JP7378755B2 - Titanium nitride film with plasmonic properties and its manufacturing method - Google Patents

Titanium nitride film with plasmonic properties and its manufacturing method Download PDF

Info

Publication number
JP7378755B2
JP7378755B2 JP2017216426A JP2017216426A JP7378755B2 JP 7378755 B2 JP7378755 B2 JP 7378755B2 JP 2017216426 A JP2017216426 A JP 2017216426A JP 2017216426 A JP2017216426 A JP 2017216426A JP 7378755 B2 JP7378755 B2 JP 7378755B2
Authority
JP
Japan
Prior art keywords
tin
film
titanium nitride
plasmonic
nitride film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017216426A
Other languages
Japanese (ja)
Other versions
JP2019085629A (en
Inventor
忠昭 長尾
パスパティ スガワネシュワー ラム
智 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2017216426A priority Critical patent/JP7378755B2/en
Publication of JP2019085629A publication Critical patent/JP2019085629A/en
Application granted granted Critical
Publication of JP7378755B2 publication Critical patent/JP7378755B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明はプラズモン特性を有する窒化チタン膜及びその製造方法に関し、特に従来報告されていた窒化チタン膜よりも良好なプラズモン特性を実現することに関する。 The present invention relates to a titanium nitride film having plasmonic properties and a method for manufacturing the same, and particularly to achieving better plasmon properties than previously reported titanium nitride films.

プラズモニクスについての研究は、いくつかの応用分野において興味深くまた見込みのある結果が得られたために、とりわけここ20年ほどの間多数の研究者によって多様な分野で行われてきた(非特許文献1)。当初は、金(Au)、銀(Ag)及び銅(Cu)のような貨幣に使用される元素金属が、増強ラマン散乱や赤外吸収分光(非特許文献2)のようなプラズモニクス応用に向けて検討された。しかし、プラズモニクス分野が広範な研究領域に向けて進展するにつれて、目標となるスペクトル帯域についての最適な材料を見出すべく努力することが、応用を成功させるためにますます重要になってきた(非特許文献3,4)。単元素金属を使用することの主要な欠点は、その誘電特性及び光学損失を自由に調節できないことであり、これらの問題を克服するため、化合物を基軸としたプラズモン材料の研究が期待されている(非特許文献5)。現在のところ、高温デバイス分野への応用(非特許文献6)、光熱変換(非特許文献7)、センシング及びアクティブプラズモニクスにおけるプラズモニクスの最近の進展により、高耐温導電セラミック、つまりサーメット(cermet)が大いに関心を集めている。 Research on plasmonics has been carried out by a large number of researchers in various fields, especially in the last 20 years or so, as it has yielded interesting and promising results in several application fields (Non-Patent Document 1). . Initially, elemental metals used in coins, such as gold (Au), silver (Ag), and copper (Cu), were used for plasmonics applications such as enhanced Raman scattering and infrared absorption spectroscopy (Non-Patent Document 2). was considered. However, as the field of plasmonics progresses toward a broader range of research areas, striving to find optimal materials for targeted spectral bands becomes increasingly important for successful applications. References 3, 4). The main drawback of using single-element metals is that their dielectric properties and optical losses cannot be freely adjusted, and research on compound-based plasmonic materials is expected to overcome these problems. (Non-patent document 5). At present, recent advances in plasmonics in the field of high-temperature devices (Non-patent Document 6), photothermal conversion (Non-patent Document 7), sensing and active plasmonics have led to the development of high-temperature conductive ceramics, i.e., cermets. It is attracting a lot of interest.

窒化チタン(TiN)は、これまで最もよく研究された化合物プラズモン材料の一つである。TiNのプラズモン特性についての初期の研究がいくつかあるが、最近の報告(非特許文献4,8,9)で、TiNは多くのプラズモン応用に良好な性能を発揮することが明らかにされた。この材料には従来のプラズモン材料に比べて多様な利点がある。そのような利点としては、例えば低廉であることだけではなく、CMOSプロセスと相性がよく、化学的及び機械的安定性も良好であり、かつ高い熱安定性を示すことが挙げられる(非特許文献10)。ここ何年もの間、プラズモン材料としてのTiNの研究はいろいろな分野に広がり、光熱変換による太陽熱変換器(非特許文献7)、光熱励起形状記憶材料(photothermally-activated shape memory material)(非特許文献11)、熱アシスト磁気記録(heat assisted magnetic recording、HAMR)、及び自己給電型可撓性光検出器(self-powered flexible photodetector)といった多様な応用に向けて現在研究されている。これら応用分野のうちのあるものでは、従来のプラズモン材料と比べてはるかに改善された性能を有する代替のプラズモン材料が強く望まれている。例えば、近接場光熱効果を利用するHAMR向けの用途では、現在ではAuが利用されているが、レーザーを集中的に照射している間の原子の移動や形状歪の問題がある。TiNは高温でAuと同程度のプラズモン特性を有することから(非特許文献11)、Auの置換材料として期待されている。 Titanium nitride (TiN) is one of the most well-studied compound plasmonic materials to date. Although there have been some early studies on the plasmonic properties of TiN, recent reports (Non-Patent Documents 4, 8, 9) have shown that TiN exhibits good performance in many plasmonic applications. This material has a variety of advantages over traditional plasmonic materials. Such advantages include, for example, not only low cost, but also good compatibility with CMOS processes, good chemical and mechanical stability, and high thermal stability (Non-Patent Document 10). Over the past years, research on TiN as a plasmonic material has spread to various fields, including photothermal solar converters (Non-patent Document 7), photothermally-activated shape memory materials (Non-patent Document 7), and photothermally-activated shape memory materials (Non-patent Document 7). 11), heat assisted magnetic recording (HAMR), and self-powered flexible photodetectors. For some of these applications, alternative plasmonic materials with much improved performance compared to conventional plasmonic materials are highly desirable. For example, Au is currently used for HAMR applications that utilize near-field photothermal effects, but there are problems with atomic movement and shape distortion during intensive laser irradiation. Since TiN has plasmon properties comparable to those of Au at high temperatures (Non-Patent Document 11), it is expected to be used as a replacement material for Au.

TiNの誘電関数(dielectric function)を改善し最適化するため、多数の研究がおこなわれているが、これらのほとんどは基板を加熱し、またサファイアやMgOのような格子適合テンプレート結晶を用いることによってなされた(非特許文献12)。これら2つの要因は、シリコンマイクロエレクトロニクスあるいは可撓性電子機器(フレキシブルエレクトロニクスデバイス)のような用途へのTiNのプラズモン応用を進めるにあたって深刻な欠点である。 Numerous studies have been conducted to improve and optimize the dielectric function of TiN, but most of these have been done by heating the substrate and using lattice-matched template crystals such as sapphire or MgO. (Non-patent Document 12). These two factors are serious drawbacks in advancing plasmonic applications of TiN for applications such as silicon microelectronics or flexible electronic devices.

本発明の課題は、これまで報告されているものよりもさらに良好なプラズモン特性を有するTiN膜を提供することにある。 An object of the present invention is to provide a TiN film with better plasmonic properties than those reported so far.

本発明の一側面によれば、連続し、無孔であって、表面粗さが10nm(r.m.s.)以下である、プラズモン特性を有する窒化チタン膜が与えられる。
ここで、複素誘電率の値が、500nm以上の波長において負であるとともに、1.5μmよりも長い波長においては常に-50以下であってよい。
また、このプラズモン特性を有する窒化チタン膜は、表面にSiO膜を有するSi下地、MgO下地、または可撓性を有するポリマー下地上に形成されてよい。
また、前記ポリマーはポリメチルメタクリレートまたはポリエチレンテレフタレートであってよい。
本発明の他の側面によれば、PLD法により基板温度0℃~60℃の温度範囲で、かつ10-4Paよりも低い圧力の下で、0.03Å/s~100Å/sの堆積速度で成膜を行う、前記何れかのプラズモン特性を有する窒化チタン膜の製造方法が与えられる。
According to one aspect of the present invention, a titanium nitride film with plasmonic properties is provided that is continuous, non-porous, and has a surface roughness of 10 nm (r.m.s.) or less.
Here, the value of the complex permittivity may be negative at wavelengths of 500 nm or more and always -50 or less at wavelengths longer than 1.5 μm.
Further, this titanium nitride film having plasmonic properties may be formed on a Si base having a SiO 2 film on the surface, an MgO base, or a flexible polymer base.
The polymer may also be polymethyl methacrylate or polyethylene terephthalate.
According to another aspect of the invention, the PLD method produces a deposition rate of 0.03 Å/s to 100 Å/s at a substrate temperature in the temperature range of 0° C. to 60° C. and under a pressure lower than 10 −4 Pa. A method for manufacturing a titanium nitride film having any of the plasmon characteristics described above is provided.

以下で詳細に説明するように、本発明によれば、可視光域から近赤外域まで金と類似したプラズモン特性を有する上に、高温でも使用できしかも多様な下地や基板上に形成可能なTiNを得ることができる。 As will be explained in detail below, according to the present invention, TiN has plasmonic properties similar to gold from the visible light region to the near-infrared region, can be used even at high temperatures, and can be formed on various bases and substrates. can be obtained.

各種の堆積速度で堆積されたTiN膜の複素誘電率を示すグラフ((a)は実部、(b)は虚部)。Graphs showing the complex dielectric constants of TiN films deposited at various deposition rates ((a) is the real part, (b) is the imaginary part). 本発明の実施例のTiN膜の複素誘電率(TiN-1)を先行文献に掲載された測定結果(TiN-R1(非特許文献8)、TiN-R2(非特許文献10)、Au、Mo、W)と比較して示す図((a)は実部、(b)は虚部)。The complex permittivity (TiN-1) of the TiN film of the example of the present invention was measured based on the measurement results published in the prior literature (TiN-R1 (non-patent document 8), TiN-R2 (non-patent document 10), Au, Mo , W) ((a) is the real part, (b) is the imaginary part). 本発明の実施例であるSiO/Si基板上のTiN膜のAFM像を示す図((a)TiN-1、(b)TiN-2、(c)TiN-3、(d)TiN-4)。A figure showing AFM images of a TiN film on a SiO 2 /Si substrate as an example of the present invention ((a) TiN-1, (b) TiN-2, (c) TiN-3, (d) TiN-4 ). (a)SiO/Si基板上に被覆されたPMMAのAFM像を示す図。(b)(a)と同じPMMA基板上に成長させた本発明の実施例のTiN膜のAFM像を示す図。(c)及び(d)各種の基板上に堆積された本発明の実施例のTiN膜の複素誘電率を示すグラフ((c)は実部、(d)は虚部)。(e)いろいろな基板上のAu及びTiN膜の写真。(f)PET基板上のTiN膜の写真。(a) A figure showing an AFM image of PMMA coated on a SiO 2 /Si substrate. (b) A diagram showing an AFM image of a TiN film of an example of the present invention grown on the same PMMA substrate as in (a). (c) and (d) Graphs showing the complex permittivity of TiN films of examples of the present invention deposited on various substrates ((c) is the real part, (d) is the imaginary part). (e) Photographs of Au and TiN films on various substrates. (f) Photograph of TiN film on PET substrate. (a)及び(b)半径50nmのTiN-1及びAuのナノ球体についてそれぞれ解析的に計算した水中での散乱及び吸収効率を示すグラフ。(c)TiN及びAuのナノ球体の回りでの、ダイポール近似で解析的に計算した最大近接場強度を示すグラフ。(d)ガラス基板上におけるTiN膜の850nmでの角度依存反射率を示すグラフ。TiN膜の厚さは20、30及び40nmであった。Auの誘電率値は非特許文献13から得た。差し込み図は対応するシミュレーションについての概念的な説明図である。(e)ガラス基板上に六角形配列状に配置されたTiN円盤を概念的に示す図。これは(f)のシミュレーションに使用した。(f)TiN-1ナノアレイの直径(D)及び配列の周期を変化させながらその透過率スペクトルのシミュレーションを行った結果を示すグラフ。(a) and (b) Graphs showing analytically calculated scattering and absorption efficiencies in water for TiN-1 and Au nanospheres with a radius of 50 nm, respectively. (c) Graph showing the maximum near-field strength calculated analytically with a dipole approximation around TiN and Au nanospheres. (d) Graph showing the angle-dependent reflectance at 850 nm of a TiN film on a glass substrate. The thickness of the TiN film was 20, 30 and 40 nm. The dielectric constant value of Au was obtained from Non-Patent Document 13. The inset is a conceptual illustration of the corresponding simulation. (e) A diagram conceptually showing TiN disks arranged in a hexagonal array on a glass substrate. This was used for the simulation in (f). (f) A graph showing the results of a simulation of the transmittance spectrum of a TiN-1 nanoarray while changing its diameter (D) and array period. 各種の堆積速度で堆積されたTiN及びPMMA上に堆積されたTiN膜のXRDパターンを示すグラフ。ここで、44.5度におけるピークはSiウエハによるものである。Graphs showing XRD patterns of TiN films deposited on TiN and PMMA deposited at various deposition rates. Here, the peak at 44.5 degrees is due to the Si wafer.

本発明の一形態によれば、室温(基板温度が0℃~60℃の範囲)で成長させたものとしては最もよく金属的挙動を示すTiN膜がパルスレーザー堆積(PLD)法によってSiO/Si基板上に作製される。また、同様にして、可撓性のポリマー薄膜上にプラズモン特性を有するTiN膜を単一のステップで作製することもできる。あるいは、基板等の部材の上の全体またはTiN膜を形成すべき箇所等に下地を形成し、TiN膜をこの下地の上に形成してもよい。下地としては、これに限定するわけではないが、先に言及したHAMRなどではMgO下地上にTiN膜を形成するのが好ましい。なお、TiN膜から見ればそれと直接接触している下地や基板表面のごく近傍だけがTiN膜成長や特性等に影響を与えるので、下地や基板のうちでTiN膜が形成される表面からある程度以上離れた(つまり下にある)部分がどのような材料や構造になっているかは本発明では特に考慮しない。この意味で、本願では基板と下地とは同じ意味で使用する。TiNナノ構造の吸収及び散乱の効率、電界強度並びに反射スペクトルを評価した結果、本発明のTiN膜の光学特性の大部分はAuのそれに類似していることが明らかになった。 According to one aspect of the present invention, a TiN film, which exhibits the best metallic behavior for those grown at room temperature (substrate temperature range of 0° C. to 60° C.), is deposited with SiO 2 / Manufactured on a Si substrate. Furthermore, in a similar manner, a TiN film having plasmonic properties can be fabricated on a flexible polymer thin film in a single step. Alternatively, a base may be formed on the entire surface of a member such as a substrate or a portion where a TiN film is to be formed, and a TiN film may be formed on this base. Although the base is not limited to this, it is preferable to form a TiN film on the MgO base in the HAMR mentioned above. Note that from the point of view of the TiN film, only the very vicinity of the base or substrate surface that is in direct contact with it will affect the growth and properties of the TiN film. The present invention does not particularly consider what kind of material or structure the remote (that is, underlying) portion is made of. In this sense, the terms "substrate" and "underlayer" are used interchangeably in this application. Evaluation of absorption and scattering efficiency, electric field strength, and reflection spectra of TiN nanostructures revealed that most of the optical properties of the TiN films of the present invention are similar to those of Au.

なお、ここでTiNと表記しているが、実際にはTiとNとの比(化学量論比)は1:1からTiが過剰の側へ10%程度ずれていてもよい。したがって、本願では「TiN」あるいは「窒化チタン」という表記はTiN(0.9≦x≦1)を意味していることに注意されたい。
Note that although it is expressed as TiN here, the ratio of Ti and N (stoichiometric ratio) may actually deviate from 1:1 to the side where Ti is in excess by about 10%. Therefore, it should be noted that in this application, the expression "TiN" or "titanium nitride" means TiN x (0.9≦x ≦1 ).

また、本発明の一形態のTiN膜には通常は孔が観察されないので、この膜は実質的に無孔であるということができる。ただし、ごく例外的に孔が形成されることもあり得るので、本願において「無孔」とは、孔が全く存在していないか、または孔が存在するとしてもその密度が1μm当たり1個以下であることを意味するものとする。 Further, since no pores are normally observed in the TiN film of one embodiment of the present invention, this film can be said to be substantially pore-free. However, in very exceptional cases, pores may be formed, so in this application, "non-porous" means that there are no pores at all, or even if there are pores, the density is 1 per 1 μm2. shall mean the following:

このTiN膜は表面が非常に平滑であり、具体的には表面粗さが10nm(r.m.s.)以下である。 This TiN film has a very smooth surface, specifically, a surface roughness of 10 nm (r.m.s.) or less.

また、このTiN膜は望ましくは連続した膜である。「連続した」とは物理的に分断されていない、あるいは穴が開いていないということである。膜が複数の領域に分断された場合には、そのサイズ程度の領域に生じる局在表面波の波長付近において、共鳴が生じる。例えば図5(e)のように、予め設計したサイズ・形状の膜(同図では円形の膜)を複数配置するようなデバイス構造により所望のプラズモン共鳴が起こるように設計することがプラズモニクス応用ではしばしば用いられる重要な手法である。このような場合、膜を形成するTiNが物理的に分断されたり、設計外の分断が起こっていると、設計とそれを実現したデバイスとの動作が異なり、所望の特性が発揮されないことになる。したがって、膜の連続性は重要である。また、TiN膜に孔が形成されている場合にも、同様の現象が生じ、出来上がったデバイスが設計された特性を発揮できないことになる。 Further, this TiN film is preferably a continuous film. "Continuous" means that there are no physical divisions or holes. When a film is divided into a plurality of regions, resonance occurs near the wavelength of localized surface waves generated in regions of approximately the same size. For example, as shown in Figure 5(e), in plasmonics applications, it is possible to design a device structure in which a plurality of membranes of a pre-designed size and shape (circular membranes in the figure) are arranged so that the desired plasmon resonance occurs. This is an important method that is often used. In such cases, if the TiN that forms the film is physically separated or undesigned, the behavior of the design and the device that realizes it will differ, and the desired characteristics will not be exhibited. . Therefore, membrane continuity is important. Further, a similar phenomenon occurs when holes are formed in the TiN film, and the resulting device cannot exhibit the designed characteristics.

本発明に係る、PLD法によってSiOまたはポリマーなどの有機物の基板上に堆積したTiN膜の光学特性を評価した結果、驚くべきことに、この堆積を室温で行いまた格子整合した基板を使用していないにもかかわらず、可視光から近赤外領域までAuと同等の金属性を達成することができることを確認した。本発明のTiNでは、吸収/拡散効率及び局所電界強度はAuと同等となる。TiNはAuに比較して機械的また熱的な安定性が高く、また安価であるため、本発明のTiNは貴金属を代替する実用的なプラズモン材料となる。また、本発明の製造方法によれば、Siマイクロデバイスや可撓性の電子・光学デバイス、その他のナノ構造にプラズモン材料を形成する際に適用可能なTiN膜の簡単な製造方法が与えられる。
As a result of evaluating the optical properties of a TiN film deposited on an organic substrate such as SiO 2 or a polymer by the PLD method according to the present invention, it was surprisingly found that the deposition was performed at room temperature and a lattice-matched substrate was used. It was confirmed that metallic properties equivalent to those of Au can be achieved from the visible light to the near-infrared region, even though the metal properties are not high. In TiN of the present invention, absorption/diffusion efficiency and local electric field strength are equivalent to Au. Since TiN has higher mechanical and thermal stability than Au and is cheaper, the TiN of the present invention becomes a practical plasmonic material that can replace noble metals. Furthermore, the manufacturing method of the present invention provides a simple method for manufacturing a TiN film that can be applied to forming plasmonic materials in Si microdevices, flexible electronic/optical devices, and other nanostructures.

以下、実施例に基づいて本発明をさらに詳細に説明するが、これらの実施例はあくまでも本発明の理解を助けるためだけのものであって、本願発明の技術的範囲は特許請求の範囲のみによって定められることに注意しなければならない。 Hereinafter, the present invention will be explained in more detail based on Examples, but these Examples are only for helping understanding of the present invention, and the technical scope of the present invention is determined only by the claims. We must be careful about what is prescribed.

実施例のTiN膜は以下のようにして作製した。TiN膜はPLD法によって作成したが、ここでKrFエキシマレーザー(アメリカ合衆国カリフォルニア州のCoherent, Inc.製のCOMPexPro 205)を繰り返しレート2~10Hz、エネルギー密度6J/cm-2で使用した。ターゲットは株式会社高純度化学研究所から購入したホットプレスTiN(純度99.9%)を、また基板は100nm厚のSiO層を有するSiウエハを使用した。ターゲットと基板との間のワーキングディスタンスは10cmであった。基板温度は基板ホルダに取り付けられた熱電対によってモニタして、堆積プロセスの全過程で室温(RT)に維持した。チャンバー中のバックグラウンド圧力は、堆積の間5×10-6Torrとした。 The TiN film of the example was produced as follows. The TiN film was prepared by the PLD method, in which a KrF excimer laser (COMPexPro 205, manufactured by Coherent, Inc., California, USA) was used at a repetition rate of 2 to 10 Hz and an energy density of 6 J/cm -2 . The target used was hot-pressed TiN (purity 99.9%) purchased from Kojundo Kagaku Kenkyusho Co., Ltd., and the substrate used was a Si wafer with a 100 nm thick SiO 2 layer. The working distance between target and substrate was 10 cm. The substrate temperature was monitored by a thermocouple attached to the substrate holder and maintained at room temperature (RT) throughout the deposition process. The background pressure in the chamber was 5×10 −6 Torr during deposition.

各種の温度で作製したTiN膜の厚さを段差計(step profiler)(アメリカ合衆国ニューヨーク州のVeeco Instruments Inc.製のDektak 150)を使用して測定した。表面形状測定は原子間力顕微鏡(アメリカ合衆国マサチューセッツ州のBruker Corporation製)を使用して行った。TiN膜の結晶構造はX線回折計(株式会社リガク製のSmart Lab)を使用して判定した。分光エリプソメトリー測定(spectroscopic ellipsometry measurement)は紫外線(UV)から近赤外線(NIR)波長範囲(240nm~3000nm)について、角度可変分光エリプソメータ(ドイツ連邦共和国のSENTECH Instruments GmbH製のSE850DUV)を使用して行った。すべてのフィッティングにおいて、単一のLorentz振動子及びDrude項を用いるDrude-Lorentzモデルを使用し、厚さの値が表面形状測定から得た厚さとの整合性を示す(5%以内の偏差)という、分光偏光解析測定への良好な一致がもたらされた。キャリア濃度は株式会社東洋テクニカ製のResitest 8400を使用したホール測定により判定した。 The thickness of the TiN films prepared at various temperatures was measured using a step profiler (Dektak 150, Veeco Instruments Inc., New York, USA). Surface profile measurements were performed using an atomic force microscope (Bruker Corporation, Massachusetts, USA). The crystal structure of the TiN film was determined using an X-ray diffractometer (Smart Lab manufactured by Rigaku Co., Ltd.). Spectroscopic ellipsometry measurements were performed over the ultraviolet (UV) to near-infrared (NIR) wavelength range (240 nm to 3000 nm) using a variable angle spectroscopic ellipsometer (SE850DUV from SENTECH Instruments GmbH, Federal Republic of Germany). Ta. For all fittings, a Drude-Lorentz model with a single Lorentz oscillator and a Drude term was used, with thickness values showing consistency (within 5% deviation) with the thickness obtained from surface profile measurements. , yielded good agreement to spectroscopic ellipsometry measurements. The carrier concentration was determined by Hall measurement using Resitest 8400 manufactured by Toyo Technica Corporation.

図1は分光偏光解析法(spectroscopic ellipsometry)により求められた誘電関数を示す(スペクトル範囲:0.3~3μm、入射角の変化範囲:10度刻みで50度~70度)。SiO/Si上で堆積速度を約0.1~0.03Å/sで変化させたTiN膜の誘電率の実部(ε'')及び虚部(ε''')が図1に示されている。すべての膜は、波長が約440nmよりも長い可視域から近赤外スペクトル域までの範囲で優れた金属的挙動(誘電率の実部が負の値)を示した。金属性(誘電率の実部が負であること)は速い堆積速度で堆積された膜の方が大きかった。分光偏光解析フィッティング(ellipsometry fitting)により得られたSiO/Si上のTiN膜の最終的な膜厚は、堆積速度がそれぞれ0.1、0.07、0.05及び0.03Å/sであったTiN膜TiN-1、TiN-2、TiN-3及びTiN-4について170nm、120nm60nm及び40nmであった。この堆積速度変化はレーザーの繰返し速度の変化により実現したが、これは表面形状測定(profilometry)結果と5%の範囲内でよく一致した。分光エリプソメトリーフィッティングで得られたTiN膜の複素誘電関数の精度は、複素分光解析と針式表面形状測定との一致によっても確認した。ホール測定も行って、キャリア密度を評価したが、分光エリプソメトリーの結果から観測された高度な金属性との良好な一致が示された。一般的には、窒化物のキャリア密度は1022cm-3台となる。本発明でも、7~9×1022程度の高いキャリア密度が観察されたが、これは元素金属を使用した場合のキャリア密度に近い。これについては各種のTiNの実施例の粒子サイズ、キャリア密度、ホール移動度及びプラズマ周波数を示す。下表を参照されたい。 FIG. 1 shows the dielectric function determined by spectroscopic ellipsometry (spectral range: 0.3 to 3 μm, incident angle variation range: 50 to 70 degrees in 10 degree increments). The real part (ε'') and imaginary part (ε''') of the dielectric constant of TiN films on SiO 2 /Si with varying deposition rates from about 0.1 to 0.03 Å/s are shown in Figure 1. has been done. All films exhibited excellent metallic behavior (negative real part of the dielectric constant) from the visible to near-infrared spectral ranges with wavelengths greater than about 440 nm. The metallicity (negative real part of the dielectric constant) was greater for films deposited at faster deposition rates. The final thickness of TiN film on SiO 2 /Si obtained by spectroscopic ellipsometry fitting was determined at deposition rates of 0.1, 0.07, 0.05 and 0.03 Å/s, respectively. The thicknesses of the existing TiN films TiN-1, TiN-2, TiN-3 and TiN-4 were 170 nm, 120 nm, 60 nm and 40 nm. This deposition rate change was achieved by changing the laser repetition rate, which was in good agreement with the profilometry results within 5%. The accuracy of the complex dielectric function of the TiN film obtained by spectroscopic ellipsometry fitting was also confirmed by the agreement between complex spectroscopic analysis and needle-type surface profile measurement. Hall measurements were also performed to evaluate the carrier density, which showed good agreement with the high degree of metallicity observed from the spectroscopic ellipsometry results. Generally, the carrier density of nitride is on the order of 10 22 cm −3 . In the present invention, a high carrier density of about 7 to 9×10 22 was observed, which is close to the carrier density when elemental metals are used. In this regard, particle size, carrier density, hole mobility, and plasma frequency of various TiN examples are shown. Please refer to the table below.

この表からわかるように、実施例TiN-1について、比較的低いキャリア濃度及び高い移動度を得たが、堆積速度が低かった実施例では低い移動度及び比較的高いキャリア密度が得られた。 As can be seen from this table, relatively low carrier concentration and high mobility were obtained for Example TiN-1, while low mobility and relatively high carrier density were obtained for the example in which the deposition rate was low.

比較しやすいように、本実施例でのPLD法で堆積したTiNの誘電率と他の文献に掲載されたTiNの誘電率(非特許文献8,10)及び従来の金属の誘電率(非特許文献11,13)とを一緒にプロットしたグラフを図2に示す。このグラフから、Auの誘電率実部は何れのTiN膜よりも負側に寄っているが、可視光域及び1300nmまでの近赤外域では本願実施例のTiN膜はむしろAuとかなり近く、またモリブデン(Mo)やタングステン(W)といった高融点金属よりも良好な値を示すことが判った。更には、PLD法によって作製したTiN膜の金属性は他の方法によって作製したTiN膜よりも数倍程度高かった。 For easy comparison, the dielectric constant of TiN deposited by the PLD method in this example, the dielectric constant of TiN published in other documents (Non-patent Documents 8 and 10), and the dielectric constant of conventional metals (Non-patent Documents 8 and 10) are shown. Figure 2 shows a graph in which the results are plotted together with References 11, 13). From this graph, the real part of the dielectric constant of Au is closer to the negative side than any of the TiN films, but in the visible light region and near-infrared region up to 1300 nm, the TiN film of the present example is rather close to that of Au. It was found that the value was better than that of high melting point metals such as molybdenum (Mo) and tungsten (W). Furthermore, the metallicity of the TiN film produced by the PLD method was several times higher than that of the TiN film produced by other methods.

SiO/Si上のTiN膜であるTiN-1、TiN-2、TiN-3及びTiN-4膜の二乗平均平方根(r.m.s.)粗さはそれぞれ0.4、0.50.7及び0.9nmであった。図6に示すXRDパターン(θ-2θ)スキャンではTiNに空間群Fm3mを割り付けることができる。このパターンは多結晶性を示し、Halder-Wagner解析から、上の表に示す通り、TiN膜の粒子サイズはTiN-1、TiN-2、TiN-3及びTiN-4膜についてそれぞれ9.5nm、9.6nm、11.7nm及び11.0nmであることが判った。一般に、膜の粒子サイズが小さいと、キャリア散乱が大きくなり、膜の損失が増大する。しかしながら、本実施例のTiN膜では粒子サイズが小さいにもかかわらず、誘電率の虚部の値はAuの誘電率の虚部の値(非特許文献12)に匹敵するものであった。 The root mean square (r.m.s.) roughness of TiN-1, TiN-2, TiN-3 and TiN-4 films on SiO 2 /Si is 0.4 and 0.50, respectively. 7 and 0.9 nm. In the XRD pattern (θ-2θ) scan shown in FIG. 6, the space group Fm3m can be assigned to TiN. This pattern shows polycrystalline nature, and from Halder-Wagner analysis, the particle size of the TiN film is 9.5 nm for TiN-1, TiN-2, TiN-3 and TiN-4 films, respectively, as shown in the table above. They were found to be 9.6 nm, 11.7 nm, and 11.0 nm. In general, the smaller the particle size of the film, the greater the carrier scattering and the higher the loss of the film. However, in the TiN film of this example, although the particle size was small, the value of the imaginary part of the dielectric constant was comparable to the value of the imaginary part of the dielectric constant of Au (Non-Patent Document 12).

本願の実験においては、窒化物ターゲットは融点が高くまた蒸気圧が低いことから使用が困難であるように考えられてきたにもかかわらず(非特許文献4)、これをPLD成長TiN膜に成功裏に採用することができた。本願では高品質金属性TiN膜をうまく作製でき、しかもこの金属性は上述したように堆積速度を変えることにより変化させることができる。主にTiN膜に金属性を持たせるには、Nに対するTiの化学量論比がわずかに1を超えなければならないことが以前に報告されている。各種の窒素雰囲気下で得られた結果から、窒素分圧が低いと金属性が高くなり、窒素分圧が高い雰囲気では誘電性が大きなTiN膜が得られることが示された(非特許文献9)。超高真空中でのアブレーションの際に、削り取られたプルーム中での堆積の間にわずかな窒素損失が生じ、これがTiN膜の金属性をもたらすとも考えられる。また、高エネルギーパルスレーザーを使用して高速で堆積を行うと、十分に大きなTiN流を生成するアブレーションが起こる。これにより、二次元的な成長が一層促進されて、連続性の高く孔の少ないモルフォロジーのTiN膜が得られる(非特許文献14)。ここで、酸素汚染確率も、チャンバー気圧が低いこと及びキャリアガスがないことから低減し得るが、このことが本願発明のTiN膜が高度に金属的でありまた低汚染であるという性質をもたらす。なお、ここで「連続」とは、複数の領域に分断されていないことを意味する。 In the experiments of this application, although it was thought that it would be difficult to use a nitride target due to its high melting point and low vapor pressure (Non-Patent Document 4), we succeeded in producing a PLD-grown TiN film using a nitride target. I was able to use it behind the scenes. High quality metallic TiN films have been successfully fabricated herein, and the metallicity can be varied by varying the deposition rate as described above. It has previously been reported that the stoichiometric ratio of Ti to N must be slightly greater than 1, primarily to impart metallic properties to TiN films. The results obtained under various nitrogen atmospheres showed that a TiN film with a low nitrogen partial pressure has a high metallicity, and an atmosphere with a high nitrogen partial pressure can obtain a TiN film with a high dielectric property (Non-patent Document 9). ). It is also believed that during ablation in ultra-high vacuum, a small loss of nitrogen occurs during deposition in the scraped plume, leading to the metallicity of the TiN film. Also, fast deposition using a high energy pulsed laser results in ablation to produce a sufficiently large TiN flow. As a result, two-dimensional growth is further promoted, and a TiN film with a highly continuous morphology and few pores can be obtained (Non-Patent Document 14). Here, the oxygen contamination probability may also be reduced due to the low chamber pressure and absence of carrier gas, which results in the highly metallic and low contamination nature of the TiN film of the present invention. Note that "continuous" here means that it is not divided into a plurality of regions.

本発明のTiN膜を更に有機物薄膜上に堆積させて、室温での高品質膜成長の優位性を示した。図4の(a)及び(b)は、Siウエハ上に被覆された90nm厚のポリメチルメタクリレート(PMMA)、及びこのPMMA上に約0.1Å/sの堆積速度で180nmの厚さに堆積されたTiN膜のAFM像を示す。作成したままの状態のPMMAテンプレート表面の粗さは約2.0nm(r.m.s.値)であり、PMMA膜上に成長したTiN膜の表面粗さは約6.0nmであった。図4の(c)及び(d)はそれぞれその誘電率の実部及び虚部を示す。その金属性はSiO/Siを使用し、同様な堆積速度で得られたTiN膜よりもやや低かったが、図4(e)からわかるように、その色はAu膜と同様であった。更に、図6に示すXRDの結果に対してHalder-Wagner解析を行い、このPMMA上のTiN膜の粒子サイズが9.7nmであると判定した。これによりSiO/Si上に堆積したTiN膜と同等の損失がもたらされる。これらの結果は、プラズモン特性を有するTiN膜を図4(f)に示すようなポリエチレンテレフタレート(PET)等のような有機物の柔軟な基板その他の多様なタイプの基板上に作製できることを示していると考えられる。これにより、これまでにない非常に多様な分野に本発明のプラズモン特性を有するTiN膜を使用できるようになる。 The TiN film of the present invention was further deposited on an organic thin film to demonstrate the superiority of high quality film growth at room temperature. Figures 4(a) and (b) show a 90 nm thick polymethyl methacrylate (PMMA) coated on a Si wafer and a 180 nm thick deposited on the PMMA at a deposition rate of about 0.1 Å/s. An AFM image of the TiN film obtained is shown. The surface roughness of the as-prepared PMMA template was about 2.0 nm (rms value), and the surface roughness of the TiN film grown on the PMMA film was about 6.0 nm. (c) and (d) of FIG. 4 show the real part and imaginary part of the dielectric constant, respectively. Although its metallicity was slightly lower than that of the TiN film obtained using SiO 2 /Si and a similar deposition rate, its color was similar to the Au film, as can be seen in FIG. 4(e). Furthermore, Halder-Wagner analysis was performed on the XRD results shown in FIG. 6, and it was determined that the particle size of the TiN film on this PMMA was 9.7 nm. This results in losses comparable to TiN films deposited on SiO 2 /Si. These results indicate that TiN films with plasmonic properties can be fabricated on flexible substrates of organic materials such as polyethylene terephthalate (PET) as shown in Figure 4(f), as well as on various other types of substrates. it is conceivable that. As a result, the TiN film having plasmonic properties of the present invention can be used in a wide variety of fields never seen before.

本願発明のTiNのプラズモン特性を明らかにするため、これを金のプラズモン特性と3つの代表的な構成で比較した。図5の(a)及び(b)は、それぞれ水中での半径50nmの球体について解析的に計算した散乱及び吸収効率を示す。TiNナノ球体の散乱及び吸収のピークの値(つまり拡散/吸収効率の値)の範囲は金のナノ球体のそれと類似した領域中にある。TiNナノ球体の場合のバンド幅については、これらはこれまでに報告された結果よりもかなり狭い。これは、本願発明のTiNが低損失であるという特性を示している。また、本願発明のTiNナノ球体は、NIR領域ではAuナノ球体に比べて良好な性能を与えるということがわかる。 In order to clarify the plasmon characteristics of TiN of the present invention, it was compared with the plasmon characteristics of gold in three representative configurations. Figures 5(a) and 5(b) show the analytically calculated scattering and absorption efficiencies for a sphere with a radius of 50 nm in water, respectively. The range of scattering and absorption peak values (ie, diffusion/absorption efficiency values) of TiN nanospheres is in a similar region to that of gold nanospheres. Regarding the band widths in the case of TiN nanospheres, these are much narrower than previously reported results. This shows that the TiN of the present invention has a low loss characteristic. It can also be seen that the TiN nanospheres of the present invention provide better performance in the NIR region than the Au nanospheres.

図5(c)は双極子近似の範囲内でのナノ球体の最大電界強度を示す。遠距離場である散乱及び吸収効率の場合と同様に、TiNナノ球体と金ナノ球体の近接場強度は可視光領域では同等であるが、生物学的に透明なウインドウである近赤外領域(λ>600nm)ではTiNナノ球体の方がより良好な性能を示した。この特性は医療応用だけではなく、しばしば近赤外光を使用する表面増強ラマン散乱及びHAMR用途にとっても大きな優位性を与える。 Figure 5(c) shows the maximum electric field strength of the nanosphere within the dipole approximation. Similar to the far-field scattering and absorption efficiencies, the near-field strengths of TiN and gold nanospheres are comparable in the visible light region, but in the near-infrared region (a biologically transparent window). λ > 600 nm), TiN nanospheres showed better performance. This property provides great advantages not only for medical applications, but also for surface-enhanced Raman scattering and HAMR applications, which often use near-infrared light.

図5(d)は本願実施例の膜のKretschmann配置を有する減衰全反射(ATR)構成での反射率のシミュレーション結果を示す。これらのグラフには表面プラズモン共鳴(SPR)に対応する鋭いピークが存在する。SPRはATRスペクトル中にSPR誘電センシングに準じた非常に鋭い形状を与える(例えば42度)。このことは、本願発明のTiN膜がセンサ用途に適することを示している。 FIG. 5(d) shows a simulation result of the reflectance of the film of the present embodiment in an attenuated total reflection (ATR) configuration with a Kretschmann configuration. Sharp peaks corresponding to surface plasmon resonance (SPR) are present in these graphs. SPR gives a very sharp shape in the ATR spectrum (eg 42 degrees) similar to SPR dielectric sensing. This shows that the TiN film of the present invention is suitable for sensor applications.

図5(e)及び(f)はそれぞれガラス基板上に各種の直径(D)及び周期(P)で配置したナノ円盤の六角形配列の概念図及びその透過率スペクトルのシミュレーション結果を示す。このシミュレーション結果は、可視光からNIRまでの領域でプラズモン共鳴を非常に良好に調節できることを示している。また、非特許文献10を参照すれば、TiNは調節可能な中赤外線プラズモンナノ構造にも使用できると考えられる。 FIGS. 5(e) and 5(f) show a conceptual diagram of a hexagonal array of nanodiscs arranged with various diameters (D) and periods (P) on a glass substrate, and simulation results of their transmittance spectra, respectively. The simulation results show that the plasmon resonance can be tuned very well in the range from visible light to NIR. It is also believed that TiN can be used in tunable mid-infrared plasmonic nanostructures, as described in Non-Patent Document 10.

なお、TiNの特性の一部をシミュレーションにより求めたが、その際には、シミュレーション対象のTiNが、実施例で作製したTiN膜のうちのTiN-1について測定された複素誘電率を有するとして計算を行った。 Note that some of the properties of TiN were determined by simulation, but calculations were made assuming that the TiN to be simulated has the complex dielectric constant measured for TiN-1 of the TiN films fabricated in the example. I did it.

以上詳細に説明したように、本願発明のTiN膜は高温での用途を含む多様なプラズモンデバイス用途に適するため、産業上大いに利用されることが期待される。 As described in detail above, the TiN film of the present invention is suitable for various plasmon device applications including applications at high temperatures, and is therefore expected to be widely used in industry.

Atwater, H. A., The promise of plasmonics. Sci. Am. 2007, 296 (4), 56-62.Atwater, H. A., The promise of plasmonics. Sci. Am. 2007, 296 (4), 56-62. Chen, K.; Dao, T. D.; Ishii, S.; Aono, M.; Nagao, T., Infrared Aluminum Metamaterial Perfect Absorbers for Plasmon-Enhanced Infrared Spectroscopy. Adv. Funct. Mater. 2015, 25 (42), 6637-6643.Chen, K.; Dao, T. D.; Ishii, S.; Aono, M.; Nagao, T., Infrared Aluminum Metamaterial Perfect Absorbers for Plasmon-Enhanced Infrared Spectroscopy. Adv. Funct. Mater. 2015, 25 (42), 6637 -6643. Boltasseva, A.; Atwater, H. A., Low-loss plasmonic metamaterials. Science 2011, 331 (6015), 290-291.Boltasseva, A.; Atwater, H. A., Low-loss plasmonic metamaterials. Science 2011, 331 (6015), 290-291. Naik, G. V.; Shalaev, V. M.; Boltasseva, A., Alternative plasmonic materials: beyond gold and silver. Adv. Mater. 2013, 25 (24), 3264-3294.Naik, G. V.; Shalaev, V. M.; Boltasseva, A., Alternative plasmonic materials: beyond gold and silver. Adv. Mater. 2013, 25 (24), 3264-3294. West, P. R.; Ishii, S.; Naik, G. V.; Emani, N. K.; Shalaev, V. M.; Boltasseva, A., Searching for better plasmonic materials. Laser & Photon. Rev. 2010, 4 (6), 795-808.West, P. R.; Ishii, S.; Naik, G. V.; Emani, N. K.; Shalaev, V. M.; Boltasseva, A., Searching for better plasmonic materials. Laser & Photon. Rev. 2010, 4 (6), 795-808. Foley, J. J.; Ungaro, C.; Sun, K.; Gupta, M. C.; Gray, S. K., Design of emitter structures based on resonant perfect absorption for thermophotovoltaic applications. Opt. Express 2015, 23 (24), A1373-A1387.Foley, J. J.; Ungaro, C.; Sun, K.; Gupta, M. C.; Gray, S. K., Design of emitter structures based on resonant perfect absorption for thermophotovoltaic applications. Opt. Express 2015, 23 (24), A1373-A1387. Ishii, S.; Sugavaneshwar, R. P.; Nagao, T., Titanium nitride nanoparticles as plasmonic solar heat transducers. J. Phys. Chem. C 2016, 120 (4), 2343-2348.Ishii, S.; Sugavaneshwar, R. P.; Nagao, T., Titanium nitride nanoparticles as plasmonic solar heat transducers. J. Phys. Chem. C 2016, 120 (4), 2343-2348. Naik, G. V.; Kim, J.; Boltasseva, A., Oxides and nitrides as alternative plasmonic materials in the optical range [Invited]. Opt. Mater Express 2011, 1 (6), 1090-1099.Naik, G. V.; Kim, J.; Boltasseva, A., Oxides and nitrides as alternative plasmonic materials in the optical range [Invited]. Opt. Mater Express 2011, 1 (6), 1090-1099. Naik, G. V.; Schroeder, J. L.; Ni, X.; Kildishev, A. V.; Sands, T. D.; Boltasseva, A., Titanium nitride as a plasmonic material for visible and near-infrared wavelengths. Opt. Mater. Express 2012, 2 (4), 478-489.Naik, G. V.; Schroeder, J. L.; Ni, X.; Kildishev, A. V.; Sands, T. D.; Boltasseva, A., Titanium nitride as a plasmonic material for visible and near-infrared wavelengths. Opt. Mater. Express 2012, 2 (4 ), 478-489. Bagheri, S.; Zgrabik, C. M.; Gissibl, T.; Tittl, A.; Sterl, F.; Walter, R.; De Zuani, S.; Berrier, A.; Stauden, T.; Richter, G., Hu, E. L.; Giessen, H., Large-area fabrication of TiN nanoantenna arrays for refractory plasmonics in the mid-infrared by femtosecond direct laser writing and interference lithography [Invited]. Opt. Mater. Express 2015, 5 (11), 2625-2633.Bagheri, S.; Zgrabik, C. M.; Gissibl, T.; Tittl, A.; Sterl, F.; Walter, R.; De Zuani, S.; Berrier, A.; Stauden, T.; Richter, G., Hu, E. L.; Giessen, H., Large-area fabrication of TiN nanoantenna arrays for refractory plasmonics in the mid-infrared by femtosecond direct laser writing and interference lithography [Invited]. Opt. Mater. Express 2015, 5 (11), 2625 -2633. Ishii, S.; Uto, K.; Niiyama, E.; Ebara, M.; Nagao, T., Hybridizing Poly (ε-caprolactone) and Plasmonic Titanium Nitride Nanoparticles for Broadband Photoresponsive Shape Memory Films. ACS Appl. Mater. & Interfaces 2016, 8 (8), 5634-5640.Ishii, S.; Uto, K.; Niiyama, E.; Ebara, M.; Nagao, T., Hybridizing Poly (ε-caprolactone) and Plasmonic Titanium Nitride Nanoparticles for Broadband Photoresponsive Shape Memory Films. ACS Appl. Mater. & Interfaces 2016, 8 (8), 5634-5640. Zgrabik, C. M.; Hu, E. L., Optimization of sputtered titanium nitride as a tunable metal for plasmonic applications. Opt. Mater. Express 2015, 5 (12), 2786-2797.Zgrabik, C. M.; Hu, E. L., Optimization of sputtered titanium nitride as a tunable metal for plasmonic applications. Opt. Mater. Express 2015, 5 (12), 2786-2797. Ordal, M. A.; Bell, R. J.; Alexander, R. W.; Newquist, L. A.; Querry, M. R., Optical properties of Al, Fe, Ti, Ta, W, and Mo at submillimeter wavelengths. Appl. Opt. 1988, 27 (6), 1203-1209.Ordal, M. A.; Bell, R. J.; Alexander, R. W.; Newquist, L. A.; Querry, M. R., Optical properties of Al, Fe, Ti, Ta, W, and Mo at submillimeter wavelengths. Appl. Opt. 1988, 27 (6), 1203-1209. Wu, K.; Xue, Q.; Bakhtizin, R.; Fujikawa, Y.; Li, X.; Nagao, T.; Xue, Q.; Sakurai, T., Layer-by-layer growth of Ag on a GaN (0001) surface. Appl. Phys. Lett. 2003, 82 (9), 1389-1391.Wu, K.; Xue, Q.; Bakhtizin, R.; Fujikawa, Y.; Li, X.; Nagao, T.; Xue, Q.; Sakurai, T., Layer-by-layer growth of Ag on a GaN (0001) surface. Appl. Phys. Lett. 2003, 82 (9), 1389-1391.

Claims (4)

連続し、無孔であって、表面粗さが10nm(r.m.s.)以下であり、膜厚が40nm以上170nm以下であるとともに、複素誘電率の実部の値が500nm以上の波長において負である、多結晶性の窒化チタン膜。 It is continuous and non-porous, has a surface roughness of 10 nm (r.m.s.) or less, a film thickness of 40 nm or more and 170 nm or less , and a value of the real part of the complex dielectric constant of 500 nm or more. A polycrystalline titanium nitride film that is negative at wavelengths of . 複素誘電率の実部の値が、1500nmよりも長く3000nm以下の波長においては常に-50以下である、請求項1に記載の多結晶性の窒化チタン膜。 The polycrystalline titanium nitride film according to claim 1, wherein the value of the real part of the complex permittivity is always −50 or less at wavelengths longer than 1,500 nm and 3,000 nm or less. 表面にSiO膜を有するSi下地、MgO下地、または可撓性を有するポリマー下地上に形成された、請求項1または2に記載の多結晶性の窒化チタン膜。 The polycrystalline titanium nitride film according to claim 1 or 2, which is formed on a Si base having a SiO 2 film on the surface, an MgO base, or a flexible polymer base. 前記ポリマーはポリメチルメタクリレートまたはポリエチレンテレフタレートである、請求項3に記載の多結晶性の窒化チタン膜。
4. The polycrystalline titanium nitride film of claim 3, wherein the polymer is polymethyl methacrylate or polyethylene terephthalate.
JP2017216426A 2017-11-09 2017-11-09 Titanium nitride film with plasmonic properties and its manufacturing method Active JP7378755B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017216426A JP7378755B2 (en) 2017-11-09 2017-11-09 Titanium nitride film with plasmonic properties and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017216426A JP7378755B2 (en) 2017-11-09 2017-11-09 Titanium nitride film with plasmonic properties and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2019085629A JP2019085629A (en) 2019-06-06
JP7378755B2 true JP7378755B2 (en) 2023-11-14

Family

ID=66763962

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017216426A Active JP7378755B2 (en) 2017-11-09 2017-11-09 Titanium nitride film with plasmonic properties and its manufacturing method

Country Status (1)

Country Link
JP (1) JP7378755B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10230558A (en) * 1996-12-17 1998-09-02 Asahi Glass Co Ltd Organic substrate with photoabsorptive reflection preventive film and its manufacture
JP4802286B2 (en) * 2009-08-28 2011-10-26 富士フイルム株式会社 Photoelectric conversion element and imaging element
GB201320302D0 (en) * 2013-11-18 2014-01-01 Element Six Ltd Diamond components for quantum imaging sensing and information processing devices

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
C.M.Zgrabik et al,Optimization of sputtered titanium nitride as a tunable metal for plasmonic applications,Opt.Mater.Express,2015年,Vol.5,No.12,pp.2786-2797
G.V.Naik et al.,Titanium nitride as a plasmonic material for visible and near-infrared wavelengths,Opt.Mater.Express,2012年04月,Vol.2,No.4,pp.478-489

Also Published As

Publication number Publication date
JP2019085629A (en) 2019-06-06

Similar Documents

Publication Publication Date Title
Sugavaneshwar et al. Fabrication of highly metallic TiN films by pulsed laser deposition method for plasmonic applications
Hajakbari et al. Study of thermal annealing effect on the properties of silver thin films prepared by DC magnetron sputtering
Gromov et al. Optimization of nanostructures based on Au, Ag, AuAg nanoparticles formed by thermal evaporation in vacuum for SERS applications
Prasanth et al. Optical properties of sputter deposited nanocrystalline CuO thin films
US11119046B2 (en) Substrate with sliding dielectric film and method of manufacturing the same
KR101916316B1 (en) Laminate for plasmonic waveguides and method for preparing the same
Khan et al. Nanostructured multilayer TiO2–Ge films with quantum confinement effects for photovoltaic applications
Hojabri et al. Annealing temperature effect on the properties of untreated and treated copper films with oxygen plasma
CN110048227B (en) Bowtie nano antenna device and method based on dynamic adjustment of vanadium dioxide phase change
Al-Kuhaili et al. Enhancement of the refractive index of sputtered zinc oxide thin films through doping with Fe2O3
Amin-Chalhoub et al. Chemical vapor deposition of low reflective cobalt (II) oxide films
Fallah Azad et al. The effect of seed layer on optical and structural characteristics of ZnO nanorod arrays deposited by CBD method
Valour et al. Micro–Nanostructured TiN thin film: synthesis from a photo-patternable TiO2 sol–gel coating and rapid thermal nitridation
Li et al. Fabrication of three-dimensional ordered nanodot array structures by a thermal dewetting method
JP7378755B2 (en) Titanium nitride film with plasmonic properties and its manufacturing method
Mehdi et al. Effect of sputtering pressure on structural and optical properties of silver oxide thin films; Kramers–Kronig method
Rahman et al. Hybrid graphene metasurface for near-infrared absorbers
Bello et al. The impact of Fe3O4 on the performance of ultrathin Ti/AlN/Ti tandem coating on stainless-steel for solar selective absorber application
Jain et al. SPR based refractive index modulation of nanostructured SiO2 films grown using GLAD assisted RF sputtering technique
Ovchinnikov et al. Self-organization-based fabrication of stable noble-metal nanostructures on large-area dielectric substrates
Wei et al. Thickness-dependent surface plasmon resonance of ITO nanoparticles for ITO/In-Sn bilayer structure
Prepelita et al. Structural and optical characteristics determined by the sputtering deposition conditions of oxide thin films
Sun et al. Tailoring the Optical Properties of Nanoscale-Thick Metal–Dielectric Ag–SiO2 Nanocomposite Films for Precision Optical Coating Integration
JP7347778B2 (en) Lanthanum hexaboride film and its manufacturing method
El-Fattah Effect of surface morphology on optical properties of two multilayer structures CuO/ZnO/SiC and Al2O3/ZnO/SiC

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201001

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210706

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210901

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220407

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20220407

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20220415

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20220420

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20220624

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20220628

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20221004

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20221115

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20230228

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20230404

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230412

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231025

R150 Certificate of patent or registration of utility model

Ref document number: 7378755

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150