achieved.

図3(b)に示すように、摺動式等速自在継手1の保持器5のオフセット量fは、現行の摺動式等速自在継手201の保持器205のオフセット量f’に比べて小さく設定されている。摺動式等速自在継手1では、プロペラシャフト専用の仕様として、保持器5のオフセット量fとボール4のピッチ円直径PCDBALL〔図3(a)参照〕との比f/PCDBALLが、0.07以上、0.09以下に設定されている。このような保持器5の小オフセット量化により、摺動式等速自在継手1のさらなる軽量・コンパクト化が達成できる。また、保持器5のオフセット量fを小さくすることで、保持器5のポケット5aや外側継手部材2の内周面6に作用する力が低減されるため、高速回転で使用されるプロペラシャフト用の摺動式等速自在継手1において発熱量を抑制することができる。なお、現行の摺動式等速自在継手201の保持器205のオフセット量f’とボール204のピッチ円直径PCDBALL’〔図3(a)参照〕との比f’/PCDBALL’は、0.09を超える値に設定されている。 As shown in FIG. 3(b), the offset amount f of the cage 5 of the sliding type constant velocity universal joint 1 is compared to the offset amount f' of the cage 205 of the current sliding type constant velocity universal joint 201. It is set small. In the sliding constant velocity universal joint 1, the ratio f/PCD BALL of the offset amount f of the retainer 5 and the pitch circle diameter PCD BALL of the ball 4 [see FIG. 3(a)] is as a specification exclusively for the propeller shaft. It is set to 0.07 or more and 0.09 or less. By reducing the amount of offset of the retainer 5, the sliding constant velocity universal joint 1 can be further made lighter and more compact. In addition, by reducing the offset amount f of the cage 5, the force acting on the pocket 5a of the cage 5 and the inner circumferential surface 6 of the outer joint member 2 is reduced. The amount of heat generated in the sliding constant velocity universal joint 1 can be suppressed. Note that the ratio f'/PCD BALL ' between the offset amount f' of the retainer 205 of the current sliding type constant velocity universal joint 201 and the pitch circle diameter PCD BALL ' of the ball 204 [see FIG. 3(a)] is: It is set to a value exceeding 0.09.

本実施形態の摺動式等速自在継手1と現行の摺動式等速自在継手201との各寸法比率を表1に示す。 Table 1 shows each dimensional ratio between the sliding type constant velocity universal joint 1 of this embodiment and the current sliding type constant velocity universal joint 201.

Figure 0007382705000001
Figure 0007382705000001

次に、プロペラシャフト用摺動式等速自在継手1としての振動特性、低発熱化、高速回転化という性能面での特徴を図5~図7に基づいて説明する。 Next, the performance features of the sliding constant velocity universal joint 1 for propeller shafts, such as vibration characteristics, low heat generation, and high speed rotation, will be explained based on FIGS. 5 to 7.

図5に示すように、保持器5のポケット5aの軸方向壁面とボール4との間には、軸方向のポケットすきまδ1が設けられている。保持器5のポケット5aの軸方向壁面の間の寸法をLcとし、ボール4のボール径Dbとすると、ポケットすきまδ1は、δ1=Lc-Dbで表される。 As shown in FIG. 5, an axial pocket clearance δ1 is provided between the axial wall surface of the pocket 5a of the retainer 5 and the balls 4. Assuming that the dimension between the axial wall surfaces of the pockets 5a of the retainer 5 is Lc and the ball diameter Db of the balls 4, the pocket clearance δ1 is expressed as δ1=Lc−Db.

図6に示すように、保持器5の球状内周面13と内側継手部材3の球状外周面8との間には、軸方向すきまδ2が設けられている。軸方向すきまδ2は、例えば、保持器5を固定した状態で、内側継手部材3を軸方向一方側に移動させて内側継手部材3の球状外周面8を保持器5の球状内周面13に当接させた位置から、内側継手部材3を軸方向他方側に移動させて内側継手部材3の球状外周面8が保持器5の球状内周面13に当接する位置までの軸方向の相対移動量である。 As shown in FIG. 6, an axial clearance δ2 is provided between the spherical inner peripheral surface 13 of the retainer 5 and the spherical outer peripheral surface 8 of the inner joint member 3. The axial clearance δ2 is determined by, for example, moving the inner joint member 3 to one side in the axial direction with the retainer 5 fixed so that the spherical outer circumferential surface 8 of the inner joint member 3 is attached to the spherical inner circumferential surface 13 of the retainer 5. Relative movement in the axial direction from the abutting position to the position where the spherical outer circumferential surface 8 of the inner joint member 3 abuts the spherical inner circumferential surface 13 of the retainer 5 by moving the inner joint member 3 to the other side in the axial direction It's the amount.

上記のようなポケットすきまδ1及び軸方向すきまδ2を設けることにより、摺動式等速自在継手1のスライド抵抗が低減され、車両の振動特性の向上が図れると共に、抑温効果による摺動式等速自在継手1の寿命の向上が期待できる。特に、プロペラシャフトでは、ドライブシャフトに比べて高速回転で使用されるために有効である。 By providing the pocket clearance δ1 and the axial clearance δ2 as described above, the sliding resistance of the sliding type constant velocity universal joint 1 is reduced, and the vibration characteristics of the vehicle can be improved. It is expected that the life of the quick adjustable joint 1 will be improved. This is particularly effective for propeller shafts, which rotate at higher speeds than drive shafts.

ポケットすきまδ1は、0~0.05mmに設定することが好ましい。ポケットすきまδ1は、少しでも設けておけば効果を発揮することができる。また、ポケットすきまδ1が0.05mmより大きい場合は、作動角の二等分面からのボール4の外れ量が大きくなり、摺動式等速自在継手1の等速性、耐久性の低下につながる可能性がある。 The pocket gap δ1 is preferably set to 0 to 0.05 mm. Even if the pocket gap δ1 is provided even a little, it can be effective. In addition, if the pocket clearance δ1 is larger than 0.05 mm, the amount of deviation of the ball 4 from the bisector of the working angle will increase, resulting in a decrease in the constant velocity and durability of the sliding type constant velocity universal joint 1. There is a possibility of connection.

軸方向すきまδ2は、0.5~1.5mm程度に設定することが好ましい。軸方向すきまδ2が0.5mmより小さい場合は、エンジンからの振動量(軸方向振幅量)を内側継手部材3と保持器5との間の軸方向の相対移動量で吸収できず、振動を伝播してしまう可能性がある。一方、軸方向すきまδ2が1.5mmより大きい場合は、作動角の二等分面からのボール4の外れ量が大きくなり、摺動式等速自在継手1の等速性、耐久性の低下につながる可能性がある。 The axial clearance δ2 is preferably set to about 0.5 to 1.5 mm. If the axial clearance δ2 is smaller than 0.5 mm, the amount of vibration from the engine (the amount of axial amplitude) cannot be absorbed by the amount of relative axial movement between the inner joint member 3 and the retainer 5, and the vibration is There is a possibility that it will be transmitted. On the other hand, if the axial clearance δ2 is larger than 1.5 mm, the amount of deviation of the ball 4 from the bisector of the working angle will increase, and the constant velocity and durability of the sliding constant velocity universal joint 1 will decrease. may lead to.

ポケットすきまδ1と軸方向すきまδ2の各仕様について、図7(a)、図7(b)、図7(c)に基づいて説明する。図7(a)に示す標準仕様では、保持器5のポケット5aの軸方向壁面とボール4との間に軸方向のポケットすきまδ1が設けられていない。また、保持器5の球状内周面13の曲率半径Rcと内側継手部材3の球状外周面8の曲率半径Riとは、摺動案内のための僅かな球面すきまはあるが、実質的にRc≒Riであり、軸方向すきまδ2は設けられていない。 Specifications of the pocket clearance δ1 and the axial clearance δ2 will be explained based on FIGS. 7(a), 7(b), and 7(c). In the standard specification shown in FIG. 7(a), an axial pocket clearance δ1 is not provided between the axial wall surface of the pocket 5a of the retainer 5 and the ball 4. Furthermore, the radius of curvature Rc of the spherical inner circumferential surface 13 of the retainer 5 and the radius of curvature Ri of the spherical outer circumferential surface 8 of the inner joint member 3 are substantially Rc ≒Ri, and the axial clearance δ2 is not provided.

本実施形態の摺動式等速自在継手1は、図7(b)、図7(c)に示すように、ポケットすきまδ1と軸方向すきまδ2(図5参照)を設けた仕様となっている。図7(b)に示す仕様では、ポケットすきまδ1を設けると共に、保持器5の球状内周面13の曲率半径Rc’を内側継手部材3の球状外周面8の曲率半径Riより大きくし、かつ、曲率半径Rc’の曲率中心を保持器5の軸心より半径方向にオフセットさせている。これにより、内側継手部材3の軸方向の中央で内側継手部材3の球状外周面8と保持器5の球状内周面13が当接するが、内側継手部材3の両側では軸方向すきまδ2(図5参照)が形成される。 As shown in FIGS. 7(b) and 7(c), the sliding constant velocity universal joint 1 of this embodiment has a pocket clearance δ1 and an axial clearance δ2 (see FIG. 5). There is. In the specification shown in FIG. 7(b), a pocket clearance δ1 is provided, the radius of curvature Rc' of the spherical inner circumferential surface 13 of the cage 5 is made larger than the radius of curvature Ri of the spherical outer circumferential surface 8 of the inner joint member 3, and , the center of curvature of the radius of curvature Rc' is offset from the axis of the retainer 5 in the radial direction. As a result, the spherical outer peripheral surface 8 of the inner joint member 3 and the spherical inner peripheral surface 13 of the cage 5 come into contact at the axial center of the inner joint member 3, but there is an axial clearance δ2 (Fig. 5) is formed.

図7(c)は、ポケットすきまδ1と軸方向すきまδ2を設けた別の仕様を示す。この仕様では、内側継手部材3の球状外周面8は曲率半径Riの単一の球面で形成されているが、保持器5の球状内周面13は、内側継手部材3の軸方向の中央に対応する位置に、Sの範囲で円筒部13aが形成され、円筒部13aの両端部に曲率半径Rcの球面が滑らかに接続されている。保持器5の球状内周面13の曲率半径Rcと内側継手部材3の球状外周面8の曲率半径Riとは、摺動案内のための僅かな球面すきまはあるが、実質的にRc≒Riである。この仕様では、保持器5と内側継手部材3とが軸方向に相対移動する際、内側継手部材3の球状外周面8の軸方向の中央が円筒部13aによって摺動案内されるため、滑らかに相対移動できる。 FIG. 7(c) shows another specification in which a pocket clearance δ1 and an axial clearance δ2 are provided. In this specification, the spherical outer circumferential surface 8 of the inner joint member 3 is formed of a single spherical surface with a radius of curvature Ri, but the spherical inner circumferential surface 13 of the retainer 5 is located at the center of the inner joint member 3 in the axial direction. A cylindrical portion 13a is formed at a corresponding position within a range S, and a spherical surface with a radius of curvature Rc is smoothly connected to both ends of the cylindrical portion 13a. The radius of curvature Rc of the spherical inner circumferential surface 13 of the retainer 5 and the radius of curvature Ri of the spherical outer circumferential surface 8 of the inner joint member 3 are substantially Rc≈Ri, although there is a slight spherical clearance for sliding guidance. It is. In this specification, when the cage 5 and the inner joint member 3 move relative to each other in the axial direction, the axial center of the spherical outer peripheral surface 8 of the inner joint member 3 is slidably guided by the cylindrical portion 13a, so that the cage 5 and the inner joint member 3 move smoothly. Can move relatively.

本発明は前述した実施形態に何ら限定されるものではなく、本発明の要旨を逸脱しない範囲内において、さらに種々の形態で実施し得ることは勿論のことであり、本発明の範囲は、特許請求の範囲によって示され、さらに特許請求の範囲に記載の均等の意味、および範囲内のすべての変更を含む。 The present invention is not limited to the embodiments described above, and can of course be implemented in various forms without departing from the gist of the present invention. It is defined by the claims, and includes the full meaning of equivalents and all changes within the scope of the claims.

1 プロペラシャフト用摺動式等速自在継手
2 外側継手部材
3 内側継手部材
4 トルク伝達ボール
5 保持器
102 プロペラシャフト
107 プロペラシャフト
O1 保持器の球状外周面の曲率中心
O2 保持器の球状内周面の曲率中心
O3 保持器のポケットの中心
1 Sliding constant velocity universal joint for propeller shaft 2 Outer joint member 3 Inner joint member 4 Torque transmission ball 5 Retainer 102 Propeller shaft 107 Propeller shaft O1 Center of curvature of spherical outer peripheral surface of retainer O2 Spherical inner peripheral surface of retainer Center of curvature O3 Center of cage pocket

Claims (6)

プロペラシャフト用摺動式等速自在継手であって、
円筒状内周面に8本の直線状トラック溝が軸方向に沿って形成された外側継手部材と、球状外周面に前記外側継手部材の直線状トラック溝に対向する8本の直線状トラック溝が軸方向に沿って形成されると共に、雌スプラインが形成された連結孔を有する内側継手部材と、前記外側継手部材の直線状トラック溝と前記内側継手部材の直線状トラック溝との間に組み込まれた8個のトルク伝達ボールと、前記トルク伝達ボールをポケットに収容し、前記外側継手部材の円筒状内周面で接触案内される球状外周面及び前記内側継手部材の球状外周面で接触案内される球状内周面を有する保持器とを備え、前記保持器の球状外周面の曲率中心と球状内周面の曲率中心とが、それぞれ前記ポケットの中心に対して軸方向の反対側に等しいオフセット量(f)を有し、
前記プロペラシャフト用摺動式等速自在継手の最大作動角が15°以下に設定され、
前記内側継手部材の肉厚Tiと前記トルク伝達ボールのボール径Dbとの比Ti/Dbが0.30以上、0.45以下であり、
前記トルク伝達ボールのピッチ円直径PCDBALLと前記トルク伝達ボールの直径Dbとの比PCDBALL/Dbが3.3以上、3.6以下であり、
前記保持器の幅Wcと前記トルク伝達ボールのボール径Dbとの比Wc/Dbが1.8以上、2.0以下に設定されているプロペラシャフト用摺動式等速自在継手。
A sliding constant velocity universal joint for a propeller shaft,
an outer joint member in which eight linear track grooves are formed along the axial direction on a cylindrical inner circumferential surface; and eight linear track grooves in a spherical outer circumferential surface facing the linear track grooves of the outer joint member. is formed along the axial direction and is incorporated between an inner joint member having a connecting hole in which a female spline is formed, and a linear track groove of the outer joint member and a linear track groove of the inner joint member. The torque transmitting balls are housed in pockets, and the spherical outer circumferential surface of the outer joint member is guided in contact with the cylindrical inner circumferential surface of the outer joint member, and the spherical outer circumferential surface of the inner joint member is guided in contact with the spherical outer circumferential surface of the inner joint member. and a cage having a spherical inner circumferential surface, wherein the center of curvature of the spherical outer circumferential surface and the center of curvature of the spherical inner circumferential surface of the cage are each equal to the opposite side in the axial direction with respect to the center of the pocket. has an offset amount (f),
The maximum operating angle of the sliding constant velocity universal joint for the propeller shaft is set to 15° or less,
The ratio Ti/Db of the wall thickness Ti of the inner joint member and the ball diameter Db of the torque transmission ball is 0.30 or more and 0.45 or less,
The ratio PCD BALL /Db of the pitch circle diameter PCD BALL of the torque transmission ball and the diameter Db of the torque transmission ball is 3.3 or more and 3.6 or less,
A sliding constant velocity universal joint for a propeller shaft, wherein a ratio Wc/Db of the width Wc of the retainer and the ball diameter Db of the torque transmission ball is set to be 1.8 or more and 2.0 or less.
前記内側継手部材の雌スプラインのピッチ円直径PCDSPLと前記トルク伝達ボールのボール径Dbとの比PCDSPL/Dbが1.75以上、1.85以下である請求項1に記載のプロペラシャフト用摺動式等速自在継手。 The propeller shaft according to claim 1, wherein a ratio PCD SPL /Db of the pitch circle diameter PCD SPL of the female spline of the inner joint member and the ball diameter Db of the torque transmission ball is 1.75 or more and 1.85 or less. Sliding type constant velocity universal joint. 前記外側継手部材の外径Doと前記内側継手部材の雌スプラインのピッチ円直径PCDSPLとの比Do/PCDSPLが2.7以上、3.0以下である請求項1又は2に記載のプロペラシャフト用摺動式等速自在継手。 The propeller according to claim 1 or 2, wherein the ratio Do/PCD SPL of the outer diameter Do of the outer joint member and the pitch circle diameter PCD SPL of the female spline of the inner joint member is 2.7 or more and 3.0 or less. Sliding type constant velocity universal joint for shaft. 前記オフセット量(f)と前記トルク伝達ボールのピッチ円直径PCDBALLとの比f/PCDBALLが0.07以上、0.09以下である請求項1~3の何れか1項に記載のプロペラシャフト用摺動式等速自在継手。 The propeller according to any one of claims 1 to 3, wherein the ratio f/PCD BALL between the offset amount (f) and the pitch circle diameter PCD BALL of the torque transmission ball is 0.07 or more and 0.09 or less. Sliding type constant velocity universal joint for shaft. 前記ポケットの軸方向壁面とトルク伝達ボールとの間に軸方向のポケットすきまδ1が設けられると共に、前記保持器の球状内周面と前記内側継手部材の球状外周面との間に軸方向すきまδ2が設けられている請求項1~4の何れか1項に記載のプロペラシャフト用摺動式等速自在継手。 An axial pocket clearance δ1 is provided between the axial wall surface of the pocket and the torque transmission ball, and an axial clearance δ2 is provided between the spherical inner circumferential surface of the retainer and the spherical outer circumferential surface of the inner joint member. The sliding type constant velocity universal joint for a propeller shaft according to any one of claims 1 to 4, wherein the sliding type constant velocity universal joint for a propeller shaft is provided. 前記ポケットすきまδ1が0~0.05mmであると共に、前記軸方向すきまδ2が0.5~1.5mmである請求項5に記載のプロペラシャフト用摺動式等速自在継手。 The sliding type constant velocity universal joint for a propeller shaft according to claim 5, wherein the pocket clearance δ1 is 0 to 0.05 mm, and the axial clearance δ2 is 0.5 to 1.5 mm.
JP2018082972A 2018-04-24 2018-04-24 Sliding type constant velocity universal joint for propeller shaft Active JP7382705B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2018082972A JP7382705B2 (en) 2018-04-24 2018-04-24 Sliding type constant velocity universal joint for propeller shaft
DE112019002125.7T DE112019002125T5 (en) 2018-04-24 2019-04-12 CONTINUOUS UNIVERSAL JOINT OF THE SHIFT TYPE FOR A PTO SHAFT
PCT/JP2019/016030 WO2019208277A1 (en) 2018-04-24 2019-04-12 Sliding-type constant-velocity universal joint for propeller shaft
US17/045,277 US11835096B2 (en) 2018-04-24 2019-04-12 Plunging type constant velocity universal joint for propeller shaft
CN201980028078.5A CN112020613B (en) 2018-04-24 2019-04-12 Sliding type constant velocity universal joint for transmission shaft
US18/383,285 US20240052893A1 (en) 2018-04-24 2023-10-24 Plunging type constant velocity universal joint for propeller shaft

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018082972A JP7382705B2 (en) 2018-04-24 2018-04-24 Sliding type constant velocity universal joint for propeller shaft

Publications (2)

Publication Number Publication Date
JP2019190547A JP2019190547A (en) 2019-10-31
JP7382705B2 true JP7382705B2 (en) 2023-11-17

Family

ID=68389721

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018082972A Active JP7382705B2 (en) 2018-04-24 2018-04-24 Sliding type constant velocity universal joint for propeller shaft

Country Status (1)

Country Link
JP (1) JP7382705B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000314430A (en) 1999-04-28 2000-11-14 Ntn Corp Sliding type constant velocity universal joint for propeller shaft
JP2005337306A (en) 2004-05-24 2005-12-08 Ntn Corp Constant velocity universal joint
JP2007100797A (en) 2005-10-03 2007-04-19 Ntn Corp Slide type constant velocity universal joint
JP2007224995A (en) 2006-02-22 2007-09-06 Ntn Corp Constant velocity joint

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3859295B2 (en) * 1996-06-28 2006-12-20 Ntn株式会社 Sliding type constant velocity universal joint

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000314430A (en) 1999-04-28 2000-11-14 Ntn Corp Sliding type constant velocity universal joint for propeller shaft
JP2005337306A (en) 2004-05-24 2005-12-08 Ntn Corp Constant velocity universal joint
JP2007100797A (en) 2005-10-03 2007-04-19 Ntn Corp Slide type constant velocity universal joint
JP2007224995A (en) 2006-02-22 2007-09-06 Ntn Corp Constant velocity joint

Also Published As

Publication number Publication date
JP2019190547A (en) 2019-10-31

Similar Documents

Publication Publication Date Title
US20240052893A1 (en) Plunging type constant velocity universal joint for propeller shaft
JP5073190B2 (en) Sliding constant velocity universal joint
US11850884B2 (en) Hub built-in type constant velocity apparatus
JP7382706B2 (en) Sliding type constant velocity universal joint for propeller shaft
WO2018150836A1 (en) Sliding constant velocity universal joint
JP7437868B2 (en) Sliding type constant velocity universal joint for propeller shaft
JP7382705B2 (en) Sliding type constant velocity universal joint for propeller shaft
US8323116B2 (en) Universal joint
JP2003021159A (en) Constant velocity universal joint
JP7246139B2 (en) Sliding constant velocity universal joint for propeller shaft
JP5132876B2 (en) Composite type constant velocity universal joint
CN110431324B (en) Sliding type constant velocity universal joint for rear wheel drive shaft
JP7292008B2 (en) Sliding constant velocity universal joint for rear wheel drive shaft
JPH0689785B2 (en) Constant velocity universal joint
CN110446872B (en) Driving shaft for rear wheel
CN218266870U (en) Sliding type constant velocity universal joint
EP3597949A1 (en) Rear-wheel drive shaft
WO2023026826A1 (en) Sliding constant-velocity universal joint
JP7224107B2 (en) Sliding constant velocity universal joint for rear wheel drive shaft
WO2023100522A1 (en) Sliding-type constant-velocity joint
JP2001065591A (en) Fixed constant velocity universal joint for propeller shaft
KR100397375B1 (en) A tripod-constant velocity joint for variable contact type
JP5220480B2 (en) Fixed type constant velocity universal joint
RU37166U1 (en) HINGE
JP2021156325A (en) Constant velocity joint

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220106

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220106

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220901

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221130

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20221130

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20221207

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20221208

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20230303

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20230307

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20230419

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230725

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231107

R150 Certificate of patent or registration of utility model

Ref document number: 7382705

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150