JP7382114B2 - Spot welding method - Google Patents

Spot welding method Download PDF

Info

Publication number
JP7382114B2
JP7382114B2 JP2019201573A JP2019201573A JP7382114B2 JP 7382114 B2 JP7382114 B2 JP 7382114B2 JP 2019201573 A JP2019201573 A JP 2019201573A JP 2019201573 A JP2019201573 A JP 2019201573A JP 7382114 B2 JP7382114 B2 JP 7382114B2
Authority
JP
Japan
Prior art keywords
plate
metal plate
thin metal
heat transfer
thickness direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019201573A
Other languages
Japanese (ja)
Other versions
JP2021074727A (en
Inventor
和伸 今本
英世 竹内
智也 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihatsu Motor Co Ltd
Original Assignee
Daihatsu Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihatsu Motor Co Ltd filed Critical Daihatsu Motor Co Ltd
Priority to JP2019201573A priority Critical patent/JP7382114B2/en
Publication of JP2021074727A publication Critical patent/JP2021074727A/en
Application granted granted Critical
Publication of JP7382114B2 publication Critical patent/JP7382114B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Resistance Welding (AREA)

Description

本発明は、スポット溶接方法に関し、特に高板厚比の板組みに対して良好な品質の溶接部をスポット溶接で形成するための技術に関する。 The present invention relates to a spot welding method, and more particularly to a technique for forming a welded portion of good quality on a plate assembly with a high plate thickness ratio by spot welding.

周知のように、スポット溶接は、2枚以上の金属板(多くの場合は鋼板)を一対の電極で挟んで加圧した状態で、一対の電極間に高電流を付与することで、金属板を抵抗発熱により部分的に溶融させ、溶融部を拡大させることで、所望の範囲及び大きさの溶接部(通常、ナゲットと呼ばれる)を金属板間に跨って形成する接合方法である。 As is well known, spot welding involves applying a high current between two or more metal plates (often steel plates) between a pair of electrodes while applying pressure to the metal plates. This is a joining method in which a welded part (usually called a nugget) of a desired range and size is formed across metal plates by partially melting the metal by resistive heat generation and expanding the melted part.

このスポット溶接を、2~3枚の金属板を重ね合わせた板組みに適用する場合の具体的な技術(溶接条件など)についてはある程度確立されている。その一方で、4枚以上の金属板を重ね合わせた板組みにスポット溶接を施す場合、あるいは、板組みの板厚比(通常、板組みを構成する全ての金属板の厚み寸法の総和を、板組みの厚み方向一端側に位置する最も薄肉の金属板の厚み寸法で除した値で表される)が大きい場合には、所要の強度を示し得る良好な品質の溶接部を形成することが困難であった。 The specific technology (welding conditions, etc.) for applying this spot welding to a plate assembly of two or three metal plates stacked on top of each other has been established to some extent. On the other hand, when spot welding is performed on a plate assembly made of four or more metal plates stacked together, (expressed as the value divided by the thickness of the thinnest metal plate located at one end in the thickness direction of the plate assembly) is large, it is difficult to form a welded part of good quality that can exhibit the required strength. It was difficult.

そこで、例えば、スポット溶接時の加圧力や通電量(電流値)、通電時間などを適宜設定することにより、板厚比の大きい板組みを溶接する方法が提案されている(例えば特許文献1や特許文献2を参照)。 Therefore, a method has been proposed for welding plate assemblies with a large plate thickness ratio by appropriately setting the pressurizing force, amount of current (current value), and duration of current during spot welding (for example, Patent Document 1 and (See Patent Document 2).

特開平10-249537号公報Japanese Patent Application Publication No. 10-249537 特開2010-240740号公報Japanese Patent Application Publication No. 2010-240740

ところで、この種のスポット溶接においては、電極間に形成される溶接部が厚み方向一端側の金属板とその内側で隣接する金属板との境界を越えて成長するまで、加圧通電を継続する必要がある。電極は、通常、溶接対象となる鋼板等の金属板よりも熱伝導率に優れた材質(例えば銅合金)で形成される。また、電極の内部に流通させた冷却液により通電時に電極は冷却される。これにより、電極に接触する厚み方向一端側の金属板から電極への伝熱により当該金属板が冷却され、厚み方向一端側の金属板のうち電極との接触位置から所定の深さまでの領域において温度が上がりにくい状況が生じる。そのため、板組みの板厚比が大きい場合、特に厚み方向一端側の金属板が最も薄肉である場合には、特許文献1等に記載のように加圧力や通電量などの溶接条件を調整したとしても、溶接部を薄肉金属板に到達する大きさにまで成長させることは依然として非常に困難であった。 By the way, in this type of spot welding, pressurization is continued until the welded part formed between the electrodes grows beyond the boundary between the metal plate at one end in the thickness direction and the adjacent metal plate on the inside. There is a need. The electrode is usually made of a material (for example, a copper alloy) that has a higher thermal conductivity than a metal plate such as a steel plate to be welded. Further, the electrode is cooled by the cooling liquid flowing inside the electrode when electricity is applied. As a result, the metal plate is cooled by heat transfer from the metal plate at one end in the thickness direction that contacts the electrode to the electrode, and the area from the contact position with the electrode to the predetermined depth of the metal plate at one end in the thickness direction is cooled. A situation arises where the temperature is difficult to rise. Therefore, when the plate thickness ratio of the plate assembly is large, especially when the metal plate at one end in the thickness direction is the thinnest, it is necessary to adjust welding conditions such as the pressure force and the amount of current applied as described in Patent Document 1 etc. However, it was still very difficult to grow the weld to a size that would reach a thin metal plate.

近年、自動車の製造に際して、衝突安全性と軽量化による燃費の向上を目的として、ハイテン材(高張力鋼材)、超ハイテン材(超高張力鋼材)の使用比率を高める試みや、これらハイテン材と軟鋼板(汎用鋼板)とを組み合わせた板組みに対する溶接技術の確立が新たに求められている。また、昨今の車両に対する操作安定性、乗り心地、及び車体剛性等の向上に対する要求の高まりに応じて、非常に板厚比の大きな(例えば5以上の)板組みに対する溶接のニーズが高まっている。以上の理由から、上述した類の板組みに対して良好な品質の溶接部(ナゲット)を形成するに際し、従来公知の溶接技術に代わる新たな溶接技術がより一層強く求められている。 In recent years, in the manufacturing of automobiles, attempts have been made to increase the proportion of high-tensile strength materials (high-tensile strength steel materials) and ultra-high-strength materials (ultra-high strength steel materials) used, with the aim of improving collision safety and fuel efficiency through weight reduction. There is a new need to establish welding technology for plate assemblies that combine mild steel plates (general-purpose steel plates). In addition, in response to the increasing demand for improved operational stability, ride comfort, and vehicle body rigidity for vehicles these days, there is an increasing need for welding for plate assemblies with extremely large plate thickness ratios (for example, 5 or more). . For the above reasons, there is an even stronger need for a new welding technique to replace the conventionally known welding techniques when forming a good quality welded part (nugget) for the above-mentioned type of plate assembly.

以上の事情に鑑み、本明細書では、高板厚比でかつ少なくとも厚み方向一端側に薄肉の金属板が位置する板組みに対して、良好な品質の溶接部を形成可能とすることを、解決すべき技術課題とする。 In view of the above circumstances, in this specification, it is possible to form a welded part of good quality in a plate assembly with a high plate thickness ratio and a thin metal plate located at least on one end side in the thickness direction. Consider it a technical issue to be solved.

前記課題の解決は、本発明に係るスポット溶接方法によって達成される。すなわち、この溶接方法は、複数の金属板を重ね合わせた板組みであって、複数の金属板のうち相対的に薄肉の薄肉金属板が厚み方向一端側又は両端側に配置される板組みを準備する板組み準備工程と、板組みに対して一対の電極で加圧通電することにより、板組みの内部に溶接部を形成する溶接工程とを備えたスポット溶接方法において、溶接工程で、一対の電極のうち少なくとも一方の電極と、一方の電極に近い側の厚み方向一端側の薄肉金属板との間に、厚み方向一端側の薄肉金属板から一方の電極側への伝熱を抑制する伝熱抑制板を配設した状態で、板組みに対して一対の電極による加圧通電を行う点をもって特徴付けられる。なお、ここでいう「薄肉金属板」とは、その厚み寸法が板組みを構成する全ての金属板の厚み寸法の平均値よりも小さい金属板を意味する。また、ここでいう「厚肉金属板」とは、その厚み寸法が板組みを構成する全ての金属板の厚み寸法の平均値よりも大きい金属板を意味する。 The above problems are achieved by a spot welding method according to the present invention. That is, this welding method is a plate assembly in which a plurality of metal plates are stacked one on top of the other, and a relatively thin metal plate among the plurality of metal plates is arranged at one end or both ends in the thickness direction. In a spot welding method comprising a plate assembly preparation step and a welding process of forming a weld inside the plate assembly by applying pressure and current to the plate assembly with a pair of electrodes, the welding process includes a pair of plate assembly preparation steps. between at least one of the electrodes and a thin metal plate at one end in the thickness direction on the side closer to the one electrode, suppressing heat transfer from the thin metal plate at one end in the thickness direction to the one electrode side. It is characterized by the fact that the plate assembly is pressurized and energized by a pair of electrodes while the heat transfer suppressing plate is provided. Note that the term "thin metal plate" as used herein means a metal plate whose thickness is smaller than the average value of the thickness of all the metal plates constituting the plate assembly. Furthermore, the term "thick-walled metal plate" as used herein means a metal plate whose thickness dimension is larger than the average value of the thickness dimensions of all the metal plates constituting the plate assembly.

このように、本発明に係るスポット溶接方法では、複数の金属板を重ね合わせた板組みであって、複数の金属板のうち相対的に薄肉の金属板が厚み方向一端側又は両端側に配置される板組みを溶接対象とする場合に、少なくとも一方の電極とこの電極に近い側の厚み方向一端側の薄肉金属板との間に、上記薄肉金属板から一方の電極への伝熱を抑制する伝熱抑制板を配設した状態で、板組みに対して一対の電極による加圧通電を行うようにした。このように伝熱抑制板を設けることにより、加圧通電時、厚み方向一端側の薄肉金属板に生じた熱が一方の電極側に逃げる事態を抑制又は可及的に防止することができる。そのため、従来に比べて厚み方向一端側の薄肉金属板の温度を容易に上昇させて、当該薄肉金属板に対する溶け込み(溶融部の厚み方向への拡大)を促進することができる。従って、厚み方向一端側の薄肉金属板を含む全ての金属板に跨る十分な大きさの溶接部を比較的容易に形成することが可能となる。また、伝熱抑制板が一方の電極と厚み方向一端側の薄肉金属板との間に介在することで、加圧通電時に厚み方向一端側の薄肉金属板とこの金属板の内側に位置する金属板との接触面積を減少させることができるので、両金属板間の電流密度を高め易くなる。従って、これによっても溶接部の成長を促進して、全ての金属板に跨る十分な大きさの溶接部を比較的容易に形成することが可能となる。 As described above, in the spot welding method according to the present invention, in a plate assembly in which a plurality of metal plates are stacked one on top of the other, a relatively thin metal plate among the plurality of metal plates is arranged at one end or both ends in the thickness direction. When a plate assembly is to be welded, between at least one electrode and a thin metal plate at one end in the thickness direction on the side close to this electrode, heat transfer from the thin metal plate to one electrode is suppressed. With the heat transfer suppressing plate disposed, the plate assembly was energized under pressure using a pair of electrodes. By providing the heat transfer suppressing plate in this way, it is possible to suppress or prevent as much as possible the situation in which the heat generated in the thin metal plate on one end side in the thickness direction escapes to one electrode side during pressurization and energization. Therefore, the temperature of the thin metal plate at one end in the thickness direction can be increased more easily than in the past, and melting into the thin metal plate (expansion of the molten part in the thickness direction) can be promoted. Therefore, it is possible to relatively easily form a sufficiently large welded portion spanning all the metal plates including the thin metal plate at one end in the thickness direction. In addition, by interposing the heat transfer suppressing plate between one electrode and the thin metal plate at one end in the thickness direction, the thin metal plate at one end in the thickness direction and the metal located inside this metal plate when pressurized and energized. Since the contact area with the plate can be reduced, it becomes easier to increase the current density between both metal plates. Therefore, this also promotes the growth of the weld, making it possible to relatively easily form a weld of sufficient size spanning all the metal plates.

また、本発明に係るスポット溶接方法によれば、少なくとも厚み方向一端側の薄肉金属板とこの金属板に近い側の電極(一方の電極)との間に伝熱抑制板を配設するだけで、例えば既存の溶接設備と溶接条件(加圧通電条件など)を用いることによって、上記薄肉金属板に至る十分な大きさの溶接部を形成することが可能となる。そのため、実質的に伝熱抑制板を用意するためのコストアップのみで足り、大幅なコストアップを招くことなく高板厚比に係る板組みに対して十分な大きさの溶接部を形成することが可能となる。 Further, according to the spot welding method according to the present invention, it is only necessary to arrange a heat transfer suppressing plate between at least one thin metal plate on one end side in the thickness direction and the electrode (one electrode) on the side closer to this metal plate. For example, by using existing welding equipment and welding conditions (pressurizing and energizing conditions, etc.), it is possible to form a welded portion of sufficient size to reach the thin metal plate. Therefore, it is sufficient to substantially increase the cost of preparing the heat transfer suppressing plate, and it is possible to form a welded portion of sufficient size for the plate assembly with a high plate thickness ratio without causing a significant increase in cost. becomes possible.

また、本発明に係るスポット溶接方法において、溶接工程で板組みに溶接部を形成した後、伝熱抑制板を板組みから取り除く除去工程をさらに備えてもよい。 The spot welding method according to the present invention may further include a removal step of removing the heat transfer suppressing plate from the plate assembly after forming the welded portion on the plate assembly in the welding process.

このように、溶接工程後に伝熱抑制板を板組みから取り除くことによって、溶接工程の実施により伝熱抑制板が厚み方向一端側の薄肉金属板に固定されたか否かによらず、伝熱抑制板を確実に上記薄肉金属板から分離して、所定構造の板組みからなる板状部品を得ることが可能となる。もちろん、伝熱抑制板が上記薄肉金属板に固定されている状態であっても、板状部品の性能、評価に実質的な影響を与えないのであれば、この除去工程を省略することも可能である。 In this way, by removing the heat transfer suppressing plate from the plate assembly after the welding process, heat transfer can be suppressed regardless of whether the heat transfer suppressing plate is fixed to the thin metal plate at one end in the thickness direction during the welding process. It becomes possible to reliably separate the plate from the thin metal plate and obtain a plate-like component made of a plate assembly having a predetermined structure. Of course, even if the heat transfer suppressing plate is fixed to the thin metal plate, this removal step can be omitted if it does not substantially affect the performance or evaluation of the plate-shaped component. It is.

また、本発明に係るスポット溶接方法において、伝熱抑制板の厚み寸法を0.7mm以下に設定してもよい。 Furthermore, in the spot welding method according to the present invention, the thickness of the heat transfer suppressing plate may be set to 0.7 mm or less.

本発明者らが、伝熱抑制板の厚み寸法と溶接部の大きさ(溶け込みの範囲)との関係を検証した結果、伝熱抑制板の厚み寸法が0.8mm以上では、伝熱抑制板と厚み方向一端側の薄肉金属板との境界を越えて伝熱抑制板にまで溶け込みが進行するおそれがあることが判明した。以上の結果より、伝熱抑制板の厚み寸法を0.8mm未満に設定することで、好ましくは0.7mm以下に設定することによって、伝熱抑制板への溶け込みを防止して、安定かつ十分な溶接部の形成を図ることが可能となる。 As a result of the present inventors verifying the relationship between the thickness dimension of the heat transfer suppressing plate and the size of the welded part (range of penetration), it was found that when the thickness dimension of the heat transfer suppressing plate is 0.8 mm or more, the heat transfer suppressing plate It has been found that there is a possibility that penetration may proceed beyond the boundary between the metal plate and the thin metal plate at one end in the thickness direction and reach the heat transfer suppressing plate. From the above results, by setting the thickness of the heat transfer suppressing plate to less than 0.8 mm, preferably to 0.7 mm or less, it is possible to prevent melting into the heat transfer suppressing plate and ensure a stable and sufficient thickness. This makes it possible to form a welded part with a high degree of accuracy.

以上のように、本発明によれば、高板厚比でかつ少なくとも厚み方向一端側に薄肉の金属板が位置する板組みに対して、良好な品質の溶接部を形成することが可能となる。また、既存の溶接設備と溶接条件を用いて上述した溶接部を形成することができるので、大幅なコストアップを招くことなく、良好な品質の溶接部を形成することが可能となる。 As described above, according to the present invention, it is possible to form a welded portion of good quality in a plate assembly with a high plate thickness ratio and in which a thin metal plate is located at least at one end in the thickness direction. . Further, since the above-described welded portion can be formed using existing welding equipment and welding conditions, it is possible to form a welded portion of good quality without causing a significant increase in cost.

本発明の一実施形態に係るスポット溶接方法の流れを示すフローチャートである。1 is a flowchart showing the flow of a spot welding method according to an embodiment of the present invention. 図1に示す準備工程で準備する板組みの断面図である。FIG. 2 is a cross-sectional view of a board assembly prepared in the preparation process shown in FIG. 1. FIG. (a)~(c)は何れも、本発明に係る溶接工程の概要を説明するための断面図である。(a) to (c) are all cross-sectional views for explaining the outline of the welding process according to the present invention. (a)~(c)は何れも、従来技術に係る溶接工程の概要を説明するための断面図である。(a) to (c) are all cross-sectional views for explaining the outline of a welding process according to the prior art. 本発明の他の実施形態に係るスポット溶接方法の概要を説明するための断面図である。FIG. 3 is a cross-sectional view for explaining an overview of a spot welding method according to another embodiment of the present invention. 本発明の他の実施形態に係るスポット溶接方法の概要を説明するための断面図である。FIG. 3 is a cross-sectional view for explaining an overview of a spot welding method according to another embodiment of the present invention. 本発明の他の実施形態に係るスポット溶接方法の概要を説明するための断面図である。FIG. 3 is a cross-sectional view for explaining an overview of a spot welding method according to another embodiment of the present invention.

以下、本発明の一実施形態に係るスポット溶接方法の内容を図面に基づいて説明する。 Hereinafter, the details of a spot welding method according to an embodiment of the present invention will be explained based on the drawings.

図1は、本発明の一実施形態に係るスポット溶接方法の流れを示すフローチャートである。図1に示すように、本発明に係るスポット溶接方法は、溶接対象となる板組みを準備する準備工程S1と、準備した板組みに対してスポット溶接を施す溶接工程S2と、溶接が施された板組みから伝熱抑制板を取り除く除去工程S3とを具備する。以下、各工程を順に説明する。 FIG. 1 is a flowchart showing the flow of a spot welding method according to an embodiment of the present invention. As shown in FIG. 1, the spot welding method according to the present invention includes a preparation step S1 of preparing a plate assembly to be welded, a welding step S2 of performing spot welding on the prepared plate assembly, and a welding step S2 of performing spot welding on the prepared plate assembly. and a removal step S3 of removing the heat transfer suppressing plate from the plate assembly. Each step will be explained in order below.

(S1)準備工程
この工程S1では、スポット溶接の対象となる板組みを準備する。図2は、溶接対象となる板組み1の一例に係る断面図を示している。図2に示すように、この板組み1は、複数の金属板2~5を重ね合わせてなる。このうち、板組み1の厚み方向両端側に位置する金属板2,5はそれぞれ、板組み1の厚み方向中央側に位置する金属板3,4に比べて薄肉であり、本実施形態では、4枚の金属板2~5が、第一の薄肉金属板2、第一の厚肉金属板3、第二の厚肉金属板4、第二の薄肉金属板5の順に配置される。ここで、第一の薄肉金属板3と第二の薄肉金属板5との厚み寸法関係は上述の関係を満たす限りにおいて任意であり、本実施形態では、図2に示すように、第一の薄肉金属板2の厚み寸法t1が、第二の薄肉金属板5の厚み寸法t4よりも小さい。すなわち、第一の薄肉金属板2の厚み寸法t1が、板組み1を構成する全ての金属板2~5の中で最も小さい。また、第一の厚肉金属板3と第二の厚肉金属板4との厚み寸法関係についても上述の関係を満たす限りにおいて任意であり、本実施形態では、図2に示すように、第一の厚肉金属板3の厚み寸法t2が、第二の厚肉金属板4の厚み寸法t3と等しい。この場合、上述した金属板2~5の厚み寸法の大小関係は、t1<t4<t2=t3である。また、上記板組み1の板厚比(ここでは板組み1の総板厚T/第一の薄肉金属板2の厚み寸法t1)は4以上、あるいは5以上である。
(S1) Preparation Step In this step S1, a plate assembly to be spot welded is prepared. FIG. 2 shows a cross-sectional view of an example of the plate assembly 1 to be welded. As shown in FIG. 2, this plate assembly 1 is formed by stacking a plurality of metal plates 2 to 5. Among these, the metal plates 2 and 5 located at both ends in the thickness direction of the plate assembly 1 are thinner than the metal plates 3 and 4 located at the center side in the thickness direction of the plate assembly 1, and in this embodiment, Four metal plates 2 to 5 are arranged in the order of first thin metal plate 2, first thick metal plate 3, second thick metal plate 4, and second thin metal plate 5. Here, the thickness relationship between the first thin metal plate 3 and the second thin metal plate 5 is arbitrary as long as it satisfies the above relationship, and in this embodiment, as shown in FIG. The thickness t1 of the thin metal plate 2 is smaller than the thickness t4 of the second thin metal plate 5. That is, the thickness dimension t1 of the first thin metal plate 2 is the smallest among all the metal plates 2 to 5 constituting the plate assembly 1. Further, the thickness relationship between the first thick metal plate 3 and the second thick metal plate 4 is also arbitrary as long as the above-mentioned relationship is satisfied, and in this embodiment, as shown in FIG. The thickness t2 of the first thick metal plate 3 is equal to the thickness t3 of the second thick metal plate 4. In this case, the magnitude relationship of the thickness dimensions of the metal plates 2 to 5 described above is t1<t4<t2=t3. Further, the plate thickness ratio of the plate assembly 1 (here, the total plate thickness T of the plate assembly 1/thickness dimension t1 of the first thin metal plate 2) is 4 or more, or 5 or more.

また、各薄肉金属板2,5としては、例えば引張強度300MPa以下の軟鋼板が使用でき、具体的には、溶融亜鉛メッキ鋼板が使用できる。また、各厚肉金属板3,4としては、例えば引張強度490MPa以上の高張力鋼板(いわゆるハイテン材)、あるいは引張強度980MPa以上の超高張力鋼板(いわゆる超ハイテン材)が使用できる。本実施形態では、各厚肉金属板3,4は、ともに同一の材料からなる高張力鋼板であり、具体的には冷間圧延鋼板からなる超高張力鋼板が使用できる。もちろん、各薄肉金属板2,5は互いに異なる材質の金属板であってもよい。同様に、各厚肉金属板3,4は互いに異なる材質の金属板であってもよい。 Further, as each of the thin metal plates 2 and 5, for example, a mild steel plate having a tensile strength of 300 MPa or less can be used, and specifically, a hot-dip galvanized steel plate can be used. Further, as each of the thick metal plates 3 and 4, for example, a high tensile strength steel plate (so-called high tensile strength material) having a tensile strength of 490 MPa or more or an ultra high tensile strength steel plate (so called ultra high tensile strength material) having a tensile strength of 980 MPa or more can be used. In this embodiment, the thick metal plates 3 and 4 are both high-tensile steel plates made of the same material, and specifically, ultra-high-tensile steel plates made of cold-rolled steel plates can be used. Of course, the thin metal plates 2 and 5 may be made of different materials. Similarly, the thick metal plates 3 and 4 may be made of different materials.

上述した構成の板組み1は、溶接することにより、例えば自動車の車体を構成する板状部品としての鋼板部品となる。その場合、各薄肉金属板2,5は、外板パネルあるいは内板パネル(サイドアウタパネル、サイドインナパネル、フロアパネル等)として機能し、各厚肉金属板3,4は、骨格フレーム(サイドメンバ、リーンフォースメント等)として機能する。 By welding, the plate assembly 1 having the above-mentioned configuration becomes a steel plate component as a plate-shaped component constituting the body of an automobile, for example. In that case, each thin metal plate 2, 5 functions as an outer panel or an inner plate panel (side outer panel, side inner panel, floor panel, etc.), and each thick metal plate 3, 4 functions as a skeletal frame (side member , reinforcement, etc.).

(S2)溶接工程
溶接工程S2では、上述のように準備された板組み1に対して所定の条件で加圧通電を行うことにより、板組み1内部に所定の溶接部を形成する。図3は、溶接工程S2の概要を示す断面図である。図3に示すように、この溶接工程S2では、板組み1の厚み方向両側に一対の電極11,12を配設すると共に、板組み1の厚み方向一端側に位置する第一の薄肉金属板2と、一対の電極11,12のうち第一の薄肉金属板2に近い側の一方の電極11との間に、伝熱抑制板13を配設する。この伝熱抑制板13は、例えば各電極11,12よりも熱伝導率の低い材料で形成されるもので、例えば鋼板など各金属板2~5と同種の材料で、言い換えると熱伝導率が同一の又は近い値を示す材料で形成される。一例として、伝熱抑制板13は、各薄肉金属板2,5と同じ軟鋼板で形成することができる。
(S2) Welding process In the welding process S2, a predetermined welded portion is formed inside the plate assembly 1 by pressurizing and energizing the plate assembly 1 prepared as described above under predetermined conditions. FIG. 3 is a sectional view showing an outline of the welding process S2. As shown in FIG. 3, in this welding step S2, a pair of electrodes 11 and 12 are arranged on both sides of the plate assembly 1 in the thickness direction, and a first thin metal plate located at one end of the plate assembly 1 in the thickness direction is 2 and one electrode 11 of the pair of electrodes 11, 12 closer to the first thin metal plate 2, a heat transfer suppressing plate 13 is disposed. The heat transfer suppressing plate 13 is made of a material having a lower thermal conductivity than each of the electrodes 11 and 12, for example, and is made of the same material as each of the metal plates 2 to 5, such as a steel plate. Made of materials that exhibit the same or similar values. As an example, the heat transfer suppressing plate 13 can be formed of the same mild steel plate as each of the thin metal plates 2 and 5.

また、伝熱抑制板13の厚み寸法t5は、原則として任意であるが、加圧通電時における伝熱抑制板13への溶け込みを防止する観点から0.8mm未満がよく、確実に防止する観点からは0.7mm以下がさらによい。一方で、後述するように、伝熱抑制板13と接触する第一の薄肉金属板2とその内側に位置する第一の厚肉金属板3との接触面積A1を確保する観点からは、伝熱抑制板13の厚み寸法t5は、0.4mm以上がよく、0.5mm以上がさらによい。 The thickness t5 of the heat transfer suppressing plate 13 is arbitrary in principle, but it is preferably less than 0.8 mm from the viewpoint of preventing melting into the heat transfer suppressing plate 13 during pressurized energization. Even better is 0.7 mm or less. On the other hand, as will be described later, from the viewpoint of ensuring the contact area A1 between the first thin metal plate 2 in contact with the heat transfer suppressing plate 13 and the first thick metal plate 3 located inside thereof, The thickness t5 of the heat suppression plate 13 is preferably 0.4 mm or more, and even more preferably 0.5 mm or more.

このように、板組み1の厚み方向一端側の薄肉金属板2に接触させるようにして伝熱抑制板13を配設した状態で、これら伝熱抑制板13と板組み1とを一対の電極11,12で挟持加圧した状態で、一対の電極11,12間に通電する。 In this way, with the heat transfer suppressing plate 13 disposed so as to be in contact with the thin metal plate 2 at one end in the thickness direction of the plate assembly 1, the heat transfer suppressing plate 13 and the plate assembly 1 are connected to a pair of electrodes. Electricity is applied between the pair of electrodes 11 and 12 while the electrodes 11 and 12 are sandwiched and pressurized.

この際、適用される加圧通電パターンとしては、公知の加圧通電パターンを適用することができる。また、加圧パターンと通電パターンは同期させて設定することができ、あるいは別個に設定することができる。例えば、加圧パターンに関し、通電期間中、加圧力を一定の値に保持してもよいし、所定のパターンで変動させてもよい。また、加圧力の変動パターンに関しても任意であり、例えば加圧力を下げることなく段階的に所定の値にまで上昇させてもよく、あるいは、上昇と低下を繰り返しながら加圧力を所定の値にまで上昇させてもよい。また、加圧力を所定の値にまで上昇させ、一定時間保持した後、段階的に加圧力を低下させてもよい。同様に、通電パターンに関し、加圧期間中、通電量としての電流値を一定の値に保持してもよいし、所定のパターンで変動させてもよい。また、電流値の変動パターンに関しても任意であり、例えば電流値を下げることなく段階的に所定の値にまで上昇させてもよく、あるいは上昇と低下を繰り返しながら電流値を所定の値にまで上昇させてもよい。また、電流値を所定の値にまで上昇させ、一定時間保持した後、段階的に電流値を低下させてもよい。 At this time, a known pressure energization pattern can be applied as the pressure energization pattern to be applied. Moreover, the pressurization pattern and the energization pattern can be set in synchronization or can be set separately. For example, regarding the pressure pattern, the pressure may be maintained at a constant value during the energization period, or may be varied in a predetermined pattern. Furthermore, the variation pattern of the pressurizing force is also arbitrary; for example, the pressurizing force may be raised stepwise to a predetermined value without decreasing it, or the pressurizing force may be repeatedly increased and decreased until it reaches a predetermined value. May be increased. Alternatively, the pressing force may be increased to a predetermined value, maintained for a certain period of time, and then gradually lowered. Similarly, regarding the energization pattern, the current value as the amount of energization may be held at a constant value during the pressurizing period, or may be varied in a predetermined pattern. Furthermore, the variation pattern of the current value is also arbitrary; for example, the current value may be increased stepwise to a predetermined value without decreasing it, or the current value may be increased to a predetermined value while repeating increases and decreases. You may let them. Alternatively, the current value may be increased to a predetermined value, held for a certain period of time, and then lowered in stages.

このように、所定のパターンで板組み1に対して加圧通電した際、板組み1の厚み方向両端側に位置する第一及び第二の薄肉金属板2,5は、加圧により例えば図3(b)のように変形することで、板組み1の厚み方向中央側に位置する各厚肉金属板3,4と接触する。そして、各金属板2~5間の接触部における電流密度が高まることで、発熱を生じる。ここで、例えば伝熱抑制板13を配置せずにその他は本実施形態と同じ条件で加圧通電した場合(図4(a)を参照)、第一の薄肉金属板2は一対の電極11,12のうち第一の薄肉金属板2に近い側の一方の電極11と直に接触する。電極11,12は、通常、溶接対象となる金属板2~5よりも熱伝導率に優れた材料(例えば銅合金)で形成される。また、電極11,12の内部に流通させた冷却液により通電時に電極11,12は冷却される。そのため、電極11に接触する厚み方向一端側の金属板2は、容易に電極11への伝熱(放熱)を生じ、温度が上がりにくい状況となる。その結果、板組み1内部に形成される溶接部6’の厚み方向への成長が不十分となり、溶接部6’が第一の薄肉金属板2にまで形成されない結果を招くおそれが高まる(図4(c)を参照)。 In this way, when the plate assembly 1 is pressurized and energized in a predetermined pattern, the first and second thin metal plates 2 and 5 located at both ends of the plate assembly 1 in the thickness direction are caused to e.g. By deforming as shown in 3(b), it comes into contact with each of the thick metal plates 3 and 4 located at the center of the plate assembly 1 in the thickness direction. Then, the current density at the contact portion between each of the metal plates 2 to 5 increases, causing heat generation. Here, for example, when the heat transfer suppressing plate 13 is not disposed and the other conditions are the same as those of this embodiment when pressurized current is applied (see FIG. 4(a)), the first thin metal plate 2 is connected to the pair of electrodes 11. , 12, directly contacts one electrode 11 on the side closer to the first thin metal plate 2. The electrodes 11 and 12 are usually made of a material (for example, a copper alloy) that has higher thermal conductivity than the metal plates 2 to 5 to be welded. Furthermore, the electrodes 11 and 12 are cooled by the cooling liquid that is passed through the electrodes 11 and 12 when electricity is applied. Therefore, the metal plate 2 on the one end side in the thickness direction that contacts the electrode 11 easily causes heat transfer (heat radiation) to the electrode 11, resulting in a situation where the temperature does not easily rise. As a result, the growth of the welded part 6' formed inside the plate assembly 1 in the thickness direction becomes insufficient, increasing the possibility that the welded part 6' will not be formed in the first thin metal plate 2 (Fig. 4(c)).

これに対して、本発明に係るスポット溶接方法によれば、一方の電極11と第一の薄肉金属板2との間に配設した伝熱抑制板13により、加圧通電時、厚み方向一端側に位置する第一の薄肉金属板2に生じた熱が一方の電極11側に逃げる事態を抑制又は可及的に防止することができる。そのため、従来に比べて第一の薄肉金属板2の温度を容易に上昇させて、第一の薄肉金属板2に対する溶け込み(溶融部の厚み方向への拡大)を促進することができる。従って、図3(c)に示すように、第一の薄肉金属板2を含む全ての金属板2~5に跨る十分な大きさの溶接部6を比較的容易に形成することが可能となる。 On the other hand, according to the spot welding method according to the present invention, the heat transfer suppressing plate 13 disposed between the one electrode 11 and the first thin metal plate 2 allows It is possible to suppress or prevent the heat generated in the first thin metal plate 2 located on the side from escaping to the one electrode 11 side. Therefore, the temperature of the first thin metal plate 2 can be increased more easily than in the past, and melting into the first thin metal plate 2 (expansion of the molten part in the thickness direction) can be promoted. Therefore, as shown in FIG. 3(c), it is possible to relatively easily form a sufficiently large welded portion 6 spanning all the metal plates 2 to 5 including the first thin metal plate 2. .

また、所定のパターンで板組み1に対して加圧通電した際、板組み1の厚み方向両端側に位置する第一及び第二の薄肉金属板2,5は、加圧及び発熱により軟化して例えば図3(b)のように変形することで、板組み1の中央側に位置する各厚肉金属板3,4と面接触を生じる。また、この際、第一の薄肉金属板2に隣接して伝熱抑制板13を配設した状態で加圧通電することにより、伝熱抑制板13を第一の薄肉金属板2と一体的に変形させることができる。これにより、第一の薄肉金属板2とこの内側に隣接する第一の厚肉金属板3との接触面積A1を、伝熱抑制板13を配置しない条件で加圧通電した場合における第一の薄肉金属板2と第一の厚肉金属板3との接触面積A2(図4(b)を参照)よりも減少させることができる。このような接触形態とすることで、特に加圧通電の早期に第一の薄肉金属板2と第一の厚肉金属板3とを比較的小さな面積で面接触させることができ、これら金属板2,3間の接触部における電流密度を高め易くなる。従って、これによっても、溶接部6の厚み方向への成長を促進して、全ての金属板2~5に跨る十分な大きさの溶接部6を比較的容易に形成することが可能となる。 Furthermore, when applying pressure and electricity to the plate assembly 1 in a predetermined pattern, the first and second thin metal plates 2 and 5 located at both ends of the plate assembly 1 in the thickness direction soften due to the pressure and heat generation. For example, by deforming as shown in FIG. 3(b), surface contact is made with each of the thick metal plates 3 and 4 located at the center of the plate assembly 1. In addition, at this time, by applying pressure and electricity with the heat transfer suppressing plate 13 disposed adjacent to the first thin metal plate 2, the heat transfer suppressing plate 13 is integrated with the first thin metal plate 2. It can be transformed into. As a result, the contact area A1 between the first thin metal plate 2 and the first thick metal plate 3 adjacent to the inner side of the first thin metal plate 2 can be changed to the contact area A1 of the first thin metal plate 2 when pressurized and energized without disposing the heat transfer suppressing plate 13. This can be made smaller than the contact area A2 between the thin metal plate 2 and the first thick metal plate 3 (see FIG. 4(b)). By adopting such a contact form, it is possible to bring the first thin metal plate 2 and the first thick metal plate 3 into surface contact in a relatively small area, especially in the early stage of pressurization and energization, and these metal plates This makes it easier to increase the current density at the contact portion between 2 and 3. Therefore, this also promotes the growth of the welded portion 6 in the thickness direction, making it possible to relatively easily form a sufficiently large welded portion 6 spanning all the metal plates 2 to 5.

特に、本実施形態のように、伝熱抑制板13の厚み寸法t5を、0.8mm未満に、好ましくは0.7mm以下に設定することによって、伝熱抑制板13への溶け込みを防止して、安定かつ十分な溶接部6の形成を図ることが可能となる。 In particular, as in the present embodiment, melting into the heat transfer suppressing plate 13 is prevented by setting the thickness t5 of the heat transfer suppressing plate 13 to less than 0.8 mm, preferably 0.7 mm or less. , it becomes possible to form a stable and sufficient welded portion 6.

(S3)除去工程
除去工程S3では、溶接工程S2でスポット溶接を施した板組み1から伝熱抑制板13を取り除く。この際、伝熱抑制板13が実質的に第一の薄肉金属板2に固定されていない場合、作業者の手により伝熱抑制板13を第一の薄肉金属板2上から取り除く。また、伝熱抑制板13が一対の電極11,12による加圧通電箇所において第一の薄肉金属板2に多少なりとも固定(密着又は部分的な溶融により一体化)されている場合、タガネ等の器具を用いて固定されている部分を破壊することにより、伝熱抑制板13を第一の薄肉金属板2から取り除く。これにより、所定構造の板組み1からなる板状部品としての鋼板部品が得られる。なお、器具等を用いて伝熱抑制板13を板組み1(第一の薄肉金属板2)から取り除いた場合、第一の薄肉金属板2の表面に、伝熱抑制板13の除去痕が残ることも考えられるが、当該表面が車体の表面を構成する場合には、溶接後に塗装が施されるため、視認性(意匠性)を害するおそれはない。また、当該表面が車体の表面を構成しない場合、そもそも車体の視認性には影響を及ぼさないため、特に問題はない。
(S3) Removal Step In the removal step S3, the heat transfer suppressing plate 13 is removed from the plate assembly 1 spot-welded in the welding step S2. At this time, if the heat transfer suppressing plate 13 is not substantially fixed to the first thin metal plate 2, the heat transfer suppressing plate 13 is removed from the first thin metal plate 2 by hand. In addition, if the heat transfer suppressing plate 13 is fixed to the first thin metal plate 2 to some extent (integrated by close contact or partial melting) at the pressurized and energized location by the pair of electrodes 11 and 12, a chisel, etc. The heat transfer suppressing plate 13 is removed from the first thin metal plate 2 by destroying the fixed portion using a tool. Thereby, a steel plate component as a plate-shaped component consisting of the plate assembly 1 having a predetermined structure is obtained. Note that when the heat transfer suppressing plate 13 is removed from the plate assembly 1 (first thin metal plate 2) using a tool or the like, there will be traces of removal of the heat transfer suppressing plate 13 on the surface of the first thin metal plate 2. Although it is possible that the surface may remain, if the surface constitutes the surface of the vehicle body, it will be painted after welding, so there is no risk of impairing visibility (design). Furthermore, if the surface does not constitute the surface of the vehicle body, there is no particular problem since it does not affect the visibility of the vehicle body in the first place.

以上、本発明の一実施形態について述べたが、本発明に係るスポット溶接方法は、その趣旨を逸脱しない範囲において、上記以外の構成を採ることも可能である。 Although one embodiment of the present invention has been described above, the spot welding method according to the present invention may have a configuration other than the above without departing from the spirit thereof.

例えば伝熱抑制板13の形状に関し、上記実施形態では、溶接箇所(加圧通電箇所)における断面形状が、第一の薄肉金属板2と同じである場合を例示したが(図3を参照)、もちろん、これには限られない。伝熱抑制板13は、鋼板部品となる板組み1の各金属板2~5とは求められる役割、機能が異なることから、例えば図5に示すように、伝熱抑制板14を、一方の電極11と当接する複数の当接部15と、これら複数の当接部15を連結する連結部16とを一体的に有する構成としてもよい。言い換えると、伝熱抑制板14のうち第一の薄肉金属板2から一方の電極11側への伝熱を抑制する必要がある領域のみに、第一の薄肉金属板2と一方の電極11とに接触する部分を設けてもよい。この場合、伝熱抑制板13の平面形状(伝熱抑制板13をその厚み方向から見た時の形状)は、少なくとも連結部16に対応する部分において、第一の薄肉金属板2の平面形状と異なる。もちろん、複数箇所にスポット溶接を施す際に第一の薄肉金属板2が所望の変形を生じるように、各当接部15を所定の大きさ及び形状に設定することは必要である。 For example, regarding the shape of the heat transfer suppressing plate 13, in the above embodiment, the case where the cross-sectional shape at the welding location (pressurized and energized location) is the same as that of the first thin metal plate 2 was exemplified (see FIG. 3). , of course, is not limited to this. Since the heat transfer suppressing plate 13 has a different required role and function from each of the metal plates 2 to 5 of the plate assembly 1, which are steel plate parts, for example, as shown in FIG. 5, the heat transfer suppressing plate 14 is It may be configured to integrally include a plurality of abutting portions 15 that abut the electrodes 11 and a connecting portion 16 that connects the plurality of abutting portions 15. In other words, the first thin metal plate 2 and one electrode 11 are connected only to the area of the heat transfer suppressing plate 14 where it is necessary to suppress heat transfer from the first thin metal plate 2 to one electrode 11 side. It is also possible to provide a portion that comes into contact with. In this case, the planar shape of the heat transfer suppressing plate 13 (the shape when the heat transfer suppressing plate 13 is viewed from the thickness direction) is the planar shape of the first thin metal plate 2 at least in the portion corresponding to the connecting portion 16. different from. Of course, it is necessary to set each contact portion 15 to a predetermined size and shape so that the first thin metal plate 2 undergoes desired deformation when spot welding is performed at a plurality of locations.

また、伝熱抑制板13,14の平面形状以外の事項(材質、厚み寸法、表面処理など)についても、特に上記実施形態に記載の事項には限定されない。第一の薄肉金属板2から一方の電極11への伝熱を抑制可能な限りにおいて、伝熱抑制板13,14は任意の構成をとることが可能である。 Further, matters other than the planar shape of the heat transfer suppressing plates 13 and 14 (material, thickness, surface treatment, etc.) are not particularly limited to those described in the above embodiments. The heat transfer suppressing plates 13 and 14 can have any configuration as long as the heat transfer from the first thin metal plate 2 to one electrode 11 can be suppressed.

また、以上の説明では、板組み1の厚み方向両端側に位置する2枚の薄肉金属板2,5のうち厚み寸法が小さい側の薄肉金属板(第一の薄肉金属板2)に伝熱抑制板13(14)を直に接触させて一対の電極11,12により加圧通電を施した場合を例示したが、もちろんこれには限られない。例えば図示は省略するが、各金属板2~5の三次元形状、他のスポット溶接打点との位置関係など、溶接環境によっては、厚み寸法が大きい側の薄肉金属板(図3でいえば第二の薄肉金属板5)に伝熱抑制板13(14)を直に接触させて、言い換えると、第二の薄肉金属板5と他方の電極12との間に伝熱抑制板13(14)を介在させた状態で、一対の電極11,12により加圧通電を施してもよい。 In addition, in the above explanation, heat is transferred to the thin metal plate (first thin metal plate 2) with the smaller thickness among the two thin metal plates 2 and 5 located at both ends in the thickness direction of the plate assembly 1. Although the case where the suppression plate 13 (14) is brought into direct contact and pressurized current is applied by the pair of electrodes 11 and 12 has been exemplified, the present invention is not limited to this, of course. For example, although not shown, depending on the welding environment, such as the three-dimensional shape of each metal plate 2 to 5 and the positional relationship with other spot welding points, the thin metal plate with the larger thickness (in Fig. 3, the The heat transfer suppressing plate 13 (14) is brought into direct contact with the second thin metal plate 5), in other words, the heat transfer suppressing plate 13 (14) is placed between the second thin metal plate 5 and the other electrode 12. Pressure energization may be applied using a pair of electrodes 11 and 12 with .

また、以上の説明では、板組み1の厚み方向一端側に位置する第一の薄肉金属板2と、この薄肉金属板2に近い側の一方の電極11との間に伝熱抑制板13(14)を配設した場合を例示したが(図3を参照)、もちろんこれ以外の配置態様をとることも可能である。例えば図7に示すように、一対の電極11,12のうち一方の電極11と、一方の電極11に近い側の厚み方向一端側の第一の薄肉金属板2との間に伝熱抑制板13を配設すると共に、他方の電極12と、他方の電極12に近い側の厚み方向他端側の第二の薄肉金属板5との間に伝熱抑制板17を配設してもよい。 In the above description, the heat transfer suppressing plate 13 ( 14) is shown as an example (see FIG. 3), but it is of course possible to use other arrangements. For example, as shown in FIG. 7, a heat transfer suppressing plate is provided between one electrode 11 of a pair of electrodes 11 and 12 and a first thin metal plate 2 at one end in the thickness direction near the other electrode 11. 13, and a heat transfer suppressing plate 17 may be provided between the other electrode 12 and the second thin metal plate 5 on the other end in the thickness direction on the side closer to the other electrode 12. .

また、以上の説明では、厚み方向中央側に二枚の厚肉金属板3,4を配置し、厚み方向両端側に二枚の薄肉金属板2,5を配置してなる板組み1(図2)に対して本発明を適用する場合を例示したが、もちろんこれ以外の構成をなす板組み1に対して本発明を適用することも可能である。例えば図6に示すように、二枚の厚肉金属板3,4の厚み方向一方側のみに薄肉金属板(第一の薄肉金属板2)を配置してなる板組み1に対して本発明を適用することもできる。この場合、伝熱抑制板13は、第一の薄肉金属板2と一方の電極11との間に配設される。このように、板組み1を構成する金属板の枚数は任意である。3枚であってもよいし、5枚以上であってもよい。 In addition, in the above explanation, the plate assembly 1 (Fig. Although the case where the present invention is applied to 2) has been illustrated, it is of course possible to apply the present invention to the board assembly 1 having a configuration other than this. For example, as shown in FIG. 6, the present invention applies to a plate assembly 1 in which a thin metal plate (first thin metal plate 2) is arranged only on one side in the thickness direction of two thick metal plates 3 and 4. can also be applied. In this case, the heat transfer suppressing plate 13 is disposed between the first thin metal plate 2 and one electrode 11. In this way, the number of metal plates constituting the plate assembly 1 is arbitrary. The number may be three or five or more.

また、以上の説明では、第一及び第二の薄肉金属板2,5を軟鋼板とし、第一及び第二の厚肉金属板3,4を高張力鋼板又は超高張力鋼板とした場合を例示したが、もちろんこれ以外の組み合わせに係る板組み1に本発明を適用することも可能である。すなわち、全ての金属板2~5を軟鋼板としてもよく、又は、全ての金属板2~5を高張力鋼板或いは超高張力鋼板としてもよい。また、第一及び第二の薄肉金属板2,5の一方を軟鋼板、他方を高張力鋼板或いは超高張力鋼板としてもよい。同様に、第一及び第二の厚肉金属板3,4の一方を軟鋼板、他方を高張力鋼板或いは超高張力鋼板としてもよい。もちろん、鋼板以外の金属板を少なくとも1枚以上含む板組み1に対して本発明を適用することも可能である。 Furthermore, in the above description, the first and second thin metal plates 2 and 5 are made of mild steel plates, and the first and second thick metal plates 3 and 4 are made of high-tensile steel plates or ultra-high-tensile steel plates. Although illustrated, it is of course possible to apply the present invention to the board assembly 1 related to other combinations. That is, all metal plates 2 to 5 may be made of mild steel plates, or all metal plates 2 to 5 may be made of high tensile strength steel plates or ultra high tensile strength steel plates. Further, one of the first and second thin metal plates 2 and 5 may be a mild steel plate, and the other may be a high tensile strength steel plate or an ultra high tensile strength steel plate. Similarly, one of the first and second thick metal plates 3 and 4 may be a mild steel plate, and the other may be a high tensile strength steel plate or an ultra high tensile strength steel plate. Of course, it is also possible to apply the present invention to a plate assembly 1 that includes at least one metal plate other than a steel plate.

また、以上の説明では、自動車の車体を構成する鋼板部品となる板組み1に対して本発明を適用した場合を例示したが、もちろん、これ以外の板組み1に対して本発明を適用してもよい。すなわち、鋼板部品以外の板状部品となる板組み1に対して本発明を適用してもよい。また、自動車の車体以外の製品を構成する鋼板部品(板状部品)となる板組み1に対して本発明を適用してもよい。 Further, in the above explanation, the case where the present invention is applied to the plate assembly 1 which is a steel plate component constituting the body of an automobile was illustrated, but of course, the present invention may be applied to other plate assemblies 1. It's okay. That is, the present invention may be applied to the plate assembly 1 that is a plate-shaped component other than a steel plate component. Further, the present invention may be applied to a plate assembly 1 that is a steel plate component (plate-shaped component) that constitutes a product other than an automobile body.

1 板組み
2,5 薄肉金属板
3,4 厚肉金属板
5 薄肉金属板
6 溶接部
11,12 電極
13,14,17 伝熱抑制板
15 当接部
16 連結部
A1,A2 接触面積
S1 準備工程
S2 溶接工程
S3 除去工程
1 Plate assembly 2, 5 Thin metal plate 3, 4 Thick metal plate 5 Thin metal plate 6 Welding part 11, 12 Electrode 13, 14, 17 Heat transfer suppressing plate 15 Contact part 16 Connection part A1, A2 Contact area S1 Preparation Process S2 Welding process S3 Removal process

Claims (1)

複数の金属板を重ね合わせた板組みであって、前記複数の金属板のうち相対的に薄肉の薄肉金属板が厚み方向一端側又は両端側に配置される板組みを準備する板組準備工程と、
前記板組みに対して一対の電極で加圧通電することにより、前記板組みの内部に溶接部を形成する溶接工程とを備えたスポット溶接方法において、
前記溶接工程で、前記一対の電極のうち少なくとも一方の電極と、前記一方の電極に近い側の前記厚み方向一端側の薄肉金属板との間に、前記厚み方向一端側の薄肉金属板から前記一方の電極側への伝熱を抑制する伝熱抑制板を配設した状態で、前記板組みに対して前記一対の電極による加圧通電を行い、
前記加圧通電に伴う加熱軟化により、前記伝熱抑制板を前記厚み方向一端側の薄肉金属板と一体的に、前記厚み方向一端側の薄肉金属板と隣接し前記複数の金属板のうち相対的に厚肉の厚肉金属板に向けて突出変形させ、前記厚み方向一端側の薄肉金属板と前記厚肉金属板とを面接触させると共に、前記面接触部の周囲に前記厚み方向一端側の薄肉金属板と前記厚肉金属板との板隙を形成することを特徴とするスポット溶接方法。
A plate assembly preparation step of preparing a plate assembly in which a plurality of metal plates are stacked one on top of the other, in which a relatively thin metal plate among the plurality of metal plates is arranged at one end or both ends in the thickness direction. and,
A spot welding method comprising a welding step of forming a welded part inside the plate assembly by applying pressure and electricity to the plate assembly with a pair of electrodes,
In the welding step, between at least one of the pair of electrodes and the thin metal plate on the one end side in the thickness direction that is closer to the one electrode, the thin metal plate on the one end side in the thickness direction is Pressurizing and energizing the plate assembly with the pair of electrodes in a state where a heat transfer suppressing plate that suppresses heat transfer to one electrode side is provided ,
Due to the heating and softening caused by the pressurized energization, the heat transfer suppressing plate is integrally formed with the thin metal plate at one end in the thickness direction, and the heat transfer suppressing plate is integrally formed with the thin metal plate at one end in the thickness direction, and the metal plate adjacent to the thin metal plate at one end in the thickness direction is The thin metal plate on the one end side in the thickness direction is brought into surface contact with the thick metal plate, and the thin metal plate on the one end side in the thickness direction is brought into surface contact with the other end. A spot welding method characterized by forming a gap between the thin metal plate and the thick metal plate .
JP2019201573A 2019-11-06 2019-11-06 Spot welding method Active JP7382114B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019201573A JP7382114B2 (en) 2019-11-06 2019-11-06 Spot welding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019201573A JP7382114B2 (en) 2019-11-06 2019-11-06 Spot welding method

Publications (2)

Publication Number Publication Date
JP2021074727A JP2021074727A (en) 2021-05-20
JP7382114B2 true JP7382114B2 (en) 2023-11-16

Family

ID=75897354

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019201573A Active JP7382114B2 (en) 2019-11-06 2019-11-06 Spot welding method

Country Status (1)

Country Link
JP (1) JP7382114B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110284501A1 (en) 2010-05-21 2011-11-24 GM Global Technology Operations LLC Welding system
WO2016208610A1 (en) 2015-06-26 2016-12-29 本田技研工業株式会社 Spot welding method and device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57112980A (en) * 1980-12-29 1982-07-14 Yokohama Rubber Co Ltd:The Electric resistance welding method
JPS5970481A (en) * 1982-10-14 1984-04-20 Toyota Central Res & Dev Lab Inc Spot welding method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110284501A1 (en) 2010-05-21 2011-11-24 GM Global Technology Operations LLC Welding system
WO2016208610A1 (en) 2015-06-26 2016-12-29 本田技研工業株式会社 Spot welding method and device

Also Published As

Publication number Publication date
JP2021074727A (en) 2021-05-20

Similar Documents

Publication Publication Date Title
JP4543823B2 (en) Resistance spot welding method
JP3922263B2 (en) Method of manufacturing resistance spot welded joint
KR102058305B1 (en) Resistance spot welding method and manufacturing method of welding member
WO2016147551A1 (en) Resistance spot welding method and method for manufacturing resistance spot welded joint
KR20150023936A (en) Spot welding method for high-strength steel sheet excellent in joint strength
US20170298470A1 (en) Method of production of brazed joint and such a brazed joint
JP7056481B2 (en) How to manufacture cross members and cross members of the car body
JP7063207B2 (en) How to manufacture suspension support bracket and suspension support bracket
CN110202245A (en) Aluminium-steel weld seam mechanical performance is improved by limitation steel plate deformed
KR102604480B1 (en) Blanks and structural members
JP2008290099A (en) Resistance spot welding method
KR20180031033A (en) Resistance spot welding method and method for manufacturing welding member
JP2020011558A (en) Vehicular cross member and manufacturing method therefor
JP5609966B2 (en) Resistance spot welding method
JP6209991B2 (en) Blank material manufacturing method, hot stamp molded product manufacturing method, blank material, and hot stamp molded product
JP5766918B2 (en) Spot welding method for thin steel sheet
JP7382114B2 (en) Spot welding method
JP5640409B2 (en) Method of manufacturing resistance spot welded joint
JP6065564B2 (en) Spot welding method
JP6127669B2 (en) Manufacturing method of hot stamping molded product and manufacturing method of blank material
JP6089901B2 (en) Manufacturing method of joined body, resistance spot welding apparatus and composite electrode used therefor
JP5836826B2 (en) Indirect spot welding method
JP4641934B2 (en) Press forming method
JP7173736B2 (en) Spot welding method and steel plate parts
JP2017140633A (en) Spot welding method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220714

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230605

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231102

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231102

R150 Certificate of patent or registration of utility model

Ref document number: 7382114

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150