JP7382558B2 - Trench type MOSFET - Google Patents

Trench type MOSFET Download PDF

Info

Publication number
JP7382558B2
JP7382558B2 JP2019234980A JP2019234980A JP7382558B2 JP 7382558 B2 JP7382558 B2 JP 7382558B2 JP 2019234980 A JP2019234980 A JP 2019234980A JP 2019234980 A JP2019234980 A JP 2019234980A JP 7382558 B2 JP7382558 B2 JP 7382558B2
Authority
JP
Japan
Prior art keywords
trench
type semiconductor
semiconductor layer
less
mesa
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019234980A
Other languages
Japanese (ja)
Other versions
JP2021103746A (en
Inventor
公平 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Novel Crystal Technology Inc
Original Assignee
Novel Crystal Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Novel Crystal Technology Inc filed Critical Novel Crystal Technology Inc
Priority to JP2019234980A priority Critical patent/JP7382558B2/en
Priority to PCT/JP2020/046712 priority patent/WO2021131891A1/en
Publication of JP2021103746A publication Critical patent/JP2021103746A/en
Application granted granted Critical
Publication of JP7382558B2 publication Critical patent/JP7382558B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Description

本発明は、トレンチ型MOSFETに関する。 The present invention relates to a trench MOSFET.

従来、ゲート電極が半導体層に埋め込まれたトレンチ型のGa系MOSFETが知られている(例えば、特許文献1参照)。トレンチ型のMOSFETは、そのトレンチゲート構造により高い耐圧特性を有する。 Conventionally, a trench-type Ga 2 O 3 -based MOSFET in which a gate electrode is buried in a semiconductor layer is known (for example, see Patent Document 1). Trench type MOSFETs have high breakdown voltage characteristics due to their trench gate structure.

特開2016-15503号公報Unexamined Japanese Patent Publication No. 2016-15503

トレンチ型MOSFETにおいては、トレンチ構造を構成する各部材の形状やサイズによって耐圧特性が変わるが、優れた耐圧特性を得るための具体的な構造については知られていない。 In a trench MOSFET, the breakdown voltage characteristics vary depending on the shape and size of each member constituting the trench structure, but a specific structure for obtaining excellent breakdown voltage characteristics is not known.

本発明の目的は、高耐圧かつ低損失を高い水準で実現することのできるトレンチゲート構造を有するトレンチ型MOSFETを提供することにある。 An object of the present invention is to provide a trench MOSFET having a trench gate structure that can achieve high breakdown voltage and low loss at a high level.

本発明の一態様は、上記目的を達成するために、下記[1]~[7]のトレンチ型MOSFETを提供する。 In order to achieve the above object, one aspect of the present invention provides the following trench MOSFETs [1] to [7].

[1]Ga系単結晶からなり、一方の面に開口する複数のトレンチを有するn型半導体層と、前記複数のトレンチの各々の内面に接して設けられたゲート絶縁膜と、前記ゲート絶縁膜に覆われた状態で前記複数のトレンチの各々に埋め込まれたゲート電極と、前記n型半導体層の隣接する前記トレンチの間のメサ形状部に接続されたソース電極と、前記n型半導体層の前記ソース電極と反対側に直接又は間接的に接続されたドレイン電極と、を備え、前記トレンチの幅方向の断面における前記トレンチの底部の縁の曲線の頂点における曲率半径を前記トレンチの幅で除した値が、0.0125以上、0.25以下の範囲内にある、トレンチ型MOSFET。
[2]前記n型半導体層における隣接する2つの前記ゲート電極の間の領域におけるドナー濃度であるチャネル濃度が1×1015cm-以下である場合、前記メサ形状部の幅であるメサ幅が0.5μm以下であり、前記チャネル濃度が1×1015cm-より大きく1×1016cm-以下である場合、前記メサ幅が0.4μm以下であり、前記チャネル濃度が1×1016cm-より大きく2×1016cm-以下である場合、前記メサ幅が0.3μm以下であり、前記チャネル濃度が2×1016cm-より大きく6×1016cm-以下である場合、前記メサ幅が0.2μm以下である、上記[1]に記載のトレンチ型MOSFET。
[3]前記ゲート電極の仕事関数が5.0eV以上である、上記[1]又は[2]に記載のトレンチ型MOSFET。
[4]前記ゲート電極のゲート長が1μm以上である、上記[1]~[3]のいずれか1項に記載のトレンチ型MOSFET。
[5]前記n型半導体層が、前記n型半導体層と前記ソース電極とをオーミック接続させるためのコンタクト層を前記ソース電極との界面近傍に有し、前記ゲート電極と前記コンタクト層との距離が0.1μm以上である、上記[1]~[4]のいずれか1項に記載のトレンチ型MOSFET。
[6]前記ゲート絶縁膜における前記トレンチの底部の中心に接する部分の厚さが、0.2μm以上、0.5μm以下の範囲内、又は0.1μm以上、0.2μm未満の範囲内にある、上記[1]~[5]のいずれか1項に記載のトレンチ型MOSFET。
[7]前記n型半導体層が、上部の縁に窪みが設けられたメサ形状を有し、前記窪みの内面に前記ゲート電極が露出した、上記[1]~[6]のいずれか1項に記載のトレンチ型MOSFET。
[1] An n-type semiconductor layer made of a Ga 2 O 3 single crystal and having a plurality of trenches opened on one surface; a gate insulating film provided in contact with the inner surface of each of the plurality of trenches; a gate electrode buried in each of the plurality of trenches while covered with a gate insulating film; a source electrode connected to a mesa-shaped portion between adjacent trenches of the n-type semiconductor layer; a drain electrode connected directly or indirectly to the opposite side of the source electrode of the semiconductor layer, and the radius of curvature at the apex of the curve of the bottom edge of the trench in the cross section in the width direction of the trench is A trench type MOSFET whose value divided by the width is within the range of 0.0125 or more and 0.25 or less.
[2] When the channel concentration, which is the donor concentration in the region between the two adjacent gate electrodes in the n-type semiconductor layer, is 1×10 15 cm -3 or less, the mesa width, which is the width of the mesa-shaped portion, is is 0.5 μm or less, and the channel concentration is greater than 1×10 15 cm- 3 and less than 1×10 16 cm- 3 , the mesa width is 0.4 μm or less, and the channel concentration is 1× When the mesa width is greater than 10 16 cm- 3 and less than or equal to 2×10 16 cm- 3 , the mesa width is less than or equal to 0.3 μm, and the channel concentration is greater than 2×10 16 cm- 3 and less than or equal to 6×10 16 cm- 3 . The trench MOSFET according to [1] above, wherein the mesa width is 0.2 μm or less.
[3] The trench MOSFET according to [1] or [2] above, wherein the gate electrode has a work function of 5.0 eV or more.
[4] The trench MOSFET according to any one of [1] to [3] above, wherein the gate length of the gate electrode is 1 μm or more.
[5] The n-type semiconductor layer has a contact layer near the interface with the source electrode for making an ohmic connection between the n-type semiconductor layer and the source electrode, and the distance between the gate electrode and the contact layer is The trench MOSFET according to any one of [1] to [4] above, wherein the trench type MOSFET is 0.1 μm or more.
[6] The thickness of the portion of the gate insulating film that is in contact with the center of the bottom of the trench is within the range of 0.2 μm or more and 0.5 μm or less, or within the range of 0.1 μm or more and less than 0.2 μm. , the trench MOSFET according to any one of [1] to [5] above.
[7] Any one of [1] to [6] above, wherein the n-type semiconductor layer has a mesa shape with a depression provided at the upper edge, and the gate electrode is exposed on the inner surface of the depression. The trench type MOSFET described in .

本発明によれば、高耐圧かつ低損失を高い水準で実現することのできるトレンチゲート構造を有するトレンチ型MOSFETを提供することができる。 According to the present invention, it is possible to provide a trench MOSFET having a trench gate structure that can achieve high breakdown voltage and low loss at a high level.

図1は、第1の実施の形態に係るトレンチ型MOSFETの垂直断面図である。FIG. 1 is a vertical cross-sectional view of a trench MOSFET according to a first embodiment. 図2は、トレンチ型MOSFETのトレンチの底部近傍を拡大した、図1の部分拡大図である。FIG. 2 is a partially enlarged view of FIG. 1 showing the vicinity of the bottom of the trench of the trench MOSFET. 図3は、第1の実施の形態に係るトレンチ型MOSFETの変形例の垂直断面の部分拡大図である。FIG. 3 is a partially enlarged vertical cross-sectional view of a modification of the trench MOSFET according to the first embodiment. 図4(a)~(c)は、チャネル層のチャネル濃度とメサ幅を変化させたときの、ソース電極とドレイン電極との間に印加される電圧と、オフリーク電流との関係を示すグラフである。4(a) to (c) are graphs showing the relationship between the voltage applied between the source electrode and the drain electrode and the off-leakage current when the channel concentration of the channel layer and the mesa width are changed. be. 図5(a)~(c)は、チャネル層のチャネル濃度とメサ幅を変化させたときの、ソース電極とドレイン電極との間に印加される電圧と、オフリーク電流との関係を示すグラフである。5(a) to (c) are graphs showing the relationship between the voltage applied between the source electrode and the drain electrode and the off-leakage current when the channel concentration of the channel layer and the mesa width are changed. be. 図6は、ゲート電極の仕事関数を変化させたときの、ソース電極とドレイン電極との間に印加される電圧と、オフリーク電流との関係を示すグラフである。FIG. 6 is a graph showing the relationship between the voltage applied between the source electrode and the drain electrode and the off-leakage current when the work function of the gate electrode is changed. 図7は、ゲート電極のゲート長を変化させたときの、ソース電極とドレイン電極との間に印加される電圧と、オフリーク電流との関係を示すグラフである。FIG. 7 is a graph showing the relationship between the voltage applied between the source electrode and the drain electrode and the off-leakage current when the gate length of the gate electrode is changed. 図8は、ゲート電極とコンタクト層との距離を変化させたときの、ソース電極とドレイン電極との間に印加される電圧と、オフリーク電流との関係を示すグラフである。FIG. 8 is a graph showing the relationship between the voltage applied between the source electrode and the drain electrode and the off-leakage current when the distance between the gate electrode and the contact layer is changed. 図9は、ゲート絶縁膜の厚さと、n型半導体層中の最大電界強度との関係を示すグラフである。FIG. 9 is a graph showing the relationship between the thickness of the gate insulating film and the maximum electric field strength in the n-type semiconductor layer. 図10(a)、(b)は、メサ深さと、n型半導体層中の最大電界強度との関係を示すグラフである。FIGS. 10A and 10B are graphs showing the relationship between the mesa depth and the maximum electric field strength in the n-type semiconductor layer. 図11(a)、(b)は、メサ深さと、n型半導体層中の最大電界強度との関係を示すグラフである。FIGS. 11A and 11B are graphs showing the relationship between the mesa depth and the maximum electric field strength in the n-type semiconductor layer.

〔実施の形態〕
(トレンチ型MOSFETの構成)
図1は、第1の実施の形態に係るトレンチ型MOSFET(Metal Oxide Semiconductor Field Effect Transistor)1の垂直断面図である。トレンチ型MOSFET1は、トレンチゲート構造を有する縦型の電界効果トランジスタである。なお、本実施の形態のトレンチ型MOSFET1は、後述するゲート絶縁膜13が酸化物以外の材料からなる構成も含むものとする。
[Embodiment]
(Configuration of trench type MOSFET)
FIG. 1 is a vertical cross-sectional view of a trench MOSFET (Metal Oxide Semiconductor Field Effect Transistor) 1 according to the first embodiment. Trench MOSFET 1 is a vertical field effect transistor having a trench gate structure. Note that the trench MOSFET 1 of this embodiment also includes a configuration in which the gate insulating film 13, which will be described later, is made of a material other than oxide.

トレンチ型MOSFET1は、n型半導体基板10と、n型半導体基板10に積層される層であって、そのn型半導体基板10と反対側の面18に開口する複数のトレンチ16を有するn型半導体層11と、複数のトレンチ16の各々の内面に接して設けられたゲート絶縁膜13と、ゲート絶縁膜13に覆われた状態で複数のトレンチ16の各々に埋め込まれたゲート電極12と、n型半導体層11の隣接するトレンチ16の間のメサ形状部17に接続されたソース電極14と、n型半導体基板10のn型半導体層11と反対側の面上に形成されたドレイン電極15と、を備える。 The trench type MOSFET 1 is an n-type semiconductor having an n-type semiconductor substrate 10 and a plurality of trenches 16 that are laminated on the n-type semiconductor substrate 10 and open on a surface 18 opposite to the n-type semiconductor substrate 10. layer 11, a gate insulating film 13 provided in contact with the inner surface of each of the plurality of trenches 16, a gate electrode 12 buried in each of the plurality of trenches 16 while covered with the gate insulating film 13, a source electrode 14 connected to a mesa-shaped portion 17 between adjacent trenches 16 of the type semiconductor layer 11; and a drain electrode 15 formed on the surface of the n-type semiconductor substrate 10 opposite to the n-type semiconductor layer 11. , is provided.

トレンチ型MOSFET1は、ノーマリーオフ型でもノーマリーオン型でもよいが、パワーデバイスとして用いられる場合には、安全性の観点から、通常、ノーマリーオフ型に製造される。ゲート回路の断線等によりゲートが制御不能になった時にソース電極14とドレイン電極15が導通することを防ぐためである。 The trench MOSFET 1 may be either a normally-off type or a normally-on type, but when used as a power device, it is usually manufactured as a normally-off type from the viewpoint of safety. This is to prevent conduction between the source electrode 14 and the drain electrode 15 when the gate becomes uncontrollable due to disconnection of the gate circuit or the like.

ノーマリーオフ型のトレンチ型MOSFET1においては、ゲート電極12とソース電極14との間に閾値電圧以上の電圧を印加することにより、メサ形状部17にチャネルが形成され、ドレイン電極15からソース電極14に電流が流れる。 In the normally-off trench MOSFET 1, by applying a voltage equal to or higher than the threshold voltage between the gate electrode 12 and the source electrode 14, a channel is formed in the mesa-shaped portion 17, and a channel is formed from the drain electrode 15 to the source electrode 14. A current flows through.

n型半導体基板10は、ドナーとしてのSi、Sn等のIV族元素を含むn型のGa系単結晶からなる。n型半導体基板10のドナー濃度は、例えば、1.0×1018cm-3以上かつ1.0×1020cm-3以下である。n型半導体基板10の厚さは、例えば、10μm以上かつ600μm以下である。 The n-type semiconductor substrate 10 is made of an n-type Ga 2 O 3 single crystal containing group IV elements such as Si and Sn as donors. The donor concentration of the n-type semiconductor substrate 10 is, for example, 1.0×10 18 cm −3 or more and 1.0×10 20 cm −3 or less. The thickness of the n-type semiconductor substrate 10 is, for example, 10 μm or more and 600 μm or less.

ここで、Ga系単結晶とは、Ga単結晶、又は、Al、In等の元素が添加されたGa単結晶をいう。例えば、Al及びInが添加されたGa単結晶である(GaAlIn(1-x-y)(0<x≦1、0≦y<1、0<x+y≦1)単結晶であってもよい。Alを添加した場合にはバンドギャップが広がり、Inを添加した場合にはバンドギャップが狭くなる。なお、上記のGa単結晶は、例えば、β型の結晶構造を有する。 Here, the Ga 2 O 3 single crystal refers to a Ga 2 O 3 single crystal or a Ga 2 O 3 single crystal to which elements such as Al and In are added. For example, Ga 2 O 3 single crystal doped with Al and In (Ga x Al y In (1-x-y) ) 2 O 3 (0<x≦1, 0≦y<1, 0<x+y ≦1) It may be a single crystal. When Al is added, the band gap is widened, and when In is added, the band gap is narrowed. Note that the Ga 2 O 3 single crystal described above has, for example, a β-type crystal structure.

n型半導体基板10の面方位は、特に限定されないが、n型半導体層11を構成するGa系単結晶の成長速度が大きくなる(001)面であることが好ましい。または、表面が平坦なGa系単結晶膜を成長できる(011)面であることが好ましい。 Although the plane orientation of the n-type semiconductor substrate 10 is not particularly limited, it is preferably the (001) plane, which increases the growth rate of the Ga 2 O 3 -based single crystal forming the n-type semiconductor layer 11 . Alternatively, it is preferable that the surface is a (011) plane that allows growth of a Ga 2 O 3 single crystal film with a flat surface.

n型半導体層11は、ドナーとしてのSi、Sn等のIV族元素を含むn型のGa系単結晶からなる。 The n-type semiconductor layer 11 is made of an n-type Ga 2 O 3 single crystal containing group IV elements such as Si and Sn as donors.

n型半導体層11は、ゲート電極12が埋め込まれ、ゲート電圧を印加した際にチャネルが形成されるチャネル層11bと、チャネル層11bの下の耐圧を保持するための耐圧層11aと、ソース電極14との界面近傍にイオン注入もしくはエピタキシャル成長等により形成された、ソース電極14をn型半導体層11にオーミック接続させるためのコンタクト層11cとを有する。 The n-type semiconductor layer 11 includes a channel layer 11b in which a gate electrode 12 is embedded and a channel is formed when a gate voltage is applied, a breakdown voltage layer 11a for maintaining a breakdown voltage under the channel layer 11b, and a source electrode. The contact layer 11c is formed near the interface with the n-type semiconductor layer 11 by ion implantation or epitaxial growth, and is used to ohmically connect the source electrode 14 to the n-type semiconductor layer 11.

ここで、n型半導体層11における、トレンチ16の底の高さよりも下側(n型半導体基板10側)の領域が耐圧層11aであり、その厚さをTとする。また、n型半導体層11における、トレンチ16の底の高さよりも上側(ソース電極14側)の領域がチャネル層11bであり、チャネル層11bの上端近傍にコンタクト層11cが設けられている。 Here, a region of the n-type semiconductor layer 11 below the height of the bottom of the trench 16 (on the n-type semiconductor substrate 10 side) is a breakdown voltage layer 11a, and its thickness is defined as Tp . Further, in the n-type semiconductor layer 11, a region above the height of the bottom of the trench 16 (on the source electrode 14 side) is a channel layer 11b, and a contact layer 11c is provided near the upper end of the channel layer 11b.

耐圧層11aの厚さTは、トレンチ型MOSFET1の耐圧特性を決定するパラメータの1つであり、Gaの絶縁破壊電界強度をバンドギャップからの推定値である8MV/cm一定と仮定すると、例えば、家電や車載などに用いられる耐圧600Vの性能を得るためには少なくとも1~2μm程度以上必要であり、産業機器などに用いられる耐圧1200Vを得るためには3μm程度以上、新幹線など大型の輸送設備に用いられる耐圧3300Vを得るためには8~9μm程度以上、発送電などの大電力用途での耐圧6600Vを得るためには16~17μm程度以上、中圧遮断機での耐圧1.2万Vを得るためには30μm程度以上、高圧遮断機での耐圧10万Vを得るためには250μm程度以上必要である。 The thickness T p of the breakdown voltage layer 11a is one of the parameters that determines the breakdown voltage characteristics of the trench MOSFET 1, and it is assumed that the breakdown electric field strength of Ga 2 O 3 is constant at 8 MV/cm, which is the estimated value from the band gap. For example, in order to obtain performance with a withstand voltage of 600 V used in home appliances and automobiles, it is necessary to have a thickness of at least 1 to 2 μm, and in order to obtain a withstand voltage of 1200 V used in industrial equipment, it is necessary to have a thickness of approximately 3 μm or more. In order to obtain a withstand voltage of 3,300V used in transportation equipment, it is necessary to have a voltage of approximately 8 to 9 μm or more, and to obtain a withstand voltage of 6,600 V for large power applications such as power transmission, it is approximately 16 to 17 μm or more, and a withstand voltage of 1. In order to obtain 20,000 V, it is necessary to have a thickness of about 30 μm or more, and to obtain a withstand voltage of 100,000 V in a high-voltage circuit breaker, it is necessary to have a thickness of about 250 μm or more.

なお、Gaの最大絶縁破壊電界強度は現時点で実測できておらず、仮に実測されている中での最大値である4MV/cm程度だった場合、上記の膜厚は2倍必要となる。例えば、耐圧10万Vを得るためには500μm程度必要になる。600Vより低い小型家電用の耐圧を得る場合には、厚さTは1μmより薄くてもよいが、製造安定性の点から、最低でも1μm程度はあることが好ましい。そのため、厚さTは1μm以上かつ500μm以下であることが好ましい。 Note that the maximum dielectric breakdown electric field strength of Ga 2 O 3 has not been measured at this time, and if it were about 4 MV/cm, which is the maximum value among those actually measured, the above film thickness would need to be twice as large. Become. For example, in order to obtain a breakdown voltage of 100,000 V, a thickness of about 500 μm is required. In order to obtain a withstand voltage lower than 600V for small home appliances, the thickness T p may be thinner than 1 μm, but from the viewpoint of manufacturing stability, it is preferably at least about 1 μm. Therefore, the thickness T p is preferably 1 μm or more and 500 μm or less.

耐圧層11aのドナー濃度は、トレンチ型MOSFET1の耐圧特性を決定するパラメータの1つであり、Gaの絶縁破壊電界強度を8MV/cm一定と仮定すると、耐圧600Vを得るためには1.8×1017cm-3程度以下、耐圧1200Vを得るためには9×1016cm-3程度以下、耐圧3300Vを得るためには3×1016cm-3程度以下、耐圧1万Vを得るためには1×1016cm-3程度以下が好ましい。600Vより低い耐圧を得る場合や1万Vより高い耐圧を得るためには、それぞれ適切な濃度に設定すればよい。また、Gaの最大絶縁破壊電界強度が4MV/cm程度であった場合、上記の濃度はそれぞれ5分の1程度以下となる。 The donor concentration of the breakdown voltage layer 11a is one of the parameters that determines the breakdown voltage characteristics of the trench MOSFET 1. Assuming that the dielectric breakdown field strength of Ga 2 O 3 is constant at 8 MV/cm, the donor concentration of the breakdown voltage layer 11a is 1. .8 x 10 17 cm -3 or less, to obtain a withstand voltage of 1200V, it should be about 9 x 10 16 cm -3 or less, to obtain a withstand voltage of 3300V, it should be about 3 x 10 16 cm -3 or less, a withstand voltage of 10,000 V. In order to achieve this, it is preferable to have a particle diameter of about 1×10 16 cm −3 or less. In order to obtain a breakdown voltage lower than 600V or higher than 10,000V, appropriate concentrations may be set. Further, when the maximum dielectric breakdown field strength of Ga 2 O 3 is about 4 MV/cm, each of the above concentrations becomes about one-fifth or less.

チャネル層11bのチャネル濃度(隣接する2つのゲート電極12の間の領域におけるドナー濃度)とメサ形状部17の幅であるメサ幅Wは、トレンチ型MOSFET1がノーマリーオフ型かノーマリーオン型かを決定するパラメータの1つであり、ノーマリーオフ型を形成する場合はチャネル濃度を低くメサ幅Wを狭く、ノーマリーオン型を形成する場合はチャネル濃度を高くメサ幅Wを広くすればよい。 The channel concentration of the channel layer 11b (the donor concentration in the region between two adjacent gate electrodes 12) and the mesa width Wm , which is the width of the mesa-shaped portion 17, are determined depending on whether the trench MOSFET 1 is a normally-off type or a normally-on type. When forming a normally-off type, the channel concentration is low and the mesa width W m is narrow; when forming a normally-on type, the channel concentration is high and the mesa width W m is wide. do it.

トレンチ型MOSFET1がノーマリーオフ型である場合は、オフリーク電流を抑えるため、例えば、チャネル層11bのチャネル濃度が1×1015cm-以下である場合にはメサ幅Wは0.5μm以下、チャネル層11bのチャネル濃度が1×1015cm-より大きく1×1016cm-以下である場合にはメサ幅Wは0.4μm以下、チャネル層11bのチャネル濃度が1×1016cm-より大きく2×1016cm-以下である場合にはメサ幅Wは0.3μm以下、チャネル層11bのチャネル濃度が2×1016cm-より大きく6×1016cm-以下である場合にはメサ幅Wは0.2μm以下であることが好ましい。 When the trench type MOSFET 1 is a normally-off type, in order to suppress off-leakage current, for example, when the channel concentration of the channel layer 11b is 1×10 15 cm -3 or less, the mesa width W m is set to 0.5 μm or less. , when the channel concentration of the channel layer 11b is greater than 1×10 15 cm- 3 and less than 1×10 16 cm- 3 , the mesa width W m is 0.4 μm or less, and the channel concentration of the channel layer 11b is 1×10 When the mesa width W m is greater than 16 cm- 3 and less than or equal to 2×10 16 cm- 3 , the mesa width W m is less than or equal to 0.3 μm, and when the channel concentration of the channel layer 11b is greater than 2×10 16 cm- 3 and less than 6×10 16 cm. - 3 or less, the mesa width W m is preferably 0.2 μm or less.

また、メサ形状の領域の幅Wが小さいほどチャネル濃度を高くできるため、チャネル層11bのオン抵抗を低減できる。一方で、幅Wが狭いほど製造難易度が上がり、それに起因して製造歩留まりが低下するという問題がある。 Furthermore, the smaller the width W m of the mesa-shaped region, the higher the channel concentration can be, and therefore the on-resistance of the channel layer 11b can be reduced. On the other hand, there is a problem in that the narrower the width W m is, the more difficult it is to manufacture, resulting in a lower manufacturing yield.

このため、例えば、一般的なステッパーを用いたパターニングによりトレンチ16を形成する場合は、メサ形状の領域の幅Wは0.5μm以上かつ2μm以下であることが好ましく、より解像度の高いEB(electron beam)描画によるパターニングによりトレンチ16を形成する場合は、メサ形状の領域の幅Wは0.1μm以上かつ2μm以下であることが好ましい。 For this reason, for example, when forming the trench 16 by patterning using a general stepper, the width W m of the mesa-shaped region is preferably 0.5 μm or more and 2 μm or less, and the EB ( When the trench 16 is formed by patterning using (electron beam) drawing, the width W m of the mesa-shaped region is preferably 0.1 μm or more and 2 μm or less.

トレンチ16の幅Wについても、露光装置の解像度に依存するため、使用する露光装置の種類に応じて、メサ形状の領域の幅Wと同様の数値範囲で設定されることが好ましい。 The width W t of the trench 16 also depends on the resolution of the exposure apparatus, so it is preferably set within the same numerical range as the width W m of the mesa-shaped region, depending on the type of exposure apparatus used.

コンタクト層11cの厚さは、例えば、10nm以上かつ5μm以下である。コンタクト層11cのドナー濃度は、チャネル層11bのチャネル濃度よりも高く、例えば、1×1018cm-3以上かつ1×1021cm-3以下である。 The thickness of the contact layer 11c is, for example, 10 nm or more and 5 μm or less. The donor concentration of the contact layer 11c is higher than the channel concentration of the channel layer 11b, for example, 1×10 18 cm −3 or more and 1×10 21 cm −3 or less.

ゲート電極12は、導体、すなわちNi等の金属や、高濃度のドナーを含む半導体からなる。オフリーク電流を抑えるため、例えば、ゲート電極12の仕事関数は5.0eV以上であることが好ましく、ゲート電極12のゲート長(n型半導体層11の厚さ方向の長さ)Lは1μm以上であることが好ましく、ゲート電極12とコンタクト層11cとの距離Lは0.1μm以上であることが好ましい。 The gate electrode 12 is made of a conductor, that is, a metal such as Ni or a semiconductor containing a high concentration of donors. In order to suppress off-leak current, the work function of the gate electrode 12 is preferably 5.0 eV or more, and the gate length (length in the thickness direction of the n-type semiconductor layer 11) L g of the gate electrode 12 is 1 μm or more, for example. The distance Lc between the gate electrode 12 and the contact layer 11c is preferably 0.1 μm or more.

ゲート絶縁膜13は、例えば、ゲート電極12の側面及び底面を覆い、ゲート電極12をn型半導体層11から絶縁する部分13aと、ゲート電極12の上面を覆い、ゲート電極12をソース電極14から絶縁する部分13bを有する。ゲート絶縁膜13の部分13aと部分13bは、例えば、それぞれHfO、SiOからなる。ゲート絶縁膜13の部分13aは単一の膜であり、例えば、1つの工程において、1つの材料から一体的に形成される。ゲート絶縁膜13の部分13bの厚さは、例えば、50nm以上かつ2000nm以下である。 The gate insulating film 13 covers, for example, the side and bottom surfaces of the gate electrode 12 , covers a portion 13 a that insulates the gate electrode 12 from the n-type semiconductor layer 11 , and the upper surface of the gate electrode 12 , and insulates the gate electrode 12 from the source electrode 14 . It has an insulating portion 13b. The portion 13a and the portion 13b of the gate insulating film 13 are made of, for example, HfO 2 and SiO 2 , respectively. The portion 13a of the gate insulating film 13 is a single film, and is formed integrally from one material in one process, for example. The thickness of the portion 13b of the gate insulating film 13 is, for example, 50 nm or more and 2000 nm or less.

n型半導体層11は、例えば、HVPE法等により形成されたエピタキシャル成長膜からなる。HVPE法によりn型半導体層11を形成する場合、Ga系単結晶の原料やドーパント原料に塩化物ガスが用いられるため、n型半導体層11はGa系単結晶の原料やドーパント原料に由来するClを含む。 The n-type semiconductor layer 11 is made of, for example, an epitaxially grown film formed by HVPE method or the like. When forming the n- type semiconductor layer 11 by the HVPE method, chloride gas is used as the Ga 2 O 3 single crystal raw material or dopant raw material. Contains Cl derived from dopant raw materials.

HVPE法を用いる場合、結晶成長速度が速いため、成膜時間の短縮やコストの低減を図ることができる。この点、n型半導体層11を厚く形成する場合に特に有利である。また、HVPE法を用いる場合、結晶品質がよいn型半導体層11を形成できるため、製造歩留まりを向上させることができる。また、高純度なn型半導体層11を形成できるため、ドナー濃度を高精度に制御することができる。 When using the HVPE method, since the crystal growth rate is fast, it is possible to shorten the film formation time and reduce costs. This point is particularly advantageous when forming the n-type semiconductor layer 11 thickly. Further, when using the HVPE method, the n-type semiconductor layer 11 with good crystal quality can be formed, so that the manufacturing yield can be improved. Furthermore, since the n-type semiconductor layer 11 with high purity can be formed, the donor concentration can be controlled with high precision.

なお、コンタクト層11cは、エピタキシャル成長により形成されたチャネル層11bの上部に、イオン注入法を用いてドナーを注入することにより形成してもよいが、ドナー不純物を添加しながらのGa系単結晶の結晶成長により形成することにより、製造コストを抑えることができる。 Note that the contact layer 11c may be formed by implanting a donor into the upper part of the channel layer 11b formed by epitaxial growth using an ion implantation method; By forming by crystal growth of a single crystal, manufacturing costs can be suppressed.

ソース電極14は、n型半導体層11の上面18上に形成され、メサ形状部17に接続される。ドレイン電極15は、図1に示されるように、n型半導体基板10のn型半導体層11と反対側の面に接続されるが、トレンチ型MOSFET1がn型半導体基板10を含まない場合には、n型半導体層11のソース電極14と反対側の面に接続されてもよい。すなわち、ドレイン電極15は、n型半導体層11のソース電極14と反対側に直接又は間接的に接続される。 Source electrode 14 is formed on top surface 18 of n-type semiconductor layer 11 and connected to mesa-shaped portion 17 . As shown in FIG. 1, the drain electrode 15 is connected to the surface of the n-type semiconductor substrate 10 opposite to the n-type semiconductor layer 11, but when the trench MOSFET 1 does not include the n-type semiconductor substrate 10, , may be connected to the surface of the n-type semiconductor layer 11 opposite to the source electrode 14. That is, the drain electrode 15 is directly or indirectly connected to the side of the n-type semiconductor layer 11 opposite to the source electrode 14.

ソース電極14、ドレイン電極15は、n型半導体層11のコンタクト層11c、n型半導体基板10にそれぞれオーミック接続される。ソース電極14及びドレイン電極15は、例えば、Ti/Au積層構造を有する。 The source electrode 14 and the drain electrode 15 are ohmically connected to the contact layer 11c of the n-type semiconductor layer 11 and the n-type semiconductor substrate 10, respectively. The source electrode 14 and the drain electrode 15 have, for example, a Ti/Au stacked structure.

図2は、トレンチ型MOSFET1のトレンチ16の底部近傍を拡大した、図1の部分拡大図である。図2においては、等電位線(点線)により、n型半導体層11中の電界分布の一例が模式的に示されている。また、図2の電界分布の“Emax”で示される領域は、電界強度が最大値Emaxをとる領域である。 FIG. 2 is a partially enlarged view of FIG. 1 showing the vicinity of the bottom of the trench 16 of the trench MOSFET 1. As shown in FIG. In FIG. 2, an example of the electric field distribution in the n-type semiconductor layer 11 is schematically shown by equipotential lines (dotted lines). Further, the region indicated by "E max " in the electric field distribution in FIG. 2 is a region where the electric field strength takes the maximum value E max .

n型半導体層11中の最大電界強度Emaxの大きさは、図2に示されるトレンチ16の幅方向(幅Wの方向)の断面における、トレンチ16の底部の縁(幅方向の端部)160の曲線の頂点における曲率半径Rに依存する。 The magnitude of the maximum electric field strength E max in the n-type semiconductor layer 11 is determined from the edge of the bottom of the trench 16 (the edge in the width direction) in the cross section of the trench 16 in the width direction (width W t direction) shown in FIG. ) 160 depends on the radius of curvature R 1 at the apex of the curve.

図2に示される円Cは、トレンチ16の幅方向の断面における、トレンチ16の底部の縁160の曲線の頂点近傍を円弧と近似したときのその円弧を含む円であり、円Cの半径が曲率半径Rに相当する。また、図2に示される円Cは、トレンチ16の幅方向の断面における、ゲート電極12の底部の縁120の曲線の頂点近傍を円弧と近似したときのその円弧を含む円であり、円Cの半径に相当するゲート電極12の底部の縁120の曲線の頂点における曲率半径をRとする。 The circle C1 shown in FIG. 2 is a circle that includes an arc when the vicinity of the apex of the curve of the bottom edge 160 of the trench 16 is approximated as a circular arc in the cross section in the width direction of the trench 16, and the circle C1 shown in FIG. The radius corresponds to the radius of curvature R1 . Further, a circle C2 shown in FIG. 2 is a circle that includes an arc when the vicinity of the apex of the curve of the bottom edge 120 of the gate electrode 12 is approximated as a circular arc in the cross section of the trench 16 in the width direction. Let R2 be the radius of curvature at the apex of the curve of the bottom edge 120 of the gate electrode 12, which corresponds to the radius of C2 .

n型半導体層11中の最大電界強度Emaxの大きさを低く抑えるためには、この曲率半径Rをトレンチ16の幅Wで規格化した値、すなわちトレンチ16の幅Wで除した値が、0.0125以上、0.25以下の範囲内にあることが好ましい。 In order to keep the maximum electric field strength Emax in the n-type semiconductor layer 11 low, this radius of curvature R1 is normalized by the width Wt of the trench 16, that is, divided by the width Wt of the trench 16. The value is preferably in the range of 0.0125 or more and 0.25 or less.

ここで、曲率半径Rをトレンチ16の幅Wで規格化するのは、曲率半径Rが同じでもトレンチ16の幅Wによって最大電界強度Emaxの大きさが変わる場合があるためである。例えば、曲率半径Rに対するトレンチ16の幅Wが小さい場合は、トレンチ16の底部の両側の縁160の近傍の電界が合成され、最大電界強度Emaxが大きくなる。 Here, the radius of curvature R 1 is normalized by the width W t of the trench 16 because even if the radius of curvature R 1 is the same, the maximum electric field strength E max may change depending on the width W t of the trench 16. be. For example, when the width W t of the trench 16 with respect to the radius of curvature R 1 is small, the electric fields near the edges 160 on both sides of the bottom of the trench 16 are combined, and the maximum electric field strength E max becomes large.

ゲート絶縁膜13(部分13a)におけるトレンチ16の底部の中心に接する部分の厚さTは、n型半導体層11(主に耐圧層11a)中の電界強度を低く抑えるため、例えば、0.2μm以上、0.5μm以下の範囲内にあることが好ましい。また、ゲート絶縁膜13の形成容易性の観点からは、厚さTは0.1μm以上、0.2μm未満の範囲内にあることが好ましい。 The thickness T1 of the portion of the gate insulating film 13 (portion 13a) that is in contact with the center of the bottom of the trench 16 is set to, for example, 0.05 mm in order to keep the electric field strength in the n-type semiconductor layer 11 (mainly the breakdown voltage layer 11a) low. It is preferably within the range of 2 μm or more and 0.5 μm or less. Further, from the viewpoint of ease of forming the gate insulating film 13, the thickness T1 is preferably in a range of 0.1 μm or more and less than 0.2 μm.

ゲート絶縁膜13(部分13a)におけるトレンチ16の側部に接する部分の厚さTは、ゲートリーク電流を抑えるため、例えば、0.02μm以上であることが好ましい。 The thickness T2 of the portion of the gate insulating film 13 (portion 13a) in contact with the side of the trench 16 is preferably, for example, 0.02 μm or more in order to suppress gate leakage current.

ゲート絶縁膜13は、例えば、原子層堆積法(ALD)により形成される。ALDなどを用いた一般的な工程によりゲート絶縁膜13の部分13aを形成すると、その厚さは均一になる。例えば、ゲート絶縁膜13(部分13a)におけるトレンチ16の底部の縁160の湾曲部の頂点に接する部分の厚さTと厚さTを異ならせる場合は、例えば、スパッタリングなどの異方性の強い成膜法とALDを組み合わせる2段階成膜や、成膜後のエッチング加工を用いることができる。 The gate insulating film 13 is formed by, for example, atomic layer deposition (ALD). When the portion 13a of the gate insulating film 13 is formed by a general process using ALD or the like, its thickness becomes uniform. For example, when the thickness T 3 of the gate insulating film 13 (portion 13a) at the portion in contact with the apex of the curved portion of the edge 160 at the bottom of the trench 16 is made to be different from the thickness T 1 , for example, an anisotropic method such as sputtering may be used. It is possible to use a two-step film formation that combines a strong film formation method and ALD, or an etching process after film formation.

図3は、第1の実施の形態に係るトレンチ型MOSFET1の変形例の垂直断面の部分拡大図である。図3に示される変形例においては、n型半導体層11が上部の縁に窪み110を有し、その全体がメサ形状となっている。このメサ形状においては、図3に示されるように、n型半導体層11の上部の縁が、そこに含まれるゲート電極12とそれを覆うゲート絶縁膜13の一部とともに、窪み110によって削り取られており、窪み110の内面にゲート電極12が露出している。なお、図示しないが、通常、表面保護のために、ゲート電極12が露出している窪み110の内面上に絶縁膜が形成される。 FIG. 3 is a partially enlarged vertical cross-sectional view of a modification of the trench MOSFET 1 according to the first embodiment. In the modification shown in FIG. 3, the n-type semiconductor layer 11 has a recess 110 at its upper edge, and the entire recess has a mesa shape. In this mesa shape, as shown in FIG. 3, the upper edge of the n-type semiconductor layer 11 is removed by the depression 110 along with the gate electrode 12 included therein and a part of the gate insulating film 13 covering it. The gate electrode 12 is exposed on the inner surface of the recess 110. Although not shown, an insulating film is usually formed on the inner surface of the recess 110 where the gate electrode 12 is exposed to protect the surface.

n型半導体層11がメサ形状を有する場合、窪み110の底部の内側の縁111の近傍に電界が集中し、この電界の大きさは、窪み110のトレンチ16の底からの深さであるメサ深さDに依存する。このため、ソース電極14とドレイン電極15との間に印加する電圧の大きさなどに応じてメサ深さDを適切な大きさに設定することにより、n型半導体層11(主に耐圧層11a)中の電界強度を低く抑えることができる。 When the n-type semiconductor layer 11 has a mesa shape, an electric field is concentrated near the inner edge 111 of the bottom of the recess 110, and the magnitude of this electric field is equal to the depth of the mesa from the bottom of the trench 16 of the recess 110. Depends on the depth D m . Therefore, by setting the mesa depth Dm to an appropriate size depending on the magnitude of the voltage applied between the source electrode 14 and the drain electrode 15, the n-type semiconductor layer 11 (mainly the voltage resistance layer The electric field strength in 11a) can be kept low.

(実施の形態の効果)
上記実施の形態に係るトレンチ型MOSFET1によれば、トレンチ16の形状により優れた耐圧特性を得られるため、n型半導体層11の抵抗を増加させることなく所望の耐圧を得ることができる。このため、高耐圧と低損失を高い水準で両立させることができる。
(Effects of embodiment)
According to the trench MOSFET 1 according to the embodiment described above, since excellent breakdown voltage characteristics can be obtained due to the shape of the trench 16, a desired breakdown voltage can be obtained without increasing the resistance of the n-type semiconductor layer 11. Therefore, it is possible to achieve both high breakdown voltage and low loss at a high level.

上記実施の形態に係るトレンチ型MOSFET1について、トレンチ16の幅方向の断面におけるトレンチ16の底部の縁160の曲線の頂点における曲率半径Rとn型半導体層11中の電界強度の最大値Emaxとの関係をシミュレーションにより調べた。 Regarding the trench MOSFET 1 according to the above embodiment, the radius of curvature R 1 at the apex of the curve of the bottom edge 160 of the trench 16 in the cross section in the width direction of the trench 16 and the maximum value E max of the electric field strength in the n-type semiconductor layer 11 We investigated the relationship between

このシミュレーションにおいては、n型半導体層11の材料(母結晶)をGa単結晶、ゲート絶縁膜13の材料をHfO、ゲート絶縁膜13におけるトレンチ16の底部に接する部分の厚さTを0.05μm、メサ形状部17の幅Wを0.4μm、耐圧層11aの厚さT(n型半導体層11における、トレンチ16の底からn型半導体基板10との界面までの距離)を38μm、耐圧層11aのドナー濃度を8×1015cm-3、チャネル層11bのドナー濃度を1×1016cm-3と設定し、ソース電極14及びゲート電極を接地(0Vを印加)し、ドレイン電極15に10kVの電圧を印加した。 In this simulation, the material (mother crystal) of the n-type semiconductor layer 11 is Ga 2 O 3 single crystal, the material of the gate insulating film 13 is HfO 2 , and the thickness of the portion of the gate insulating film 13 in contact with the bottom of the trench 16 is T. 1 is 0.05 μm, the width W m of the mesa-shaped portion 17 is 0.4 μm, and the thickness T p of the breakdown voltage layer 11a (from the bottom of the trench 16 in the n-type semiconductor layer 11 to the interface with the n-type semiconductor substrate 10 The donor concentration of the breakdown voltage layer 11a is set to 8×10 15 cm −3 and the donor concentration of the channel layer 11b is set to 1×10 16 cm −3 , and the source electrode 14 and gate electrode are grounded (0 V is applied). ), and a voltage of 10 kV was applied to the drain electrode 15.

次の表1に、トレンチ16の幅方向の断面における、トレンチ16の底部の縁160の曲線の頂点における曲率半径Rと、ゲート電極12の底部の縁120の曲線の頂点における曲率半径Rを変化させたときのn型半導体層11中の電界強度の最大値Emax(MV/cm)の値を示す。 The following Table 1 shows the radius of curvature R 1 at the apex of the curve of the bottom edge 160 of the trench 16 and the radius of curvature R 2 at the apex of the curve of the bottom edge 120 of the gate electrode 12 in the cross section of the trench 16 in the width direction. The maximum value E max (MV/cm) of the electric field strength in the n-type semiconductor layer 11 is shown when changing the value of E max (MV/cm).

Figure 0007382558000001
Figure 0007382558000001

次の表2は、表1の曲率半径Rと曲率半径Rをそれぞれトレンチ16の幅Wで規格化した曲率半径Rn1と曲率半径Rn2で置き換えた表である。なお、幅Wでの規格化により、ゲート絶縁膜13の厚さTは0.125となる。 The following Table 2 is a table in which the radius of curvature R 1 and the radius of curvature R 2 in Table 1 are replaced with the radius of curvature R n1 and the radius of curvature R n2 , respectively, which are normalized by the width W t of the trench 16. Note that the thickness T 1 of the gate insulating film 13 is 0.125 due to the standardization based on the width W t .

Figure 0007382558000002
Figure 0007382558000002

表2によれば、曲率半径Rをトレンチ16の幅Wで規格化した曲率半径Rn1が0.0125以上、0.25以下の範囲内にあるときに、n型半導体層11中の電界強度の最大値Emaxが8MV/cm以下に抑えられている。8MV/cmは、上述のように、バンドギャップの大きさから推定されるGaの絶縁破壊電界強度である。 According to Table 2, when the radius of curvature R n1 , which is the radius of curvature R 1 normalized by the width W t of the trench 16, is within the range of 0.0125 or more and 0.25 or less, the The maximum value E max of electric field strength is suppressed to 8 MV/cm or less. As mentioned above, 8 MV/cm is the dielectric breakdown field strength of Ga 2 O 3 estimated from the size of the band gap.

この結果から、n型半導体層11中の電界の最大値Emaxの大きさを低く抑えるためには、この曲率半径Rをトレンチ16の幅Wで規格化した値、すなわちトレンチ16の幅Wで除した値が、0.0125以上、0.25以下の範囲内にあることが好ましいといえる。 From this result, in order to keep the maximum value E max of the electric field in the n-type semiconductor layer 11 low, the radius of curvature R 1 must be normalized by the width W t of the trench 16, that is, the width of the trench 16. It can be said that it is preferable that the value divided by W t is within the range of 0.0125 or more and 0.25 or less.

なお、一般に、導体中の電荷は互いに反発するため導体の角部に集中し、その角部の曲率半径が小さいほど電界が集中しやすい。このため、従来は、トレンチ型MOSFETにおけるゲート電極の底部の縁の曲率半径が大きいほど電界の集中が抑えられると考えられていた。しかしながら、本発明者による鋭意研究の結果、表1に示されるように、ゲート電極12の底部の縁の曲線の頂点における曲率半径と等しい曲率半径Rが電界強度に及ぼす影響はそれほど大きくなく、従来は電界強度との関係が薄いと考えられていたトレンチ16の底部の縁160の曲線の頂点における曲率半径Rが電界強度に及ぼす影響が大きいという、従来の考えからは予測し難い結果が得られた。 Note that, in general, charges in a conductor repel each other and therefore concentrate at the corners of the conductor, and the smaller the radius of curvature of the corner, the easier it is for the electric field to concentrate. For this reason, it has conventionally been thought that the larger the radius of curvature of the bottom edge of the gate electrode in a trench MOSFET, the more the electric field concentration can be suppressed. However, as a result of intensive research by the present inventors, as shown in Table 1, the radius of curvature R2 , which is equal to the radius of curvature at the apex of the curve at the bottom edge of the gate electrode 12, does not have a large effect on the electric field strength. The radius of curvature R1 at the apex of the curve of the edge 160 at the bottom of the trench 16, which was previously thought to have a weak relationship with the electric field strength, has a large effect on the electric field strength.This result is difficult to predict from the conventional idea. Obtained.

次の表3に、表1の範囲で曲率半径Rと曲率半径Rを変化させたときの、ゲート絶縁膜13(部分13a)におけるトレンチ16の底部の縁160の湾曲部の頂点に接する部分の厚さTの値を示す。 The following Table 3 shows the contact with the apex of the curved part of the edge 160 at the bottom of the trench 16 in the gate insulating film 13 (portion 13a) when the radius of curvature R1 and the radius of curvature R2 are varied within the ranges shown in Table 1. Indicates the value of the thickness T 3 of the part.

Figure 0007382558000003
Figure 0007382558000003

次の表4は、表3の曲率半径Rと曲率半径Rをそれぞれトレンチ16の幅Wで規格化した曲率半径Rn1と曲率半径Rn2で置き換えた表である。 The following Table 4 is a table in which the radius of curvature R 1 and the radius of curvature R 2 in Table 3 are replaced with the radius of curvature R n1 and the radius of curvature R n2 , respectively, which are normalized by the width W t of the trench 16.

Figure 0007382558000004
Figure 0007382558000004

なお、本実施例のシミュレーションにおいては、n型半導体層11の材料(母結晶)をGa単結晶に設定したが、他のGa系単結晶に設定した場合でも同様の結果が得られる。同様に、ゲート絶縁膜13の材料をHfOに設定したが、SiOに設定した場合でも同様の結果が得られる。 Note that in the simulation of this example, the material (mother crystal) of the n-type semiconductor layer 11 was set to Ga 2 O 3 single crystal, but similar results would be obtained even if other Ga 2 O 3 type single crystals were used. is obtained. Similarly, although the material of the gate insulating film 13 is set to HfO 2 , similar results can be obtained even if it is set to SiO 2 .

上記実施の形態に係るトレンチ型MOSFET1について、トレンチ型MOSFET1がノーマリーオフ型である場合の、チャネル層11bのチャネル濃度(隣接する2つのゲート電極12の間の領域におけるドナー濃度)とメサ幅Wがオフリーク電流(オフ状態で生じるリーク電流)の大きさに及ぼす影響をシミュレーションにより調べた。 Regarding the trench MOSFET 1 according to the above embodiment, the channel concentration of the channel layer 11b (donor concentration in the region between two adjacent gate electrodes 12) and the mesa width W when the trench MOSFET 1 is a normally-off type. The effect of m on the magnitude of off-leakage current (leakage current that occurs in the off-state) was investigated by simulation.

このシミュレーションにおいては、n型半導体層11の材料(母結晶)をGa単結晶、ゲート絶縁膜13の材料をHfO、ゲート絶縁膜13におけるトレンチ16の底部に接する部分の厚さTを0.05μm、耐圧層11aの厚さT(n型半導体層11における、トレンチ16の底からn型半導体基板10との界面までの距離)を50μmと設定し、ソース電極14及びゲート電極を接地(0Vを印加)し、ドレイン電極15に10kVの電圧を印加した。 In this simulation, the material (mother crystal) of the n-type semiconductor layer 11 is Ga 2 O 3 single crystal, the material of the gate insulating film 13 is HfO 2 , and the thickness of the portion of the gate insulating film 13 in contact with the bottom of the trench 16 is T. 1 is set to 0.05 μm, the thickness T p of the breakdown voltage layer 11a (the distance from the bottom of the trench 16 to the interface with the n-type semiconductor substrate 10 in the n-type semiconductor layer 11) is set to 50 μm, and the source electrode 14 and gate The electrode was grounded (0 V was applied), and a voltage of 10 kV was applied to the drain electrode 15.

図4(a)~(c)、図5(a)~(c)は、チャネル層11bのチャネル濃度とメサ幅Wを変化させたときの、ソース電極14とドレイン電極15との間に印加される電圧と、オフリーク電流との関係を示すグラフである。図4(a)~(c)、図5(a)~(c)の各々においては、チャネルの開閉の指標となるオフリーク電流の大きさである1×10-4A/cmが点線で示されている。 4(a) to (c) and FIG. 5(a) to (c) show the relationship between the source electrode 14 and the drain electrode 15 when the channel concentration of the channel layer 11b and the mesa width W m are changed. It is a graph showing the relationship between applied voltage and off-leakage current. In each of Figures 4(a) to (c) and 5(a) to (c), the dotted line indicates the magnitude of off-leakage current, 1×10 -4 A/ cm2 , which is an indicator of channel opening/closing. It is shown.

図4(a)、(b)、(c)は、それぞれチャネル層11bのチャネル濃度が1×1015cm-、5×1015cm-、1×1016cm-であるときの特性を示す。図5(a)、(b)、(c)は、それぞれチャネル層11bのチャネル濃度が2×1016cm-、4×1016cm-、6×1016cm-であるときの特性を示す。 4(a), (b), and (c) show the case where the channel concentration of the channel layer 11b is 1×10 15 cm- 3 , 5×10 15 cm- 3 , and 1×10 16 cm- 3, respectively. Show characteristics. 5(a), (b), and (c) show the case where the channel concentration of the channel layer 11b is 2×10 16 cm- 3 , 4×10 16 cm- 3 , and 6×10 16 cm- 3, respectively. Show characteristics.

図4(a)によれば、チャネル層11bのチャネル濃度が1×1015cm-である場合、メサ幅Wが0.5μm以下であれば、ソース電極14とドレイン電極15との間に10kVの電圧を印加しても、オフリーク電流の大きさが1×10-4A/cmに達せず、チャネルが閉じているといえる。 According to FIG. 4(a), when the channel concentration of the channel layer 11b is 1×10 15 cm- 3 , if the mesa width W m is 0.5 μm or less, there is a gap between the source electrode 14 and the drain electrode 15. Even when a voltage of 10 kV is applied to the channel, the magnitude of the off-leakage current does not reach 1×10 −4 A/cm 2 , and it can be said that the channel is closed.

図4(b)によれば、チャネル層11bのチャネル濃度が5×1015cm-である場合、メサ幅Wが0.4μm以下であれば、ソース電極14とドレイン電極15との間に10kVの電圧を印加しても、オフリーク電流の大きさが1×10-4A/cmに達せず、チャネルが閉じているといえる。 According to FIG. 4(b), when the channel concentration of the channel layer 11b is 5×10 15 cm- 3 , if the mesa width W m is 0.4 μm or less, there is a gap between the source electrode 14 and the drain electrode 15. Even when a voltage of 10 kV is applied to the channel, the magnitude of the off-leakage current does not reach 1×10 −4 A/cm 2 , and it can be said that the channel is closed.

図4(c)によれば、チャネル層11bのチャネル濃度が1×1016cm-である場合、メサ幅Wが0.4μm以下であれば、ソース電極14とドレイン電極15との間に10kVの電圧を印加しても、オフリーク電流の大きさが1×10-4A/cmに達せず、チャネルが閉じているといえる。 According to FIG. 4(c), when the channel concentration of the channel layer 11b is 1×10 16 cm- 3 , if the mesa width W m is 0.4 μm or less, there is a gap between the source electrode 14 and the drain electrode 15. Even when a voltage of 10 kV is applied to the channel, the magnitude of the off-leakage current does not reach 1×10 −4 A/cm 2 , and it can be said that the channel is closed.

図5(a)によれば、チャネル層11bのチャネル濃度が2×1016cm-である場合、メサ幅Wが0.3μm以下であれば、ソース電極14とドレイン電極15との間に10kVの電圧を印加しても、オフリーク電流の大きさが1×10-4A/cmに達せず、チャネルが閉じているといえる。 According to FIG. 5(a), when the channel concentration of the channel layer 11b is 2×10 16 cm- 3 , if the mesa width W m is 0.3 μm or less, there is a gap between the source electrode 14 and the drain electrode 15. Even when a voltage of 10 kV is applied to the channel, the magnitude of the off-leakage current does not reach 1×10 −4 A/cm 2 , and it can be said that the channel is closed.

図5(b)によれば、チャネル層11bのチャネル濃度が4×1016cm-である場合、メサ幅Wが0.2μm以下であれば、ソース電極14とドレイン電極15との間に10kVの電圧を印加しても、オフリーク電流の大きさが1×10-4A/cmに達せず、チャネルが閉じているといえる。 According to FIG. 5(b), when the channel concentration of the channel layer 11b is 4×10 16 cm- 3 , if the mesa width W m is 0.2 μm or less, there is a gap between the source electrode 14 and the drain electrode 15. Even when a voltage of 10 kV is applied to the channel, the magnitude of the off-leakage current does not reach 1×10 −4 A/cm 2 , and it can be said that the channel is closed.

図5(c)によれば、チャネル層11bのチャネル濃度が6×1016cm-である場合、メサ幅Wが0.2μm以下であれば、ソース電極14とドレイン電極15との間に10kVの電圧を印加しても、オフリーク電流の大きさが1×10-4A/cmに達せず、チャネルが閉じているといえる。 According to FIG. 5(c), when the channel concentration of the channel layer 11b is 6×10 16 cm- 3 , if the mesa width W m is 0.2 μm or less, there is a gap between the source electrode 14 and the drain electrode 15. Even when a voltage of 10 kV is applied to the channel, the magnitude of the off-leakage current does not reach 1×10 −4 A/cm 2 , and it can be said that the channel is closed.

これらの結果から、トレンチ型MOSFET1がノーマリーオフ型である場合は、オフリーク電流を抑えるため、チャネル層11bのチャネル濃度が1×1015cm-以下である場合にはメサ幅Wは0.5μm以下、チャネル層11bのチャネル濃度が1×1015cm-より大きく1×1016cm-以下である場合にはメサ幅Wは0.4μm以下、チャネル層11bのチャネル濃度が1×1016cm-より大きく2×1016cm-以下である場合にはメサ幅Wは0.3μm以下、チャネル層11bのチャネル濃度が2×1016cm-より大きく6×1016cm-以下である場合にはメサ幅Wは0.2μm以下であることが好ましいといえる。 From these results, when the trench type MOSFET 1 is a normally-off type, in order to suppress off-leakage current, the mesa width W m is set to 0 when the channel concentration of the channel layer 11b is 1×10 15 cm- 3 or less. When the channel concentration of the channel layer 11b is greater than 1×10 15 cm- 3 and less than 1×10 16 cm- 3 , the mesa width W m is 0.4 μm or less, and the channel concentration of the channel layer 11b is less than 0.5 μm. When the mesa width W m is greater than 1×10 16 cm- 3 and less than 2×10 16 cm- 3 , the mesa width W m is 0.3 μm or less, and when the channel concentration of the channel layer 11b is greater than 2×10 16 cm- 3 and 6× When it is 10 16 cm -3 or less, it is preferable that the mesa width W m is 0.2 μm or less.

なお、本実施例のシミュレーションにおいては、n型半導体層11の材料(母結晶)をGa単結晶に設定したが、他のGa系単結晶に設定した場合でも同様の結果が得られる。同様に、ゲート絶縁膜13の材料をHfOに設定したが、SiOに設定した場合でも同様の結果が得られる。 Note that in the simulation of this example, the material (mother crystal) of the n-type semiconductor layer 11 was set to Ga 2 O 3 single crystal, but similar results would be obtained even if other Ga 2 O 3 type single crystals were used. is obtained. Similarly, although the material of the gate insulating film 13 is set to HfO 2 , similar results can be obtained even if it is set to SiO 2 .

上記実施の形態に係るトレンチ型MOSFET1について、トレンチ型MOSFET1がノーマリーオフ型である場合の、ゲート電極12の仕事関数がオフリーク電流の大きさに及ぼす影響をシミュレーションにより調べた。 Regarding the trench MOSFET 1 according to the above embodiment, the effect of the work function of the gate electrode 12 on the magnitude of off-leakage current was investigated by simulation when the trench MOSFET 1 is a normally-off type.

このシミュレーションにおいては、n型半導体層11の材料(母結晶)をGa単結晶、ゲート絶縁膜13の材料をHfO、ゲート絶縁膜13におけるトレンチ16の底部に接する部分の厚さTを0.05μm、メサ形状部17の幅Wmを0.4μm、耐圧層11aの厚さT(n型半導体層11における、トレンチ16の底からn型半導体基板10との界面までの距離)を32.5μm、耐圧層11aのドナー濃度を1×1016cm-3、チャネル層11bのドナー濃度を1×1016cm-3と設定し、ソース電極14及びゲート電極を接地(0Vを印加)し、ドレイン電極15に10kVの電圧を印加した。 In this simulation, the material (mother crystal) of the n-type semiconductor layer 11 is Ga 2 O 3 single crystal, the material of the gate insulating film 13 is HfO 2 , and the thickness of the portion of the gate insulating film 13 in contact with the bottom of the trench 16 is T. 1 is 0.05 μm, the width W m of the mesa-shaped portion 17 is 0.4 μm, and the thickness T p of the breakdown voltage layer 11a (from the bottom of the trench 16 in the n-type semiconductor layer 11 to the interface with the n-type semiconductor substrate 10 The donor concentration of the breakdown voltage layer 11a is set to 1×10 16 cm −3 and the donor concentration of the channel layer 11b is set to 1×10 16 cm −3 , and the source electrode 14 and gate electrode are grounded (0 V). ), and a voltage of 10 kV was applied to the drain electrode 15.

図6は、ゲート電極12の仕事関数Wを変化させたときの、ソース電極14とドレイン電極15との間に印加される電圧と、オフリーク電流との関係を示すグラフである。図6においては、チャネルの開閉の指標となるオフリーク電流の大きさである1×10-4A/cmが点線で示されている。 FIG. 6 is a graph showing the relationship between the voltage applied between the source electrode 14 and the drain electrode 15 and the off-leakage current when the work function W of the gate electrode 12 is changed. In FIG. 6, the dotted line indicates the magnitude of off-leakage current, which is an indicator of channel opening/closing, of 1×10 −4 A/cm 2 .

図6によれば、ゲート電極12の仕事関数Wが5.0eV以上であれば、ソース電極14とドレイン電極15との間に10kVの電圧を印加しても、オフリーク電流の大きさが1×10-4A/cmに達せず、チャネルが閉じているといえる。 According to FIG. 6, if the work function W of the gate electrode 12 is 5.0 eV or more, even if a voltage of 10 kV is applied between the source electrode 14 and the drain electrode 15, the magnitude of the off-leakage current is 1× It does not reach 10 -4 A/cm 2 and it can be said that the channel is closed.

この結果から、トレンチ型MOSFET1がノーマリーオフ型である場合は、オフリーク電流を抑えるため、ゲート電極12の仕事関数は5.0eV以上であることが好ましいといえる。 From this result, it can be said that when the trench MOSFET 1 is a normally-off type, the work function of the gate electrode 12 is preferably 5.0 eV or more in order to suppress off-leakage current.

なお、本実施例のシミュレーションにおいては、n型半導体層11の材料(母結晶)をGa単結晶に設定したが、他のGa系単結晶に設定した場合でも同様の結果が得られる。同様に、ゲート絶縁膜13の材料をHfOに設定したが、SiOに設定した場合でも同様の結果が得られる。 Note that in the simulation of this example, the material (mother crystal) of the n-type semiconductor layer 11 was set to Ga 2 O 3 single crystal, but similar results would be obtained even if other Ga 2 O 3 type single crystals were used. is obtained. Similarly, although the material of the gate insulating film 13 is set to HfO 2 , similar results can be obtained even if it is set to SiO 2 .

上記実施の形態に係るトレンチ型MOSFET1について、トレンチ型MOSFET1がノーマリーオフ型である場合の、ゲート電極12のゲート長Lがオフリーク電流の大きさに及ぼす影響をシミュレーションにより調べた。 Regarding the trench MOSFET 1 according to the embodiment described above, the influence of the gate length L g of the gate electrode 12 on the magnitude of off-leakage current was investigated by simulation when the trench MOSFET 1 is a normally-off type.

このシミュレーションにおいては、n型半導体層11の材料(母結晶)をGa単結晶、ゲート絶縁膜13の材料をHfO、ゲート絶縁膜13におけるトレンチ16の底部に接する部分の厚さTを0.05μm、メサ形状部17の幅Wmを0.4μm、耐圧層11aの厚さT(n型半導体層11における、トレンチ16の底からn型半導体基板10との界面までの距離)を32.5μm、耐圧層11aのドナー濃度を1.2×1016cm-3、チャネル層11bのドナー濃度を1×1016cm-3と設定し、ソース電極14及びゲート電極を接地(0Vを印加)し、ドレイン電極15に10kVの電圧を印加した。 In this simulation, the material (mother crystal) of the n-type semiconductor layer 11 is Ga 2 O 3 single crystal, the material of the gate insulating film 13 is HfO 2 , and the thickness of the portion of the gate insulating film 13 in contact with the bottom of the trench 16 is T. 1 is 0.05 μm, the width W m of the mesa-shaped portion 17 is 0.4 μm, and the thickness T p of the breakdown voltage layer 11a (from the bottom of the trench 16 in the n-type semiconductor layer 11 to the interface with the n-type semiconductor substrate 10 The donor concentration of the breakdown voltage layer 11a is set to 1.2×10 16 cm −3 and the donor concentration of the channel layer 11b is set to 1×10 16 cm −3 , and the source electrode 14 and gate electrode are grounded. (0 V was applied), and a voltage of 10 kV was applied to the drain electrode 15.

図7は、ゲート電極12のゲート長Lを変化させたときの、ソース電極14とドレイン電極15との間に印加される電圧と、オフリーク電流との関係を示すグラフである。図7においては、チャネルの開閉の指標となるオフリーク電流の大きさである1×10-4A/cmが点線で示されている。 FIG. 7 is a graph showing the relationship between the voltage applied between the source electrode 14 and the drain electrode 15 and the off-leakage current when the gate length L g of the gate electrode 12 is changed. In FIG. 7, 1×10 −4 A/cm 2 , which is the magnitude of off-leakage current that is an indicator of channel opening/closing, is indicated by a dotted line.

図7によれば、ゲート電極12のゲート長Lが1μm以上であれば、ソース電極14とドレイン電極15との間に10kVの電圧を印加しても、オフリーク電流の大きさが1×10-4A/cmに達せず、チャネルが閉じているといえる。 According to FIG. 7, if the gate length L g of the gate electrode 12 is 1 μm or more, even if a voltage of 10 kV is applied between the source electrode 14 and the drain electrode 15, the magnitude of the off-leakage current is 1×10 -4 A/cm 2 is not reached, and it can be said that the channel is closed.

この結果から、トレンチ型MOSFET1がノーマリーオフ型である場合は、オフリーク電流を抑えるため、ゲート電極12のゲート長Lは1μm以上であることが好ましいといえる。 From this result, it can be said that when the trench MOSFET 1 is a normally-off type, the gate length L g of the gate electrode 12 is preferably 1 μm or more in order to suppress off-leakage current.

なお、本実施例のシミュレーションにおいては、n型半導体層11の材料(母結晶)をGa単結晶に設定したが、他のGa系単結晶に設定した場合でも同様の結果が得られる。同様に、ゲート絶縁膜13の材料をHfOに設定したが、SiOに設定した場合でも同様の結果が得られる。 Note that in the simulation of this example, the material (mother crystal) of the n-type semiconductor layer 11 was set to Ga 2 O 3 single crystal, but similar results would be obtained even if other Ga 2 O 3 type single crystals were used. is obtained. Similarly, although the material of the gate insulating film 13 is set to HfO 2 , similar results can be obtained even if it is set to SiO 2 .

上記実施の形態に係るトレンチ型MOSFET1について、トレンチ型MOSFET1がノーマリーオフ型である場合の、ゲート電極12とコンタクト層11cとの距離Lがオフリーク電流の大きさに及ぼす影響をシミュレーションにより調べた。 Regarding the trench MOSFET 1 according to the above embodiment, the effect of the distance L c between the gate electrode 12 and the contact layer 11c on the magnitude of off-leakage current was investigated by simulation when the trench MOSFET 1 is a normally-off type. .

このシミュレーションにおいては、n型半導体層11の材料(母結晶)をGa単結晶、ゲート絶縁膜13の材料をHfO、ゲート絶縁膜13におけるトレンチ16の底部に接する部分の厚さTを0.05μm、メサ形状部17の幅Wmを0.4μm、耐圧層11aの厚さT(n型半導体層11における、トレンチ16の底からn型半導体基板10との界面までの距離)を32.5μm、耐圧層11aのドナー濃度を1.2×1016cm-3、チャネル層11bのドナー濃度を1×1016cm-3と設定し、ソース電極14及びゲート電極を接地(0Vを印加)し、ドレイン電極15に10kVの電圧を印加した。 In this simulation, the material (mother crystal) of the n-type semiconductor layer 11 is Ga 2 O 3 single crystal, the material of the gate insulating film 13 is HfO 2 , and the thickness of the portion of the gate insulating film 13 in contact with the bottom of the trench 16 is T. 1 is 0.05 μm, the width W m of the mesa-shaped portion 17 is 0.4 μm, and the thickness T p of the breakdown voltage layer 11a (from the bottom of the trench 16 in the n-type semiconductor layer 11 to the interface with the n-type semiconductor substrate 10 The donor concentration of the breakdown voltage layer 11a is set to 1.2×10 16 cm −3 and the donor concentration of the channel layer 11b is set to 1×10 16 cm −3 , and the source electrode 14 and gate electrode are grounded. (0 V was applied), and a voltage of 10 kV was applied to the drain electrode 15.

図8は、ゲート電極12とコンタクト層11cとの距離Lを変化させたときの、ソース電極14とドレイン電極15との間に印加される電圧と、オフリーク電流との関係を示すグラフである。図8においては、チャネルの開閉の指標となるオフリーク電流の大きさである1×10-4A/cmが点線で示されている。 FIG. 8 is a graph showing the relationship between the voltage applied between the source electrode 14 and the drain electrode 15 and the off-leakage current when the distance Lc between the gate electrode 12 and the contact layer 11c is changed. . In FIG. 8, 1×10 −4 A/cm 2 , which is the magnitude of off-leakage current that is an indicator of channel opening/closing, is indicated by a dotted line.

図8によれば、ゲート電極12とコンタクト層11cとの距離Lが0.1μm以上であれば、ソース電極14とドレイン電極15との間に10kVの電圧を印加しても、オフリーク電流の大きさが1×10-4A/cmに達せず、チャネルが閉じているといえる。 According to FIG. 8, if the distance Lc between the gate electrode 12 and the contact layer 11c is 0.1 μm or more, even if a voltage of 10 kV is applied between the source electrode 14 and the drain electrode 15, the off-leakage current will decrease. The size does not reach 1×10 −4 A/cm 2 and it can be said that the channel is closed.

この結果から、トレンチ型MOSFET1がノーマリーオフ型である場合は、オフリーク電流を抑えるため、ゲート電極12とコンタクト層11cとの距離Lは0.1μm以上であることが好ましいといえる。 From this result, it can be said that when the trench MOSFET 1 is a normally-off type, the distance L c between the gate electrode 12 and the contact layer 11c is preferably 0.1 μm or more in order to suppress off-leakage current.

なお、本実施例のシミュレーションにおいては、n型半導体層11の材料(母結晶)をGa単結晶に設定したが、他のGa系単結晶に設定した場合でも同様の結果が得られる。同様に、ゲート絶縁膜13の材料をHfOに設定したが、SiOに設定した場合でも同様の結果が得られる。 Note that in the simulation of this example, the material (mother crystal) of the n-type semiconductor layer 11 was set to Ga 2 O 3 single crystal, but similar results would be obtained even if other Ga 2 O 3 type single crystals were used. is obtained. Similarly, although the material of the gate insulating film 13 is set to HfO 2 , similar results can be obtained even if it is set to SiO 2 .

上記実施の形態に係るトレンチ型MOSFET1について、ゲート絶縁膜13(部分13a)におけるトレンチ16の底部の中心に接する部分の厚さTとn型半導体層11中の最大電界強度Emaxとの関係をシミュレーションにより調べた。 Regarding the trench MOSFET 1 according to the embodiment described above, the relationship between the thickness T 1 of the portion of the gate insulating film 13 (portion 13a) in contact with the center of the bottom of the trench 16 and the maximum electric field strength E max in the n-type semiconductor layer 11 was investigated by simulation.

このシミュレーションにおいては、n型半導体層11の材料(母結晶)をGa単結晶、ゲート絶縁膜13の材料をHfO、メサ形状部17の幅Wmを0.4μm、耐圧層11aの厚さT(n型半導体層11における、トレンチ16の底からn型半導体基板10との界面までの距離)を45μm、耐圧層11aのドナー濃度を8×1015cm-3、チャネル層11bのドナー濃度を1×1016cm-3と設定し、ソース電極14及びゲート電極を接地(0Vを印加)し、ドレイン電極15に10kVの電圧を印加した。 In this simulation, the material (mother crystal) of the n-type semiconductor layer 11 is Ga 2 O 3 single crystal, the material of the gate insulating film 13 is HfO 2 , the width W m of the mesa-shaped portion 17 is 0.4 μm, and the breakdown voltage layer 11a is The thickness T p (distance from the bottom of the trench 16 to the interface with the n-type semiconductor substrate 10 in the n-type semiconductor layer 11) is 45 μm, the donor concentration of the breakdown voltage layer 11a is 8×10 15 cm −3 , and the channel layer The donor concentration of 11b was set at 1×10 16 cm −3 , the source electrode 14 and the gate electrode were grounded (0 V was applied), and a voltage of 10 kV was applied to the drain electrode 15 .

図9は、ゲート絶縁膜13の厚さTと、n型半導体層11中の最大電界強度Emaxとの関係を示すグラフである。次の表5に、図9のプロット点の数値を示す。 FIG. 9 is a graph showing the relationship between the thickness T 1 of the gate insulating film 13 and the maximum electric field strength E max in the n-type semiconductor layer 11. Table 5 below shows the numerical values of the plot points in FIG.

Figure 0007382558000005
Figure 0007382558000005

図9によれば、厚さTを増加させていくと、およそ0.5μmまで最大電界強度Emaxが急激に減少する。このため、n型半導体層11中の電界強度を低く抑えるために、厚さTは0.2μm以上、0.5μm以下の範囲内にあることが好ましい。 According to FIG. 9, as the thickness T 1 increases, the maximum electric field strength E max rapidly decreases to approximately 0.5 μm. Therefore, in order to keep the electric field strength in the n-type semiconductor layer 11 low, the thickness T1 is preferably in the range of 0.2 μm or more and 0.5 μm or less.

一方で、厚さTが大きいほどトレンチ16内へのゲート絶縁膜13(部分13a)の形成が困難になる。このため、ゲート絶縁膜13の形成容易性の観点からは、厚さTは0.1μm以上、0.2μm未満の範囲内にあることが好ましい。 On the other hand, the larger the thickness T1 , the more difficult it becomes to form the gate insulating film 13 (portion 13a) inside the trench 16. Therefore, from the viewpoint of ease of forming the gate insulating film 13, the thickness T1 is preferably in the range of 0.1 μm or more and less than 0.2 μm.

なお、本実施例のシミュレーションにおいては、n型半導体層11の材料(母結晶)をGa単結晶に設定したが、他のGa系単結晶に設定した場合でも同様の結果が得られる。同様に、ゲート絶縁膜13の材料をHfOに設定したが、SiOに設定した場合でも同様の結果が得られる。 Note that in the simulation of this example, the material (mother crystal) of the n-type semiconductor layer 11 was set to Ga 2 O 3 single crystal, but similar results would be obtained even if other Ga 2 O 3 type single crystals were used. is obtained. Similarly, although the material of the gate insulating film 13 is set to HfO 2 , similar results can be obtained even if it is set to SiO 2 .

上記実施の形態に係るトレンチ型MOSFET1について、n型半導体層11が図3に示されるメサ形状を有する場合の、メサ深さDとn型半導体層11中の最大電界強度Emaxとの関係をシミュレーションにより調べた。 Regarding the trench MOSFET 1 according to the above embodiment, the relationship between the mesa depth D m and the maximum electric field strength E max in the n-type semiconductor layer 11 when the n-type semiconductor layer 11 has the mesa shape shown in FIG. was investigated by simulation.

このシミュレーションにおいては、n型半導体層11の材料(母結晶)をGa単結晶、ゲート絶縁膜13の材料をHfO、ゲート絶縁膜13におけるトレンチ16の底部に接する部分の厚さTを0.15μm、メサ形状部17の幅Wを0.4μm、窪み110の幅方向の断面(図3に示される断面)における、窪み110の底部の内側の縁111の曲線の頂点における曲率半径を0.2μmと設定し、ソース電極14及びゲート電極を接地(0Vを印加)し、ドレイン電極15に0.6~10kVの電圧を印加した。 In this simulation, the material (mother crystal) of the n-type semiconductor layer 11 is Ga 2 O 3 single crystal, the material of the gate insulating film 13 is HfO 2 , and the thickness of the portion of the gate insulating film 13 in contact with the bottom of the trench 16 is T. 1 is 0.15 μm, the width W m of the mesa-shaped portion 17 is 0.4 μm, and the width W m of the mesa-shaped portion 17 is 0.4 μm. The radius of curvature was set to 0.2 μm, the source electrode 14 and the gate electrode were grounded (0 V was applied), and a voltage of 0.6 to 10 kV was applied to the drain electrode 15.

まず、ドレイン電極15に10kVの電圧を印加した場合のシミュレーション結果を示す。耐圧層11aの厚さT(n型半導体層11における、トレンチ16の底からn型半導体基板10との界面までの距離)は33.4μm、耐圧層11aのドナー濃度は8×1015cm-3、チャネル層11bのドナー濃度を1×1016cm-3と設定した。 First, simulation results will be shown when a voltage of 10 kV is applied to the drain electrode 15. The thickness T p (distance from the bottom of the trench 16 to the interface with the n-type semiconductor substrate 10 in the n-type semiconductor layer 11) of the voltage-resistant layer 11a is 33.4 μm, and the donor concentration of the voltage-resistant layer 11a is 8×10 15 cm. −3 , and the donor concentration of the channel layer 11b was set to 1×10 16 cm −3 .

図10(a)は、ドレイン電極15に10kVの電圧を印加した場合のメサ深さDと、n型半導体層11中の最大電界強度Emaxとの関係を示すグラフである。次の表6に、図10(a)のプロット点の数値を示す。 FIG. 10A is a graph showing the relationship between the mesa depth D m and the maximum electric field strength E max in the n-type semiconductor layer 11 when a voltage of 10 kV is applied to the drain electrode 15. Table 6 below shows the numerical values of the plot points in FIG. 10(a).

Figure 0007382558000006
Figure 0007382558000006

図10(a)によれば、メサ深さDの増加に伴ってn型半導体層11中の最大電界強度Emaxが減少し、およそ10μm以上でバンドギャップの大きさから推定されるGaの絶縁破壊電界強度である8eVを下回る。 According to FIG. 10(a), as the mesa depth D m increases, the maximum electric field strength E max in the n-type semiconductor layer 11 decreases, and at approximately 10 μm or more, Ga 2 estimated from the band gap size decreases. It is lower than 8 eV, which is the dielectric breakdown field strength of O3 .

次に、ドレイン電極15に3.3kVの電圧を印加した場合のシミュレーション結果を示す。耐圧層11aの厚さT(n型半導体層11における、トレンチ16の底からn型半導体基板10との界面までの距離)は10.4μm、耐圧層11aのドナー濃度は3×1016cm-3、チャネル層11bのドナー濃度を1×1016cm-3と設定した。 Next, simulation results when a voltage of 3.3 kV is applied to the drain electrode 15 will be shown. The thickness T p of the breakdown voltage layer 11a (the distance from the bottom of the trench 16 to the interface with the n-type semiconductor substrate 10 in the n-type semiconductor layer 11) is 10.4 μm, and the donor concentration of the breakdown voltage layer 11a is 3×10 16 cm. −3 , and the donor concentration of the channel layer 11b was set to 1×10 16 cm −3 .

図10(b)は、ドレイン電極15に3.3kVの電圧を印加した場合のメサ深さDと、n型半導体層11中の最大電界強度Emaxとの関係を示すグラフである。次の表7に、図10(b)のプロット点の数値を示す。 FIG. 10B is a graph showing the relationship between the mesa depth D m and the maximum electric field strength E max in the n-type semiconductor layer 11 when a voltage of 3.3 kV is applied to the drain electrode 15. Table 7 below shows the numerical values of the plot points in FIG. 10(b).

Figure 0007382558000007
Figure 0007382558000007

図10(b)によれば、メサ深さDの増加に伴ってn型半導体層11中の最大電界強度Emaxが減少し、およそ0.8μm以上でバンドギャップの大きさから推定されるGaの絶縁破壊電界強度である8eVを下回る。 According to FIG. 10(b), the maximum electric field strength E max in the n-type semiconductor layer 11 decreases as the mesa depth D m increases, and is estimated from the band gap size at approximately 0.8 μm or more. It is lower than 8 eV, which is the dielectric breakdown field strength of Ga 2 O 3 .

次に、ドレイン電極15に1.2kVの電圧を印加した場合のシミュレーション結果を示す。耐圧層11aの厚さT(n型半導体層11における、トレンチ16の底からn型半導体基板10との界面までの距離)は3.5μm、耐圧層11aのドナー濃度は9×1016cm-3、チャネル層11bのドナー濃度を1×1016cm-3と設定した。 Next, simulation results when a voltage of 1.2 kV is applied to the drain electrode 15 will be shown. The thickness T p of the breakdown voltage layer 11a (distance from the bottom of the trench 16 to the interface with the n-type semiconductor substrate 10 in the n-type semiconductor layer 11) is 3.5 μm, and the donor concentration of the breakdown voltage layer 11a is 9×10 16 cm. −3 , and the donor concentration of the channel layer 11b was set to 1×10 16 cm −3 .

図11(a)は、ドレイン電極15に1.2kVの電圧を印加した場合のメサ深さDと、n型半導体層11中の最大電界強度Emaxとの関係を示すグラフである。次の表8に、図11(a)のプロット点の数値を示す。 FIG. 11A is a graph showing the relationship between the mesa depth D m and the maximum electric field strength E max in the n-type semiconductor layer 11 when a voltage of 1.2 kV is applied to the drain electrode 15. Table 8 below shows the numerical values of the plot points in FIG. 11(a).

Figure 0007382558000008
Figure 0007382558000008

図11(a)によれば、メサ深さDの増加に伴ってn型半導体層11中の最大電界強度Emaxが減少し、およそ0.4μm以上でバンドギャップの大きさから推定されるGaの絶縁破壊電界強度である8eVを下回る。 According to FIG. 11(a), the maximum electric field strength E max in the n-type semiconductor layer 11 decreases as the mesa depth D m increases, and is estimated from the band gap size at approximately 0.4 μm or more. It is lower than 8 eV, which is the dielectric breakdown field strength of Ga 2 O 3 .

次に、ドレイン電極15に0.6kVの電圧を印加した場合のシミュレーション結果を示す。耐圧層11aの厚さT(n型半導体層11における、トレンチ16の底からn型半導体基板10との界面までの距離)は2.9μm、耐圧層11aのドナー濃度は1.8×1017cm-3、チャネル層11bのドナー濃度を1×1016cm-3と設定した。 Next, simulation results when a voltage of 0.6 kV is applied to the drain electrode 15 will be shown. The thickness T p of the breakdown voltage layer 11a (the distance from the bottom of the trench 16 to the interface with the n-type semiconductor substrate 10 in the n-type semiconductor layer 11) is 2.9 μm, and the donor concentration of the breakdown voltage layer 11a is 1.8×10 17 cm -3 and the donor concentration of the channel layer 11b was set to 1×10 16 cm -3 .

図11(b)は、ドレイン電極15に0.6kVの電圧を印加した場合のメサ深さDと、n型半導体層11中の最大電界強度Emaxとの関係を示すグラフである。次の表9に、図11(b)のプロット点の数値を示す。 FIG. 11B is a graph showing the relationship between the mesa depth D m and the maximum electric field strength E max in the n-type semiconductor layer 11 when a voltage of 0.6 kV is applied to the drain electrode 15. Table 9 below shows the numerical values of the plot points in FIG. 11(b).

Figure 0007382558000009
Figure 0007382558000009

図11(b)によれば、メサ深さDの増加に伴ってn型半導体層11中の最大電界強度Emaxが減少し、およそ0.6μm以上でバンドギャップの大きさから推定されるGaの絶縁破壊電界強度である8eVを下回る。 According to FIG. 11(b), the maximum electric field strength E max in the n-type semiconductor layer 11 decreases as the mesa depth D m increases, and is estimated from the band gap size at approximately 0.6 μm or more. It is lower than 8 eV, which is the dielectric breakdown field strength of Ga 2 O 3 .

上記の結果から、ドレイン電極15への印加電圧が0.6~10kVである場合に、適切なメサ深さDを有するメサ形状を設けることにより、n型半導体層11中の電界強度を低く抑えられることが確認された。 From the above results, when the voltage applied to the drain electrode 15 is 0.6 to 10 kV, the electric field strength in the n-type semiconductor layer 11 can be lowered by providing a mesa shape with an appropriate mesa depth D m . It was confirmed that it can be suppressed.

なお、本実施例のシミュレーションにおいては、n型半導体層11の材料(母結晶)をGa単結晶に設定したが、他のGa系単結晶に設定した場合でも同様の結果が得られる。同様に、ゲート絶縁膜13の材料をHfOに設定したが、SiOに設定した場合でも同様の結果が得られる。 Note that in the simulation of this example, the material (mother crystal) of the n-type semiconductor layer 11 was set to Ga 2 O 3 single crystal, but similar results would be obtained even if other Ga 2 O 3 type single crystals were used. is obtained. Similarly, although the material of the gate insulating film 13 is set to HfO 2 , similar results can be obtained even if it is set to SiO 2 .

上記実施の形態に係るトレンチ型MOSFET1について、所望の耐圧を得るための耐圧層11aのドナー濃度と厚さTとの関係をシミュレーションにより調べた。 Regarding the trench MOSFET 1 according to the embodiment described above, the relationship between the donor concentration and the thickness T p of the breakdown voltage layer 11a to obtain a desired breakdown voltage was investigated by simulation.

このシミュレーションにおいては、トレンチ型MOSFET1n型半導体層11の材料(母結晶)をGa単結晶、ゲート絶縁膜13の材料をHfO、ゲート絶縁膜13におけるトレンチ16の底部に接する部分の厚さTを0.15μm、トレンチ16の幅方向の断面における、トレンチ16の底部の縁160の曲線の頂点における曲率半径Rを0.06μm、ゲート電極12の底部の縁120の曲線の頂点における曲率半径Rを0.2μm、ゲート電極12のゲート長Lを0.9μm、メサ形状部17の幅Wを0.4μm、チャネル層11bのドナー濃度を1×1016cm-3と設定し、ソース電極14及びゲート電極を接地(0Vを印加)し、ドレイン電極15に所望の電圧を印加した。 In this simulation, the material (mother crystal) of the n-type semiconductor layer 11 of the trench MOSFET 1 is Ga 2 O 3 single crystal, the material of the gate insulating film 13 is HfO 2 , and the thickness of the portion of the gate insulating film 13 in contact with the bottom of the trench 16 is The radius of curvature R 1 at the apex of the curve of the bottom edge 160 of the trench 16 in the cross section in the width direction of the trench 16 is 0.06 μm, the apex of the curve of the bottom edge 120 of the gate electrode 12 The radius of curvature R 2 in the gate electrode 12 is 0.2 μm, the gate length L g of the gate electrode 12 is 0.9 μm, the width W m of the mesa-shaped portion 17 is 0.4 μm, and the donor concentration of the channel layer 11b is 1×10 16 cm −3 The source electrode 14 and the gate electrode were grounded (0 V was applied), and a desired voltage was applied to the drain electrode 15.

次の表10に、Gaの絶縁破壊電界強度が8MV/cmであると想定した場合の所望の耐圧を得るための耐圧層11aのドナー濃度と厚さTの好適な数値を示す。 The following Table 10 shows suitable values for the donor concentration and thickness T p of the breakdown voltage layer 11a to obtain the desired breakdown voltage, assuming that the dielectric breakdown field strength of Ga 2 O 3 is 8 MV/cm. .

Figure 0007382558000010
Figure 0007382558000010

次の表11に、Gaの絶縁破壊電界強度が7MV/cmであると想定した場合の所望の耐圧を得るための耐圧層11aのドナー濃度と厚さTの好適な数値を示す。 The following Table 11 shows suitable values for the donor concentration and thickness T p of the breakdown voltage layer 11a to obtain the desired breakdown voltage, assuming that the dielectric breakdown field strength of Ga 2 O 3 is 7 MV/cm. .

Figure 0007382558000011
Figure 0007382558000011

次の表12に、Gaの絶縁破壊電界強度が6MV/cmであると想定した場合の所望の耐圧を得るための耐圧層11aのドナー濃度と厚さTの好適な数値を示す。 The following Table 12 shows suitable values for the donor concentration and thickness T p of the breakdown voltage layer 11a to obtain the desired breakdown voltage, assuming that the dielectric breakdown field strength of Ga 2 O 3 is 6 MV/cm. .

Figure 0007382558000012
Figure 0007382558000012

次の表13に、Gaの絶縁破壊電界強度が5MV/cmであると想定した場合の所望の耐圧を得るための耐圧層11aのドナー濃度と厚さTの好適な数値を示す。 Table 13 below shows suitable values for the donor concentration and thickness T p of the breakdown voltage layer 11a to obtain the desired breakdown voltage, assuming that the dielectric breakdown field strength of Ga 2 O 3 is 5 MV/cm. .

Figure 0007382558000013
Figure 0007382558000013

次の表14に、Gaの絶縁破壊電界強度が4MV/cmであると想定した場合の所望の耐圧を得るための耐圧層11aのドナー濃度と厚さTの好適な数値を示す。 Table 14 below shows suitable values for the donor concentration and thickness T p of the breakdown voltage layer 11a to obtain the desired breakdown voltage, assuming that the dielectric breakdown field strength of Ga 2 O 3 is 4 MV/cm. .

Figure 0007382558000014
Figure 0007382558000014

なお、本実施例のシミュレーションにおいては、n型半導体層11の材料(母結晶)をGa単結晶に設定したが、他のGa系単結晶に設定した場合でも同様の結果が得られる。同様に、ゲート絶縁膜13の材料をHfOに設定したが、SiOに設定した場合でも同様の結果が得られる。 Note that in the simulation of this example, the material (mother crystal) of the n-type semiconductor layer 11 was set to Ga 2 O 3 single crystal, but similar results would be obtained even if other Ga 2 O 3 type single crystals were used. is obtained. Similarly, although the material of the gate insulating film 13 is set to HfO 2 , similar results can be obtained even if it is set to SiO 2 .

以上、本発明の実施の形態及び実施例を説明したが、本発明は、上記実施の形態及び実施例に限定されず、発明の主旨を逸脱しない範囲内において種々変形実施が可能である。例えば、本発明のトレンチ型MOSFETのトレンチ構造は、トレンチMOS型SBD(Schottky Barrier Diode)にも適用できる。 Although the embodiments and examples of the present invention have been described above, the present invention is not limited to the above embodiments and examples, and various modifications can be made without departing from the gist of the invention. For example, the trench structure of the trench type MOSFET of the present invention can also be applied to a trench MOS type SBD (Schottky Barrier Diode).

また、上記に記載した実施の形態及び実施例は特許請求の範囲に係る発明を限定するものではない。また、実施の形態及び実施例の中で説明した特徴の組合せの全てが発明の課題を解決するための手段に必須であるとは限らない点に留意すべきである。 Moreover, the embodiments and examples described above do not limit the invention according to the claims. Furthermore, it should be noted that not all combinations of features described in the embodiments and examples are essential for solving the problems of the invention.

1…トレンチ型MOSFET、 10…n型半導体基板、 11…n型半導体層、 12…デート電極、 13…ゲート絶縁膜、 14…ソース電極、 15…ドレイン電極、 16…トレンチ、 17…メサ形状部 DESCRIPTION OF SYMBOLS 1... Trench type MOSFET, 10... N-type semiconductor substrate, 11... N-type semiconductor layer, 12... Date electrode, 13... Gate insulating film, 14... Source electrode, 15... Drain electrode, 16... Trench, 17... Mesa shape part

Claims (7)

Ga系単結晶からなり、一方の面に開口する複数のトレンチを有するn型半導体層と、
前記複数のトレンチの各々の内面に接して設けられたゲート絶縁膜と、
前記ゲート絶縁膜に覆われた状態で前記複数のトレンチの各々に埋め込まれたゲート電極と、
前記n型半導体層の隣接する前記トレンチの間のメサ形状部に接続されたソース電極と、
前記n型半導体層の前記ソース電極と反対側に直接又は間接的に接続されたドレイン電極と、
を備え、
前記トレンチの幅方向の断面における前記トレンチの底部の縁の曲線の頂点における曲率半径を前記トレンチの幅で除した値が、0.0125以上、0.25以下の範囲内にある、
トレンチ型MOSFET。
an n-type semiconductor layer made of Ga 2 O 3 single crystal and having a plurality of trenches opened on one surface;
a gate insulating film provided in contact with the inner surface of each of the plurality of trenches;
a gate electrode buried in each of the plurality of trenches while being covered with the gate insulating film;
a source electrode connected to a mesa-shaped portion between the adjacent trenches of the n-type semiconductor layer;
a drain electrode connected directly or indirectly to the side opposite to the source electrode of the n-type semiconductor layer;
Equipped with
The value obtained by dividing the radius of curvature at the apex of the curve of the bottom edge of the trench by the width of the trench in a cross section in the width direction of the trench is within the range of 0.0125 or more and 0.25 or less.
Trench type MOSFET.
前記n型半導体層における隣接する2つの前記ゲート電極の間の領域におけるドナー濃度であるチャネル濃度が1×1015cm-以下である場合、前記メサ形状部の幅であるメサ幅が0.5μm以下であり、
前記チャネル濃度が1×1015cm-より大きく1×1016cm-以下である場合、前記メサ幅が0.4μm以下であり、
前記チャネル濃度が1×1016cm-より大きく2×1016cm-以下である場合、前記メサ幅が0.3μm以下であり、
前記チャネル濃度が2×1016cm-より大きく6×1016cm-以下である場合、前記メサ幅が0.2μm以下である、
請求項1に記載のトレンチ型MOSFET。
When the channel concentration, which is the donor concentration, in the region between the two adjacent gate electrodes in the n-type semiconductor layer is 1×10 15 cm −3 or less, the mesa width, which is the width of the mesa-shaped portion, is 0.5 cm. 5 μm or less,
When the channel concentration is greater than 1×10 15 cm- 3 and less than 1×10 16 cm- 3 , the mesa width is 0.4 μm or less,
When the channel concentration is greater than 1×10 16 cm- 3 and less than 2×10 16 cm- 3 , the mesa width is 0.3 μm or less,
When the channel concentration is greater than 2×10 16 cm and less than 6×10 16 cm, the mesa width is less than or equal to 0.2 μm.
Trench type MOSFET according to claim 1.
前記ゲート電極の仕事関数が5.0eV以上である、
請求項1又は2に記載のトレンチ型MOSFET。
The work function of the gate electrode is 5.0 eV or more.
Trench type MOSFET according to claim 1 or 2.
前記ゲート電極のゲート長が1μm以上である、
請求項1~3のいずれか1項に記載のトレンチ型MOSFET。
The gate length of the gate electrode is 1 μm or more,
Trench type MOSFET according to any one of claims 1 to 3.
前記n型半導体層が、前記n型半導体層と前記ソース電極とをオーミック接続させるためのコンタクト層を前記ソース電極との界面近傍に有し、
前記ゲート電極と前記コンタクト層との距離が0.1μm以上である、
請求項1~4のいずれか1項に記載のトレンチ型MOSFET。
The n-type semiconductor layer has a contact layer near the interface with the source electrode for making an ohmic connection between the n-type semiconductor layer and the source electrode,
The distance between the gate electrode and the contact layer is 0.1 μm or more,
Trench type MOSFET according to any one of claims 1 to 4.
前記ゲート絶縁膜における前記トレンチの底部の中心に接する部分の厚さが、0.2μm以上、0.5μm以下の範囲内、又は0.1μm以上、0.2μm未満の範囲内にある、
請求項1~5のいずれか1項に記載のトレンチ型MOSFET。
The thickness of the portion of the gate insulating film that is in contact with the center of the bottom of the trench is within the range of 0.2 μm or more and 0.5 μm or less, or within the range of 0.1 μm or more and less than 0.2 μm.
Trench type MOSFET according to any one of claims 1 to 5.
前記n型半導体層が、上部の縁に窪みが設けられたメサ形状を有し、
前記窪みの内面に前記ゲート電極が露出した、
請求項1~6のいずれか1項に記載のトレンチ型MOSFET。
The n-type semiconductor layer has a mesa shape with a depression provided at an upper edge,
the gate electrode is exposed on the inner surface of the recess;
Trench type MOSFET according to any one of claims 1 to 6.
JP2019234980A 2019-12-25 2019-12-25 Trench type MOSFET Active JP7382558B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019234980A JP7382558B2 (en) 2019-12-25 2019-12-25 Trench type MOSFET
PCT/JP2020/046712 WO2021131891A1 (en) 2019-12-25 2020-12-15 Trench type mosfet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019234980A JP7382558B2 (en) 2019-12-25 2019-12-25 Trench type MOSFET

Publications (2)

Publication Number Publication Date
JP2021103746A JP2021103746A (en) 2021-07-15
JP7382558B2 true JP7382558B2 (en) 2023-11-17

Family

ID=76574511

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019234980A Active JP7382558B2 (en) 2019-12-25 2019-12-25 Trench type MOSFET

Country Status (2)

Country Link
JP (1) JP7382558B2 (en)
WO (1) WO2021131891A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019239632A1 (en) 2018-06-14 2019-12-19 Eastwind合同会社 Power semiconductor device and method of manufacturing same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018056463A (en) * 2016-09-30 2018-04-05 サンケン電気株式会社 Semiconductor device and manufacturing method of the same
JP7179276B2 (en) * 2017-09-29 2022-11-29 株式会社タムラ製作所 field effect transistor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019239632A1 (en) 2018-06-14 2019-12-19 Eastwind合同会社 Power semiconductor device and method of manufacturing same

Also Published As

Publication number Publication date
WO2021131891A1 (en) 2021-07-01
JP2021103746A (en) 2021-07-15

Similar Documents

Publication Publication Date Title
JP7179276B2 (en) field effect transistor
US10825935B2 (en) Trench MOS-type Schottky diode
US11855134B2 (en) Semiconductor device and method of manufacturing semiconductor device
WO2015049815A1 (en) Silicon carbide semiconductor device and method for manufacturing same
JP5642191B2 (en) Semiconductor device
US10096703B2 (en) Semiconductor device and method of manufacturing semiconductor device
US10062750B2 (en) Semiconductor device and method of manufacturing semiconductor device
WO2021131893A1 (en) Trench-type mesfet
US9954055B2 (en) Vertical power MOSFET device
US20220199766A1 (en) SiC Devices with Shielding Structure
US10269952B2 (en) Semiconductor device having steps in a termination region and manufacturing method thereof
JP7382558B2 (en) Trench type MOSFET
US11367775B1 (en) Shielding structure for SiC devices
US11152469B2 (en) Semiconductor device
US11139395B2 (en) Semiconductor device
CN117855288A (en) Gallium oxide MISFET device structure and preparation method thereof
KR100933383B1 (en) High Voltage Silicon Carbide Schottky Junction Field Effect Transistor with Junction Barrier Schottky Gate Structure and Manufacturing Method Thereof

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200207

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20221219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230926

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231017

R150 Certificate of patent or registration of utility model

Ref document number: 7382558

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150