JP7378080B2 - Lead-acid battery replenisher, lead-acid battery replenisher bottle products, lead-acid battery maintenance method, lead-acid battery recycling method, and lead-acid battery replenisher manufacturing method - Google Patents

Lead-acid battery replenisher, lead-acid battery replenisher bottle products, lead-acid battery maintenance method, lead-acid battery recycling method, and lead-acid battery replenisher manufacturing method Download PDF

Info

Publication number
JP7378080B2
JP7378080B2 JP2019016643A JP2019016643A JP7378080B2 JP 7378080 B2 JP7378080 B2 JP 7378080B2 JP 2019016643 A JP2019016643 A JP 2019016643A JP 2019016643 A JP2019016643 A JP 2019016643A JP 7378080 B2 JP7378080 B2 JP 7378080B2
Authority
JP
Japan
Prior art keywords
lead
acid battery
replenisher
acid
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019016643A
Other languages
Japanese (ja)
Other versions
JP2020126709A (en
Inventor
忠行 今中
正 竹本
Original Assignee
株式会社アイティー技研
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アイティー技研 filed Critical 株式会社アイティー技研
Priority to JP2019016643A priority Critical patent/JP7378080B2/en
Publication of JP2020126709A publication Critical patent/JP2020126709A/en
Application granted granted Critical
Publication of JP7378080B2 publication Critical patent/JP7378080B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Filling, Topping-Up Batteries (AREA)

Description

本発明は、鉛蓄電池用補充液に関する。 The present invention relates to a replenisher for lead-acid batteries.

鉛蓄電池は、陽極板、陰極板にそれぞれ二酸化鉛、鉛を用い、電解液として希硫酸を用いた二次電池である。そして充電中は陽極板、陰極板のそれぞれから電解液中に硫酸イオンが移動し、放電中は電解液から陽極板、陰極板のそれぞれに硫酸イオンが移動する現象が生じている。しかし鉛蓄電池の使用時間が長くなると、陰極板の表面に電気絶縁性の硫酸鉛が蓄積していくので(サルフェーション、白色硫酸塩化)、蓄電容量が低下する等の性能劣化が生じてくる。このような性能劣化を抑えて鉛蓄電池を長寿命化させるための従来技術として、例えば次の特許文献では、マイクロカーボンを含有するマイクロカーボン水を電解液に添加することが記載されている。 A lead-acid battery is a secondary battery that uses lead dioxide and lead for the anode plate and the cathode plate, respectively, and dilute sulfuric acid as the electrolyte. During charging, sulfate ions move from each of the anode and cathode plates into the electrolyte, and during discharge, sulfate ions move from the electrolyte to each of the anode and cathode plates. However, when a lead-acid battery is used for a long time, electrically insulating lead sulfate accumulates on the surface of the cathode plate (sulfation, white sulfate), resulting in performance deterioration such as a decrease in storage capacity. As a conventional technique for suppressing such performance deterioration and extending the life of lead-acid batteries, for example, the following patent document describes adding microcarbon water containing microcarbon to an electrolytic solution.

特開2007-335322号公報Japanese Patent Application Publication No. 2007-335322

しかしながら前記特許文献に記載のカーボン水は、円形又は球形状の特殊なマイクロカーボンを含むものなので、その製造コストが高くなってしまうという問題があった。これに対して本発明は、安価でありながら鉛蓄電池の長寿命化が可能な鉛蓄電池用補充液、及びその利用方法を提案するものである。 However, since the carbon water described in the above-mentioned patent document contains special microcarbons having a circular or spherical shape, there is a problem in that the manufacturing cost becomes high. On the other hand, the present invention proposes a replenisher for lead-acid batteries that is inexpensive but can extend the life of lead-acid batteries, and a method for using the same.

本発明による鉛蓄電池用補充液は、pHが7~10であり、塩素含有量が0.00002mg/L以下であることを特徴としている。
このような鉛蓄電池用補充液は、鉛蓄電池に対応した注ぎ口を備えたボトルに充填した鉛蓄電池補充液ボトル製品として消費者に提供してもよい。
また本発明による鉛蓄電池のメンテナンス方法は、鉛蓄電池に対して前記鉛蓄電池補充
液を定期的に補充することを特徴とする。
また本発明による鉛蓄電池の再生方法は、サルフェーションが生じた鉛蓄電池に対して前記鉛蓄電池補充液を所定濃度に補充してから充放電を繰り返すことを特徴とする。
更に、鉛蓄電池用補充液の製造方法は、水を、光照射されている光触媒に接触させてpH7~pH10に弱アルカリ化し、その後、逆浸膜を通じることで、その不純物含有率を、水に由来する成分のみを含む程度、つまり塩素含有量が0.00002mg/L以下に調整して生成されることを特徴としている
The lead acid battery replenisher according to the present invention is characterized by having a pH of 7 to 10 and a chlorine content of 0.00002 mg/L or less.
Such a lead -acid battery replenisher may be provided to consumers as a lead-acid battery replenisher bottle product filled in a bottle equipped with a spout compatible with lead-acid batteries.
Further, the lead-acid battery maintenance method according to the present invention is characterized in that the lead-acid battery is periodically replenished with the lead-acid battery replenisher.
Furthermore, the method for regenerating a lead-acid battery according to the present invention is characterized in that the lead-acid battery in which sulfation has occurred is replenished with the lead-acid battery replenisher to a predetermined concentration, and then charging and discharging are repeated.
Furthermore, the method for producing replenisher fluid for lead-acid batteries involves bringing water into contact with a photocatalyst that has been irradiated with light to make it weakly alkaline to pH 7 to pH 10, and then passing it through a reverse immersion membrane to reduce the impurity content of the water. It is characterized by being produced by adjusting the chlorine content to 0.00002 mg/L or less, that is, containing only components originating from.

本発明による鉛蓄電池用補充液は、安価でありながら鉛蓄電池の長寿命化が可能であり、その使用法も簡単である。 The replenisher for lead-acid batteries according to the present invention is inexpensive, can extend the life of lead-acid batteries, and is easy to use.

本発明による鉛蓄電池用補充液を製造する製造設備の基本構成図である。FIG. 1 is a basic configuration diagram of manufacturing equipment for manufacturing a replenisher for lead-acid batteries according to the present invention. (a)、(b)は鉛蓄電池の放電、充電における化学反応を示す概念図である。(a) and (b) are conceptual diagrams showing chemical reactions during discharging and charging of a lead-acid battery. 鉛蓄電池用補充液と硫酸鉛との反応を示す概念図である。FIG. 2 is a conceptual diagram showing a reaction between a lead acid battery replenisher and lead sulfate. 鉛蓄電池用補充液を車載用鉛蓄電池に補充している状態を示す斜視図である。FIG. 2 is a perspective view showing a state in which an automotive lead-acid battery is being replenished with a lead-acid battery replenisher.

図1は、本発明による鉛蓄電池用補充液を製造する製造設備の基本構成図である。
製造設備10は、水を活性化させる光触媒装置11と、活性化された水の不純物を濾過する濾過装置12とを管路13によって連結した基本構成になっている。管路13には、光触媒装置11に水を循環させる循環ポンプ14と、濾過装置12に対して水を高圧供給する高圧ポンプ15とが配置されている。
光触媒装置11は、紫外線を透過させる例えばガラス管11bの内部に光触媒11aを配置し、その光触媒11aに、ガラス管11bの外側に紫外線ランプ11cを配置した構成になっている。光触媒は、酸化チタンや酸化タングステン等の光触媒活性物質の微粒子を多孔質セラミックやゼオライト等の担体に固定した独自のもので、水との接触面積が非常に広いことが特徴である。なおガラス管11bは、アクリル管、石英管、塩化ビニル管等で代用してもよい。
FIG. 1 is a basic configuration diagram of manufacturing equipment for manufacturing a replenisher for lead-acid batteries according to the present invention.
The manufacturing equipment 10 has a basic configuration in which a photocatalytic device 11 that activates water and a filtration device 12 that filters impurities from the activated water are connected by a pipe 13. A circulation pump 14 that circulates water to the photocatalyst device 11 and a high-pressure pump 15 that supplies water at high pressure to the filtration device 12 are arranged in the pipe line 13 .
The photocatalyst device 11 has a structure in which a photocatalyst 11a is disposed inside a glass tube 11b that transmits ultraviolet rays, and an ultraviolet lamp 11c is disposed outside the glass tube 11b. Photocatalysts are unique products in which fine particles of photocatalytically active substances such as titanium oxide and tungsten oxide are fixed on carriers such as porous ceramics and zeolites, and are characterized by their extremely wide contact area with water. Note that the glass tube 11b may be replaced with an acrylic tube, a quartz tube, a vinyl chloride tube, or the like.

光触媒装置11は、紫外線ランプ11cから紫外線を光触媒11aに照射した状態として、ガラス管11bに水を通じさせると、光触媒11aの作用によって水が活性化される。具体的には、水分子が分解されて水素分子、酸素分子と共に、スーパーオキシド、過酸化水素、一重項酸素、ヒドロキシラジカル等の活性酸素が生じる。活性酸素の内でもフリーラジカルは非常に活性度が高く短時間で消失するが、それよりも活性度が低いものは長時間残存すると考えられる。また循環ポンプ14によって水は光触媒装置11を複数回通過することになるので最大限活性化されることになる。 In the photocatalyst device 11, when the photocatalyst 11a is irradiated with ultraviolet light from the ultraviolet lamp 11c and water is passed through the glass tube 11b, the water is activated by the action of the photocatalyst 11a. Specifically, water molecules are decomposed to generate active oxygen such as superoxide, hydrogen peroxide, singlet oxygen, and hydroxyl radicals along with hydrogen molecules and oxygen molecules. Among active oxygen species, free radicals have a very high degree of activity and disappear in a short period of time, but those with a lower degree of activity are thought to remain for a long time. Moreover, since the water passes through the photocatalyst device 11 multiple times by the circulation pump 14, it is activated to the maximum extent possible.

濾過装置12は、逆浸透膜12aを用いたクロスフロー方式のものである。具体的には、複数の孔が形成された集水チューブ12bに対してシート状の逆浸透膜12aが海苔巻き状に固定された膜エレメントとして耐圧容器12cに収容されている。耐圧容器12cの一端外周部に注水口12dが形成され、他端中心部、外周部にそれぞれ出水口12e、排水口12fが形成されている。なお注水口12d、排水口12fは膜エレメントの始端、終端に連通され、出水口12eは集水チューブ12bに連通されている。 The filtration device 12 is of a cross-flow type using a reverse osmosis membrane 12a. Specifically, a sheet-like reverse osmosis membrane 12a is housed in a pressure container 12c as a membrane element fixed in a seaweed shape to a water collection tube 12b in which a plurality of holes are formed. A water inlet 12d is formed on the outer periphery of one end of the pressure container 12c, and a water outlet 12e and a drain 12f are formed on the center and outer periphery of the other end, respectively. Note that the water inlet 12d and the drain port 12f are communicated with the starting end and the terminal end of the membrane element, and the water outlet 12e is communicated with the water collecting tube 12b.

濾過装置12は、高圧ポンプ15によって注水口12dに水を高圧で供給すると、逆浸透膜12aを逆浸透した清浄水が集水チューブ12bに集約されて出水口12eから放出され、逆浸透膜12aを逆浸透せずに結果として不純物が濃縮された濃縮水が排水口12fから放出される。こうして不純物が純水相当に除去された清浄水が、本発明による鉛蓄電池用補充液である。 In the filtration device 12, when water is supplied at high pressure to the water inlet 12d by the high-pressure pump 15, the clean water that has passed through the reverse osmosis membrane 12a is collected in the water collection tube 12b and discharged from the water outlet 12e, and the reverse osmosis membrane 12a is collected. Concentrated water with concentrated impurities is discharged from the drain port 12f without undergoing reverse osmosis. The clean water from which impurities have been removed to a level equivalent to that of pure water is the replenisher for lead-acid batteries according to the present invention.

前記のような製造設備10は、紫外線ランプ11cを点灯させながら、循環ポンプ14、高圧ポンプ15を適切に運転すれば、鉛蓄電池用補充液を連続的に製造することが可能である。なお原料とする水は、例えば水道水等の淡水がコスト的に適している。 The manufacturing equipment 10 as described above can continuously manufacture replenisher fluid for lead-acid batteries by appropriately operating the circulation pump 14 and the high-pressure pump 15 while lighting the ultraviolet lamp 11c. Note that fresh water such as tap water is suitable as the raw material water in terms of cost.

またこのようにして製造された鉛蓄電池用補充液は、弱アルカリ性を呈しかつ不純物含有率が純水相当に低いことを特徴としたものになる。具体的には、蓄電池用補充液のpHは7~10、望ましくはpH7.3~9.7である。また不純物濃度は、基本的に測定限界以下である。例えば水道の塩素含有量は0.4mg/L程度であるが、蓄電池用補充液の塩素含有量は0.00002mg/L以下である。つまり鉛蓄電池用補充液は、水に由来する成分のみを含むものであって、その製造工程において、例えばマイクロカーボンや有機物等を添加する必要がないので、安価に提供できる。また特殊な添加物が鉛蓄電池に予期しない悪影響を及ぼすという心配もなく、人体や環境に対する安全性も高い。 Furthermore, the replenisher for lead-acid batteries produced in this manner is characterized by exhibiting weak alkalinity and having an impurity content as low as that of pure water. Specifically, the pH of the storage battery replenisher is 7 to 10, preferably 7.3 to 9.7. Moreover, the impurity concentration is basically below the measurement limit. For example, the chlorine content of tap water is about 0.4 mg/L, but the chlorine content of a storage battery replenisher is 0.00002 mg/L or less. In other words, the replenisher for lead-acid batteries contains only components derived from water, and there is no need to add, for example, microcarbons or organic substances during the manufacturing process, so it can be provided at low cost. Furthermore, there is no fear that special additives will have an unexpected adverse effect on lead-acid batteries, and it is highly safe for the human body and the environment.

そしてこの鉛蓄電池用補充液が弱アルカリ性を呈するのは、光触媒11aによる活性化の結果として、純水等に比較して水酸化物イオン(OH)が過剰になっているためであると現時点では考察している。このような水酸化物イオンの作用によって、この鉛蓄電池用補充液は、鉛蓄電池の陰極板に蓄積されている硫酸鉛溶解することが可能になり、鉛蓄電池の長寿命化が実現できる。
具体的には、鉛蓄電池に対して鉛蓄電池用補充液を定期的に補充する鉛蓄電池のメンテナンス方法によって、サルフェーションの発生が抑えられる。また既にサルフェーションが生じた鉛蓄電池に対して鉛蓄電池補充液を所定濃度に補充してから充放電を繰り返す鉛蓄電池の再生方法によって、サルフェーションが除去できる。具体的には、サルフェーションが既に生じた鉛蓄電池に対して、希硫酸(電解液)と、本発明の鉛蓄電池用補充液とを、補充後の硫酸濃度が30~38%、望ましくは35~38%になるように補充して、充放電を繰り返すとよい。このようなメンテナンス法、再生方法を適宜実行することによって、陽、陰極板の脱落等、物理的な故障によって使用不能になるまで鉛蓄電池が長期間利用できるようになる。この効果については、発明者らの実験として、同一の鉛蓄電池を継続して15年以上使用し続けていることから明らかである。
At present, it is believed that the reason why this replenisher for lead-acid batteries exhibits weak alkalinity is because hydroxide ions (OH - ) are present in excess compared to pure water as a result of activation by the photocatalyst 11a. Now we are considering it. Due to the action of such hydroxide ions, this replenisher for lead-acid batteries can dissolve the lead sulfate accumulated on the cathode plate of the lead-acid battery, thereby extending the life of the lead-acid battery.
Specifically, the occurrence of sulfation can be suppressed by a lead-acid battery maintenance method that periodically replenishes the lead-acid battery with a lead-acid battery replenisher. In addition, sulfation can be removed by a method for regenerating a lead-acid battery in which sulfation has already occurred by replenishing the lead-acid battery replenisher to a predetermined concentration and then repeating charging and discharging. Specifically, dilute sulfuric acid (electrolyte) and the replenisher for lead-acid batteries of the present invention are added to a lead-acid battery in which sulfation has already occurred so that the sulfuric acid concentration after replenishment is 30 to 38%, preferably 35 to 35%. It is best to replenish the battery to 38% and repeat charging and discharging. By appropriately carrying out such maintenance methods and regeneration methods, lead-acid batteries can be used for a long period of time until they become unusable due to physical failure such as falling off of the positive and negative electrode plates. This effect is clear from the fact that the same lead-acid battery has been used continuously for more than 15 years as an experiment by the inventors.

次いで、鉛蓄電池の放充電における化学反応、鉛蓄電池用補充液のサルフェーションに対する化学反応を説明する。 Next, a chemical reaction during discharging and charging of a lead-acid battery and a chemical reaction with respect to sulfation of a replenisher for a lead-acid battery will be explained.

図2(a)、(b)は鉛蓄電池の放電、充電における化学反応を示す概念図である。これらの図では、消費される化合物等を灰色で、生成される化合物等を白色で示している。また図3は鉛蓄電池用補充液と硫酸鉛との反応を示す概念図である。 FIGS. 2(a) and 2(b) are conceptual diagrams showing chemical reactions during discharging and charging of a lead-acid battery. In these figures, consumed compounds and the like are shown in gray, and produced compounds and the like are shown in white. Further, FIG. 3 is a conceptual diagram showing the reaction between a lead acid battery replenisher and lead sulfate.

鉛蓄電池20は、筐体24の内部に酸化鉛からなる陽極板21と、鉛からなる陰極板22とが配置されており、これらの極板21、22は希硫酸の電解液23に水没された状態になっている。 The lead acid battery 20 has an anode plate 21 made of lead oxide and a cathode plate 22 made of lead arranged inside a casing 24, and these plates 21 and 22 are submerged in an electrolyte 23 of dilute sulfuric acid. It is in a state of

鉛蓄電池20の放電中は、図2(a)に示すように、陽極板側では、陽極板21の酸化鉛と電解液23の硫酸とが反応して硫酸鉛と水とが生成される。化学式では次のように表される。
PbO+HSO+2H+2e → PbSO+2HO …(式1)
この反応では反応で生成された硫酸鉛が陽極板21に付着すると共に陽極板21の電子が消費される。これに対して陰極板側では、陰極板22の鉛と電解液23の硫酸とが反応して硫酸鉛が生成される。化学式では次のように表される。
Pb+HSO → PbSO+2H+2e …(式2)
この反応では生成された硫酸鉛が陰極板22に付着すると共に陰極板22に電子が生成される。このようにして陰極板22で生成された電子が負荷回路30を通じて陽極板21に移動して消滅することによって負荷電流が流れる。なお電解液23は硫酸が消費されるために比重が下がる。
During discharge of the lead-acid battery 20, as shown in FIG. 2(a), on the anode plate side, lead oxide on the anode plate 21 and sulfuric acid in the electrolytic solution 23 react to generate lead sulfate and water. The chemical formula is expressed as follows.
PbO 2 +H 2 SO 4 +2H + +2e - → PbSO 4 +2H 2 O...(Formula 1)
In this reaction, lead sulfate produced by the reaction adheres to the anode plate 21 and electrons of the anode plate 21 are consumed. On the other hand, on the cathode plate side, lead in the cathode plate 22 and sulfuric acid in the electrolytic solution 23 react to generate lead sulfate. The chemical formula is expressed as follows.
Pb+H 2 SO 4 → PbSO 4 +2H + +2e - (Formula 2)
In this reaction, the generated lead sulfate adheres to the cathode plate 22 and electrons are generated on the cathode plate 22. Electrons generated in the cathode plate 22 in this manner move to the anode plate 21 through the load circuit 30 and disappear, thereby causing a load current to flow. Note that the specific gravity of the electrolytic solution 23 decreases because sulfuric acid is consumed.

一方鉛蓄電池20の充電中は、図2(b)に示すように、陽極板側では、陽極板21に付着している硫酸鉛と水とが反応して酸化鉛と硫酸とが生成される。化学式では次のように表される。
PbSO+2HO → PbO+HSO+2H+2e …(式3)
この反応では生成された酸化鉛は陽極板21に吸収されると共に陽極板21に電子が生成される。これに対して陰極板側では、陰極板22に付着している硫酸鉛が分解されて鉛と硫酸とが生成される。化学式では次のように表される。
PbSO+2H+2e → Pb+HSO …(式4)
この反応では生成された鉛は陰極板22に吸収されると共に陰極板22の電子が消費される。このようにして陽極板21で生成された電子が充電回路40を通じて陰極板22に移動して消滅することによって充電電流が流れる。なお電解液23は硫酸が生成されるため比重が上がる。
On the other hand, while the lead-acid battery 20 is being charged, as shown in FIG. 2(b), on the anode plate side, lead sulfate adhering to the anode plate 21 reacts with water to generate lead oxide and sulfuric acid. . The chemical formula is expressed as follows.
PbSO 4 +2H 2 O → PbO 2 +H 2 SO 4 +2H + +2e - (Formula 3)
In this reaction, the generated lead oxide is absorbed by the anode plate 21, and electrons are generated in the anode plate 21. On the other hand, on the cathode plate side, lead sulfate adhering to the cathode plate 22 is decomposed to produce lead and sulfuric acid. The chemical formula is expressed as follows.
PbSO 4 +2H + +2e - → Pb+H 2 SO 4 ... (Formula 4)
In this reaction, the generated lead is absorbed by the cathode plate 22 and the electrons of the cathode plate 22 are consumed. The electrons generated in the anode plate 21 move to the cathode plate 22 through the charging circuit 40 and disappear, thereby causing a charging current to flow. Note that the specific gravity of the electrolytic solution 23 increases because sulfuric acid is generated.

ところで陽極板21、陰極板22に付着する硫酸鉛は非導体でありかつ水に難溶性なので、その一部は時間経過と共に結晶化して化学変化しない状態(サルフェーション)になる。すると電解液23の比重は下がったままになり電気容量が低下する。そして更にその結晶が負極板を覆った状態になると電解液23との接触面積が減るので充電速度も遅くなることになり、最終的には鉛蓄電池20が使用できなくなってしまう。 By the way, since the lead sulfate adhering to the anode plate 21 and the cathode plate 22 is a non-conductor and is hardly soluble in water, a part of it crystallizes over time and becomes in a state where it does not change chemically (sulfation). Then, the specific gravity of the electrolytic solution 23 remains lower and the electric capacity decreases. Furthermore, when the crystals cover the negative electrode plate, the contact area with the electrolyte 23 decreases, resulting in a slow charging speed, and eventually the lead-acid battery 20 becomes unusable.

しかしながら本発明の鉛蓄電池用補充液を電解液23に混ぜ入れると、結晶化した硫酸鉛を溶かすことが可能になる。すなわち図3に示すように、陽極板21、陰極板22の双方で、硫酸鉛と、鉛蓄電池用補充液の水酸イオンとが反応して鉛酸塩と硫酸とが生成される。化学式では次のように表される。
PbSO+3OH+2H → [Pb(OH)+HSO …(式5)
生成された鉛酸塩は水に溶解するので、硫酸鉛が陽極板21、陰極板22の双方から除去されるという効果が得られる。また電解液23の比重も回復する。
However, when the lead storage battery replenisher of the present invention is mixed into the electrolyte 23, it becomes possible to dissolve the crystallized lead sulfate. That is, as shown in FIG. 3, on both the anode plate 21 and the cathode plate 22, lead sulfate and hydroxide ions of the lead acid battery replenisher react to generate lead acid salts and sulfuric acid. The chemical formula is expressed as follows.
PbSO 4 +3OH - +2H + → [Pb(OH) 3 ] - +H 2 SO 4 ... (Formula 5)
Since the produced leadate dissolves in water, the effect that lead sulfate is removed from both the anode plate 21 and the cathode plate 22 can be obtained. Further, the specific gravity of the electrolytic solution 23 is also recovered.

更に、前記鉛蓄電池用補充液を鉛蓄電池に補充する方法を具体的に説明する。
図4は、鉛蓄電池用補充液を車載用鉛蓄電池に補充している状態を示す斜視図である。この鉛蓄電池20は、一対の陽極、陰極端子27、28が設けられた長方体形状の筐体24の内部を複数区画に区分し、そのそれぞれを独立した複数の電池として直列接続させた基本構造である。そして電池のそれぞれには補水口25が設けられてキャップ26によって封止されている。鉛蓄電池用補充液の補充は、これらの電池のそれぞれに対して行うようにする。図では、補水口25の一つからキャップ26が外されて、樹脂製のボトル50の鉛蓄電池用補充液が補水口25の奥に注がれている。
このような作業を容易に行うため、鉛蓄電池用補充液は、鉛蓄電池20に対応した注ぎ口を備えたボトル50に充填されたボトル製品として消費者に提供するとよい。特にこのボトル50は円錐状の注ぎ口51を備え、その先端を小さな蓋52で封止した構造としているので、蓋の着脱が簡単にでき使い勝手に優れる。
Furthermore, a method for replenishing a lead-acid battery with the lead-acid battery replenisher will be specifically explained.
FIG. 4 is a perspective view showing a state in which an automotive lead-acid battery is being replenished with a lead-acid battery replenisher. This lead-acid battery 20 has a basic structure in which the inside of a rectangular casing 24 in which a pair of anode and cathode terminals 27 and 28 are provided is divided into a plurality of sections, each of which is connected in series as a plurality of independent batteries. It is a structure. Each of the batteries is provided with a water replenishment port 25 and sealed with a cap 26. Replenishment of lead-acid battery replenisher should be done for each of these batteries. In the figure, the cap 26 has been removed from one of the water replenishment ports 25, and the lead acid battery replenisher in the resin bottle 50 is poured into the back of the water refill port 25.
In order to easily perform such operations, the replenisher for lead-acid batteries is preferably provided to consumers as a bottle product filled in a bottle 50 equipped with a spout compatible with the lead-acid battery 20. In particular, this bottle 50 has a conical spout 51 and its tip is sealed with a small lid 52, so the lid can be easily attached and removed, making it easy to use.

10 製造設備10
11 光触媒装置
12 濾過装置
13 管路
20 鉛蓄電池
21 陽極板
22 陰極板
50 ボトル
10 Manufacturing equipment 10
11 Photocatalyst device 12 Filtration device 13 Pipeline 20 Lead-acid battery 21 Anode plate 22 Cathode plate 50 Bottle

Claims (5)

鉛蓄電池用補充液であって、
pHが7~10であり、塩素含有量が0.00002mg/L以下であることを特徴とする鉛蓄電池用補充液。
A replenisher for lead-acid batteries,
A replenisher for lead-acid batteries, which has a pH of 7 to 10 and a chlorine content of 0.00002 mg/L or less .
請求項1に記載の鉛蓄電池用補充液が鉛蓄電池に対応した注ぎ口を備えたボトルに充填されていることを特徴とする鉛蓄電池補充液ボトル製品。 A lead-acid battery replenisher bottle product, characterized in that the lead-acid battery replenisher according to claim 1 is filled into a bottle equipped with a spout compatible with lead-acid batteries. 鉛蓄電池に対して請求項1に記載の鉛蓄電池補充液を定期的に補充することを特徴とする鉛蓄電池のメンテナンス方法。 A method for maintaining a lead-acid battery, comprising periodically replenishing the lead-acid battery with the lead-acid battery replenisher according to claim 1. サルフェーションが生じた鉛蓄電池に対して請求項1に記載の鉛蓄電池補充液を所定濃度に補充してから充放電を繰り返すことを特徴とする鉛蓄電池の再生方法。 A method for regenerating a lead-acid battery, which comprises replenishing a lead-acid battery in which sulfation has occurred with the lead-acid battery replenisher according to claim 1 to a predetermined concentration, and then repeating charging and discharging. 水を、光照射されている光触媒に接触させてpH7~pH10に弱アルカリ化し、
その後、逆浸膜を通じることで、水に由来する成分のみを含む程度、つまり塩素含有量が0.00002mg/L以下に不純物含有率を調整して生成されることを特徴とする鉛蓄電池用補充液の製造方法。
Water is brought into contact with a photocatalyst that is irradiated with light to make it slightly alkaline to pH 7 to pH 10,
After that, by passing through a reverse immersion membrane, the impurity content is adjusted to a level that contains only components derived from water, that is, the chlorine content is 0.00002 mg/L or less. Method of manufacturing replenisher.
JP2019016643A 2019-02-01 2019-02-01 Lead-acid battery replenisher, lead-acid battery replenisher bottle products, lead-acid battery maintenance method, lead-acid battery recycling method, and lead-acid battery replenisher manufacturing method Active JP7378080B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019016643A JP7378080B2 (en) 2019-02-01 2019-02-01 Lead-acid battery replenisher, lead-acid battery replenisher bottle products, lead-acid battery maintenance method, lead-acid battery recycling method, and lead-acid battery replenisher manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019016643A JP7378080B2 (en) 2019-02-01 2019-02-01 Lead-acid battery replenisher, lead-acid battery replenisher bottle products, lead-acid battery maintenance method, lead-acid battery recycling method, and lead-acid battery replenisher manufacturing method

Publications (2)

Publication Number Publication Date
JP2020126709A JP2020126709A (en) 2020-08-20
JP7378080B2 true JP7378080B2 (en) 2023-11-13

Family

ID=72084133

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019016643A Active JP7378080B2 (en) 2019-02-01 2019-02-01 Lead-acid battery replenisher, lead-acid battery replenisher bottle products, lead-acid battery maintenance method, lead-acid battery recycling method, and lead-acid battery replenisher manufacturing method

Country Status (1)

Country Link
JP (1) JP7378080B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000340233A (en) 1999-05-26 2000-12-08 Tokai Carbon Co Ltd Additive for led-acid battery
JP2003092133A (en) 2001-09-17 2003-03-28 Shin Kobe Electric Mach Co Ltd Method of using for industrial water used for manufacturing lead-acid battery
JP6502541B1 (en) 2018-02-16 2019-04-17 株式会社アイアイビー Method of producing purified water for battery and apparatus for producing purified water for battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000340233A (en) 1999-05-26 2000-12-08 Tokai Carbon Co Ltd Additive for led-acid battery
JP2003092133A (en) 2001-09-17 2003-03-28 Shin Kobe Electric Mach Co Ltd Method of using for industrial water used for manufacturing lead-acid battery
JP6502541B1 (en) 2018-02-16 2019-04-17 株式会社アイアイビー Method of producing purified water for battery and apparatus for producing purified water for battery

Also Published As

Publication number Publication date
JP2020126709A (en) 2020-08-20

Similar Documents

Publication Publication Date Title
JP4473456B2 (en) Water purification process
US9199867B2 (en) Removal of metals from water
JP2906986B2 (en) Wet treatment apparatus, electrolytic activated water generation method, and wet treatment method
US20110108437A1 (en) Disinfection method and disinfection device
US11028491B2 (en) Electrolysis electrode featuring metal-doped nanotube array and methods of manufacture and using same
JP6395952B1 (en) Water treatment apparatus and water treatment method
CN210458375U (en) Device for producing sodium hypochlorite disinfectant by electrolyzing seawater
CN113184960A (en) Three-dimensional electrocatalytic oxidation equipment
CN110858655B (en) Purification method and purification device for electrolyte of flow battery
JP7378080B2 (en) Lead-acid battery replenisher, lead-acid battery replenisher bottle products, lead-acid battery maintenance method, lead-acid battery recycling method, and lead-acid battery replenisher manufacturing method
US4217191A (en) Process for regenerating contaminated activated carbon
CN112979045A (en) Electrolysis/ultraviolet device for treating chemical nickel plating wastewater
CN107662965A (en) A kind of electrolysis unit and method for removing ammonia nitrogen in ammonia alkali waste water
JP2015213888A (en) Exhaust gas treatment method and exhaust gas treatment device
KR20200110535A (en) A desalination system
KR20070118668A (en) Method for processing hydrogen sulfide, method for producing hydrogen and photocatalyst reactor
CN110042417A (en) A kind of method and device of electrolytic seawater production javelle water
Paidar et al. A combination of ion exchange and electrochemical reduction for nitrate removal from drinking water part II: electrochemical treatment of a spent regenerant solution
JP2020126712A (en) Water battery, method for producing activated water for water battery, and method for continuously using water battery
CN208182762U (en) A kind of sea-water reverse osmose apparatus
US20200017374A1 (en) Electrochemical adsorbtion with graphene nanocomposites
CN214880423U (en) Three-dimensional electrocatalytic oxidation equipment
AU2021105178A4 (en) Conductive membrane filtration electrocoagulation coupling wastewater treatment device
CN109972167B (en) Preparation method and device of electronic grade citric acid
JPH07289854A (en) Metallic ion removing device and method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221219

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230615

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230623

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231023

R150 Certificate of patent or registration of utility model

Ref document number: 7378080

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150