JP7378692B1 - Method for manufacturing optical semiconductor device and method for designing low reflectance film - Google Patents

Method for manufacturing optical semiconductor device and method for designing low reflectance film Download PDF

Info

Publication number
JP7378692B1
JP7378692B1 JP2023554334A JP2023554334A JP7378692B1 JP 7378692 B1 JP7378692 B1 JP 7378692B1 JP 2023554334 A JP2023554334 A JP 2023554334A JP 2023554334 A JP2023554334 A JP 2023554334A JP 7378692 B1 JP7378692 B1 JP 7378692B1
Authority
JP
Japan
Prior art keywords
refractive index
coating film
reflectance
film
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2023554334A
Other languages
Japanese (ja)
Inventor
君男 鴫原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Application granted granted Critical
Publication of JP7378692B1 publication Critical patent/JP7378692B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

本開示の光半導体装置の製造方法は、膜厚がλ0/4/nflである単層被覆膜(12)の特性行列と、1つの材料の屈折率が屈折率nflよりも低く、他の1つの材料の屈折率が屈折率nflよりも高い2種類以上の材料を用いた多層被覆膜(13、14、15)の特性行列とを等しいとすることにより反射率の極小値Rmin0を算出し、膜厚がλ0/4/nfl1の単層被覆膜(12)の特性行列と、1つの材料の屈折率が屈折率nfl1よりも低く、他の1つの材料の屈折率が屈折率nfl1よりも高い2種類の材料を用いた多層被覆膜(13、14、15)の特性行列とを等しいとすることにより、多層被覆膜(13、14、15)の波長λminにおける極小値Rminを極小反射率R0と一致させて得られる各膜厚に基づき多層被覆膜(13、14、15)を端面に形成する。The method for manufacturing an optical semiconductor device of the present disclosure is based on a characteristic matrix of a single-layer coating film (12) having a film thickness of λ0/4/nfl, and one material having a refractive index lower than the refractive index nfl and another material having a refractive index lower than the refractive index nfl. Calculate the minimum value Rmin0 of reflectance by equating the characteristic matrices of multilayer coating films (13, 14, 15) using two or more types of materials in which the refractive index of one material is higher than the refractive index nfl However, the characteristic matrix of the single layer coating film (12) with a film thickness of λ0/4/nfl1, the refractive index of one material is lower than the refractive index nfl1, and the refractive index of the other material is the refractive index nfl1 The minimum value Rmin at the wavelength λmin of the multilayer coating (13, 14, 15) is set equal to the characteristic matrix of the multilayer coating (13, 14, 15) using two types of materials with higher A multilayer coating film (13, 14, 15) is formed on the end face based on each film thickness obtained by matching the minimum reflectance R0.

Description

本開示は、光半導体装置の製造方法及び低反射率膜の設計方法に関する。 The present disclosure relates to a method for manufacturing an optical semiconductor device and a method for designing a low reflectance film.

非特許文献1に開示されているように、波長λ0において実効屈折率nc(=3.6、GaAs)である光半導体装置の出射端面に、屈折率nf(=1.72、Al23)の被覆膜を設けると、被覆膜の反射率は膜厚に対して周期的に変化し、膜厚dfがλ0/(4nf)の整数倍の場合に反射率は極小値となる。このときの極小反射率R0は以下の式(1)で表され、一義的に決定される。As disclosed in Non-Patent Document 1, a refractive index n f ( = 1.72, Al 2 O 3 ), the reflectance of the coating changes periodically with respect to the film thickness, and when the film thickness d f is an integral multiple of λ 0 /(4n f ), the reflectance of the coating changes periodically. becomes the minimum value. The minimum reflectance R 0 at this time is expressed by the following equation (1) and is uniquely determined.

Figure 0007378692000001
つまり、波長λ0に対する極小反射率R0は、光半導体装置の実効屈折率ncと、光半導体装置の出射端面(前端面)に設けられた被覆膜の屈折率nfによって一義的に決定され、極小反射率R0を変えることができなかった。
Figure 0007378692000001
In other words, the minimum reflectance R 0 for the wavelength λ 0 is uniquely determined by the effective refractive index n c of the optical semiconductor device and the refractive index n f of the coating film provided on the output end face (front end face) of the optical semiconductor device. determined, and the minimum reflectance R 0 could not be changed.

例えば半導体レーザ装置においては、しきい値電流低減あるいは効率向上の観点から、半導体レーザ装置の端面反射率と共振器長から算出されるミラー損失を制御する場合、ミラー損失の値を所望の値に変えることができなかった。 For example, in a semiconductor laser device, when controlling the mirror loss calculated from the end face reflectance and cavity length of the semiconductor laser device from the perspective of reducing threshold current or improving efficiency, the mirror loss value is set to the desired value. I couldn't change it.

I.Ladany et.al.、“Al2O3 half-wave films for long-life cw lasers、”Appl.Phys.Lett.、vol.30、no.2、pp.87-88、1977I. Ladany et. al. , “Al2O3 half-wave films for long-life cw lasers,” Appl. Phys. Lett. , vol. 30, no. 2, pp. 87-88, 1977

従来の光半導体装置の製造方法及び低反射率膜の設計方法では、所望の波長λ0における極小反射率R0を所望の極小反射率に制御することができないという問題があった。Conventional optical semiconductor device manufacturing methods and low reflectance film designing methods have a problem in that the minimum reflectance R 0 at a desired wavelength λ 0 cannot be controlled to a desired minimum reflectance.

本開示は上記のような問題点を解消するためになされたもので、単層被覆膜を、特性行列を利用して3層以上の多層被覆膜によって置換することにより、所望の波長において所望の極小反射率に制御された低反射率膜を有する光半導体装置の製造方法を得ること、また、低反射率膜の設計方法を得ることを目的とする。 The present disclosure has been made to solve the above-mentioned problems, and by replacing the single-layer coating film with a multilayer coating film of three or more layers using a characteristic matrix, it is possible to obtain a desired wavelength at a desired wavelength. The present invention aims to obtain a method for manufacturing an optical semiconductor device having a low reflectance film controlled to a desired minimum reflectance, and also to obtain a method for designing a low reflectance film.

本開示に係る光半導体装置の製造方法は、
実効屈折率がncであり、所望の波長λ0において所望の極小反射率である極小反射率R0となる低反射率膜が形成された光半導体装置の製造方法であって、
屈折率nflが以下の式で表され、
A method for manufacturing an optical semiconductor device according to the present disclosure includes:
A method for manufacturing an optical semiconductor device in which a low reflectance film having an effective refractive index n c and a minimum reflectance R 0 that is a desired minimum reflectance at a desired wavelength λ 0 is formed,
The refractive index n fl is expressed by the following formula,

Figure 0007378692000002
膜厚がλ0/4/nflである単層からなる被覆膜の特性行列と、少なくとも1つの材料の屈折率が前記屈折率nflよりも低く、少なくとも他の1つの材料の屈折率が前記屈折率nflよりも高い2種類以上の材料を用いた3層以上の被覆膜からなる多層被覆膜の特性行列とを等しいとすることにより、前記多層被覆膜の反射率の波長依存性を有する反射率の極小値Rmin 0を算出し、
予め設定された設定反射率R1を実現する単層からなる被覆膜の屈折率nfl 1が、以下の式で表され、
Figure 0007378692000002
A characteristic matrix of a coating film consisting of a single layer having a film thickness of λ 0 /4/n fl , a refractive index of at least one material lower than the refractive index n fl , and a refractive index of at least one other material. is equal to the characteristic matrix of a multilayer coating consisting of three or more coating films using two or more types of materials having a refractive index higher than the refractive index n fl , the reflectance of the multilayer coating is Calculate the minimum value R min 0 of the reflectance that has wavelength dependence,
The refractive index n fl 1 of a coating film consisting of a single layer that realizes a preset set reflectance R 1 is expressed by the following formula,

Figure 0007378692000003
膜厚がλ0/4/nfl 1の単層からなる被覆膜の特性行列と、少なくとも1つの材料の屈折率が前記屈折率nfl 1よりも低く、少なくとも他の1つの材料の屈折率が前記屈折率nfl 1よりも高い2種類以上の材料を用いた3層以上の被覆膜からなる多層被覆膜の特性行列とを等しいとすることにより、前記多層被覆膜の反射率の波長依存性における波長λminにおける反射率の極小値Rminを前記極小反射率R0と一致させ、
前記波長λminにおける前記極小値Rminを前記波長λ0における前記極小反射率R0と一致させることによって得られる前記3層以上の被覆膜の各膜厚に基づき多層被覆膜を端面に形成する。
Figure 0007378692000003
A characteristic matrix of a coating film consisting of a single layer with a film thickness of λ 0 /4/n fl 1 , a refractive index of at least one material lower than the refractive index n fl 1 , and a refraction of at least one other material. The reflection of the multilayer coating film is made equal to the characteristic matrix of a multilayer coating film consisting of three or more coating films using two or more types of materials whose refractive index is higher than the refractive index n fl 1 . In the wavelength dependence of the reflectance, the minimum value R min of the reflectance at the wavelength λ min is made to match the minimum reflectance R 0 ,
A multilayer coating film is applied to the end face based on the thickness of each of the three or more coating films obtained by matching the minimum value R min at the wavelength λ min with the minimum reflectance R 0 at the wavelength λ 0 . Form.

本開示に係る低反射率膜の設計方法は、
実効屈折率がncである光半導体装置の端面に、ゼロを除く所望の極小反射率である極小反射率R0を有する低反射率膜の設計方法であって、
屈折率nflが以下の式により、屈折率nflを算出するステップと、
A method for designing a low reflectance film according to the present disclosure includes:
A method of designing a low reflectance film having a minimum reflectance R0 , which is a desired minimum reflectance other than zero, on an end face of an optical semiconductor device having an effective refractive index nc , the method comprising:
a step of calculating the refractive index n fl by the following formula;

Figure 0007378692000004
所望の波長λ0において膜厚がλ0/4/nflである単層からなる被覆膜の特性行列と、少なくとも1つの材料の屈折率が前記屈折率nflよりも低く、少なくとも他の1つの材料の屈折率が前記屈折率nflよりも高い2種類以上の材料を用いた3層以上の被覆膜からなる多層被覆膜の特性行列とを等しいとすることにより、前記多層被覆膜の反射率の波長依存性を有する反射率の極小値Rmin 0を算出するステップと、
予め設定された設定反射率R1を実現する単層からなる被覆膜の屈折率nfl 1を、以下の式を用いて算出するステップと、
Figure 0007378692000004
A characteristic matrix of a coating film consisting of a single layer having a film thickness of λ 0 /4/n fl at a desired wavelength λ 0 and at least one material having a refractive index lower than the refractive index n fl and at least another material having a refractive index lower than the refractive index n fl By making the characteristic matrices of a multilayer coating film made of three or more coating films using two or more types of materials in which the refractive index of one material is higher than the refractive index n fl to be equal, the multilayer coating calculating a minimum value R min 0 of the reflectance of the coating having wavelength dependence;
Calculating the refractive index n fl 1 of a coating film made of a single layer that achieves a preset set reflectance R 1 using the following formula;

Figure 0007378692000005
膜厚がλ0/4/nfl 1の単層からなる被覆膜の特性行列と、少なくとも1つの材料の屈折率が前記屈折率nfl 1よりも低く、少なくとも他の1つの材料の屈折率が前記屈折率nfl 1よりも高い2種類以上の材料を用いた3層以上の被覆膜からなる多層被覆膜の特性行列とを等しいとすることにより、前記多層被覆膜の反射率の波長依存性における波長λminにおける反射率の極小値Rminを前記極小反射率R0と一致させるステップと、
前記波長λminにおける前記極小値Rminを前記波長λ0における前記極小反射率R0と一致させることによって得られる前記3層以上の被覆膜の各膜厚に基づき多層被覆膜の各膜厚を決定するステップと、
を備える。
Figure 0007378692000005
A characteristic matrix of a coating film consisting of a single layer with a film thickness of λ 0 /4/n fl 1 , a refractive index of at least one material lower than the refractive index n fl 1 , and a refraction of at least one other material. The reflection of the multilayer coating film is made equal to the characteristic matrix of a multilayer coating film consisting of three or more coating films using two or more types of materials whose refractive index is higher than the refractive index n fl 1 . a step of matching the minimum value R min of the reflectance at the wavelength λ min in the wavelength dependence of the reflectance with the minimum reflectance R 0 ;
Each film of the multilayer coating film based on the thickness of each of the three or more coating films obtained by matching the minimum value R min at the wavelength λ min with the minimum reflectance R 0 at the wavelength λ 0 determining the thickness;
Equipped with

本開示に係る光半導体装置の製造方法及び低反射率膜の設計方法によれば、単層被覆膜を、特性行列を利用して3層以上の多層被覆膜によって置換することにより、所望の波長において所望の極小反射率に制御された低反射率膜を有する光半導体装置を製造することが可能となり、また、低反射率膜の設計方法を得ることが可能となる。 According to the method for manufacturing an optical semiconductor device and the method for designing a low reflectance film according to the present disclosure, a single-layer coating film is replaced with a multilayer coating film of three or more layers using a characteristic matrix, so that a desired It becomes possible to manufacture an optical semiconductor device having a low reflectance film whose reflectance is controlled to a desired minimal reflectance at a wavelength of 1, and also to obtain a method for designing a low reflectance film.

実施の形態1における光半導体装置の一例である量子カスケードレーザ装置の概観図である。1 is an overview diagram of a quantum cascade laser device that is an example of an optical semiconductor device in Embodiment 1. FIG. 実施の形態1における光半導体装置の一例である量子カスケードレーザ装置における図1のA-A線に沿った断面図である。2 is a cross-sectional view taken along line AA in FIG. 1 of a quantum cascade laser device, which is an example of an optical semiconductor device in Embodiment 1. FIG. 実施の形態1における光半導体装置の極小反射率を有する低反射率膜の設計方法を説明するための模式図である。FIG. 2 is a schematic diagram for explaining a method of designing a low reflectance film having minimal reflectance for an optical semiconductor device in Embodiment 1. FIG. 実施の形態1における光半導体装置の極小反射率を有する低反射率膜の設計方法によって設計された低反射率膜の反射率の波長依存性を示す図である。FIG. 3 is a diagram showing the wavelength dependence of the reflectance of a low reflectance film designed by the method for designing a low reflectance film having minimal reflectance of the optical semiconductor device in Embodiment 1; 実施の形態1における光半導体装置の極小反射率を有する低反射率膜の設計方法を示す模式図である。2 is a schematic diagram showing a method of designing a low reflectance film having minimal reflectance for an optical semiconductor device in Embodiment 1. FIG. 実施の形態1における光半導体装置の極小反射率を有する低反射率膜の設計方法を説明するための模式図である。FIG. 2 is a schematic diagram for explaining a method of designing a low reflectance film having minimal reflectance for an optical semiconductor device in Embodiment 1. FIG. 実施の形態1における光半導体装置の極小反射率を有する低反射率膜の設計方法によって設計された低反射率膜の反射率の波長依存性を示す図である。FIG. 3 is a diagram showing the wavelength dependence of the reflectance of a low reflectance film designed by the method for designing a low reflectance film having minimal reflectance of the optical semiconductor device in Embodiment 1; 実施の形態2における光半導体装置の極小反射率を有する低反射率膜の設計方法を説明するための模式図である。7 is a schematic diagram for explaining a method of designing a low reflectance film having minimal reflectance for an optical semiconductor device in Embodiment 2. FIG. 実施の形態2における光半導体装置の極小反射率を有する低反射率膜の設計方法によって設計された低反射率膜の反射率の波長依存性を示す図である。FIG. 7 is a diagram showing the wavelength dependence of the reflectance of a low reflectance film designed by the method of designing a low reflectance film having minimal reflectance of an optical semiconductor device in Embodiment 2; 実施の形態2における光半導体装置の極小反射率を有する低反射率膜の設計方法を説明するための模式図である。7 is a schematic diagram for explaining a method of designing a low reflectance film having minimal reflectance for an optical semiconductor device in Embodiment 2. FIG. 実施の形態2における光半導体装置の極小反射率を有する低反射率膜の設計方法によって設計された低反射率膜の反射率の波長依存性を示す図である。FIG. 7 is a diagram showing the wavelength dependence of the reflectance of a low reflectance film designed by the method of designing a low reflectance film having minimal reflectance of an optical semiconductor device in Embodiment 2; 実施の形態3における光半導体装置の極小反射率を有する低反射率膜の設計方法を説明するための模式図である。FIG. 7 is a schematic diagram for explaining a method of designing a low reflectance film having minimal reflectance for an optical semiconductor device in Embodiment 3; 実施の形態3における光半導体装置の極小反射率を有する低反射率膜の設計方法によって設計された低反射率膜の反射率の波長依存性を示す図である。FIG. 7 is a diagram showing the wavelength dependence of the reflectance of a low reflectance film designed by the method of designing a low reflectance film having minimal reflectance of an optical semiconductor device in Embodiment 3; 実施の形態3における光半導体装置の極小反射率を有する低反射率膜の設計方法を説明するための模式図である。FIG. 7 is a schematic diagram for explaining a method of designing a low reflectance film having minimal reflectance for an optical semiconductor device in Embodiment 3; 実施の形態3における光半導体装置の極小反射率を有する低反射率膜の設計方法によって設計された低反射率膜の反射率の波長依存性を示す図である。FIG. 7 is a diagram showing the wavelength dependence of the reflectance of a low reflectance film designed by the method of designing a low reflectance film having minimal reflectance of an optical semiconductor device in Embodiment 3; 実施の形態4における光半導体装置の極小反射率を有する低反射率膜の設計方法を説明するための模式図である。FIG. 7 is a schematic diagram for explaining a method of designing a low reflectance film having minimal reflectance for an optical semiconductor device in Embodiment 4; 実施の形態4における光半導体装置の極小反射率を有する低反射率膜の設計方法によって設計された低反射率膜の反射率の波長依存性を示す図である。FIG. 7 is a diagram showing the wavelength dependence of the reflectance of a low reflectance film designed by the method for designing a low reflectance film having minimal reflectance of an optical semiconductor device in Embodiment 4; 実施の形態4における光半導体装置の極小反射率を有する低反射率膜の設計方法を説明するための模式図である。FIG. 7 is a schematic diagram for explaining a method of designing a low reflectance film having minimal reflectance for an optical semiconductor device in Embodiment 4; 実施の形態4における光半導体装置の極小反射率を有する低反射率膜の設計方法によって設計された低反射率膜の反射率の波長依存性を示す図である。FIG. 7 is a diagram showing the wavelength dependence of the reflectance of a low reflectance film designed by the method for designing a low reflectance film having minimal reflectance of an optical semiconductor device in Embodiment 4;

実施の形態1.
図1は、実施の形態1に係る光半導体装置の一例である量子カスケードレーザ装置100を示す概観図である。実施の形態1に係る量子カスケードレーザ装置100は、n型第1電極1と、n型InP基板2と、n型InPバッファ層3と、n型GaInAs第1光閉じ込め層4と、30~40の各ステージ(stage)からなるコア領域5と、n型GaInAs第2光閉じ込め層6と、n型InPクラッド層7と、n型GaInAsコンタクト層8と、n型第2電極9と、を備える。以下、量子カスケードレーザ装置100を、光半導体装置11と呼ぶ場合もある。
Embodiment 1.
FIG. 1 is an overview diagram showing a quantum cascade laser device 100, which is an example of an optical semiconductor device according to the first embodiment. A quantum cascade laser device 100 according to the first embodiment includes an n-type first electrode 1, an n-type InP substrate 2, an n-type InP buffer layer 3, an n-type GaInAs first optical confinement layer 4, and 30 to 40 A core region 5 consisting of each stage, an n-type GaInAs second optical confinement layer 6, an n-type InP cladding layer 7, an n-type GaInAs contact layer 8, and an n-type second electrode 9. . Hereinafter, the quantum cascade laser device 100 may be referred to as an optical semiconductor device 11.

コア領域5の1ステージは、GaInAs層のウエル層とAlInAs層のバリア層が多数積層された多重量子井戸(Multi-Quantum Well:MQW)構造であり、発振波長は3~24μmの範囲内の中赤外光である。なお、図1では、前端面に設けた低反射率膜10は図示していない。 One stage of the core region 5 has a multi-quantum well (MQW) structure in which many GaInAs well layers and AlInAs barrier layers are laminated, and the oscillation wavelength is within the range of 3 to 24 μm. It is infrared light. Note that in FIG. 1, the low reflectance film 10 provided on the front end surface is not shown.

図2は、図1のA-A線に沿った量子カスケードレーザ装置100の断面図である。量子カスケードレーザ装置100の出射端面には、複数の被覆膜(以下、多層被覆膜と呼ぶ)で構成され、波長λ0において反射率が極小となる低反射率膜10が設けられている。FIG. 2 is a cross-sectional view of the quantum cascade laser device 100 taken along line AA in FIG. A low reflectance film 10 is provided on the output end face of the quantum cascade laser device 100, which is composed of a plurality of coating films (hereinafter referred to as a multilayer coating film) and has a minimum reflectance at wavelength λ 0 . .

実効屈折率がncである光半導体装置11に、波長λ0において屈折率がnfであり、膜厚がλ0/(4nf)に設定された単層の被覆膜(以下、単層被覆膜と呼ぶ)を設けると、単層被覆膜の反射率は極小値である極小反射率R0となる。極小反射率R0は、上述の式(1)で表される。An optical semiconductor device 11 having an effective refractive index n c is coated with a single layer coating film (hereinafter referred to as a single layer) having a refractive index n f at a wavelength λ 0 and a film thickness set to λ 0 /(4n f ). When a single-layer coating film (referred to as a layer coating film) is provided, the reflectance of the single-layer coating film becomes the minimum reflectance R 0 which is the minimum value. The minimum reflectance R 0 is expressed by the above equation (1).

逆に式(1)より、所望の極小反射率R0を実現するための被覆膜の屈折率nfl、及び屈折率nfhは、以下の式(2)を用いて算出される。Conversely, from equation (1), the refractive index n fl and n fh of the coating film for realizing the desired minimum reflectance R 0 are calculated using equation (2) below.

Figure 0007378692000006
Figure 0007378692000006

例えば、光半導体装置11の実効屈折率ncが3.2であり、極小反射率R0=0.005(0.5%)である場合、屈折率nfl及び屈折率nfhは、それぞれ、1.666535及び1.920152と算出される。しかしながら、被覆膜を構成する材料において、これらの屈折率値を有し、かつ光半導体装置へ適用可能な材料は現時点では存在しない。そこで、本開示では、既知の材料で置換することによって上述の屈折率値を実現する。For example, when the effective refractive index n c of the optical semiconductor device 11 is 3.2 and the minimum reflectance R 0 =0.005 (0.5%), the refractive index n fl and the refractive index n fh are respectively , 1.666535 and 1.920152. However, there is currently no material constituting the coating film that has these refractive index values and is applicable to optical semiconductor devices. Therefore, in the present disclosure, the above-mentioned refractive index value is achieved by substituting a known material.

先ず、屈折率nfl=1.666535の場合について説明する。単層被覆膜を、屈折率nflよりも屈折率が低い材料と、屈折率nflよりも屈折率が高い材料の2つの材料による3層被覆膜による置換を考える。First, the case where the refractive index n fl =1.666535 will be explained. Consider replacing the single-layer coating film with a three-layer coating film made of two materials: a material with a refractive index lower than the refractive index n fl and a material with a refractive index higher than the refractive index n fl .

図3は、屈折率nflで膜厚dflがλ0/(4nfl)である単層被覆膜12を、それぞれ屈折率n1で膜厚d1、屈折率n2で膜厚d2及び屈折率n1で膜厚d3である3層被覆膜で置換する場合の模式図である。図3に示すように、実効屈折率ncで波長λ0の光を出射する光半導体装置11の端面に形成された屈折率nfl(=1.66535)で膜厚dfl=λ0/(4nfl)である単層被覆膜12を、屈折率n1で膜厚d1である第1被覆膜13、屈折率n2で膜厚d2である第2被覆膜14、屈折率n1で膜厚d3である第3被覆膜15の3層被覆膜で置き換える。単層被覆膜12を3層被覆膜で置換できるとすると、以下の式(3)で表されるように、両者の特性行列は等しくなる。FIG. 3 shows a single layer coating film 12 having a refractive index n fl and a film thickness d fl of λ 0 /(4n fl ), a film thickness d 1 at a refractive index n 1 , and a film thickness d at a refractive index n 2, respectively. 2 and a three-layer coating film having a refractive index n 1 and a film thickness d 3. FIG. As shown in FIG. 3, a film is formed on the end face of the optical semiconductor device 11 which emits light of wavelength λ 0 with an effective refractive index n c and a film thickness d fl0 / with a refractive index n fl (=1.66535). (4n fl ), a first coating 13 having a refractive index n 1 and a thickness d 1 , a second coating 14 having a refractive index n 2 and a thickness d 2 , It is replaced with a three-layer coating film of the third coating film 15 having a refractive index n 1 and a film thickness d 3 . If the single-layer coating film 12 can be replaced with a three-layer coating film, the characteristic matrices of both will be equal, as expressed by the following equation (3).

Figure 0007378692000007
式(3)中の各被覆膜の位相項φ1、φ2及びφ3は、以下の式(4)で表される。
Figure 0007378692000007
The phase terms φ 1 , φ 2 and φ 3 of each coating film in equation (3) are expressed by the following equation (4).

Figure 0007378692000008
Figure 0007378692000008

式(3)において、屈折率n1及び屈折率n2は既知なので、未知数は、膜厚d1、d2及びd3の3つであり、式(3)を解くことで各膜厚を算出することができる。In equation (3), the refractive index n 1 and refractive index n 2 are known, so there are three unknowns: film thicknesses d 1 , d 2 and d 3 , and each film thickness can be calculated by solving equation (3). It can be calculated.

波長λ0=10μm、第1被覆膜13及び第3被覆膜15として、屈折率がnflよりも低い屈折率n1=1.40であるYF3を、第2被覆膜14として屈折率がnflよりも高い屈折率n2=2.20であるZnSを一例として式(3)を解くと、各被覆膜の膜厚は、それぞれ、d1=654.371nm、d2=277.806nm、d3=654.371nmとなる。この場合の反射率の波長依存性を図4の一点鎖線22で示す。反射率は波長10μmにおいて0.5%となるが、この値は極小値ではなく、3層被覆膜の反射率の極小値Rmin 0は0.4857%である。
なお、本開示において、RminとRmin 0の意味は、下記のとおりである。
(1)Rmin:単層被覆膜による設定反射率R1を多層被覆膜で置換した場合の多層被覆膜の反射率の極小値
(2)Rmin 0:単層被覆膜による所望の極小反射率R0を多層被覆膜で置換した場合の多層被覆膜の反射率の極小値
The wavelength λ 0 = 10 μm, the first coating film 13 and the third coating film 15 are YF 3 having a refractive index n 1 = 1.40, which is lower than n fl , and the second coating film 14 is YF 3. When formula (3) is solved using ZnS, which has a refractive index n 2 = 2.20, which is higher than n fl , as an example, the thickness of each coating film is d 1 =654.371 nm, d 2 respectively. = 277.806 nm, d 3 = 654.371 nm. The wavelength dependence of the reflectance in this case is shown by the dashed-dotted line 22 in FIG. Although the reflectance is 0.5% at a wavelength of 10 μm, this value is not a minimum value, and the minimum value R min 0 of the reflectance of the three-layer coating film is 0.4857%.
In addition, in this disclosure, the meanings of R min and R min 0 are as follows.
(1) R min : Minimum value of reflectance of multilayer coating when the set reflectance R 1 of single layer coating is replaced with multilayer coating (2) R min 0 : Due to single layer coating Minimum value of reflectance of multilayer coating film when desired minimum reflectance R 0 is replaced with multilayer coating film

単層被覆膜の極小反射率R0:0.5%に対して、3層被覆膜の反射率の極小値Rmin 0が0.4857%と、単層被覆膜の極小反射率R0よりも低くなる。そこで、3層被覆膜の反射率の極小値Rminを所望の極小反射率R0にすべく、設定反射率R1を高く設定する。反射率の増分ΔR0の目安を、R0-Rmin 0=0.0143%とし、所望の極小反射率R0と一致するまで増分ΔR0を調整する。実施の形態1では増分ΔR0=0.0146%であり、設定反射率R1は0.51460%となる。以下の式(5)より、設定反射率R1=0.51460%を実現するための単層被覆膜の屈折率nfl 1は、1.6648189と算出される。The minimum reflectance R min 0 of the three-layer coating is 0.4857%, compared to the minimum reflectance R 0 :0.5% of the single-layer coating. It will be lower than R 0 . Therefore, the set reflectance R 1 is set high in order to bring the minimum value R min of the reflectance of the three-layer coating film to the desired minimum reflectance R 0 . The guideline for the reflectance increment ΔR 0 is R 0 −R min 0 =0.0143%, and the increment ΔR 0 is adjusted until it matches the desired minimum reflectance R 0 . In the first embodiment, the increment ΔR 0 is 0.0146%, and the set reflectance R 1 is 0.51460%. From the following equation (5), the refractive index n fl 1 of the single layer coating film for realizing the set reflectance R 1 =0.51460% is calculated as 1.6648189.

Figure 0007378692000009
Figure 0007378692000009

つまり、式(5)より、R1=0.51460%を実現するための単層被覆膜の屈折率nfl 1は1.6648189と算出される。以下の式(6)を解いて各被覆膜の膜厚を計算すると、d1=655.839nm、d2=276.062nm、d3=655.839nmと、それぞれ算出される。That is, from equation (5), the refractive index n fl 1 of the single-layer coating film for realizing R 1 =0.51460% is calculated as 1.6648189. When the film thickness of each coating film is calculated by solving the following equation (6), d 1 =655.839 nm, d 2 =276.062 nm, and d 3 =655.839 nm, respectively.

Figure 0007378692000010
Figure 0007378692000010

この場合の反射率の波長依存性を図4の二点鎖線23に示す。3層被覆膜の反射率の極小値Rminは、波長λmin=9.876μmにおいて0.5%と、所望の極小反射率である0.5%を得ることができる。The wavelength dependence of the reflectance in this case is shown by the two-dot chain line 23 in FIG. The minimum value R min of the reflectance of the three-layer coating film is 0.5% at the wavelength λ min =9.876 μm, which is the desired minimum reflectance of 0.5%.

次に、極小反射率となる波長λminを、所望の波長λ0にする。各被覆膜の膜厚をλ0/λmin倍すると、d1=664.074nm、d2=279.528nm、d3=664.074nmと算出される。この場合の反射率の波長依存性を図4の実線24に示す。波長λ0=10μmにおいて極小反射率である0.5%となることが分かる。Next, the wavelength λ min at which the reflectance is minimal is set to the desired wavelength λ 0 . Multiplying the thickness of each coating film by λ 0min yields d 1 =664.074 nm, d 2 =279.528 nm, and d 3 =664.074 nm. The wavelength dependence of the reflectance in this case is shown by the solid line 24 in FIG. It can be seen that the minimum reflectance is 0.5% at the wavelength λ 0 =10 μm.

なお、図4の破線21は、屈折率nflで膜厚がλ0/(4nfl)である単層被覆膜に関する、反射率の波長依存性である。図4の実線24及び破線21は、完全には一致しないが、ほぼ同一の反射率の波長依存性を示すとともに、極小反射率及び極小反射率となる際の波長は完全に一致する。Note that the broken line 21 in FIG. 4 shows the wavelength dependence of the reflectance for a single layer coating film having a refractive index n fl and a film thickness λ 0 /(4n fl ). Although the solid line 24 and the broken line 21 in FIG. 4 do not completely match, they show almost the same wavelength dependence of reflectance, and the wavelengths at which the minimum reflectance and the minimum reflectance are reached completely match.

極小反射率R0=0.5%及び波長λ0=10μmは例示であり、これらに限るものではなく、所望の数値に設定することができる。また、上述の一例では、第1被覆膜13及び第3被覆膜15にYF3を、第2被覆膜14にZnSをそれぞれ用いたが、これらに限るものではなく、屈折率がnfl及びnfl 1よりも高い材料が1つ以上及び屈折率がnfl及びnfl 1よりも低い材料が1つ以上あれば良く、各材料の順序も任意に選ぶことができる。
以上より、所望の波長において所望の極小反射率を、屈折率が既知の材料を用いて実現できることが分かる。
Minimum reflectance R 0 =0.5% and wavelength λ 0 =10 μm are examples, and the present invention is not limited to these values, and can be set to desired values. Further, in the above example, YF 3 was used for the first coating film 13 and the third coating film 15, and ZnS was used for the second coating film 14, but the invention is not limited to these. It is sufficient to have at least one material whose refractive index is higher than fl and n fl 1 and at least one material whose refractive index is lower than n fl and n fl 1 , and the order of the materials can be arbitrarily selected.
From the above, it can be seen that a desired minimum reflectance at a desired wavelength can be achieved using a material with a known refractive index.

図5は、波長λ0において極小反射率R0である屈折率nflで膜厚がλ0/(4nfl)である単層被覆膜を、3層被覆膜で置換する方法を示す模式図である。図5において、点線21aは屈折率nflで膜厚λ0/(4nfl)である単層被覆膜の反射率の波長依存性を表し、波長λ0において極小反射率R0を示す。Figure 5 shows a method of replacing a single-layer coating film with a refractive index n fl that has a minimal reflectance R 0 at a wavelength λ 0 and a film thickness of λ 0 /(4n fl ) with a three-layer coating film. It is a schematic diagram. In FIG. 5, a dotted line 21a represents the wavelength dependence of the reflectance of a single layer coating film having a refractive index n fl and a film thickness λ 0 /(4n fl ), and shows the minimum reflectance R 0 at the wavelength λ 0 .

以下に上述の置換方法を説明する。
(1)単層被覆膜(破線21a)を3層被覆膜に置換すべく、両者の特性行列が等しくなるように3層被覆膜の各膜厚を決定する。この場合、波長λ0において極小反射率R0となるが、3層被覆膜の極小反射率の値(3層被覆膜の反射率の極小値Rmin 0)及び極小反射率となる波長(λmin)はずれる。この場合の反射率の波長依存性は、図5の一点鎖線22aで表される。
(2)単層被覆膜の設定反射率R1をR1=R0+ΔR0(破線21b)として特性行列が等しくなる3層被覆膜の各膜厚を算出し、波長λminにおいて極小反射率が所望の3層被覆膜の反射率の極小値Rmin=極小反射率R0となるようにする。つまり、3層被覆膜の反射率の極小値Rminが所望の極小反射率R0と一致するように、単層被覆膜の極小反射率R1をR0+ΔR0と設定する。この場合の反射率の波長依存性は、図5の二点鎖線23aで表される。
(3)波長λ0において極小反射率R0となるように、3層被覆膜の各膜厚をλ0/λmin倍する。この場合の反射率の波長依存性は、図5の実線24aで表される。
The above replacement method will be explained below.
(1) In order to replace the single-layer coating (broken line 21a) with a three-layer coating, the thickness of each of the three-layer coating is determined so that the characteristic matrices of both are equal. In this case, the minimum reflectance R 0 is obtained at the wavelength λ 0 , but the value of the minimum reflectance of the three-layer coating film (minimum value R min 0 of the reflectance of the three-layer coating film) and the wavelength at which the minimum reflectance is (λ min ) is off. The wavelength dependence of the reflectance in this case is represented by the dashed dotted line 22a in FIG.
(2) The set reflectance R 1 of the single layer coating film is calculated as R 1 = R 0 + ΔR 0 (dashed line 21b), and each film thickness of the 3-layer coating film whose characteristic matrix is equal is calculated, and the thickness is minimized at the wavelength λ min . The reflectance is set so that the desired minimum value R min of the reflectance of the three-layer coating film = minimum reflectance R 0 . That is, the minimum reflectance R 1 of the single-layer coating film is set to R 0 +ΔR 0 so that the minimum value R min of the reflectance of the three-layer coating film matches the desired minimum reflectance R 0 . The wavelength dependence of the reflectance in this case is represented by the two-dot chain line 23a in FIG.
(3) Each film thickness of the three-layer coating film is multiplied by λ 0min so that the reflectance R 0 is minimal at the wavelength λ 0 . The wavelength dependence of the reflectance in this case is represented by the solid line 24a in FIG.

設定反射率R1の設定方法を、以下にさらに詳しく説明する。
最初に置換したときの3層被覆膜の極小反射率が、Rmin 0(0)≠R0となったとすると、このときの所望の反射率R0との差ΔR0 (0)は、ΔR0 (0)=R0-Rmin 0(0)となる。次に、ループ1回目の単層被覆膜の設定反射率R1 (1)を、R1 (1)=R0+ΔR0 (0)とし、3層被覆膜で置換して極小反射率Rmin 0(1)を算出する。算出した結果、Rmin 0(1)=R0であれば、ここで計算を終了する。この場合は、ΔR0=ΔR0 (0)、R1=R1 (1)となる。
The method for setting the set reflectance R 1 will be explained in more detail below.
Assuming that the minimum reflectance of the three-layer coating film at the time of initial substitution is R min 0(0) ≠ R 0 , the difference ΔR 0 (0) from the desired reflectance R 0 at this time is: ΔR 0 (0) = R 0 −R min 0(0) . Next, the set reflectance R 1 (1) of the single-layer coating film for the first loop is set to R 1 (1) = R 0 +ΔR 0 (0) , and the minimum reflectance is achieved by replacing it with a three-layer coating film. Calculate R min 0(1) . As a result of the calculation, if R min 0(1) = R 0 , the calculation ends here. In this case, ΔR 0 =ΔR 0 (0) and R 1 =R 1 (1) .

min 0(1)≠R0の場合は、ループ2回目に移行する。このときの所望の反射率R0との差ΔR0 (1)は、ΔR0 (1)=R0-Rmin 0(1)となる。単層被覆膜の設定反射率R1 (2)を、R1 (2)=R0+ΔR0 (1)とし、3層被覆膜で置換して極小反射率Rmin 0(2)を算出する。If R min 0(1) ≠ R 0 , the loop moves to the second time. The difference ΔR 0 (1) from the desired reflectance R 0 at this time is ΔR 0 (1) =R 0 -R min 0(1) . The set reflectance R 1 (2) of the single-layer coating film is set as R 1 (2) = R 0 +ΔR 0 (1) , and the minimum reflectance R min 0 (2) is obtained by replacing it with a three-layer coating film. calculate.

算出した結果、Rmin 0(2)=R0であれば、ここで計算は終了する。この場合は、ΔR0=ΔR0 (1)、R1=R1 (2)となる。Rmin 0(2)≠R0の場合は、ループ3回目に移行し、同様に計算を繰り返す。つまり、Rmin 0(k)=R0となるまでループをk回まわすことにより、設定反射率R1=R1 (k)を決定することができる。
以上が、設定反射率R1の設定方法である。
As a result of the calculation, if R min 0(2) = R 0 , the calculation ends here. In this case, ΔR 0 =ΔR 0 (1) and R 1 =R 1 (2) . If R min 0(2) ≠ R 0 , the process moves to the third loop and repeats the calculation in the same way. In other words, the set reflectance R 1 =R 1 (k) can be determined by turning the loop k times until R min 0 (k ) = R 0 .
The above is the method for setting the set reflectance R1 .

同様に、屈折率nfh=1.920152の場合について説明する。単層被覆膜を、屈折率nfhよりも屈折率が低い材料と、屈折率nfhよりも屈折率が高い材料の少なくとも2つの材料による3層被覆膜による置換を考える。Similarly, the case where the refractive index n fh =1.920152 will be explained. Consider replacing the single-layer coating with a three-layer coating made of at least two materials: a material with a refractive index lower than the refractive index n fh and a material with a refractive index higher than the refractive index n fh .

図6は、屈折率nfhで膜厚dfhがλ0/(4nfh)である単層被覆膜31を、それぞれ屈折率n1で膜厚d1、屈折率n2で膜厚d2及び屈折率n1で膜厚d3である3層被覆膜で置換する場合の模式図である。図6に示すように、実効屈折率ncで波長λ0の光を出射する光半導体装置11の端面に形成された屈折率nfh(=1.920152)で膜厚dfh=λ0/(4nfh)である単層被覆膜31を、屈折率n1で膜厚d1の第1被覆膜32、屈折率がn2で膜厚がd2の第2被覆膜33、屈折率がn1で膜厚がd3の第3被覆膜34からなる3層被覆膜で置き換える。単層被覆膜を3層被覆膜で置換する方法は、上述の低屈折率nflの場合と同様であり、以下の式(7)を解いて行う。FIG. 6 shows a single layer coating film 31 with a refractive index n fh and a film thickness d fh of λ 0 /(4n fh ), a film thickness d 1 with a refractive index n 1 and a film thickness d with a refractive index n 2, respectively. 2 and a three-layer coating film having a refractive index n 1 and a film thickness d 3. FIG. As shown in FIG. 6, the film thickness d fh = λ 0 / with refractive index n fh (=1.920152) formed on the end face of the optical semiconductor device 11 that emits light of wavelength λ 0 with effective refractive index n c (4n fh ), a first coating 32 with a refractive index n 1 and a thickness d 1 , a second coating 33 with a refractive index n 2 and a thickness d 2 , It is replaced with a three-layer coating film consisting of a third coating film 34 having a refractive index of n 1 and a film thickness of d 3 . The method for replacing the single-layer coating film with a three-layer coating film is the same as in the case of the low refractive index n fl described above, and is performed by solving the following equation (7).

Figure 0007378692000011
Figure 0007378692000011

波長λ0=10μm、第1被覆膜32及び第3被覆膜34として、屈折率がnfhよりも低い屈折率n1=1.40であるYF3を、第2被覆膜33として屈折率がnfhよりも高い屈折率n2=2.20であるZnSを一例として式(7)を解くと、それぞれ、d1=434.257nm、d2=547.934nm、d3=434.257nmとなる。この場合の反射率の波長依存性を、図7の一点鎖線36に示す。反射率は波長10μmにおいて0.5%となるが、この値は極小値ではなく、3層被覆膜の反射率の極小値Rmin 0は0.4715%である。The wavelength λ 0 =10 μm, the first coating film 32 and the third coating film 34 are YF 3 having a refractive index n 1 =1.40, which is lower than n fh , and the second coating film 33 is YF 3 . When formula (7) is solved using ZnS, which has a refractive index n 2 = 2.20, which is higher than n fh , as an example, d 1 = 434.257 nm, d 2 = 547.934 nm, and d 3 = 434, respectively. .257 nm. The wavelength dependence of the reflectance in this case is shown by the dashed-dotted line 36 in FIG. Although the reflectance is 0.5% at a wavelength of 10 μm, this value is not a minimum value, and the minimum value R min 0 of the reflectance of the three-layer coating film is 0.4715%.

単層被覆膜の極小反射率R0:0.5%に対して、3層被覆膜の反射率の極小値Rmin 0が0.4715%と、単層被覆膜の極小反射率R0よりも低くなる。そこで、上述の低屈折率nflの場合と同様に、3層被覆膜の反射率の極小値Rminを所望の極小反射率R0にすべく、設定反射率R1を0.53032%と高く設定する。以下の式(8)より、設定反射率R1=0.53032%を実現するための単層被覆膜の屈折率nfh 1は、1.9243333と算出される。The minimum reflectance R min 0 of the three-layer coating is 0.4715%, which is the minimum reflectance of the single-layer coating, compared to the minimum reflectance R 0 :0.5% of the single-layer coating. It will be lower than R 0 . Therefore, as in the case of the low refractive index n fl described above, in order to make the minimum value R min of the reflectance of the three-layer coating film the desired minimum reflectance R 0 , the set reflectance R 1 is set to 0.53032%. Set it high. From the following equation (8), the refractive index n fh 1 of the single layer coating film for realizing the set reflectance R 1 =0.53032% is calculated as 1.9243333.

Figure 0007378692000012
以下の式(9)を解いて各被覆膜の膜厚を計算すると、d1=430.513nm、d2=552.699nm、d3=430.513nmと、それぞれ算出される。
Figure 0007378692000012
When the film thickness of each coating film is calculated by solving the following equation (9), d 1 =430.513 nm, d 2 =552.699 nm, and d 3 =430.513 nm, respectively.

Figure 0007378692000013
Figure 0007378692000013

この場合の反射率の波長依存性を、図7の二点鎖線37に示す。3層被覆膜の反射率の極小値Rminは、波長λmin=10.174μmにおいて0.5%と、所望の極小反射率である0.5%を得ることができる。The wavelength dependence of the reflectance in this case is shown by the two-dot chain line 37 in FIG. The minimum value R min of the reflectance of the three-layer coating film is 0.5% at the wavelength λ min =10.174 μm, which is the desired minimum reflectance of 0.5%.

次に、極小反射率となる波長λminを所望の波長λ0にする。3層被覆膜の各膜厚をそれぞれλ0/λmin倍すると、d1=423.150nm、d2=543.247nm.d3=423.150nmと、それぞれ算出される。この場合の反射率の波長依存性を、図7の実線38に示す。波長λ0=10μmにおいて極小反射率である0.5%となることが分かる。Next, the wavelength λ min at which the reflectance is minimal is set to a desired wavelength λ 0 . If each film thickness of the three-layer coating film is multiplied by λ 0min , then d 1 =423.150 nm, d 2 =543.247 nm. d 3 =423.150 nm, respectively. The wavelength dependence of the reflectance in this case is shown by the solid line 38 in FIG. It can be seen that the minimum reflectance is 0.5% at the wavelength λ 0 =10 μm.

なお、図7の破線35は、屈折率nfhで膜厚がλ0/(4nfh)である単層被覆膜に関する、反射率の波長依存性である。図7の実線38及び破線35は、完全には一致しないが、ほぼ同一の反射率の波長依存性を示すとともに、極小反射率及び極小反射率となる際の波長は完全に一致する。Note that the broken line 35 in FIG. 7 shows the wavelength dependence of the reflectance for a single layer coating film having a refractive index n fh and a film thickness λ 0 /(4n fh ). Although the solid line 38 and the broken line 35 in FIG. 7 do not completely match, they show almost the same wavelength dependence of the reflectance, and the wavelengths at which the minimum reflectance and the minimum reflectance are reached completely match.

極小反射率R0=0.5%及び波長λ0=10μmは例示であり、これらに限るものではなく、所望の数値に設定することができる。また、上述の一例では、第1被覆膜32及び第3被覆膜34にYF3を、第2被覆膜33にZnSをそれぞれ用いたが、これらに限るものではなく、屈折率がnfh及びnfh 1よりも高い材料が1つ以上及び屈折率がnfh及びnfh 1よりも低い材料が1つ以上あれば良く、各材料の順序も任意に選ぶことができる。
以上より、所望の波長において所望の極小反射率を、屈折率が既知の材料で実現できることが分かる。
Minimum reflectance R 0 =0.5% and wavelength λ 0 =10 μm are examples, and the present invention is not limited to these values, and can be set to desired values. Further, in the above example, YF 3 was used for the first coating film 32 and the third coating film 34, and ZnS was used for the second coating film 33, but the invention is not limited to these. It is sufficient to have at least one material whose refractive index is higher than fh and n fh 1 and at least one material whose refractive index is lower than n fh and n fh 1 , and the order of the materials can be arbitrarily selected.
From the above, it can be seen that a desired minimum reflectance at a desired wavelength can be achieved using a material with a known refractive index.

<実施の形態1の効果>
以上、実施の形態1に係る光半導体装置の製造方法及び低反射率膜の設計方法によれば、単層被覆膜を、特性行列を利用して3層の多層被覆膜によって置換することにより、所望の波長において所望の極小反射率に制御された低反射率膜を有する光半導体装置を製造することが可能となり、また、低反射率膜の設計方法を得ることが可能となる。
<Effects of Embodiment 1>
As described above, according to the method for manufacturing an optical semiconductor device and the method for designing a low reflectance film according to Embodiment 1, a single layer coating film is replaced by a three-layer multilayer coating film using a characteristic matrix. This makes it possible to manufacture an optical semiconductor device having a low reflectance film controlled to a desired minimum reflectance at a desired wavelength, and also to obtain a method for designing a low reflectance film.

なお、上述の光半導体装置の製造方法は、上記低反射率膜の設計方法の思想を利用するものであって、製造の上で多層被覆膜の各被覆膜が厳密に一致しなくても構わない。つまり、以下の方法によって設計し光半導体装置に設けた低反射率膜の製造方法は本開示に含まれる。 It should be noted that the method for manufacturing the optical semiconductor device described above utilizes the concept of the method for designing the low reflectance film described above, and each coating film of the multilayer coating film must not match exactly during manufacturing. I don't mind. In other words, the present disclosure includes a method of manufacturing a low reflectance film designed and provided in an optical semiconductor device by the following method.

先ず、所望の波長(λ0)で所望の極小反射率(R0)を得るのに、所望の極小反射率(R0)となる単層被覆膜を多層被覆膜で置換し、多層被覆膜の反射率の極小値(Rmin 0)及び極小反射率となる波長(λmin)を算出する。次に、多層被覆膜の反射率の極小値(Rmin)が所望の極小反射率(R0)と一致するように、単層被覆膜の極小反射率R1をR0+ΔR0と設定する。さらに、所望の波長(λ0)で所望の極小反射率(R0)となるように多層被覆膜の各膜厚を算出する。First, in order to obtain the desired minimum reflectance (R 0 ) at the desired wavelength (λ 0 ), the single-layer coating that provides the desired minimum reflectance (R 0 ) is replaced with a multilayer coating. The minimum value (R min 0 ) of the reflectance of the coating film and the wavelength (λ min ) at which the reflectance is the minimum are calculated. Next, the minimum reflectance R 1 of the single layer coating is set to R 0 +ΔR 0 so that the minimum reflectance (R min ) of the multilayer coating matches the desired minimum reflectance (R 0 ). Set. Furthermore, the thickness of each layer of the multilayer coating film is calculated so that the desired minimum reflectance (R 0 ) can be achieved at the desired wavelength (λ 0 ).

実施の形態2.
極小反射率R0は所望の値とすることができる。実施の形態2に係る光半導体装置の製造方法及び低反射率膜の設計方法では、極小反射率R0=0.01(1%)の一例を示す。光半導体装置の実効屈折率ncを3.2とすると、上述の式(2)より、nfl及びnfhは、それぞれ1.618080及び1.977653と算出される。
Embodiment 2.
The minimum reflectance R 0 can be set to any desired value. In the method for manufacturing an optical semiconductor device and the method for designing a low reflectance film according to the second embodiment, an example in which the minimum reflectance R 0 =0.01 (1%) is shown. When the effective refractive index n c of the optical semiconductor device is 3.2, n fl and n fh are calculated as 1.618080 and 1.977653, respectively, from the above equation (2).

先ず、屈折率nfl=1.618080の場合について説明する。単層被覆膜を、少なくとも1つは屈折率nflよりも屈折率が低い材料とし、かつ少なくとも1つは屈折率nflよりも屈折率が高い材料となる3つの材料による3層からなる被覆膜による置換を考える。First, the case where the refractive index n fl =1.618080 will be explained. The single-layer coating film consists of three layers of three materials, at least one of which is a material with a refractive index lower than the refractive index n fl , and at least one of which is a material with a refractive index higher than the refractive index n fl Consider replacement with a coating film.

図8は、屈折率nflで膜厚dflがλ0/(4nfl)である単層被覆膜41を、屈折率n1で膜厚d1、屈折率n2で膜厚d2、及び屈折率n3で膜厚d3である3層被覆膜で置換する場合の模式図である。図8に示すように、実効屈折率ncで波長λ0の光を出射する光半導体装置11の端面に形成された屈折率nfl(=1.618080)で膜厚dfl=λ0/(4nfl)の単層被覆膜41を、屈折率n1で膜厚d1である第1被覆膜42、屈折率がn2で膜厚d2である第2被覆膜43、屈折率がn3で膜厚d3である第3被覆膜44の3層被覆膜で置き換える。単層被覆膜41を3層被覆膜で置換できるとすると、以下の式(10)で表されるように、両者の特性行列は等しくなる。FIG. 8 shows a single layer coating film 41 having a refractive index n fl and a film thickness d fl of λ 0 /(4n fl ), a film thickness d 1 at a refractive index n 1 and a film thickness d 2 at a refractive index n 2. , and a three-layer coating film having a refractive index n 3 and a film thickness d 3 . As shown in FIG. 8, the film thickness d fl =λ 0 / with refractive index n fl (=1.618080) formed on the end face of the optical semiconductor device 11 that emits light of wavelength λ 0 with effective refractive index n c (4n fl ), a first coating film 42 having a refractive index n 1 and a film thickness d 1 , a second coating film 43 having a refractive index n 2 and a film thickness d 2 , The third coating film 44 is replaced with a three-layer coating film having a refractive index of n 3 and a film thickness of d 3 . If the single-layer coating film 41 can be replaced with a three-layer coating film, the characteristic matrices of both will be equal, as expressed by the following equation (10).

Figure 0007378692000014
式(10)において、各被覆膜の位相項φ1、φ2及びφ3は、以下の式(11)と表される。
Figure 0007378692000014
In equation (10), phase terms φ 1 , φ 2 and φ 3 of each coating film are expressed as equation (11) below.

Figure 0007378692000015
Figure 0007378692000015

式(10)において、屈折率n1、屈折率n2及び屈折率n3は既知なので、未知数は、膜厚d1、d2及びd3の3つであり、式(10)を解くことで各被覆膜の膜厚を算出することができる。In equation (10), since the refractive index n 1 , refractive index n 2 and refractive index n 3 are known, the three unknowns are the film thicknesses d 1 , d 2 and d 3 , and solving equation (10) The thickness of each coating film can be calculated using

波長λ0=10μm、第1被覆膜42は屈折率がnflよりも低い屈折率n1=1.40のYF3を、第2被覆膜43は屈折率がnflよりも高い屈折率n2=2.20のZnSを、第3被覆膜44は屈折率がnflよりも低いn3=1.45のCeF3を一例として式(10)を解くと、各被覆膜の膜厚はそれぞれ、d1=640.642nm、d2=206.894nm、d3=763.646nmとなる。この場合の反射率の波長依存性を、図9の一点鎖線46に示す。反射率は波長10μmにおいて1.0%となるが、この値は極小値ではなく、3層被覆膜の反射率の極小値Rmin 0は0.9836%である。Wavelength λ 0 = 10 μm, the first coating film 42 is YF 3 with a refractive index n 1 = 1.40, which is lower than n fl , and the second coating film 43 is YF 3 , which has a refractive index higher than n fl . Solving equation (10) using ZnS with a refractive index of n 2 = 2.20 as an example and CeF 3 with a refractive index of n 3 = 1.45 lower than n fl as the third coating film 44, each coating film The film thicknesses of d 1 =640.642 nm, d 2 =206.894 nm, and d 3 =763.646 nm, respectively. The wavelength dependence of the reflectance in this case is shown by the dashed-dotted line 46 in FIG. Although the reflectance is 1.0% at a wavelength of 10 μm, this value is not a minimum value, and the minimum value R min 0 of the reflectance of the three-layer coating film is 0.9836%.

単層被覆膜の極小反射率R0:1.0%に対して、3層被覆膜の反射率の極小値Rmin 0が0.9836%と、単層被覆膜の極小反射率R0よりも低くなる。そこで、実施の形態1と同様に、3層被覆膜の反射率の極小値Rminを所望の極小反射率R0にすべく、設定反射率R1を1.01648%と高く設定する。この場合、式(5)より、nfl 1=1.616739と算出される。以下の式(12)を解いて各被覆膜の膜厚を計算すると、d1=641.123nm、d2=205.474nm、d3=765.332nmと算出される。The minimum reflectance R min 0 of the three-layer coating is 0.9836%, compared to the minimum reflectance R 0 of the single-layer coating: 1.0%, which is the minimum reflectance of the single-layer coating. It will be lower than R 0 . Therefore, similarly to the first embodiment, the set reflectance R 1 is set as high as 1.01648% in order to make the minimum value R min of the reflectance of the three-layer coating film the desired minimum reflectance R 0 . In this case, n fl 1 =1.616739 is calculated from equation (5). When the thickness of each coating film is calculated by solving equation (12) below, it is calculated as d 1 =641.123 nm, d 2 =205.474 nm, and d 3 =765.332 nm.

Figure 0007378692000016
Figure 0007378692000016

この場合の反射率の波長依存性を、図9の二点鎖線47に示す。3層被覆膜の反射率の極小値Rminは、波長λmin=9.864μmにおいて1.0%と、所望の極小反射率である1.0%を得ることができる。The wavelength dependence of the reflectance in this case is shown by the two-dot chain line 47 in FIG. The minimum value R min of the reflectance of the three-layer coating film is 1.0% at the wavelength λ min =9.864 μm, which is the desired minimum reflectance of 1.0%.

次に、極小反射率となる波長λminを、所望の波長λ0にする。各膜厚をλ0/λmin倍すると、d1=649.962nm、d2=208.307nm.d3=775.884nmと算出される。この場合の反射率の波長依存性を、図9の実線48に示す。波長λ0において極小反射率である1.0%となることが分かる。なお、図9の破線45は、屈折率nflで膜厚がλ0/(4nfl)である単層被覆膜に関する、反射率の波長依存性である。図9の実線48及び破線45は、ほぼ同一の反射率の波長依存性を示すとともに、極小反射率及び極小反射率となる際の波長は完全に一致する。Next, the wavelength λ min at which the reflectance is minimal is set to the desired wavelength λ 0 . When each film thickness is multiplied by λ 0min , d 1 =649.962 nm, d 2 =208.307 nm. It is calculated that d 3 =775.884 nm. The wavelength dependence of the reflectance in this case is shown by the solid line 48 in FIG. It can be seen that the minimum reflectance is 1.0% at the wavelength λ 0 . Note that a broken line 45 in FIG. 9 represents the wavelength dependence of reflectance for a single layer coating film having a refractive index n fl and a film thickness λ 0 /(4n fl ). A solid line 48 and a broken line 45 in FIG. 9 show almost the same wavelength dependence of reflectance, and the wavelengths at which the minimum reflectance and the minimum reflectance are reached completely match.

極小反射率R0=1.0%及び波長λ0=10μmは例示であり、これらに限るものではなく、所望の数値に設定することができる。また。第1被覆膜42にYF3を、第2被覆膜43にZnSを、第3被覆膜44にCeF3を用いたが、これらに限るものではなく、屈折率がnfl及びnfl 1よりも高い材料が1つ以上及び屈折率がnfl及びnfl 1よりも低い材料が1つ以上あれば良く、各材料の順序も任意に選ぶことができる。
以上より、所望の波長において所望の極小反射率を、屈折率が既知の材料を用いて実現できることが分かる。
Minimum reflectance R 0 =1.0% and wavelength λ 0 =10 μm are examples, and the present invention is not limited to these values, and can be set to desired values. Also. Although YF 3 was used for the first coating film 42, ZnS was used for the second coating film 43, and CeF 3 was used for the third coating film 44, the present invention is not limited to these. It is sufficient to have at least one material with a refractive index higher than 1 and at least one material with a refractive index lower than n fl and n fl 1 , and the order of the materials can be arbitrarily selected.
From the above, it can be seen that a desired minimum reflectance at a desired wavelength can be achieved using a material with a known refractive index.

同様に、nfh=1.977653の場合について説明する。単層被覆膜を、少なくとも1つは屈折率nfhよりも屈折率が低い材料とし、少なくとも1つは屈折率nfhよりも屈折率が高い材料となる3つの材料による3層被覆膜による置換を考える。Similarly, the case where n fh =1.977653 will be explained. A three-layer coating film made of three materials in which the single-layer coating film is made of at least one material having a refractive index lower than the refractive index n fh and at least one material having a refractive index higher than the refractive index n fh . Consider the replacement by .

図10は、屈折率nfhで膜厚dfhがλ0/(4nfh)である単層被覆膜49を、それぞれ、屈折率n1で膜厚d1、屈折率n2で膜厚d2及び屈折率n3で膜厚d3である3層被覆膜で置換する場合の模式図である。図10に示すように、実効屈折率ncで波長λ0の光を出射する光半導体装置11の端面に形成された屈折率nfh(=1.977653)で膜厚dfh=λ0/(4nfh)の単層被覆膜49を、屈折率n1で膜厚d1である第1被覆膜50、屈折率n2で膜厚d2である第2被覆膜51、屈折率n3で膜厚d3である第3被覆膜52の3層被覆膜で置換する。単層被覆膜を3層被覆膜で置換する方法は、上述の低屈折率の場合と同様であり、以下の式(13)を解いて行う。FIG. 10 shows a single layer coating film 49 having a refractive index n fh and a film thickness d fh of λ 0 /(4n fh ), a film thickness d 1 at a refractive index n 1 and a film thickness d 1 at a refractive index n 2 , respectively. FIG. 3 is a schematic diagram in the case of replacement with a three-layer coating film having a film thickness of d 3 and a refractive index of n 3 . As shown in FIG. 10, the film thickness d fh = λ 0 / with a refractive index n fh (=1.977653) formed on the end face of an optical semiconductor device 11 that emits light with a wavelength λ 0 and an effective refractive index n c (4n fh ), a first coating 50 having a refractive index n 1 and a thickness d 1 , a second coating 51 having a refractive index n 2 and a thickness d 2 , a refractive index n 1 and a thickness d 2 The third coating film 52 is replaced with a three-layer coating film having a ratio n 3 and a thickness d 3 . The method for replacing the single-layer coating film with a three-layer coating film is the same as in the case of the low refractive index described above, and is performed by solving the following equation (13).

Figure 0007378692000017
Figure 0007378692000017

波長λ0=10μm、第1被覆膜50は屈折率がnflよりも低い屈折率n1=1.40であるYF3を、第2被覆膜51は屈折率がnflよりも高い屈折率n2=2.20であるZnSを、第3被覆膜52は屈折率がnflよりも低いn3=1.45であるCeF3を一例として式(13)を解くと、それぞれ、d1=370.115nm、d2=607.246nm、d3=395.897nmとなる。この場合の反射率の波長依存性を図11の一点鎖線54に示す。反射率は波長10μmにおいて1.0%となるが、この値は極小値ではなく、3層被覆膜の反射率の極小値Rmin 0は0.94561%である。The wavelength λ 0 =10 μm, the first coating film 50 is YF 3 with a refractive index n 1 =1.40, which is lower than n fl , and the second coating film 51 is YF 3 , which has a refractive index higher than n fl . Solving Equation (13) using ZnS with a refractive index n 2 = 2.20 and CeF 3 with a refractive index n 3 = 1.45, which is lower than n fl , as an example of the third coating film 52, yields, respectively. , d 1 =370.115 nm, d 2 =607.246 nm, and d 3 =395.897 nm. The wavelength dependence of the reflectance in this case is shown by the dashed line 54 in FIG. Although the reflectance is 1.0% at a wavelength of 10 μm, this value is not a minimum value, and the minimum value R min 0 of the reflectance of the three-layer coating film is 0.94561%.

単層被覆膜の極小反射率R0:1.0%に対して、3層被覆膜の反射率の極小値Rmin 0が0.94561%と、単層被覆膜の極小反射率R0よりも低くなる。そこで、実施の形態1と同様に、3層被覆膜の反射率の極小値Rminを所望の極小反射率R0にすべく、設定反射率R1を1.057485%と高く設定する。設定反射率R1=1.057485%を実現するための単層被覆膜の屈折率nfh 1は、式(8)よりnfh 1=1.9833241と算出される。以下の式(14)を解いて各被覆膜の膜厚を計算すると、各膜厚は、d1=364.825nm、d2=614.601nm、d3=390.009nmと、それぞれ算出される。The minimum reflectance R min 0 of the single-layer coating is 1.0%, whereas the minimum reflectance R min 0 of the three-layer coating is 0.94561%, which is the minimum reflectance of the single-layer coating. It will be lower than R 0 . Therefore, similarly to the first embodiment, the set reflectance R 1 is set as high as 1.057485% in order to make the minimum value R min of the reflectance of the three-layer coating film the desired minimum reflectance R 0 . The refractive index n fh 1 of the single layer coating film for realizing the set reflectance R 1 =1.057485% is calculated as n fh 1 =1.9833241 from equation (8). When calculating the film thickness of each coating film by solving the following equation (14), each film thickness is calculated as d 1 = 364.825 nm, d 2 = 614.601 nm, and d 3 = 390.009 nm. Ru.

Figure 0007378692000018
Figure 0007378692000018

この場合の反射率の波長依存性を、図11の二点鎖線55に示す。3層被覆膜の反射率の極小値Rminは、波長λmin=10.243μmにおいて1.0%と、所望の極小反射率である1.0%を得ることができる。The wavelength dependence of the reflectance in this case is shown by the two-dot chain line 55 in FIG. The minimum value R min of the reflectance of the three-layer coating film is 1.0% at the wavelength λ min =10.243 μm, which is the desired minimum reflectance of 1.0%.

次に、極小反射率となる波長λminを、所望の波長λ0にする。各被覆膜の膜厚をλ0/λmin倍すると、d1=356.170nm、d2=600.021nm、d3=380.757nmと、それぞれ算出される。この場合の反射率の波長依存性を、図11の実線56に示す。波長λ0において極小反射率である1.0%となることが分かる。Next, the wavelength λ min at which the reflectance is minimal is set to the desired wavelength λ 0 . When the film thickness of each coating film is multiplied by λ 0min , d 1 =356.170 nm, d 2 =600.021 nm, and d 3 =380.757 nm are calculated, respectively. The wavelength dependence of the reflectance in this case is shown by the solid line 56 in FIG. It can be seen that the minimum reflectance is 1.0% at the wavelength λ 0 .

なお、図11の破線53は、屈折率nfhで膜厚がλ0/(4nfh)である単層被覆膜に関する、反射率の波長依存性である。図11の実線56及び破線53は、完全には一致しないが、ほぼ同一の反射率の波長依存性を示すとともに、極小反射率及び極小反射率となる際の波長は完全に一致する。Note that a broken line 53 in FIG. 11 indicates the wavelength dependence of the reflectance for a single-layer coating film having a refractive index n fh and a film thickness λ 0 /(4n fh ). Although the solid line 56 and the broken line 53 in FIG. 11 do not completely match, they show almost the same wavelength dependence of reflectance, and the minimum reflectance and the wavelength at which the minimum reflectance is reached completely match.

極小反射率R0=1.0%及び波長λ0=10μmは例示であり、これらに限るものではなく、所望の数値に設定することができる。また。第1被覆膜50にYF3を、第2被覆膜51にZnSを、第3被覆膜52にCeF3を用いたが、これらに限るものではなく、屈折率がnfh及びnfh 1よりも高い材料が1つ以上、及び屈折率がnfh及びnfh 1よりも低い材料が1つ以上あれば良く、各材料の順序も任意に選ぶことができる。
以上より、所望の波長において所望の極小反射率を、屈折率が既知の材料を用いて実現できることが分かる。
Minimum reflectance R 0 =1.0% and wavelength λ 0 =10 μm are examples, and the present invention is not limited to these values, and can be set to desired values. Also. Although YF 3 was used for the first coating film 50, ZnS was used for the second coating film 51, and CeF 3 was used for the third coating film 52, the present invention is not limited to these . It is sufficient to have at least one material with a refractive index higher than 1 and at least one material with a refractive index lower than n fh and n fh 1 , and the order of the materials can be arbitrarily selected.
From the above, it can be seen that a desired minimum reflectance at a desired wavelength can be achieved using a material with a known refractive index.

<実施の形態2の効果>
以上、実施の形態2に係る光半導体装置の製造方法及び低反射率膜の設計方法によると、単層被覆膜を、特性行列を利用して3層の多層被覆膜によって置換することにより、所望の波長において所望の極小反射率に制御された低反射率膜を有する光半導体装置を製造することが可能となり、また、低反射率膜の設計方法を得ることが可能となる。
<Effects of Embodiment 2>
As described above, according to the method for manufacturing an optical semiconductor device and the method for designing a low reflectance film according to the second embodiment, a single layer coating film is replaced by a three-layer multilayer coating film using a characteristic matrix. , it becomes possible to manufacture an optical semiconductor device having a low reflectance film controlled to a desired minimum reflectance at a desired wavelength, and it also becomes possible to obtain a method for designing a low reflectance film.

なお、上述の光半導体装置の製造方法は、上記低反射率膜の設計方法の思想を利用するものであって、製造の上で多層被覆膜の各被覆膜が厳密に一致しなくても構わない。つまり、実施の形態2の設計方法によって設計し、光半導体装置に設けた低反射率膜の製造方法は本開示に含まれる。 It should be noted that the method for manufacturing the optical semiconductor device described above utilizes the concept of the method for designing the low reflectance film described above, and each coating film of the multilayer coating film must not match exactly during manufacturing. I don't mind. In other words, a method of manufacturing a low reflectance film designed by the design method of Embodiment 2 and provided in an optical semiconductor device is included in the present disclosure.

実施の形態3.
実施の形態3では、屈折率の異なる4つ以上の材料を用い、所望の極小反射率を所望の波長で実現する方法について説明する。4つ以上の材料からなる多層被覆膜の一例として、5層被覆膜について説明する。
Embodiment 3.
In Embodiment 3, a method of realizing a desired minimum reflectance at a desired wavelength using four or more materials with different refractive indexes will be described. A five-layer coating film will be described as an example of a multilayer coating film made of four or more materials.

実施の形態3では、極小反射率R0=0.01(1%)を一例として説明する。光半導体装置の実効屈折率ncが3.2とすると、式(2)より、屈折率nfl及び屈折率nfhは、それぞれ、1.618080及び1.977653と算出される。In the third embodiment, the minimum reflectance R 0 =0.01 (1%) will be explained as an example. Assuming that the effective refractive index n c of the optical semiconductor device is 3.2, the refractive index n fl and the refractive index n fh are calculated as 1.618080 and 1.977653, respectively, from equation (2).

先ず、屈折率nfl=1.618080の場合について説明する。単層被覆膜を、少なくとも1つは屈折率nflよりも屈折率が低い材料とし、少なくとも1つは屈折率nflよりも屈折率が高い材料となる5つの材料による5層被覆膜による置換を考える。First, the case where the refractive index n fl =1.618080 will be explained. A 5-layer coating film made of 5 materials in which the single-layer coating film is made of at least one material having a refractive index lower than the refractive index n fl and at least one material having a refractive index higher than the refractive index n fl Consider the replacement by .

図12は、屈折率nflで膜厚dflがλ0/(4nfl)である単層被覆膜41を、屈折率n1で膜厚d1、屈折率n2で膜厚d2、屈折率n3で膜厚d3、屈折率n4で膜厚d4及び屈折率n5で膜厚d5である5層被覆膜で置換する場合の模式図である。図12に示すように、実効屈折率ncで波長λ0の光を出射する光半導体装置11の端面に形成された屈折率nflで膜厚dflがλ0/(4nfl)である単層被覆膜41を、屈折率n1で膜厚d1である第1被覆膜61、屈折率n2で膜厚d2である第2被覆膜62、屈折率n3で膜厚d3である第3被覆膜63、屈折率n4で膜厚d4である第4被覆膜64、屈折率n5で膜厚d5である第5被覆膜65の5層被覆膜で置換する。単層被覆膜を5層被覆膜で置換できるとすると、以下の式(15)で表されるように、両者の特性行列は等しくなる。FIG. 12 shows a single layer coating film 41 having a refractive index n fl and a film thickness d fl of λ 0 /(4n fl ), a film thickness d 1 at a refractive index n 1 and a film thickness d 2 at a refractive index n 2. , is a schematic diagram in the case of replacing with a five-layer coating film having a refractive index n 3 and a film thickness d 3 , a refractive index n 4 and a film thickness d 4 , and a refractive index n 5 and a film thickness d 5 . As shown in FIG. 12, a film formed on the end face of the optical semiconductor device 11 which emits light of wavelength λ 0 with an effective refractive index n c has a refractive index n fl and a film thickness d fl of λ 0 /(4n fl ). The single layer coating film 41 is divided into a first coating film 61 having a refractive index n 1 and a thickness d 1 , a second coating film 62 having a refractive index n 2 and a thickness d 2 , and a film having a refractive index n 3 . Five layers: a third coating film 63 with a thickness of d 3 , a fourth coating film 64 with a refractive index of n 4 and a thickness of d 4 , and a fifth coating film 65 with a refractive index of n 5 and a thickness of d 5. Replace with coating film. If the single-layer coating can be replaced with a five-layer coating, the characteristic matrices of both will be equal, as expressed by the following equation (15).

Figure 0007378692000019
式(15)中の各被覆膜の位相項φ1、φ2、φ3、φ4及びφ5は、以下の式(16)で表される。
Figure 0007378692000019
The phase terms φ 1 , φ 2 , φ 3 , φ 4 and φ 5 of each coating film in equation (15) are expressed by the following equation (16).

Figure 0007378692000020
Figure 0007378692000020

ただし、式(15)から算出される未知数は3つまでなので、5つの材料のうちの2つの材料の膜厚は、予め設定された膜厚としておく。ここでは、一例として第1被覆膜61及び第2被覆膜62の膜厚d1及びd2を、予め設定された膜厚とする。However, since the number of unknowns calculated from equation (15) is up to three, the film thicknesses of two of the five materials are set to preset film thicknesses. Here, as an example, the film thicknesses d 1 and d 2 of the first coating film 61 and the second coating film 62 are preset film thicknesses.

波長λ0=10μm、第1被覆膜61は屈折率がnflよりも高い屈折率n1=1.70で膜厚d1=200nmであるCeO2、第2被覆膜62は屈折率がnflよりも高い屈折率n2=2.20で膜厚d2=100nmであるZnS、第3被覆膜63は屈折率がnflよりも低いn3=1.40で膜厚d3であるYF3、第4被覆膜64は屈折率がnflよりも高い屈折率n4=2.41で膜厚d4であるZnSe、第5被覆膜65は屈折率がnflよりも低いn5=1.45で膜厚d5であるCeF3を一例として式(15)を解くと、各被覆膜の膜厚は、それぞれ、d3=738.670nm、d4=151.598nm、d5=333.010nmとなる。The wavelength λ 0 =10 μm, the first coating film 61 is made of CeO 2 with a refractive index n 1 =1.70 higher than n fl and a film thickness d 1 =200 nm, and the second coating film 62 has a refractive index of is ZnS with a refractive index n 2 = 2.20 higher than n fl and a film thickness d 2 = 100 nm, and the third coating film 63 has a refractive index n 3 = 1.40 lower than n fl and a film thickness d. 3 , the fourth coating film 64 is ZnSe with a refractive index n 4 =2.41 higher than n fl and a film thickness d 4 , and the fifth coating film 65 has a refractive index n fl When solving equation (15) using as an example CeF 3 with n 5 = 1.45 and film thickness d 5 lower than , the film thicknesses of each coating film are d 3 = 738.670 nm and d 4 = 151.598 nm, d 5 =333.010 nm.

この場合の反射率の波長依存性を、図13の一点鎖線67に示す。反射率は波長10μmにおいて1.0%となるが、この値は極小値ではなく、5層被覆膜の反射率の極小値Rmin 0は0.998474%である。The wavelength dependence of the reflectance in this case is shown by the dashed line 67 in FIG. Although the reflectance is 1.0% at a wavelength of 10 μm, this value is not a minimum value, and the minimum value R min 0 of the reflectance of the five-layer coating film is 0.998474%.

単層被覆膜の極小反射率R0:1.0%に対して、5層被覆膜の反射率の極小値Rmin 0が0.998474%と、単層被覆膜の極小反射率R0よりも低くなる。そこで、5層被覆膜の反射率の極小値Rminを所望の極小反射率R0にすべく、設定反射率R1を1.00153%と高く設定する。この場合、式(5)より、設定反射率R1=1.00153%を実現するための単層被覆膜の屈折率nfl 1は、1.617955と算出される。以下の式(17)を解いて各被覆膜の膜厚を計算すると、それぞれ、d3=738.955nm、d4=151.533nm、d5=332.847nmと算出される。The minimum reflectance R min 0 of the five-layer coating is 0.998474%, compared to the minimum reflectance R 0 of the single-layer coating: 1.0%. It will be lower than R 0 . Therefore, in order to set the minimum value R min of the reflectance of the five-layer coating film to the desired minimum reflectance R 0 , the set reflectance R 1 is set as high as 1.00153%. In this case, the refractive index n fl 1 of the single layer coating film for realizing the set reflectance R 1 =1.00153% is calculated as 1.617955 from equation (5). When the film thickness of each coating film is calculated by solving the following equation (17), d 3 =738.955 nm, d 4 =151.533 nm, and d 5 =332.847 nm, respectively.

Figure 0007378692000021
Figure 0007378692000021

この場合の反射率の波長依存性を、図13の二点鎖線68に示す。5層被覆膜の反射率の極小値Rminは、波長λmin=10.040μmにおいて1.0%と、所望の極小反射率である1.0%を得ることができる。The wavelength dependence of the reflectance in this case is shown by the two-dot chain line 68 in FIG. The minimum value R min of the reflectance of the five-layer coating film is 1.0% at the wavelength λ min =10.040 μm, which is the desired minimum reflectance of 1.0%.

次に、極小反射率となる波長λminを、所望の波長λ0にする。各被覆膜の膜厚をそれぞれλ0/λmin倍すると、d1=199.203nm、d2=99.602nm.d3=736.011nm、d4=150.929nm、d5=331.521nmと、それぞれ算出される。なお、第1被覆膜61及び第2被覆膜62もλ0/λmin倍する。この場合の反射率の波長依存性を、図13の実線69に示す。波長λ0=10μmにおいて、極小反射率である1.0%となることが分かる。Next, the wavelength λ min at which the reflectance is minimal is set to the desired wavelength λ 0 . If the thickness of each coating film is multiplied by λ 0min , then d 1 =199.203 nm, d 2 =99.602 nm. d 3 =736.011 nm, d 4 =150.929 nm, and d 5 =331.521 nm, respectively. Note that the first coating film 61 and the second coating film 62 are also multiplied by λ 0min . The wavelength dependence of the reflectance in this case is shown by the solid line 69 in FIG. It can be seen that at the wavelength λ 0 =10 μm, the reflectance is minimal, 1.0%.

なお、図13の破線66は、屈折率nflで膜厚がλ0/(4nfl)である単層被覆膜に関する、反射率の波長依存性である。図13の実線69及び破線66は、完全には一致しないが、ほぼ同一の反射率の波長依存性を示すと共に、極小反射率及び極小反射率となる際の波長は完全に一致する。Note that a broken line 66 in FIG. 13 represents the wavelength dependence of reflectance for a single-layer coating film having a refractive index n fl and a film thickness λ 0 /(4n fl ). Although the solid line 69 and the broken line 66 in FIG. 13 do not completely match, they show almost the same wavelength dependence of reflectance, and the wavelengths at which the minimum reflectance and minimum reflectance are reached completely match.

極小反射率R0=1.0%及び波長λ0=10μmは例示であり、これらに限るものではなく、所望の数値に設定することができる。また。上述の一例では、第1被覆膜61にCeO2を、第2被覆膜62にZnSを、第3被覆膜63にYF3を、第4被覆膜64にZnSeを、第5被覆膜65にCeF3を用いたが、これらに限るものではなく、屈折率がnfl及びnfl 1よりも高い材料が1つ以上及び屈折率がnfl及びnfl 1よりも低い材料が1つ以上あれば良く、各材料の順序も任意に選ぶことができる。Minimum reflectance R 0 =1.0% and wavelength λ 0 =10 μm are examples, and the present invention is not limited to these values, and can be set to desired values. Also. In the above example, the first coating film 61 is made of CeO 2 , the second coating film 62 is made of ZnS, the third coating film 63 is made of YF 3 , the fourth coating film 64 is made of ZnSe, and the fifth coating film 64 is made of ZnSe. Although CeF 3 is used for the coating film 65, it is not limited to this, and one or more materials with a refractive index higher than n fl and n fl 1 and a material with a refractive index lower than n fl and n fl 1 are used. One or more is sufficient, and the order of each material can be arbitrarily selected.

また、予め膜厚が設定された2つの被覆膜も、5層被覆膜の中で任意に選定することが可能である。実施の形態3では、4層以上の被覆膜の一例として5層被覆膜を例示したが、同様に行うことで、さらに多層被覆膜であっても、所望の波長において所望の極小反射率を実現できる。 Further, the two coating films whose thicknesses are set in advance can also be arbitrarily selected from among the five-layer coating films. In Embodiment 3, a five-layer coating film was illustrated as an example of a coating film with four or more layers, but by performing the same process, even if the coating film is a multilayer coating, the desired minimal reflection at the desired wavelength can be achieved. rate can be achieved.

同様に、屈折率nfh=1.977653の場合について説明する。単層被覆膜を、少なくとも1つは屈折率nfhよりも屈折率が低い材料とし、少なくとも1つは屈折率nfhよりも屈折率が高い材料とする5つの材料による5層被覆膜による置換を考える。Similarly, the case where the refractive index n fh =1.977653 will be explained. A 5-layer coating film made of 5 materials in which the single-layer coating film is made of a material in which at least one material has a refractive index lower than the refractive index n fh and at least one material has a refractive index higher than the refractive index n fh . Consider the replacement by .

図14は、屈折率nfhで膜厚dfhがλ0/(4nfh)である単層被覆膜49を、屈折率n1で膜厚d1、屈折率n2で膜厚d2、屈折率n3で膜厚d3、屈折率n4で膜厚d4及び屈折率n5で膜厚d5である5層被覆膜で置換する場合の模式図である。図14に示すように、実効屈折率ncで波長λ0の光を出射する光半導体装置11の端面に形成された屈折率nfh(=1.977653)で膜厚dfh=λ0/(4nfh)である単層被覆膜49を、屈折率n1で膜厚d1である第1被覆膜71、屈折率n2で膜厚d2である第2被覆膜72、屈折率n3で膜厚d3である第3被覆膜73、屈折率n4で膜厚d4である第4被覆膜74、屈折率n5で膜厚d5である第5被覆膜75の5層被覆膜で置換する。単層被覆膜を5層被覆膜で置換する方法は、上述の低屈折率膜の場合と同様であり、以下の式(18)を解いて行う。FIG. 14 shows a single layer coating film 49 having a refractive index n fh and a film thickness d fh of λ 0 /(4n fh ), a film thickness d 1 at a refractive index n 1 and a film thickness d 2 at a refractive index n 2 . , is a schematic diagram in the case of replacing with a five-layer coating film having a refractive index n 3 and a film thickness d 3 , a refractive index n 4 and a film thickness d 4 , and a refractive index n 5 and a film thickness d 5 . As shown in FIG. 14, the film thickness d fh = λ 0 / with a refractive index n fh (=1.977653) formed on the end face of an optical semiconductor device 11 that emits light with a wavelength λ 0 and an effective refractive index n c (4n fh ), a first coating 71 with a refractive index n 1 and a thickness d 1 , a second coating 72 with a refractive index n 2 and a thickness d 2 , A third coating film 73 having a refractive index n 3 and a thickness d 3 , a fourth coating film 74 having a refractive index n 4 and a thickness d 4 , and a fifth coating film 74 having a refractive index n 5 and a thickness d 5 . Replacement with a five-layer coating film of the coating film 75. The method for replacing the single-layer coating film with a five-layer coating film is the same as that for the low refractive index film described above, and is performed by solving the following equation (18).

Figure 0007378692000022
Figure 0007378692000022

波長λ0=10μm、第1被覆膜71は屈折率がnfhよりも低い屈折率n1=1.70で膜厚d1=200nmであるCeO2、第2被覆膜72は屈折率がnfhよりも高い屈折率n2=2.20で膜厚d2=100nmであるZnS、第3被覆膜73は屈折率がnfhよりも低いn3=1.40で膜厚d3であるYF3、第4被覆膜74は屈折率がnfhよりも高い屈折率n4=2.41で膜厚d4であるZnSe、第5被覆膜75は屈折率がnfhよりも低いn5=1.45で膜厚d5であるCeF3を一例として式(18)を解くと、各被覆膜の膜厚は、それぞれ、d3=282.491nm、d4=387.869nm、d5=366.354nmとなる。The wavelength λ 0 = 10 μm, the first coating film 71 is made of CeO 2 with a refractive index n 1 = 1.70 lower than n fh and a film thickness d 1 = 200 nm, and the second coating film 72 has a refractive index of is ZnS with a refractive index n 2 = 2.20 higher than n fh and a film thickness d 2 = 100 nm, and the third coating film 73 has a refractive index n 3 = 1.40 lower than n fh and a film thickness d. The fourth coating film 74 is made of ZnSe with a refractive index n 4 =2.41 higher than n fh and has a film thickness of d 4 , and the fifth coating film 75 is made of YF 3 with a refractive index of n fh When solving equation (18) using as an example CeF 3 with n 5 = 1.45 and film thickness d 5 lower than , the film thicknesses of each coating film are d 3 = 282.491 nm and d 4 = 387.869 nm, d 5 =366.354 nm.

この場合の反射率の波長依存性を、図15の一点鎖線77に示す。反射率は波長10μmにおいて1.0%となるが、この値は極小値ではなく、5層被覆膜の反射率の極小値Rmin 0は0.975517%である。The wavelength dependence of the reflectance in this case is shown by a dashed-dotted line 77 in FIG. Although the reflectance is 1.0% at a wavelength of 10 μm, this value is not a minimum value, and the minimum value R min 0 of the reflectance of the five-layer coating film is 0.975517%.

単層被覆膜の極小反射率R0:1.0%に対して、5層被覆膜の極小値Rmin 0が0.975517%と、単層被覆膜の極小反射率R0よりも低くなる。そこで、5層被覆膜の極小値Rminを所望の極小反射率R0にすべく、設定反射率R1を1.025357%と高く設定する。この場合、設定反射率R1=1.025357%を実現するための単層被覆膜の屈折率nfh 1は、式(8)よりnfh 1=1.9801717と算出される。以下の式(19)を解いて各被覆膜の膜厚を計算すると、d3=280.332nm、d4=389.708nm、d5=365.369nmと、それぞれ算出される。Compared to the minimum reflectance R 0 of the single-layer coating film: 1.0%, the minimum value R min 0 of the 5-layer coating film is 0.975517%, which is from the minimum reflectance R 0 of the single-layer coating film. will also be lower. Therefore, in order to make the minimum value R min of the five-layer coating film the desired minimum reflectance R 0 , the set reflectance R 1 is set as high as 1.025357%. In this case, the refractive index n fh 1 of the single layer coating film for realizing the set reflectance R 1 =1.025357% is calculated as n fh 1 =1.9801717 from equation (8). When the film thickness of each coating film is calculated by solving the following equation (19), d 3 =280.332 nm, d 4 =389.708 nm, and d 5 =365.369 nm, respectively.

Figure 0007378692000023
Figure 0007378692000023

この場合の反射率の波長依存性を、図15の二点鎖線78に示す。5層被覆膜の極小値Rminは、波長λmin=10.159μmにおいて1.0%と、所望の極小反射率である1.0%を得ることができる。The wavelength dependence of the reflectance in this case is shown by the two-dot chain line 78 in FIG. The minimum value R min of the five-layer coating film is 1.0% at the wavelength λ min =10.159 μm, and the desired minimum reflectance of 1.0% can be obtained.

次に、極小反射率となる波長λminを、所望の波長λ0にする。各膜厚をλ0/λmin倍すると、各被覆膜の膜厚は、d1=196.870nm、d2=98.435nm.d3=275.944nm、d4=383.609nm、d5=359.651nmと、それぞれ算出される。なお、第1被覆膜71及び第2被覆膜72も、λ0/λmin倍する。この場合の反射率の波長依存性を、図15の実線79に示す。波長λ0=10μmにおいて極小反射率である1.0%となることが分かる。Next, the wavelength λ min at which the reflectance is minimal is set to the desired wavelength λ 0 . When each film thickness is multiplied by λ 0min , the film thickness of each coating film is d 1 =196.870 nm, d 2 =98.435 nm. d 3 =275.944 nm, d 4 =383.609 nm, and d 5 =359.651 nm, respectively. Note that the first coating film 71 and the second coating film 72 are also multiplied by λ 0min . The wavelength dependence of the reflectance in this case is shown by a solid line 79 in FIG. It can be seen that the minimum reflectance is 1.0% at the wavelength λ 0 =10 μm.

なお、図15の破線76は、屈折率nfhで膜厚がλ0/(4nfh)である単層被覆膜49に関する、反射率の波長依存性である。図15の実線79及び破線76は、完全には一致しないが、ほぼ同一の反射率の波長依存性を示すとともに、極小反射率及び極小反射率となる際の波長は完全に一致する。Note that a broken line 76 in FIG. 15 indicates the wavelength dependence of the reflectance of the single layer coating film 49 having a refractive index n fh and a film thickness λ 0 /(4n fh ). Although the solid line 79 and the broken line 76 in FIG. 15 do not completely match, they show almost the same wavelength dependence of reflectance, and the minimum reflectance and the wavelength at which the minimum reflectance is reached completely match.

極小反射率R0=1.0%及び波長λ0=10μmは例示であり、これらに限るものではなく、所望の数値に設定することができる。また。第1被覆膜71にCeO2を、第2被覆膜72にZnSを、第3被覆膜73にYF3を、第4被覆膜74にZnSeを、第5被覆膜75にCeF3を用いたが、これらに限るものではなく、屈折率がnfh及びnfh 1よりも高い材料が1つ以上及び屈折率がnfh及びnfh 1よりも低い材料が1つ以上あれば良く、各材料の順序も任意に選ぶことができる。Minimum reflectance R 0 =1.0% and wavelength λ 0 =10 μm are examples, and the present invention is not limited to these values, and can be set to desired values. Also. The first coating film 71 is made of CeO2, the second coating film 72 is made of ZnS, the third coating film 73 is made of YF3, the fourth coating film 74 is made of ZnSe, and the fifth coating film 75 is made of CeF. 3 was used, but is not limited to these, as long as there is one or more materials with a refractive index higher than n fh and n fh 1 and one or more materials with a refractive index lower than n fh and n fh 1 The order of each material can also be chosen arbitrarily.

また、予め膜厚が設定された2つの被覆膜も、5層被覆膜の中で任意に選定することが可能である。実施の形態3では、4層以上の被覆膜の一例として5層被覆膜を例示したが、同様に行うことで、さらに多層被覆膜であっても、所望の波長において所望の極小反射率を実現できる。 Further, the two coating films whose thicknesses are set in advance can also be arbitrarily selected from among the five-layer coating films. In Embodiment 3, a five-layer coating film was illustrated as an example of a coating film with four or more layers, but by performing the same process, even if the coating film is a multilayer coating, the desired minimal reflection at the desired wavelength can be achieved. rate can be achieved.

<実施の形態3の効果>
以上、実施の形態3に係る光半導体装置の製造方法及び低反射率膜の設計方法によると、単層被覆膜を、特性行列を利用して5層の多層被覆膜によって置換することにより、所望の波長において所望の極小反射率に制御された低反射率膜を有する光半導体装置を製造することが可能となり、また、低反射率膜の設計方法を得ることが可能となる。
<Effects of Embodiment 3>
As described above, according to the method for manufacturing an optical semiconductor device and the method for designing a low reflectance film according to the third embodiment, a single layer coating film is replaced by a five-layer multilayer coating film using a characteristic matrix. , it becomes possible to manufacture an optical semiconductor device having a low reflectance film controlled to a desired minimum reflectance at a desired wavelength, and it also becomes possible to obtain a method for designing a low reflectance film.

なお、上述の光半導体装置の製造方法は、上記低反射率膜の設計方法の思想を利用するものであって、製造の上で多層被覆膜の各被覆膜が厳密に一致しなくても構わない。つまり、以下の設計方法によって設計し光半導体装置に設けた低反射率膜の製造方法は本開示に含まれる。 It should be noted that the method for manufacturing the optical semiconductor device described above utilizes the concept of the method for designing the low reflectance film described above, and each coating film of the multilayer coating film must not match exactly during manufacturing. I don't mind. In other words, the present disclosure includes a method of manufacturing a low reflectance film designed by the following design method and provided in an optical semiconductor device.

被覆膜数が3を超える多層被覆膜の場合は、超えた被覆膜数の膜厚を予め設定する。その上で、所望の波長(λ0)で所望の極小反射率(R0)を得るのに、所望の極小反射率(R0)となる単層被覆膜を多層被覆膜で置換し、多層被覆膜の反射率の極小値(Rmin 0)及び極小反射率となる波長(λmin)を算出する。次に、多層被覆膜の反射率の極小値(Rmin)が所望の極小反射率(R0)と一致するように、単層被覆膜の極小反射率R1をR0+ΔR0と設定する。さらに、所望の波長(λ0)で所望の極小反射率(R0)となるように、多層被覆膜の各膜厚を算出する。In the case of a multilayer coating film in which the number of coating films exceeds 3, the film thickness of the excess number of coating films is set in advance. Then, in order to obtain the desired minimum reflectance (R 0 ) at the desired wavelength (λ 0 ), the single-layer coating that provides the desired minimum reflectance (R 0 ) is replaced with a multilayer coating. , the minimum reflectance value (R min 0 ) of the multilayer coating film and the wavelength (λ min ) at which the minimum reflectance occurs are calculated. Next, the minimum reflectance R 1 of the single layer coating is set to R 0 +ΔR 0 so that the minimum reflectance (R min ) of the multilayer coating matches the desired minimum reflectance (R 0 ). Set. Furthermore, the thickness of each layer of the multilayer coating is calculated so that the desired minimum reflectance (R 0 ) can be achieved at the desired wavelength (λ 0 ).

実施の形態4.
光半導体装置のミラー損失は、以下の式(20)で定義される。
Embodiment 4.
The mirror loss of the optical semiconductor device is defined by the following equation (20).

Figure 0007378692000024
Figure 0007378692000024

式(20)において、Rf、Rr及びLは、それぞれ、前端面反射率、後端面反射率及び共振器長である。ミラー損失の帯域が狭いことを必要とするような用途では、極小反射率の近傍の帯域を狭くする必要がある。In equation (20), R f , R r and L are the front end face reflectance, the back end face reflectance and the resonator length, respectively. In applications that require a narrow band of mirror loss, it is necessary to narrow the band near the minimum reflectance.

図16は、実施の形態2(図8)に示した極小反射率を一例として、極小反射率の近傍の帯域を狭くする方法を示す模式図である。図16に示すように、実施の形態4では、屈折率がnaで膜厚daがλ0/(2na)である被覆膜81が設けられている点に特徴がある。その他の各被覆膜は、実施の形態2の図8に示される各被覆膜と同一である。
実施の形態4の4層被覆膜の特性行列は、以下の式(21)で表される。
FIG. 16 is a schematic diagram showing a method of narrowing the band near the minimum reflectance, taking the minimum reflectance shown in Embodiment 2 (FIG. 8) as an example. As shown in FIG. 16, the fourth embodiment is characterized in that a coating film 81 having a refractive index na and a film thickness d a of λ 0 /(2na ) is provided. The other coating films are the same as those shown in FIG. 8 of the second embodiment.
The characteristic matrix of the four-layer coating film of Embodiment 4 is expressed by the following equation (21).

Figure 0007378692000025
式(21)において、各被覆膜の位相項φ1、φ2、φ3及びφaは、以下の式(22)で表され、挿入した被覆膜81の膜厚daは、以下の式(23)で表される。
Figure 0007378692000025
In formula (21), the phase terms φ 1 , φ 2 , φ 3 and φ a of each coating film are expressed by the following formula (22), and the thickness d a of the inserted coating film 81 is as follows: It is expressed by the equation (23).

Figure 0007378692000026
被覆膜の反射率は、行列成分m11、m12、m21、m22を用いて、以下の式(24)で表される。
Figure 0007378692000026
The reflectance of the coating film is expressed by the following equation (24) using matrix components m 11 , m 12 , m 21 , and m 22 .

Figure 0007378692000027
Figure 0007378692000027

挿入された被覆膜81の材料の一例として、屈折率naが1.70であるCeO2とする。被覆膜81の膜厚daは、仮に波長λ0=10μmにおいてda=λ0/(2na)となる2941.176nmとする。An example of the material of the inserted coating film 81 is CeO 2 having a refractive index n a of 1.70. The thickness d a of the coating film 81 is assumed to be 2941.176 nm, which is d a0 /(2n a ) at the wavelength λ 0 =10 μm.

実施の形態2において、設定反射率R1を1.0165%とし、式(12)を解いて各被覆膜の膜厚として算出した、d1=641.123nm、d2=205.474nm、d3=765.332nmからなる3層被覆膜の第2番目の被覆膜と第3番目の被覆膜との間に上述の被覆膜81を挿入した場合の反射率の波長依存性を、図17の一点鎖線82に示す。4層被覆膜の反射率の極小値Rmin 0は、0.9609%となる。In the second embodiment, the set reflectance R 1 is 1.0165%, and the thickness of each coating film is calculated by solving equation (12), d 1 =641.123 nm, d 2 =205.474 nm, Wavelength dependence of reflectance when the above-mentioned coating film 81 is inserted between the second coating film and the third coating film of the three-layer coating film consisting of d 3 = 765.332 nm is shown by a dashed line 82 in FIG. The minimum value R min 0 of the reflectance of the four-layer coating film is 0.9609%.

そこで、λminにおいて極小反射率R0を1.0%にすべく、設定反射率R1を1.05761%として式(12)を解くと、各被覆膜の膜厚は、d1=642.718nm、d2=201.981nm、d3=769.510nmとそれぞれ算出され、波長λmin=9.908μmにおいて4層被覆膜の反射率の極小値Rmin=1.0%となる(図17の二点鎖線83)。なお、このとき、第2被覆膜43と第3被覆膜44の間に挿入した被覆膜81の屈折率naは1.70であり、膜厚daは2941.176nmである。Therefore, in order to set the minimum reflectance R 0 to 1.0% at λ min , the set reflectance R 1 is set to 1.05761% and equation (12) is solved, and the film thickness of each coating film is d 1 = 642.718 nm, d 2 = 201.981 nm, and d 3 = 769.510 nm, respectively, and the minimum value of the reflectance of the four-layer coating film R min = 1.0% at the wavelength λ min = 9.908 μm. (Two-dot chain line 83 in FIG. 17). At this time, the refractive index na of the coating film 81 inserted between the second coating film 43 and the third coating film 44 is 1.70, and the film thickness d a is 2941.176 nm.

次に、各被覆膜の膜厚をλ0/λmin倍すると、各被覆膜の膜厚は、それぞれ、d1=648.686nm、d2=203.856nm、da=2968.486nm、d3=776.655nmと算出される。この場合の反射率の波長依存性を、図17の実線84に示す。波長λ0=10μmにおいて極小反射率である1.0%となることが分かる。Next, when the thickness of each coating film is multiplied by λ 0min , the thickness of each coating film is d 1 =648.686 nm, d 2 =203.856 nm, and d a =2968.486 nm, respectively. , d 3 =776.655 nm. The wavelength dependence of the reflectance in this case is shown by the solid line 84 in FIG. It can be seen that the minimum reflectance is 1.0% at the wavelength λ 0 =10 μm.

比較のため、実施の形態2の3層被覆膜の反射率の波長依存性を、図17の破線48に示す。所望の波長λ0の近傍において、反射率帯域が狭くなっていることが分かる。For comparison, the wavelength dependence of the reflectance of the three-layer coating film of Embodiment 2 is shown by the broken line 48 in FIG. It can be seen that the reflectance band becomes narrow near the desired wavelength λ 0 .

同様に、実施の形態2(図10)に示した極小反射率を一例として、屈折率が高い場合(nfh)について、極小反射率の近傍の帯域を狭くする方法を、以下に説明する。Similarly, using the minimum reflectance shown in Embodiment 2 (FIG. 10) as an example, a method for narrowing the band near the minimum reflectance when the refractive index is high (n fh ) will be described below.

図18は被覆膜の構成を示す模式図である。図18において、被覆膜81は、屈折率がnaで膜厚daがλ0/(2na)である。その他の各被覆膜は、実施の形態2の図10と同一である。FIG. 18 is a schematic diagram showing the structure of the coating film. In FIG. 18, the coating film 81 has a refractive index na and a film thickness da of λ 0 /(2na ) . The other coating films are the same as those in FIG. 10 of the second embodiment.

実施の形態2において、設定反射率R1を1.057485%とし、式(14)を解いて各被覆膜の膜厚として算出した、それぞれd1=364.825nm、d2=614.601nm、d3=390.009nmからなる3層被覆膜の第2被覆膜51と第3被覆膜52との間に、上述の被覆膜81を挿入した場合の反射率の波長依存性を、図19の一点鎖線85に示す。4層被覆膜の反射率の極小値Rmin 0は、0.9950%となる。In Embodiment 2, the set reflectance R 1 is 1.057485%, and the thicknesses of each coating film are calculated by solving equation (14), d 1 =364.825 nm and d 2 =614.601 nm, respectively. , d 3 =390.009 nm Wavelength dependence of reflectance when the above-mentioned coating film 81 is inserted between the second coating film 51 and the third coating film 52 of the three-layer coating film consisting of 390.009 nm is shown by a dashed line 85 in FIG. The minimum value R min 0 of the reflectance of the four-layer coating film is 0.9950%.

そこで、波長λminにおいて極小反射率を1.0%にすべく、設定反射率R1を1.0627%として式(14)を解くと、各被覆膜の膜厚は、それぞれd1=364.348nm、d2=615.265nm、d3=389.478nmと算出され、波長λmin=10.110μmにおいて4層被覆膜の反射率の極小値Rmin=1.0%となる(図19の二点鎖線86)。なお、このとき、第2被覆膜51と第3被覆膜52の間に挿入した被覆膜81の屈折率naは1.70であり、膜厚daは2941.176nmである。Therefore, in order to make the minimum reflectance 1.0% at the wavelength λ min , the set reflectance R 1 is set to 1.0627% and equation (14) is solved, and the film thickness of each coating film is d 1 = 364.348 nm, d 2 = 615.265 nm, d 3 = 389.478 nm, and the minimum value of the reflectance of the four-layer coating film R min = 1.0% at the wavelength λ min = 10.110 μm ( (dotted chain line 86 in FIG. 19). At this time, the refractive index na of the coating film 81 inserted between the second coating film 51 and the third coating film 52 is 1.70, and the film thickness d a is 2941.176 nm.

次に、各被覆膜の膜厚をλ0/λmin倍とすると、d1=360.384nm、d2=608.571nm、da=2909.175nm、d3=385.240nmと算出される。この場合の反射率の波長依存性を、図19の実線87に示す。波長λ0=10μmにおいて、極小反射率である1.0%となることが分かる。Next, if the thickness of each coating film is multiplied by λ 0min , then d 1 = 360.384 nm, d 2 = 608.571 nm, d a = 2909.175 nm, and d 3 = 385.240 nm. Ru. The wavelength dependence of the reflectance in this case is shown by a solid line 87 in FIG. It can be seen that at the wavelength λ 0 =10 μm, the reflectance is minimal, 1.0%.

比較のため、実施の形態2の3層膜の反射率の波長依存性を、図19の破線56に示す。所望の波長λ0の近傍において、反射率帯域が狭くなっていることが分かる。For comparison, the wavelength dependence of the reflectance of the three-layer film of Embodiment 2 is shown by a broken line 56 in FIG. It can be seen that the reflectance band becomes narrow near the desired wavelength λ 0 .

実施の形態4では、所望の屈折率naで膜厚daがλ0/(2na)である被覆膜81を挿入したが、被覆膜81の膜厚はλ0/(4na)よりも厚く、3λ0/(4na)よりも薄いものであれば、反射率帯域を狭くすることが可能である。In the fourth embodiment, the coating film 81 having the desired refractive index n a and the film thickness d a of λ 0 /(2n a ) is inserted, but the film thickness of the covering film 81 is λ 0 /(4n a ). ) and thinner than 3λ 0 /(4n a ), it is possible to narrow the reflectance band.

また、実施の形態4では、3層被覆膜の特性行列を解いて各被覆膜の膜厚を導出した後に、被覆膜を挿入して反射率の波長依存性を算出し、4層被覆膜の反射率の極小値Rmin 0を所望の極小反射率R0に合わせ、その後、所望の波長λ0において所望の極小反射率R0となるようにした。しかしながら、実施の形態3において示したように、予め4層被覆膜と想定し、挿入した被覆膜の膜厚をda=λ0/(2na)又はda=λmin/(2na)と設定しておいて、3層被覆膜の各膜厚を決定しても良い。In addition, in Embodiment 4, after solving the characteristic matrix of the three-layer coating film and deriving the film thickness of each coating film, the coating film is inserted and the wavelength dependence of the reflectance is calculated, and the four-layer coating film is inserted. The minimum value R min 0 of the reflectance of the coating film was adjusted to a desired minimum reflectance R 0 , and then the desired minimum reflectance R 0 was set at a desired wavelength λ 0 . However, as shown in Embodiment 3, assuming a four-layer coating film in advance, the thickness of the inserted coating film is determined as d a0 /(2n a ) or d amin /(2n a ), and the thickness of each layer of the three-layer coating film may be determined.

さらに、実施の形態4では、第2被覆膜と第3被覆膜の間に、da=λ0/(2na)である被覆膜を挿入したが、他の界面、例えば光半導体装置と第1被覆膜、第1被覆膜と第2被覆膜、第3被覆膜と空気(自由空間)の間であっても良いし、光半導体装置と第1被覆膜の間及び第2被覆膜と第3被覆膜の間等の複数の界面に挿入しても良い。Furthermore, in the fourth embodiment, a coating film with d a0 /(2n a ) is inserted between the second coating film and the third coating film, but other interfaces, such as optical semiconductor It may be between the device and the first coating film, the first coating film and the second coating film, the third coating film and air (free space), or between the optical semiconductor device and the first coating film. It may be inserted at a plurality of interfaces such as between the gap and between the second coating film and the third coating film.

<実施の形態4の効果>
以上、実施の形態4に係る光半導体装置の製造方法及び低反射率膜の設計方法によると、単層被覆膜を、特性行列を利用して4層の多層被覆膜によって置換することにより、所望の波長において所望の極小反射率に制御された低反射率膜を有する光半導体装置を製造することが可能となり、また、低反射率膜の設計方法を得ることが可能となる。
<Effects of Embodiment 4>
As described above, according to the method for manufacturing an optical semiconductor device and the method for designing a low reflectance film according to the fourth embodiment, a single layer coating film is replaced by a four-layer multilayer coating film using a characteristic matrix. , it becomes possible to manufacture an optical semiconductor device having a low reflectance film controlled to a desired minimum reflectance at a desired wavelength, and it also becomes possible to obtain a method for designing a low reflectance film.

なお、上述の光半導体装置の製造方法は、上記低反射率膜の設計方法の思想を利用するものであって、製造の上で多層被覆膜の各被覆膜が厳密に一致しなくても構わない。つまり、以下の設計方法によって設計し光半導体装置に設けた低反射率膜の製造方法は本開示に含まれる。 It should be noted that the method for manufacturing the optical semiconductor device described above utilizes the concept of the method for designing the low reflectance film described above, and each coating film of the multilayer coating film must not match exactly during manufacturing. I don't mind. In other words, the present disclosure includes a method of manufacturing a low reflectance film designed by the following design method and provided in an optical semiconductor device.

所望の波長がλ0で挿入する被覆膜の屈折率がnaの場合、挿入する被覆膜の膜厚をλ0/(4na)よりも厚く、3λ0/(4na)よりも薄い範囲で予め設定する。その上で、所望の波長(λ0)で所望の極小反射率(R0)を得るのに、所望の極小反射率(R0)となる単層被覆膜を多層被覆膜で置換し、多層被覆膜の反射率の極小値(Rmin 0)及び極小反射率となる波長(λmin)を算出する。次に、多層被覆膜の反射率の極小値(Rmin)が所望の極小反射率(R0)と一致するように単層被覆膜の極小反射率R1をR0+ΔR0と設定する。さらに、所望の波長(λ0)で所望の極小反射率(R0)となるように多層被覆膜の各膜厚を算出する。When the desired wavelength is λ 0 and the refractive index of the coating film to be inserted is na , the thickness of the coating film to be inserted is thicker than λ 0 /(4n a ) and less than 3λ 0 /(4n a ). Set in advance in a thin range. Then, in order to obtain the desired minimum reflectance (R 0 ) at the desired wavelength (λ 0 ) , the single-layer coating that provides the desired minimum reflectance (R 0 ) is replaced with a multilayer coating. , the minimum reflectance value (R min 0 ) of the multilayer coating film and the wavelength (λ min ) at which the minimum reflectance occurs are calculated. Next, the minimum reflectance R 1 of the single-layer coating film is set to R 0 +ΔR 0 so that the minimum reflectance value (R min ) of the multilayer coating matches the desired minimum reflectance (R 0 ). do. Furthermore, the thickness of each layer of the multilayer coating film is calculated so that the desired minimum reflectance (R 0 ) can be achieved at the desired wavelength (λ 0 ).

実施の形態1から4において、所望の極小反射率R0である0.5%、1.0%の数値、及び所望の波長λ0である10μmは一例であって、これらに限るものではなく、他の所望の極小反射率及び所望の波長において同様に設計することができる。In Embodiments 1 to 4, the values of 0.5% and 1.0%, which are the desired minimum reflectance R 0 , and 10 μm, which is the desired wavelength λ 0 , are examples, and are not limited to these. , can be similarly designed at other desired minimum reflectances and desired wavelengths.

実施の形態1から4において、多層被覆膜で置換した場合の多層被覆膜の反射率の極小値Rmin 0は、単層被覆膜の極小反射率R0よりも低いが、仮に高い場合であっても同様にして、所望の波長で所望の極小反射率を実現することができる。In Embodiments 1 to 4, when the multilayer coating is replaced with a multilayer coating, the minimum value R min 0 of the reflectance of the multilayer coating is lower than the minimum reflectance R 0 of the single layer coating, but if it is higher, In this case, a desired minimum reflectance can be achieved at a desired wavelength in the same manner.

本開示は、様々な例示的な実施の形態及び実施例が記載されているが、1つ、または複数の実施の形態に記載された様々な特徴、態様、及び機能は特定の実施の形態の適用に限られるのではなく、単独で、または様々な組み合わせで実施の形態に適用可能である。 Although this disclosure describes various exemplary embodiments and examples, the various features, aspects, and functions described in one or more embodiments may differ from those of a particular embodiment. The invention is not limited to application, and can be applied to the embodiments alone or in various combinations.

従って、例示されていない無数の変形例が、本開示における技術の範囲内において想定される。例えば、少なくとも1つの構成要素を変形する場合、追加する場合または省略する場合、さらには、少なくとも1つの構成要素を抽出し、他の実施の形態の構成要素と組み合わせる場合が含まれるものとする。 Accordingly, countless variations not illustrated are envisioned within the scope of the present disclosure. For example, this includes cases where at least one component is modified, added, or omitted, and cases where at least one component is extracted and combined with components of other embodiments.

1 n型第1電極、2 n型InP基板、3 n型InPバッファ層、4 n型GaInAs第1光閉じ込め層、5 コア領域、6 n型GaInAs第2光閉じ込め層、7 n型InPクラッド層、8 n型GaInAsコンタクト層、9 n型第2電極、10 低反射率膜、11 光半導体装置、12、31、41、49 単層被覆膜、13、32、42、50、61、71 第1被覆膜、14、33、43、51、62、72 第2被覆膜、15、34、44、52、63、73 第3被覆膜、21、21a、21b、35、45、48、53、56、66、76 破線、21a 点線、22、22a、36、46、54、67、77、82、85 一点鎖線、23、23a、37、47、55、68、78、83、86 二点鎖線、24、24a、38、48、56、69、79、84、87 実線、64、74 第4被覆膜、65、75 第5被覆膜、81 被覆膜、100 量子カスケードレーザ装置 1 n-type first electrode, 2 n-type InP substrate, 3 n-type InP buffer layer, 4 n-type GaInAs first optical confinement layer, 5 core region, 6 n-type GaInAs second optical confinement layer, 7 n-type InP cladding layer , 8 n-type GaInAs contact layer, 9 n-type second electrode, 10 low reflectance film, 11 optical semiconductor device, 12, 31, 41, 49 single layer coating film, 13, 32, 42, 50, 61, 71 First coating film, 14, 33, 43, 51, 62, 72 Second coating film, 15, 34, 44, 52, 63, 73 Third coating film, 21, 21a, 21b, 35, 45, 48, 53, 56, 66, 76 Broken line, 21a Dotted line, 22, 22a, 36, 46, 54, 67, 77, 82, 85 Dotted chain line, 23, 23a, 37, 47, 55, 68, 78, 83, 86 Two-dot chain line, 24, 24a, 38, 48, 56, 69, 79, 84, 87 Solid line, 64, 74 Fourth coating film, 65, 75 Fifth coating film, 81 Coating film, 100 Quantum cascade laser equipment

Claims (18)

実効屈折率がncであり、所望の波長λ0において所望の極小反射率である極小反射率R0となる低反射率膜が形成された光半導体装置の製造方法であって、
屈折率nflが以下の式で表され、
Figure 0007378692000028
膜厚がλ0/4/nflである単層からなる被覆膜の特性行列と、少なくとも1つの材料の屈折率が前記屈折率nflよりも低く、少なくとも他の1つの材料の屈折率が前記屈折率nflよりも高い2種類以上の材料を用いた3層以上の被覆膜からなる多層被覆膜の特性行列とを等しいとすることにより、前記多層被覆膜の反射率の波長依存性を有する反射率の極小値Rmin 0を算出し、
予め設定された設定反射率R1を実現する単層からなる被覆膜の屈折率nfl 1が、以下の式で表され、
Figure 0007378692000029
膜厚がλ0/4/nfl 1の単層からなる被覆膜の特性行列と、少なくとも1つの材料の屈折率が前記屈折率nfl 1よりも低く、少なくとも他の1つの材料の屈折率が前記屈折率nfl 1よりも高い2種類以上の材料を用いた3層以上の被覆膜からなる多層被覆膜の特性行列とを等しいとすることにより、前記多層被覆膜の反射率の波長依存性における波長λminにおける反射率の極小値Rminを前記極小反射率R0と一致させ、
前記波長λminにおける前記極小値Rminを前記波長λ0における前記極小反射率R0と一致させることによって得られる前記3層以上の被覆膜の各膜厚に基づき多層被覆膜を端面に形成することを特徴とする光半導体装置の製造方法。
A method for manufacturing an optical semiconductor device in which a low reflectance film having an effective refractive index n c and a minimum reflectance R 0 that is a desired minimum reflectance at a desired wavelength λ 0 is formed,
The refractive index n fl is expressed by the following formula,
Figure 0007378692000028
A characteristic matrix of a coating film consisting of a single layer having a film thickness of λ 0 /4/n fl , a refractive index of at least one material lower than the refractive index n fl , and a refractive index of at least one other material. is equal to the characteristic matrix of a multilayer coating consisting of three or more coating films using two or more types of materials having a refractive index higher than the refractive index n fl , the reflectance of the multilayer coating is Calculate the minimum value R min 0 of the reflectance that has wavelength dependence,
The refractive index n fl 1 of a coating film consisting of a single layer that realizes a preset set reflectance R 1 is expressed by the following formula,
Figure 0007378692000029
A characteristic matrix of a coating film consisting of a single layer with a film thickness of λ 0 /4/n fl 1 , a refractive index of at least one material lower than the refractive index n fl 1 , and a refraction of at least one other material. The reflection of the multilayer coating film is made equal to the characteristic matrix of a multilayer coating film consisting of three or more coating films using two or more types of materials whose refractive index is higher than the refractive index n fl 1 . In the wavelength dependence of the reflectance, the minimum value R min of the reflectance at the wavelength λ min is made to match the minimum reflectance R 0 ,
A multilayer coating film is applied to the end face based on the thickness of each of the three or more coating films obtained by matching the minimum value R min at the wavelength λ min with the minimum reflectance R 0 at the wavelength λ 0 . 1. A method of manufacturing an optical semiconductor device, comprising: forming an optical semiconductor device.
実効屈折率がncであり、所望の波長λ0において所望の極小反射率である極小反射率R0となる低反射率膜が形成された光半導体装置の製造方法であって、
屈折率nfhが以下の式で表され、
Figure 0007378692000030
膜厚がλ0/4/nfhである単層からなる被覆膜の特性行列と、少なくとも1つの材料の屈折率が前記屈折率nfhよりも低く、少なくとも他の1つの材料の屈折率が前記屈折率nfhよりも高い2種類以上の材料を用いた3層以上の被覆膜からなる多層被覆膜の特性行列とを等しいとすることにより、前記多層被覆膜の反射率の波長依存性を有する反射率の極小値Rmin 0を算出し、
予め設定された設定反射率R1を実現する単層からなる被覆膜の屈折率nfh 1が、以下の式で表され、
Figure 0007378692000031
膜厚がλ0/4/nfh 1の単層からなる被覆膜の特性行列と、少なくとも1つの材料の屈折率が前記屈折率nfh 1よりも低く、少なくとも他の1つの材料の屈折率が前記屈折率nfh 1よりも高い2種類以上の材料を用いた3層以上の被覆膜からなる多層被覆膜の特性行列とを等しいとすることにより、前記多層被覆膜の反射率の波長依存性における波長λminにおける反射率の極小値Rminを前記極小反射率R0と一致させ、
前記波長λminにおける前記極小値Rminを前記波長λ0における前記極小反射率R0と一致させることによって得られる前記3層以上の被覆膜の各膜厚に基づき多層被覆膜を端面に形成することを特徴とする光半導体装置の製造方法。
A method for manufacturing an optical semiconductor device in which a low reflectance film having an effective refractive index n c and a minimum reflectance R 0 that is a desired minimum reflectance at a desired wavelength λ 0 is formed,
The refractive index n fh is expressed by the following formula,
Figure 0007378692000030
A characteristic matrix of a coating film consisting of a single layer having a film thickness of λ 0 /4/n fh , a refractive index of at least one material lower than the refractive index n fh , and a refractive index of at least one other material. is equal to the characteristic matrix of a multilayer coating film consisting of three or more coating films using two or more types of materials having a refractive index higher than the refractive index n fh . Calculate the minimum value R min 0 of the reflectance that has wavelength dependence,
The refractive index n fh 1 of a coating film consisting of a single layer that realizes a preset set reflectance R 1 is expressed by the following formula,
Figure 0007378692000031
A characteristic matrix of a coating film consisting of a single layer with a film thickness of λ 0 /4/n fh 1 , a refractive index of at least one material lower than the refractive index n fh 1 , and a refraction of at least one other material. The reflection of the multilayer coating film is made equal to the characteristic matrix of the multilayer coating film consisting of three or more coating films using two or more types of materials whose refractive index is higher than the refractive index n fh 1 . In the wavelength dependence of the reflectance, the minimum value R min of the reflectance at the wavelength λ min is made to match the minimum reflectance R 0 ,
A multilayer coating film is applied to the end face based on the thickness of each of the three or more coating films obtained by matching the minimum value R min at the wavelength λ min with the minimum reflectance R 0 at the wavelength λ 0 . 1. A method of manufacturing an optical semiconductor device, comprising: forming an optical semiconductor device.
屈折率がnfl及びnfl 1よりも低い少なくとも1つの材料からなる被覆膜と、屈折率がnfl及びnfl 1よりも高い他の少なくとも1つの材料からなる被覆膜を含む3層の被覆膜を端面に形成することを特徴とする請求項1に記載の光半導体装置の製造方法。Three layers including a coating made of at least one material with a refractive index lower than n fl and n fl 1 and a coating made of at least one other material with a refractive index higher than n fl and n fl 1 2. The method of manufacturing an optical semiconductor device according to claim 1, further comprising forming a coating film on an end face. 屈折率がnfh及びnfh 1よりも低い少なくとも1つの材料からなる被覆膜と、屈折率がnfh及びnfh 1よりも高い他の少なくとも1つの材料からなる被覆膜を含む3層の被覆膜を端面に形成することを特徴とする請求項2に記載の光半導体装置の製造方法。Three layers comprising a coating made of at least one material with a refractive index lower than n fh and n fh 1 and a coating made of at least one other material with a refractive index higher than n fh and n fh 1 3. The method of manufacturing an optical semiconductor device according to claim 2, further comprising forming a coating film on the end face. 屈折率がnfl及びnfl 1よりも低い少なくとも1つの材料からなる被覆膜と、屈折率がnfl及びnfl 1よりも高い他の少なくとも1つの材料からなる被覆膜とを含む3種類の材料から成る3層の被覆膜を端面に形成することを特徴とする請求項1に記載の光半導体装置の製造方法。3 comprising a coating film made of at least one material with a refractive index lower than n fl and n fl 1 and a coating film made of at least one other material with a refractive index higher than n fl and n fl 1 2. The method of manufacturing an optical semiconductor device according to claim 1, wherein three layers of coating films made of different materials are formed on the end face. 屈折率がnfh及びnfh 1よりも低い少なくとも1つの材料からなる被覆膜と、屈折率がnfh及びnfh 1よりも高い他の少なくとも1つの材料からなる被覆膜とを含む3種類の材料から成る3層の被覆膜を端面に形成することを特徴とする請求項2に記載の光半導体装置の製造方法。3 comprising a coating film made of at least one material with a refractive index lower than n fh and n fh 1 and a coating film made of at least one other material with a refractive index higher than n fh and n fh 1 3. The method of manufacturing an optical semiconductor device according to claim 2, wherein three layers of coating films made of different materials are formed on the end face. 屈折率がnfl及びnfl 1よりも低い少なくとも1つの材料と、屈折率がnfl及びnfl 1よりも高い他の少なくとも1つの材料とを含む4種類以上の材料からなり、前記4種類以上の材料のうち3種類の材料でそれぞれ構成された3層の被覆膜、及び3種類以外の材料からなり予め設定された膜厚を有する被覆膜を含む多層被覆膜を端面に形成することを特徴とする請求項1に記載の光半導体装置の製造方法。Consisting of four or more types of materials including at least one material with a refractive index lower than n fl and n fl 1 and at least one other material with a refractive index higher than n fl and n fl 1 , the above four types A multilayer coating film is formed on the end face, including a three-layer coating film each made of three types of materials among the above materials, and a coating film made of a material other than the three types and having a preset thickness. 2. The method of manufacturing an optical semiconductor device according to claim 1, further comprising: 屈折率がnfh及びnfh 1よりも低い少なくとも1つの材料と、屈折率がnfh及びnfh 1よりも高い他の少なくとも1つの材料とを含む4種類以上の材料からなり、前記4種類以上の材料のうち3種類の材料でそれぞれ構成された3層の被覆膜、及び3種類以外の材料からなり予め設定された膜厚を有する被覆膜を含む多層被覆膜を端面に形成することを特徴とする請求項2に記載の光半導体装置の製造方法。Consisting of four or more types of materials including at least one material with a refractive index lower than n fh and n fh 1 and at least one other material with a refractive index higher than n fh and n fh 1 , and the above four types A multilayer coating film is formed on the end face, including a three-layer coating film each made of three types of materials among the above materials, and a coating film made of a material other than the three types and having a preset thickness. 3. The method of manufacturing an optical semiconductor device according to claim 2. 屈折率がnaであり、膜厚がλ0/(4na)よりも厚く3λ0/(4na)よりも薄い被覆膜を、前記多層被覆膜と端面の間、前記多層被覆膜の各被覆膜の間、または、前記多層被覆膜の最表面に設けることを特徴とする請求項3から8のいずれか1項に記載の光半導体装置の製造方法。A coating film having a refractive index n a and a film thickness greater than λ 0 /(4n a ) and thinner than 3λ 0 /(4n a ) is placed between the multilayer coating film and the end face, and the coating film is placed between the multilayer coating film and the end face. 9. The method for manufacturing an optical semiconductor device according to claim 3, wherein the method is provided between each coating film or on the outermost surface of the multilayer coating film. 実効屈折率がncである光半導体装置の端面に、ゼロを除く所望の極小反射率である極小反射率R0を有する低反射率膜の設計方法であって、
屈折率nflが以下の式により、屈折率nflを算出するステップと、
Figure 0007378692000032
所望の波長λ0において膜厚がλ0/4/nflである単層からなる被覆膜の特性行列と、少なくとも1つの材料の屈折率が前記屈折率nflよりも低く、少なくとも他の1つの材料の屈折率が前記屈折率nflよりも高い2種類以上の材料を用いた3層以上の被覆膜からなる多層被覆膜の特性行列とを等しいとすることにより、前記多層被覆膜の反射率の波長依存性を有する反射率の極小値Rmin 0を算出するステップと、
予め設定された設定反射率R1を実現する単層からなる被覆膜の屈折率nfl 1を、以下の式を用いて算出するステップと、
Figure 0007378692000033
膜厚がλ0/4/nfl 1の単層からなる被覆膜の特性行列と、少なくとも1つの材料の屈折率が前記屈折率nfl 1よりも低く、少なくとも他の1つの材料の屈折率が前記屈折率nfl 1よりも高い2種類以上の材料を用いた3層以上の被覆膜からなる多層被覆膜の特性行列とを等しいとすることにより、前記多層被覆膜の反射率の波長依存性における波長λminにおける反射率の極小値Rminを前記極小反射率R0と一致させるステップと、
前記波長λminにおける前記極小値Rminを波長λ0における前記極小反射率R0と一致させることによって得られる前記3層以上の被覆膜の各膜厚に基づき多層被覆膜の各膜厚を決定するステップと、
を備える低反射率膜の設計方法。
A method of designing a low reflectance film having a minimum reflectance R0 , which is a desired minimum reflectance other than zero, on an end face of an optical semiconductor device having an effective refractive index nc , the method comprising:
a step of calculating the refractive index n fl by the following formula;
Figure 0007378692000032
A characteristic matrix of a coating film consisting of a single layer having a film thickness of λ 0 /4/n fl at a desired wavelength λ 0 and at least one material having a refractive index lower than the refractive index n fl and at least another material having a refractive index lower than the refractive index n fl By making the characteristic matrices of a multilayer coating film made of three or more coating films using two or more types of materials in which the refractive index of one material is higher than the refractive index n fl to be equal, the multilayer coating calculating a minimum value R min 0 of the reflectance of the coating having wavelength dependence;
Calculating the refractive index n fl 1 of a coating film made of a single layer that achieves a preset set reflectance R 1 using the following formula;
Figure 0007378692000033
A characteristic matrix of a coating film consisting of a single layer with a film thickness of λ 0 /4/n fl 1 , a refractive index of at least one material lower than the refractive index n fl 1 , and a refraction of at least one other material. The reflection of the multilayer coating film is made equal to the characteristic matrix of a multilayer coating film consisting of three or more coating films using two or more types of materials whose refractive index is higher than the refractive index n fl 1 . a step of matching the minimum value R min of the reflectance at the wavelength λ min in the wavelength dependence of the reflectance with the minimum reflectance R 0 ;
Each film thickness of the multilayer coating film based on each film thickness of the three or more layered coating film obtained by matching the minimum value R min at the wavelength λ min with the minimum reflectance R 0 at the wavelength λ 0 a step of determining
A method for designing a low reflectance film comprising:
実効屈折率がncである光半導体装置の端面に、ゼロを除く所望の極小反射率である極小反射率R0を有する低反射率膜の設計方法であって、
屈折率nfhが以下の式により、屈折率nfhを算出するステップと、
Figure 0007378692000034
所望の波長λ0において膜厚がλ0/4/nfhである単層からなる被覆膜の特性行列と、少なくとも1つの材料の屈折率が前記屈折率nfhよりも低く、少なくとも他の1つの材料の屈折率が前記屈折率nfhよりも高い2種類以上の材料を用いた3層以上の被覆膜からなる多層被覆膜の特性行列とを等しいとすることにより、前記多層被覆膜の反射率の波長依存性を有する反射率の極小値Rmin 0を算出するステップと、
予め設定された設定反射率R1を実現する単層からなる被覆膜の屈折率nfh 1を、以下の式を用いて算出するステップと、
Figure 0007378692000035
膜厚がλ0/4/nfh 1の単層からなる被覆膜の特性行列と、少なくとも1つの材料の屈折率が前記屈折率nfh 1よりも低く、少なくとも他の1つの材料の屈折率が前記屈折率nfh 1よりも高い2種類の材料を用いた3層以上の被覆膜からなる多層被覆膜の特性行列とを等しいとすることにより、前記多層被覆膜の反射率の波長依存性における波長λminにおける反射率の極小値Rminを前記極小反射率R0と一致させるステップと、
前記波長λminにおける前記極小値Rminを前記波長λ0における前記極小反射率R0と一致させることによって得られる前記3層以上の被覆膜の各膜厚に基づき多層被覆膜の各膜厚を決定するステップと、
を備える低反射率膜の設計方法。
A method of designing a low reflectance film having a minimum reflectance R0 , which is a desired minimum reflectance other than zero, on an end face of an optical semiconductor device having an effective refractive index nc , the method comprising:
a step of calculating the refractive index n fh by the following formula;
Figure 0007378692000034
A characteristic matrix of a coating film consisting of a single layer having a film thickness of λ 0 /4/n fh at a desired wavelength λ 0 and at least one material having a refractive index lower than the refractive index n fh and at least another material having a refractive index lower than the refractive index n fh By making the characteristic matrices of a multilayer coating film made of three or more coating films using two or more types of materials in which the refractive index of one material is higher than the refractive index n fh to be equal, the multilayer coating calculating a minimum value R min 0 of the reflectance of the coating having wavelength dependence;
Calculating the refractive index n fh 1 of a coating film made of a single layer that achieves a preset set reflectance R1 using the following formula;
Figure 0007378692000035
A characteristic matrix of a coating film consisting of a single layer with a film thickness of λ 0 /4/n fh 1 , a refractive index of at least one material lower than the refractive index n fh 1 , and a refraction of at least one other material. The reflectance of the multilayer coating film is equal to the characteristic matrix of a multilayer coating film consisting of three or more coating films using two types of materials whose refractive index is higher than the refractive index n fh 1 . Matching the minimum value R min of the reflectance at the wavelength λ min in the wavelength dependence of the reflectance R min with the minimum reflectance R 0 ;
Each film of the multilayer coating film based on the thickness of each of the three or more coating films obtained by matching the minimum value R min at the wavelength λ min with the minimum reflectance R 0 at the wavelength λ 0 determining the thickness;
A method for designing a low reflectance film comprising:
屈折率がnfl及びnfl 1よりも低い少なくとも1つの材料からなる被覆膜と、屈折率がnfl及びnfl 1よりも高い他の少なくとも1つの材料からなる被覆膜を含む3層の被覆膜を端面に形成することを特徴とする請求項10に記載の低反射率膜の設計方法。Three layers including a coating made of at least one material with a refractive index lower than n fl and n fl 1 and a coating made of at least one other material with a refractive index higher than n fl and n fl 1 11. The method for designing a low reflectance film according to claim 10, further comprising forming a coating film on an end face. 屈折率がnfh及びnfh 1よりも低い少なくとも1つの材料からなる被覆膜と、屈折率がnfh及びnfh 1よりも高い他の少なくとも1つの材料からなる被覆膜を含む3層の被覆膜を端面に形成することを特徴とする請求項11に記載の低反射率膜の設計方法。Three layers comprising a coating made of at least one material with a refractive index lower than n fh and n fh 1 and a coating made of at least one other material with a refractive index higher than n fh and n fh 1 12. The method of designing a low reflectance film according to claim 11, wherein the coating film is formed on the end face. 屈折率がnfl及びnfl 1よりも低い少なくとも1つの材料からなる被覆膜と、屈折率がnfl及びnfl 1よりも高い他の少なくとも1つの材料からなる被覆膜とを含む3種類の材料から成る3層の被覆膜を端面に形成することを特徴とする請求項10に記載の低反射率膜の設計方法。3 comprising a coating film made of at least one material with a refractive index lower than n fl and n fl 1 and a coating film made of at least one other material with a refractive index higher than n fl and n fl 1 11. The method of designing a low reflectance film according to claim 10, wherein a three-layer coating film made of different materials is formed on the end face. 屈折率がnfh及びnfh 1よりも低い少なくとも1つの材料からなる被覆膜と、屈折率がnfh及びnfh 1よりも高い他の少なくとも1つの材料からなる被覆膜とを含む3種類の材料から成る3層の被覆膜を端面に形成することを特徴とする請求項11に記載の低反射率膜の設計方法。3 comprising a coating film made of at least one material with a refractive index lower than n fh and n fh 1 and a coating film made of at least one other material with a refractive index higher than n fh and n fh 1 12. The method for designing a low reflectance film according to claim 11, wherein a three-layer coating film made of different materials is formed on the end face. 屈折率がnfl及びnfl 1よりも低い少なくとも1つの材料と、屈折率がnfl及びnfl 1よりも高い他の少なくとも1つの材料とを含む4種類以上の材料からなり、前記4種類以上の材料のうち3種類の材料でそれぞれ構成された3層の被覆膜、及び3種類以外の材料からなり予め設定された膜厚を有する被覆膜を含む多層被覆膜を端面に形成することを特徴とする請求項10に記載の低反射率膜の設計方法。Consisting of four or more types of materials including at least one material with a refractive index lower than n fl and n fl 1 and at least one other material with a refractive index higher than n fl and n fl 1 , the above four types A multilayer coating film is formed on the end face, including a three-layer coating film each made of three types of materials among the above materials, and a coating film made of a material other than the three types and having a preset thickness. 11. The method for designing a low reflectance film according to claim 10. 屈折率がnfh及びnfh 1よりも低い少なくとも1つの材料と、屈折率がnfh及びnfh 1よりも高い他の少なくとも1つの材料とを含む4種類以上の材料からなり、前記4種類以上の材料のうち3種類の材料でそれぞれ構成された3層の被覆膜、及び3種類以外の材料からなり予め設定された膜厚を有する被覆膜を含む多層被覆膜を端面に形成することを特徴とする請求項11に記載の低反射率膜の設計方法。Consisting of four or more types of materials including at least one material with a refractive index lower than n fh and n fh 1 and at least one other material with a refractive index higher than n fh and n fh 1 , and the above four types A multilayer coating film is formed on the end face, including a three-layer coating film each made of three types of materials among the above materials, and a coating film made of a material other than the three types and having a preset thickness. 12. The method for designing a low reflectance film according to claim 11. 屈折率がnaであり、膜厚がλ0/(4na)よりも厚く3λ0/(4na)よりも薄い被覆膜を、前記多層被覆膜と端面の間、前記多層被覆膜の各被覆膜の間、または、前記多層被覆膜の最表面に設けることを特徴とする請求項12から17のいずれか1項に記載の低反射率膜の設計方法。A coating film having a refractive index n a and a film thickness greater than λ 0 /(4n a ) and thinner than 3λ 0 /(4n a ) is placed between the multilayer coating film and the end face, and the coating film is placed between the multilayer coating film and the end face. 18. The method of designing a low reflectance film according to claim 12, wherein the method is provided between each coating film of the film or on the outermost surface of the multilayer coating film.
JP2023554334A 2023-07-12 2023-07-12 Method for manufacturing optical semiconductor device and method for designing low reflectance film Active JP7378692B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2023025764 2023-07-12

Publications (1)

Publication Number Publication Date
JP7378692B1 true JP7378692B1 (en) 2023-11-13

Family

ID=88729162

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2023554334A Active JP7378692B1 (en) 2023-07-12 2023-07-12 Method for manufacturing optical semiconductor device and method for designing low reflectance film

Country Status (1)

Country Link
JP (1) JP7378692B1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006156729A (en) 2004-11-30 2006-06-15 Mitsubishi Electric Corp Method of designing film thickness of coating film and semiconductor optical device
JP2010123995A (en) 2002-09-27 2010-06-03 Mitsubishi Electric Corp Semiconductor optical element
JP2011176380A (en) 2002-03-08 2011-09-08 Mitsubishi Electric Corp Method of designing coating film of optical semiconductor device
JP7183484B1 (en) 2022-04-14 2022-12-05 三菱電機株式会社 Method for manufacturing optical semiconductor device and method for designing antireflection film for optical semiconductor device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011176380A (en) 2002-03-08 2011-09-08 Mitsubishi Electric Corp Method of designing coating film of optical semiconductor device
JP2010123995A (en) 2002-09-27 2010-06-03 Mitsubishi Electric Corp Semiconductor optical element
JP2006156729A (en) 2004-11-30 2006-06-15 Mitsubishi Electric Corp Method of designing film thickness of coating film and semiconductor optical device
JP7183484B1 (en) 2022-04-14 2022-12-05 三菱電機株式会社 Method for manufacturing optical semiconductor device and method for designing antireflection film for optical semiconductor device

Similar Documents

Publication Publication Date Title
KR100709281B1 (en) Semiconductor laser device
JP3856300B2 (en) Semiconductor laser element
TWI233718B (en) Semiconductor laser device
US6487227B1 (en) Semiconductor laser
JP7378692B1 (en) Method for manufacturing optical semiconductor device and method for designing low reflectance film
US20040233959A1 (en) Multiple wavelength semiconductor laser and manufacturing method thereof
JP7183484B1 (en) Method for manufacturing optical semiconductor device and method for designing antireflection film for optical semiconductor device
JP2022173188A (en) porous thin film
JP2001196685A (en) Semiconductor light element device
JPH0418784A (en) Protective film for semiconductor laser element
JP2003121637A (en) Fabry-perot filter
KR100528857B1 (en) Semiconductor optical device and semiconductor laser module using the semiconductor optical device
JP2586671B2 (en) Semiconductor multilayer film
JP2003101126A (en) Semiconductor laser device and method of manufacturing the same
JPH0766500A (en) Formation of optical thin film
CN213878717U (en) DFB laser structure containing DFB laser mirror coating
JP5377432B2 (en) Semiconductor optical device
JP2005221867A (en) Reflection type optical device
US7577173B2 (en) Semiconductor laser device having a low reflection film of stable reflectance
JPH01286476A (en) Laser mirror having flat spectral characteristics in narrow wavelength band
JPH02156589A (en) Surface light emitting semiconductor laser
JPH0784105A (en) Reflecting film
JPH07244202A (en) Dual wavelength anti-reflection film
JP2005123364A (en) Optical semiconductor device and its manufacturing method
JP2009176812A (en) Semiconductor laser

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230906

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20230906

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231031

R151 Written notification of patent or utility model registration

Ref document number: 7378692

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151