JP7376756B1 - Thermal conductive grease composition - Google Patents

Thermal conductive grease composition Download PDF

Info

Publication number
JP7376756B1
JP7376756B1 JP2023553059A JP2023553059A JP7376756B1 JP 7376756 B1 JP7376756 B1 JP 7376756B1 JP 2023553059 A JP2023553059 A JP 2023553059A JP 2023553059 A JP2023553059 A JP 2023553059A JP 7376756 B1 JP7376756 B1 JP 7376756B1
Authority
JP
Japan
Prior art keywords
thermally conductive
parts
mass
grease composition
conductive grease
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2023553059A
Other languages
Japanese (ja)
Other versions
JPWO2024070069A1 (en
JPWO2024070069A5 (en
Inventor
拓海 片石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Polymer Industries Co Ltd
Original Assignee
Fuji Polymer Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Polymer Industries Co Ltd filed Critical Fuji Polymer Industries Co Ltd
Priority claimed from PCT/JP2023/021847 external-priority patent/WO2024070069A1/en
Application granted granted Critical
Publication of JP7376756B1 publication Critical patent/JP7376756B1/en
Publication of JPWO2024070069A1 publication Critical patent/JPWO2024070069A1/ja
Publication of JPWO2024070069A5 publication Critical patent/JPWO2024070069A5/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Lubricants (AREA)

Abstract

マトリックス樹脂と熱伝導性フィラーを含む熱伝導性グリース組成物に関する。前記マトリックス樹脂は、40℃における動粘度が100~10,000mm2/sの液状ジメチルポリシロキサン(A)と、40℃における動粘度が1~10,000mm2/sの液状オルガノポリシロキサン(B)を含む。前記液状ジメチルポリシロキサン(A)と前記液状オルガノポリシロキサン(B)の合計量を100質量部としたとき、前記マトリックス樹脂は、前記液状ジメチルポリシロキサン(A)を50質量部以上97質量部以下、前記液状オルガノポリシロキサン(B)を3質量部以上50質量部以下含む。前記液状オルガノポリシロキサン(B)が有する、両末端のケイ素原子に結合した有機基を除いた有機基全数を100%とすると、前記有機基全数のうちの30~70%がメチル基であり、30~70%が炭素数2~14の飽和炭化水素基である。The present invention relates to a thermally conductive grease composition containing a matrix resin and a thermally conductive filler. The matrix resin includes liquid dimethylpolysiloxane (A) having a kinematic viscosity of 100 to 10,000 mm2/s at 40°C, and liquid organopolysiloxane (B) having a kinematic viscosity of 1 to 10,000 mm2/s at 40°C. include. When the total amount of the liquid dimethylpolysiloxane (A) and the liquid organopolysiloxane (B) is 100 parts by mass, the matrix resin contains 50 parts by mass or more and 97 parts by mass or less of the liquid dimethylpolysiloxane (A). , contains 3 parts by mass or more and 50 parts by mass or less of the liquid organopolysiloxane (B). If the total number of organic groups excluding the organic groups bonded to the silicon atoms at both ends of the liquid organopolysiloxane (B) is 100%, 30 to 70% of the total number of organic groups are methyl groups, 30 to 70% are saturated hydrocarbon groups having 2 to 14 carbon atoms.

Description

本発明は、電気部品又は電子部品等の発熱体と放熱体の間に介在させるのに好適な熱伝導性グリース組成物に関する。 The present invention relates to a thermally conductive grease composition suitable for interposing between a heat generating element and a heat radiating element such as an electric component or an electronic component.

近年のCPU等の半導体の性能向上はめざましく、それに伴い発熱量も膨大になっている。そのため発熱する電気部品又は電子部品等には放熱体が取り付けられ、例えば半導体などの発熱体と放熱体との密着性を改善する為に熱伝導性グリースが使われている。電気部品又は電子部品の小型化、高性能化、高集積化に伴い熱伝導性グリースには高熱伝導性とともに、発熱体と放熱体の間からグリースが垂れ落ち難いという性質(「耐落下性」と呼ばれる。)が求められている。 In recent years, the performance of semiconductors such as CPUs has improved dramatically, and the amount of heat generated has also increased accordingly. For this reason, a heat radiator is attached to electrical or electronic components that generate heat, and thermally conductive grease is used to improve the adhesion between the heat radiator and the heat radiator, such as a semiconductor. As electrical and electronic components become smaller, more performant, and more highly integrated, thermally conductive grease has the property of not only having high thermal conductivity but also the ability to prevent grease from dripping from between the heating element and the heat dissipating element ("drop resistance"). ) is required.

特許文献1には、熱伝導性充填剤と、分子内に硬化性官能基を一つ有するポリシロキサンを少なくとも1種含むポリオルガノシロキサン樹脂と、アルコキシシリル基及び直鎖状シロキサン構造を有するシロキサン化合物とを含む組成物が提案されている。特許文献2には、液状シリコーンと熱伝導性充填剤と特定の疎水性球状シリカ微粒子を含み、放熱性を向上した熱伝導性シリコーン組成物が提案されている。特許文献3には、粒子径と形状の異なるアルミナを含む熱伝導性含フッ素接着剤組成物が開示されている。本発明者は特許文献4~5でエチレン・α-オレフィン共重合体を含む熱伝導性グリース組成物を提案している。 Patent Document 1 describes a thermally conductive filler, a polyorganosiloxane resin containing at least one polysiloxane having one curable functional group in the molecule, and a siloxane compound having an alkoxysilyl group and a linear siloxane structure. A composition comprising: Patent Document 2 proposes a thermally conductive silicone composition that includes liquid silicone, a thermally conductive filler, and specific hydrophobic spherical silica particles, and has improved heat dissipation. Patent Document 3 discloses a thermally conductive fluorine-containing adhesive composition containing alumina having different particle sizes and shapes. The present inventor has proposed thermally conductive grease compositions containing an ethylene/α-olefin copolymer in Patent Documents 4 and 5.

特開2018-104714号公報Japanese Patent Application Publication No. 2018-104714 特開2016-044213号公報Japanese Patent Application Publication No. 2016-044213 特開2017-190389号公報Japanese Patent Application Publication No. 2017-190389 特許第7047199号公報Patent No. 7047199 特許第7095194号公報Patent No. 7095194

しかし、前記特許文献1~3の熱伝導性シリコーングリースは、例えば、発熱体と放熱体との間に介在し、発熱体と放熱体によって垂直に挟持される場合、発熱体と放熱体の間から垂れ落ちてしまう問題があった。また、前記特許文献4~5の熱伝導性グリース組成物は、熱伝導性シリコーングリースに比べて粘度が高いという問題があった。 However, when the thermally conductive silicone grease of Patent Documents 1 to 3 is interposed between a heating element and a heat radiating element and is vertically sandwiched between the heating element and the heat radiating element, There was a problem with it dripping from the top. Further, the thermally conductive grease compositions of Patent Documents 4 and 5 have a problem of higher viscosity than thermally conductive silicone greases.

本発明は前記従来の問題を解決するため、低粘度でありながら、垂れ落ちにくく、熱伝導率も高い熱伝導性グリース組成物を提供する。 In order to solve the above-mentioned conventional problems, the present invention provides a thermally conductive grease composition that has a low viscosity, is resistant to dripping, and has a high thermal conductivity.

本発明の熱伝導性グリース組成物は、
マトリックス樹脂と熱伝導性フィラーを含む熱伝導性グリース組成物であって、
前記マトリックス樹脂は、40℃における動粘度が100~10,000mm2/sの液状ジメチルポリシロキサン(A)と、40℃における動粘度が1~10,000mm2/sの液状オルガノポリシロキサン(B)を含み、
前記液状ジメチルポリシロキサン(A)と前記液状オルガノポリシロキサン(B)の合計量を100質量部としたとき、前記マトリックス樹脂は、前記液状ジメチルポリシロキサン(A)を50質量部以上97質量部以下、前記液状オルガノポリシロキサン(B)を3質量部以上50質量部以下含み、
前記液状オルガノポリシロキサン(B)が有する、両末端のケイ素原子に結合した有機基を除いた有機基全数を100%とすると、前記有機基全数のうちの30~70%がメチル基であり、30~70%が炭素数2~14の飽和炭化水素基であり、
前記液状ジメチルポリシロキサン(A)と前記液状オルガノポリシロキサン(B)の合計量100質量部に対して、前記熱伝導性フィラーを400~2500質量部含む、熱伝導性グリース組成物に関する。
The thermally conductive grease composition of the present invention includes:
A thermally conductive grease composition comprising a matrix resin and a thermally conductive filler,
The matrix resin includes liquid dimethylpolysiloxane (A) having a kinematic viscosity of 100 to 10,000 mm 2 /s at 40°C, and liquid organopolysiloxane (B) having a kinematic viscosity of 1 to 10,000 mm 2 /s at 40°C. ), including
When the total amount of the liquid dimethylpolysiloxane (A) and the liquid organopolysiloxane (B) is 100 parts by mass, the matrix resin contains 50 parts by mass or more and 97 parts by mass or less of the liquid dimethylpolysiloxane (A). , containing 3 parts by mass or more and 50 parts by mass or less of the liquid organopolysiloxane (B),
If the total number of organic groups excluding the organic groups bonded to the silicon atoms at both ends of the liquid organopolysiloxane (B) is 100%, 30 to 70% of the total number of organic groups are methyl groups, 30 to 70% are saturated hydrocarbon groups having 2 to 14 carbon atoms,
The present invention relates to a thermally conductive grease composition containing 400 to 2,500 parts by mass of the thermally conductive filler based on 100 parts by mass of the liquid dimethylpolysiloxane (A) and the liquid organopolysiloxane (B).

本発明は、マトリックス樹脂と熱伝導性フィラーを含み、前記マトリックス樹脂は、40℃における動粘度が100~10,000mm2/sの液状ジメチルポリシロキサン(A)と、40℃における動粘度が1~10,000mm2/sの液状オルガノポリシロキサン(B)を含み、前記液状ジメチルポリシロキサン(A)と前記液状オルガノポリシロキサン(B)の合計量を100質量部としたとき、前記マトリックス樹脂は、前記液状ジメチルポリシロキサン(A)を50質量部以上97質量部以下、前記液状オルガノポリシロキサン(B)を3質量部以上50質量部以下含み、前記液状オルガノポリシロキサン(B)が有する、両末端のケイ素原子に結合した有機基を除いた有機基全数を100%とすると、前記有機基全数のうちの30~70%がメチル基であり、30~70%が炭素数2~14の飽和炭化水素基であり、前記液状ジメチルポリシロキサン(A)と前記液状オルガノポリシロキサン(B)の合計量100質量部に対して、前記熱伝導性フィラーを400~2500質量部含むことにより、低粘度でありながら、垂直に挟持した際に垂れ落ちにくく、熱伝導率も高い、熱伝導性グリース組成物を提供できる。The present invention includes a matrix resin and a thermally conductive filler, and the matrix resin includes liquid dimethylpolysiloxane (A) having a kinematic viscosity of 100 to 10,000 mm 2 /s at 40°C; ~10,000 mm 2 /s of liquid organopolysiloxane (B), and when the total amount of the liquid dimethylpolysiloxane (A) and the liquid organopolysiloxane (B) is 100 parts by mass, the matrix resin , containing 50 parts by mass or more and 97 parts by mass or less of the liquid dimethylpolysiloxane (A), and 3 parts by mass or more and 50 parts by mass or less of the liquid organopolysiloxane (B), which the liquid organopolysiloxane (B) has. If the total number of organic groups excluding the organic group bonded to the terminal silicon atom is taken as 100%, 30 to 70% of the total number of organic groups are methyl groups, and 30 to 70% are saturated groups having 2 to 14 carbon atoms. It is a hydrocarbon group, and by containing 400 to 2,500 parts by mass of the thermally conductive filler to 100 parts by mass of the total amount of the liquid dimethylpolysiloxane (A) and the liquid organopolysiloxane (B), it has a low viscosity. However, it is possible to provide a thermally conductive grease composition that does not easily drip when vertically clamped and has high thermal conductivity.

図1A-Bは本発明の一実施例における試料の熱伝導率の測定方法を示す説明図である。FIGS. 1A and 1B are explanatory diagrams showing a method for measuring the thermal conductivity of a sample in one embodiment of the present invention. 図2A-Dは、本発明の一実施例で使用する落下試験を説明する模式的説明図である。FIGS. 2A to 2D are schematic diagrams illustrating a drop test used in an embodiment of the present invention.

本発明の熱伝導性グリース組成物(以下「グリース組成物」と略称する場合がある。)は、マトリックス樹脂と熱伝導性フィラーを含み、前記マトリックス樹脂は、40℃における動粘度が100~10,000mm2/sの液状ジメチルポリシロキサン(A)と、40℃における動粘度が1~10,000mm2/sの液状オルガノポリシロキサン(B)を含む。前記液状ジメチルポリシロキサン(A)は耐熱性が高く、前記液状オルガノポリシロキサン(B)は、高温下で固くなりやすい。従って、両者を特定の割合で併用することにより、グリース組成物の耐熱性を確保しつつ、高温下で適度に固くなることにより垂れ落ちを抑制できる。液状ジメチルポリシロキサン(A)の40℃における好ましい動粘度は100~5000mm2/sであり、より好ましくは100~3000mm2/sであり、さらに好ましくは100~1000mm2/sであり、さらにより好ましくは100~400mm2/sであり、さらにより好ましくは100~200mm2/sである。液状オルガノポリシロキサン(B)の40℃における好ましい動粘度は10~5000mm2/sであり、より好ましくは20~3000mm2/sであり、さらに好ましくは30~1000mm2/sであり、さらにより好ましく50~1000mm2/sであり、さらにより好ましくは100~800mm2/sであり、さらにより好ましくは200~800mm2/sである。これにより、本発明のグリース組成物は、耐熱性に優れ、低粘度でありながら、垂直に挟持した際に垂れ落ちにくいグリースとなる。The thermally conductive grease composition of the present invention (hereinafter sometimes abbreviated as "grease composition") includes a matrix resin and a thermally conductive filler, and the matrix resin has a kinematic viscosity of 100 to 10 at 40°C. ,000 mm 2 /s of liquid dimethylpolysiloxane (A) and liquid organopolysiloxane (B) of kinematic viscosity of 1 to 10,000 mm 2 /s at 40°C. The liquid dimethylpolysiloxane (A) has high heat resistance, and the liquid organopolysiloxane (B) tends to harden at high temperatures. Therefore, by using both in a specific ratio, it is possible to ensure the heat resistance of the grease composition and to suppress dripping by becoming appropriately hard at high temperatures. The preferred kinematic viscosity at 40°C of liquid dimethylpolysiloxane (A) is 100 to 5000 mm 2 /s, more preferably 100 to 3000 mm 2 /s, still more preferably 100 to 1000 mm 2 /s, and even more The speed is preferably 100 to 400 mm 2 /s, and even more preferably 100 to 200 mm 2 /s. The preferred kinematic viscosity of the liquid organopolysiloxane (B) at 40°C is 10 to 5000 mm 2 /s, more preferably 20 to 3000 mm 2 /s, even more preferably 30 to 1000 mm 2 /s, and even more. The speed is preferably 50 to 1000 mm 2 /s, even more preferably 100 to 800 mm 2 /s, and even more preferably 200 to 800 mm 2 /s. As a result, the grease composition of the present invention has excellent heat resistance, low viscosity, and is difficult to drip when vertically clamped.

前記液状オルガノポリシロキサン(B)が有する、両末端のケイ素原子に結合した有機基を除いた有機基全数を100%とすると、グリース組成物の、低粘度化及び垂れ落ち抑制の観点から、前記全有機基全数のうちの、30~70%がメチル基、30~70%が炭素数2~14の飽和炭化水素基、好ましくは35~70%がメチル基、30~65%が炭素数2~14の飽和炭化水素基、より好ましくは40~70%がメチル基、30~60%が炭素数2~14の飽和炭化水素基、さらに好ましくは45~70%がメチル基、30~55%が炭素数2~14の飽和炭化水素基、さらにより好ましくは45~60%がメチル基、40~55%が炭素数2~14の飽和炭化水素基である。前記飽和炭化水素基の炭素数は、2~14であり、好ましくは4~12、より好ましくは6~10である。
尚、前記液状オルガノポリシロキサン(B)が有する、両末端のケイ素原子に結合した有機基を除いた有機基全数に対する、メチル基または炭素数2~14の飽和炭化水素基の割合は、例えば、NMR等にて調べることができる。
Assuming that the total number of organic groups that the liquid organopolysiloxane (B) has, excluding the organic groups bonded to silicon atoms at both ends, is 100%, from the viewpoint of reducing the viscosity and suppressing dripping of the grease composition, the above-mentioned Of all the organic groups, 30 to 70% are methyl groups, 30 to 70% are saturated hydrocarbon groups having 2 to 14 carbon atoms, preferably 35 to 70% are methyl groups, and 30 to 65% are 2 carbon atoms. -14 saturated hydrocarbon groups, more preferably 40-70% methyl groups, 30-60% saturated hydrocarbon groups having 2-14 carbon atoms, even more preferably 45-70% methyl groups, 30-55% is a saturated hydrocarbon group having 2 to 14 carbon atoms, even more preferably 45 to 60% is a methyl group, and 40 to 55% is a saturated hydrocarbon group having 2 to 14 carbon atoms. The saturated hydrocarbon group has 2 to 14 carbon atoms, preferably 4 to 12 carbon atoms, and more preferably 6 to 10 carbon atoms.
The ratio of methyl groups or saturated hydrocarbon groups having 2 to 14 carbon atoms to the total number of organic groups excluding the organic groups bonded to silicon atoms at both ends, which the liquid organopolysiloxane (B) has, is, for example, It can be investigated by NMR etc.

液状オルガノポリシロキサン(B)は、好まししくは下記式(1)、(2)又は(3)で表される直鎖状で、分子鎖の両末端がトリメチルシリル基で封鎖された、直鎖状両末端トリメチルオルガポリシロキサンである。式(1)~(3)において、R1はメチル基であり、R2は、炭素数2~14の飽和炭化水素基であり、mは0以上の整数であり、nは0以上の整数(ただし、m、nのうちの一方が「0」の場合、他方は「1」以上)である。mおよびnの具体的な数は、40℃における動粘度が1~10,000mm2/sであり、両末端のケイ素原子に結合した有機基を除いた全有機基のうちの、30~70%がメチル基、30~70%が炭素数2~14の飽和炭化水素基であるかぎり、特に限定されない。液状オルガノポリシロキサン(B)の好ましい市販品としては、Gelest社製の、商品名"ALT-143"等があり、"ALT-143"は、下記式(3)で表される。The liquid organopolysiloxane (B) is preferably a straight chain represented by the following formula (1), (2) or (3), in which both ends of the molecular chain are blocked with trimethylsilyl groups. It is trimethylorgapolysiloxane with both ends. In formulas (1) to (3), R 1 is a methyl group, R 2 is a saturated hydrocarbon group having 2 to 14 carbon atoms, m is an integer of 0 or more, and n is an integer of 0 or more. (However, if one of m and n is "0", the other is "1" or more). The specific numbers of m and n are such that the kinematic viscosity at 40°C is 1 to 10,000 mm 2 /s, and 30 to 70 of the total organic groups excluding the organic groups bonded to the silicon atoms at both ends. There are no particular limitations as long as % is methyl groups and 30 to 70% is saturated hydrocarbon groups having 2 to 14 carbon atoms. Preferred commercial products of the liquid organopolysiloxane (B) include the product name "ALT-143" manufactured by Gelest, and "ALT-143" is represented by the following formula (3).

Figure 0007376756000001
Figure 0007376756000001

前記液状ジメチルポリシロキサン(A)と前記液状オルガノポリシロキサン(B)の合計量を100質量部としたとき、前記熱伝導性フィラーの含有量は400~2500質量部であり、好ましくは600~2400質量部であり、より好ましくは800~2400質量部であり、さらに好ましくは1000~2400質量部である。これにより、グリース組成物が、低粘度でありながら、垂れ落ちにくく、熱伝導率を高くできる。 When the total amount of the liquid dimethylpolysiloxane (A) and the liquid organopolysiloxane (B) is 100 parts by mass, the content of the thermally conductive filler is 400 to 2,500 parts by mass, preferably 600 to 2,400 parts by mass. Parts by weight, more preferably 800 to 2400 parts by weight, still more preferably 1000 to 2400 parts by weight. As a result, the grease composition has a low viscosity, is difficult to drip, and has high thermal conductivity.

前記液状ジメチルポリシロキサン(A)と前記液状オルガノポリシロキサン(B)の合計量100質量部としたとき、液状ジメチルポリシロキサン(A)の含有量は50質量部以上97質量部以下、液状オルガノポリシロキサン(B)の含有量は3質量部以上50質量部以下であり、好ましくは液状ジメチルポリシロキサン(A)の含有量は55質量部以上97質量部以下、液状オルガノポリシロキサン(B)の含有量は3質量部以上45質量部以下であり、より好ましくは液状ジメチルポリシロキサン(A)の含有量は60質量部以上97質量部以下、液状オルガノポリシロキサン(B)の含有量は3質量部以上40質量部以下であり、さらに好ましくは液状ジメチルポリシロキサン(A)の含有量は65質量部以上97質量部以下、液状オルガノポリシロキサン(B)の含有量は3質量部以上35質量部以下である。これにより、グリース組成物は耐熱性に優れ、粘度を低くでき、かつ垂直に挟持された際に垂れ落ちにくくなる。 When the total amount of the liquid dimethylpolysiloxane (A) and the liquid organopolysiloxane (B) is 100 parts by mass, the content of the liquid dimethylpolysiloxane (A) is 50 parts by mass or more and 97 parts by mass or less, The content of siloxane (B) is 3 parts by mass or more and 50 parts by mass or less, preferably the content of liquid dimethylpolysiloxane (A) is 55 parts by mass or more and 97 parts by mass or less, and the content of liquid organopolysiloxane (B) is The amount is 3 parts by mass or more and 45 parts by mass or less, more preferably the content of liquid dimethylpolysiloxane (A) is 60 parts by mass or more and 97 parts by mass or less, and the content of liquid organopolysiloxane (B) is 3 parts by mass. The content of liquid dimethylpolysiloxane (A) is 65 parts by mass or more and 97 parts by mass or less, and the content of liquid organopolysiloxane (B) is 3 parts by mass or more and 35 parts by mass or less. It is. As a result, the grease composition has excellent heat resistance, can have a low viscosity, and is less likely to drip when vertically clamped.

前記熱伝導性フィラーは、グリース組成物の、低粘度化、垂れ落ち抑制、高熱伝導率の両立の観点から、中心粒径が1μm以上5μm以下のアルミナを、20~2000質量部含んでいると好ましく、100~600質量部含んでいるとより好ましく、200~500質量部含んでいるとさらに好ましい。また、熱伝導性フィラーは、中心粒径が100μmを超える球状アルミナを20~1500質量部と、中心粒径が5μm以上50μm以下の窒化アルミニウムを20~500質量部と、中心粒径が1μm以上5μm以下の不定形粉砕アルミナを20~1000質量部と、中心粒径が0.1μm以上1μm未満の不定形粉砕アルミナを20~500質量部含んでいると好ましい。これにより、大粒子の間に小粒子が存在し、最密充填に近い状態で充填し、熱伝導性を高き、且つ、グリース組成物の更なる低粘度化および垂れ落ち抑制が可能となる。同様の理由から、熱伝導性フィラーは、中心粒径が100μmを超える球状アルミナを500~1200質量部と、中心粒径が5μm以上50μm以下の窒化アルミニウムを50~400質量部と、中心粒径が1μm以上5μm以下の不定形粉砕アルミナを100~600質量部と、中心粒径が0.1μm以上1μm未満の不定形粉砕アルミナを50~400質量部含んでいるとより好ましく、熱伝導性フィラーは、中心粒径が100μmを超える球状アルミナを700~1200質量部と、中心粒径が5μm以上50μm以下の窒化アルミニウムを100~400質量部と、中心粒径が1μm以上5μm以下の不定形粉砕アルミナを150~500質量部と、中心粒径が0.1μm以上1μm未満の不定形粉砕アルミナを100~400質量部含んでいるとさらに好ましく、熱伝導性フィラーは、中心粒径が100μmを超える球状アルミナを800~1100質量部と、中心粒径が5μm以上50μm以下の窒化アルミニウムを150~400質量部と、中心粒径が1μm以上5μm以下の不定形粉砕アルミナを200~500質量部と、中心粒径が0.1μm以上1μm未満の不定形粉砕アルミナを100~400質量部含んでいるとさらにより好ましい。
中心粒径が100μmを超える球状アルミナは、好ましくは中心粒径が100μmを超え200μm以下、より好ましくは中心粒径が100μmを超え150μm以下の球状アルミナである。
中心粒径が5μm以上50μm以下の窒化アルミニウムの形状は不定形が好ましい。中心粒径が5μm以上50μm以下の窒化アルミニウムは、好ましくは中心粒径が5μm以上30μm以下の窒化アルミニウムである。
尚、中心粒径は、レーザー回折光散乱法により測定される体積基準による累積粒度分布のD50(メジアン径)である。この測定器としては、例えば、堀場製作所社製のレーザー回折/散乱式粒子径分布測定装置LA-950S2がある。
The thermally conductive filler preferably contains 20 to 2,000 parts by mass of alumina having a center particle size of 1 μm or more and 5 μm or less, from the viewpoint of reducing the viscosity, suppressing dripping, and achieving high thermal conductivity of the grease composition. Preferably, it contains 100 to 600 parts by mass, more preferably 200 to 500 parts by mass. In addition, the thermally conductive filler contains 20 to 1,500 parts by mass of spherical alumina with a center particle size of over 100 μm, 20 to 500 parts by weight of aluminum nitride with a center particle size of 5 μm to 50 μm, and 20 to 500 parts by weight of aluminum nitride with a center particle size of 1 μm or more. It is preferable to contain 20 to 1000 parts by mass of irregularly shaped pulverized alumina with a diameter of 5 μm or less, and 20 to 500 parts by mass of irregularly shaped pulverized alumina with a center particle size of 0.1 μm or more and less than 1 μm. As a result, the small particles exist between the large particles, and the grease composition is packed in a close-packed state, thereby increasing the thermal conductivity, and further reducing the viscosity of the grease composition and suppressing dripping. For the same reason, the thermally conductive filler contains 500 to 1200 parts by mass of spherical alumina with a center particle size of more than 100 μm, 50 to 400 parts by weight of aluminum nitride with a center particle size of 5 μm to 50 μm, and More preferably, the thermally conductive filler contains 100 to 600 parts by mass of amorphous pulverized alumina with a diameter of 1 μm or more and 5 μm or less, and 50 to 400 parts by mass of amorphous pulverized alumina with a center particle size of 0.1 μm or more and less than 1 μm. contains 700 to 1200 parts by mass of spherical alumina with a center particle size of over 100 μm, 100 to 400 parts by weight of aluminum nitride with a center particle size of 5 μm to 50 μm, and irregularly pulverized particles with a center particle size of 1 μm to 5 μm. More preferably, the thermally conductive filler contains 150 to 500 parts by mass of alumina and 100 to 400 parts by mass of amorphous pulverized alumina with a center particle size of 0.1 μm or more and less than 1 μm, and the thermally conductive filler has a center particle size of more than 100 μm. 800 to 1100 parts by mass of spherical alumina, 150 to 400 parts by mass of aluminum nitride with a center particle size of 5 μm to 50 μm, and 200 to 500 parts by mass of amorphous pulverized alumina with a center particle size of 1 μm to 5 μm, It is even more preferable that 100 to 400 parts by mass of amorphous pulverized alumina having a center particle diameter of 0.1 μm or more and less than 1 μm is contained.
The spherical alumina with a center particle size of more than 100 μm is preferably a spherical alumina with a center particle size of more than 100 μm and 200 μm or less, more preferably a center particle size of more than 100 μm and 150 μm or less.
The shape of the aluminum nitride having a center grain size of 5 μm or more and 50 μm or less is preferably amorphous. The aluminum nitride having a center grain size of 5 μm or more and 50 μm or less is preferably aluminum nitride having a center grain size of 5 μm or more and 30 μm or less.
Note that the central particle size is D50 (median diameter) of a volume-based cumulative particle size distribution measured by a laser diffraction light scattering method. As this measuring device, for example, there is a laser diffraction/scattering particle size distribution measuring device LA-950S2 manufactured by Horiba, Ltd.

本発明のグリース組成物は、好ましくは、粘度調整剤として、さらにRaSi(OR')4-a(但し、Rは炭素数8~12の非置換または置換有機基、R'は炭素数1~4のアルキル基、aは0もしくは1)で示されるアルコキシシラン化合物又はその部分加水分解物を、前記液状ジメチルポリシロキサン(A)と前記液状オルガノポリシロキサン(B)の合計量100質量部に対して、0.1~10質量部含む。これにより、グリース組成物の粘度を下げることができる。The grease composition of the present invention preferably further contains R a Si(OR') 4-a (where R is an unsubstituted or substituted organic group having 8 to 12 carbon atoms, and R' is a carbon number An alkoxysilane compound represented by 1 to 4 alkyl groups, a is 0 or 1) or a partial hydrolyzate thereof, in a total amount of 100 parts by mass of the liquid dimethylpolysiloxane (A) and the liquid organopolysiloxane (B). Contains 0.1 to 10 parts by mass. This allows the viscosity of the grease composition to be lowered.

熱伝導性フィラーは、RaSi(OR')4-a(但し、Rは炭素数8~12の非置換または置換有機基、R'は炭素数1~4のアルキル基、aは0もしくは1)で示されるアルコキシシラン化合物又はその部分加水分解物で表面前処理されていると好ましい。これにより、グリース組成物の粘度を下げることができる。とくに、中心粒径が0.1μm以上5μm以下の小粒径フィラーは表面前処理されているのが好ましい。The thermally conductive filler is R a Si(OR') 4-a (where R is an unsubstituted or substituted organic group having 8 to 12 carbon atoms, R' is an alkyl group having 1 to 4 carbon atoms, and a is 0 or Preferably, the surface is pretreated with an alkoxysilane compound shown in 1) or a partial hydrolyzate thereof. This allows the viscosity of the grease composition to be lowered. In particular, it is preferable that the small particle size filler having a center particle diameter of 0.1 μm or more and 5 μm or less is subjected to surface pretreatment.

アルコキシシラン化合物としては、例えば、オクチルトリメトキシシラン,オクチルトリエトキシシラン,デシルトリメトキシシラン,デシルトリエトキシシラン,ドデシルトリメトキシシラン,ドデシルトリエトキシシラン等があげられる。前記アルコキシシラン化合物は、一種又は二種以上混合して使用することができる。表面処理剤として、アルコキシシラン化合物と片末端シラノールシロキサンを併用してもよい。ここでいう表面処理とは共有結合のほか吸着なども含む。熱伝導性フィラーが表面処理されていると、熱伝導性フィラーは、マトリックス樹脂との混合性が良好となる。 Examples of the alkoxysilane compound include octyltrimethoxysilane, octyltriethoxysilane, decyltrimethoxysilane, decyltriethoxysilane, dodecyltrimethoxysilane, and dodecyltriethoxysilane. The alkoxysilane compounds may be used alone or in combination of two or more. As a surface treatment agent, an alkoxysilane compound and one-terminated silanol siloxane may be used in combination. The surface treatment referred to here includes adsorption in addition to covalent bonding. When the thermally conductive filler is surface-treated, the thermally conductive filler has good miscibility with the matrix resin.

アルコキシシラン化合物は予め熱伝導性フィラーと混合され、熱伝導性フィラーはアルコキシシラン化合物により前処理しておくのが好ましい。熱伝導性フィラー100質量部に対し、アルコキシシラン化合物は0.01~10質量部添加するのが好ましい。熱伝導性フィラーはアルコキシシラン化合物によって表面処理されることで、マトリックス樹脂に充填されやすくなる。 Preferably, the alkoxysilane compound is mixed with the thermally conductive filler in advance, and the thermally conductive filler is pretreated with the alkoxysilane compound. It is preferable to add 0.01 to 10 parts by mass of the alkoxysilane compound to 100 parts by mass of the thermally conductive filler. Surface treatment of the thermally conductive filler with an alkoxysilane compound makes it easier to fill the matrix resin.

熱伝導性グリース組成物の熱伝導率は、1.0W/m・K以上10.0W/m・K以下であるのが好ましく、より好ましくは1.5W/m・K以上10.0W/m・K以下であり、さらに好ましくは2.0W/m・K以上10.0W/m・K以下である。このような熱伝導性グリースはTIM(Thermal Interface Material)として好適である。 The thermal conductivity of the thermally conductive grease composition is preferably 1.0 W/m·K or more and 10.0 W/m·K or less, more preferably 1.5 W/m·K or more and 10.0 W/m - K or less, more preferably 2.0 W/m·K or more and 10.0 W/m·K or less. Such thermally conductive grease is suitable as TIM (Thermal Interface Material).

熱伝導性グリース組成物は、B型粘度計で回転速度5rpm、T-Eスピンドルを用いて測定した23℃における絶対粘度が1,000Pa・s以上10,000Pa・s以下であるのが好ましく、より好ましくは1,000Pa・s以上8,000Pa・s以下であり、さらに好ましくは1,000Pa・s以上6,000Pa・s以下である。これにより作業性に優れ、発熱体と放熱体の間への注入性又は塗布性も良好な熱伝導性グリース組成物となる。 Preferably, the thermally conductive grease composition has an absolute viscosity of 1,000 Pa·s or more and 10,000 Pa·s or less at 23° C., as measured with a B-type viscometer at a rotational speed of 5 rpm and a TE spindle. More preferably, it is 1,000 Pa·s or more and 8,000 Pa·s or less, and still more preferably 1,000 Pa·s or more and 6,000 Pa·s or less. This results in a thermally conductive grease composition that is excellent in workability and has good injection or coating properties between the heating element and the heat radiating element.

2枚のプレート間に熱伝導性グリース組成物を0.4g配置し、熱伝導性グリース組成物からなる層の厚さが0.5mmとなるように前記2枚のプレートで前記熱伝導性グリース組成物を挟持した状態で、前記プレートの主面が地面に対して垂直となるように、ヒートショック試験機内に保持し、次いで、-40℃で30分間保持してから、125℃になるまで昇温し、その後、125℃で30分保持してから、-40℃まで降温するという1サイクルを、500サイクル行うヒートショック試験において、前記試験のスタート時からの熱伝導性グリース組成物の落下が5mm以内であるのが好ましい。これにより、耐落下性を高く維持できる。 0.4 g of a thermally conductive grease composition is placed between two plates, and the thermally conductive grease is applied between the two plates so that the thickness of the layer made of the thermally conductive grease composition is 0.5 mm. Hold the composition in a heat shock tester with the main surface of the plate perpendicular to the ground, then hold at -40°C for 30 minutes, and then hold at -40°C until the temperature reaches 125°C. In a heat shock test in which 500 cycles of raising the temperature, holding it at 125°C for 30 minutes, and then lowering the temperature to -40°C were conducted, the drop of the thermally conductive grease composition from the start of the test was conducted. is preferably within 5 mm. Thereby, high drop resistance can be maintained.

本発明の熱伝導性グリース組成物には、必要に応じて、例えば、ベンガラ、酸化チタン、酸化セリウム等の耐熱向上剤、難燃剤、難燃助剤等が含まれていても良い。また、本発明の熱伝導性グリース組成物には、必要に応じて、着色、調色の目的で有機或いは無機粒子顔料が含まれていてもよい。また、本発明の熱伝導性グリース組成物には、必要に応じて、熱伝導性フィラーの表面処理等の目的で、アルコキシ基含有シリコーンが含まれていてもよい。本発明の熱伝導性グリース組成物では、硬化触媒は特に必要とせず、本発明の熱伝導性グリース組成物は、非硬化型グリースであると好ましい。 The thermally conductive grease composition of the present invention may contain, for example, a heat resistance improver such as red iron oxide, titanium oxide, cerium oxide, a flame retardant, a flame retardant aid, etc., as necessary. Further, the thermally conductive grease composition of the present invention may contain organic or inorganic particle pigments for the purpose of coloring and toning, if necessary. Further, the thermally conductive grease composition of the present invention may contain an alkoxy group-containing silicone for the purpose of surface treatment of the thermally conductive filler, etc., if necessary. The thermally conductive grease composition of the present invention does not particularly require a curing catalyst, and the thermally conductive grease composition of the present invention is preferably a non-curable grease.

本発明の熱伝導性グリース組成物は、ディスペーサー、ビン、缶、チューブなどに充填して製品とすることができる。 The thermally conductive grease composition of the present invention can be made into a product by filling it into a spacer, bottle, can, tube, or the like.

また、本発明は、一態様において、発熱体と放熱体の間に本発明の熱伝導性グリース組成物を介在させる本発明の熱伝導性グリースの使用に関する。また、本発明は、一態様において、発熱体と放熱体の間に本発明の熱伝導性グリース組成物を介在させ、当該熱伝導性グリースを前記発熱体と前記放熱体によって垂直に挟持する、本発明の熱伝導性グリースの使用に関する。発熱体としては、例えば電気部品、または半導体素子等の電子部品が挙げられる。放熱体としては、例えば、ヒートシンク等が挙げられる。 In one embodiment, the present invention also relates to the use of the thermally conductive grease of the present invention in which the thermally conductive grease composition of the present invention is interposed between a heating element and a heat radiating element. Further, in one embodiment, the present invention provides a method in which the thermally conductive grease composition of the present invention is interposed between a heating element and a heat radiating element, and the thermally conductive grease is vertically sandwiched between the heating element and the heat radiating element. Concerning the use of the thermally conductive grease of the present invention. Examples of the heating element include electrical components and electronic components such as semiconductor elements. Examples of the heat sink include a heat sink.

以下実施例を用いて説明する。本発明は実施例に限定されるものではない。各種パラメーターについては下記の方法で測定した。 This will be explained below using examples. The invention is not limited to the examples. Various parameters were measured using the following methods.

<熱伝導率>
熱伝導性グリース組成物の熱伝導率は、ホットディスク(ISO/CD 22007-2準拠)により測定した。この熱伝導率測定装置1は図1Aに示すように、ポリイミドフィルム製センサ2を2個の試料3a,3bで挟み、センサ2に定電力をかけ、一定発熱させてセンサ2の温度上昇値から熱特性を解析する。センサ2は先端4が直径7mmであり、図1Bに示すように、電極の2重スパイラル構造となっており、下部に印加電流用電極5と抵抗値用電極(温度測定用電極)6が配置されている。熱伝導率は以下の式(数1)で算出する。
<Thermal conductivity>
The thermal conductivity of the thermally conductive grease composition was measured using a hot disc (according to ISO/CD 22007-2). As shown in FIG. 1A, this thermal conductivity measuring device 1 is constructed by sandwiching a polyimide film sensor 2 between two samples 3a and 3b, applying constant power to the sensor 2 to generate a constant amount of heat, and measuring the temperature rise value of the sensor 2. Analyze thermal properties. The sensor 2 has a tip 4 with a diameter of 7 mm, and has a double spiral structure of electrodes, as shown in FIG. 1B, with an applied current electrode 5 and a resistance value electrode (temperature measurement electrode) 6 arranged at the bottom. has been done. The thermal conductivity is calculated using the following formula (Equation 1).

Figure 0007376756000002
Figure 0007376756000002

<熱伝導性グリース組成物の絶対粘度>
熱伝導性グリース組成物の絶対粘度はB型粘度計(ブルックフィールド社製HBDV2T)で測定した。スピンドルはT-Eスピンドルを使用し、回転速度5rpm(但し、比較例3と4は回転速度0.5rpm)、23℃における絶対粘度を測定した。
<Absolute viscosity of thermally conductive grease composition>
The absolute viscosity of the thermally conductive grease composition was measured using a B-type viscometer (HBDV2T manufactured by Brookfield). A TE spindle was used as the spindle, and the absolute viscosity at 23° C. was measured at a rotation speed of 5 rpm (however, in Comparative Examples 3 and 4, the rotation speed was 0.5 rpm).

<熱伝導性グリース組成物の落下試験>
熱伝導性グリース組成物の落下試験について図2A-Dを用いて説明する。
タテ40mm、ヨコ100mm、厚さ5mmのアルミプレート12に、0.4gの熱伝導性グリース組成物14を塗付し(図2A)、前記アルミプレートと、タテ40mm、ヨコ100mm、厚さ5mmのガラスプレート11との間に、スペーサー13を介在させて、熱伝導性グリース組成物の厚さが0.5mmとなるように挟持した(図2B)。図2Bにおいて、15は厚さ0.5mmとなるように2枚のプレート11,12により挟持された熱伝導性グリース組成物である。次に、アルミプレート12とガラスプレート11の主面が地面に対して垂直になるようにヒートサイクル試験機内に設置した(図2C)。16は試験前の試験片である。この状態で、-40℃で30分間保持してから、125℃に達するまで昇温し、その後、125℃で30分保持してから、-40℃まで降温するという1サイクルを、500サイクル行った。500サイクル実施後、試験片を取り出し、熱伝導性グリース15が落下していないか観察した。図2Dにおいて、17は試験後の試験片であり、18は落下距離である。尚、-40℃から125℃へ、125℃から-40℃への温度移行時間は、各々10分以内とした。
[判定基準]
A:グリースの落下が5mm以内
B:5mmを超えた場合
<Drop test of thermally conductive grease composition>
A drop test of a thermally conductive grease composition will be explained using FIGS. 2A to 2D.
0.4 g of thermally conductive grease composition 14 was applied to an aluminum plate 12 measuring 40 mm vertically, 100 mm horizontally, and 5 mm thick (FIG. 2A). A spacer 13 was interposed between the thermally conductive grease composition and the glass plate 11 so that the thickness of the thermally conductive grease composition was 0.5 mm (FIG. 2B). In FIG. 2B, 15 is a thermally conductive grease composition sandwiched between two plates 11 and 12 to have a thickness of 0.5 mm. Next, the aluminum plate 12 and the glass plate 11 were placed in a heat cycle tester so that their main surfaces were perpendicular to the ground (FIG. 2C). 16 is a test piece before the test. In this state, the temperature was held at -40°C for 30 minutes, then the temperature was raised until it reached 125°C, then the temperature was held at 125°C for 30 minutes, and then the temperature was lowered to -40°C, for 500 cycles. Ta. After 500 cycles, the test piece was taken out and observed to see if the thermally conductive grease 15 had fallen off. In FIG. 2D, 17 is the test piece after the test, and 18 is the falling distance. The temperature transition times from -40°C to 125°C and from 125°C to -40°C were each within 10 minutes.
[Judgment criteria]
A: If the grease falls within 5mm B: If the grease falls more than 5mm

<動粘度>
本願において、動粘度は、実施例のカタログ値も含めて、ウベローデ粘度計により測定した40℃における動粘度である。
<Kinematic viscosity>
In this application, the kinematic viscosity is the kinematic viscosity at 40° C. measured with an Ubbelohde viscometer, including the catalog values of Examples.

(実施例1~3、比較例1~3)
1.原料成分
(1)液状ジメチルポリシロキサン
液状ジメチルポリシロキサン(A)として、40℃における動粘度が110mm2/s(カタログ値)のジメチルシリコーンオイル(ダウ・東レ社製、商品名"SH200CV 110CS"、比重0.97g/cm3)を使用した。
(2)液状オルガノポリシロキサン
液状オルガノポリシロキサン(B)として、40℃における動粘度が800mm2/s(カタログ値)のメチルオクチルシリコーンオイル(Gelest社製、商品名"ALT-143" 、比重0.91g/cm3)を使用した。当該メチルオクチルシリコーンオイルが有する両末端のトリメチルシリル基が有するメチル基を除いた有機基全数を100%とすると、50%がメチル基であり、50%がオクチル基である。これらの有機基の割合はカタログ値である。
(3)熱伝導性フィラー
・中心粒径0.3μm(D50=0.3μm)の不定形粉砕アルミナ(未表面処理品)に、アルミナ100gに対してオクチルトリメトキシシラン2.4gを吸着させたもの(比重3.98g/cm3)を使用した。
・中心粒径2.3μm(D50=2.3μm)の不定形粉砕アルミナ(未表面処理品)にアルミナ100gに対してデシルトリメトキシシラン1.1gを吸着させたもの(比重3.98g/cm3)を使用した。
・中心粒径105μm(D50=105μm)の球状アルミナ(表面処理無し、比重3.98g/cm3)を使用した。
・中心粒径15μm(D50=15μm)の不定形窒化アルミニウム(表面処理無し、比重3.26g/cm3)を使用した。
(4)粘度調整剤
・デシルトリメトキシシラン(比重0.90g/cm3)を使用した。
(Examples 1 to 3, Comparative Examples 1 to 3)
1. Raw material component (1) Liquid dimethylpolysiloxane As liquid dimethylpolysiloxane (A), dimethylsilicone oil with a kinematic viscosity of 110 mm 2 /s (catalog value) at 40°C (manufactured by Dow Toray Industries, product name "SH200CV 110CS", Specific gravity 0.97 g/cm 3 ) was used.
(2) Liquid organopolysiloxane As the liquid organopolysiloxane (B), methyloctyl silicone oil with a kinematic viscosity of 800 mm 2 /s (catalog value) at 40°C (manufactured by Gelest, product name "ALT-143", specific gravity 0) was used. .91 g/cm 3 ) was used. When the total number of organic groups excluding the methyl groups possessed by the trimethylsilyl groups at both ends of the methyloctyl silicone oil is 100%, 50% are methyl groups and 50% are octyl groups. The proportions of these organic groups are catalog values.
(3) Thermal conductive filler: 2.4 g of octyltrimethoxysilane adsorbed to 100 g of alumina on amorphous pulverized alumina (unsurface treated product) with a center particle size of 0.3 μm (D50 = 0.3 μm). (specific gravity 3.98 g/cm 3 ) was used.
・1.1g of decyltrimethoxysilane is adsorbed to 100g of alumina on amorphous pulverized alumina (unsurface treated product) with a center particle size of 2.3μm (D50=2.3μm) (specific gravity: 3.98g/cm 3 )It was used.
- Spherical alumina (no surface treatment, specific gravity 3.98 g/cm 3 ) with a center particle diameter of 105 μm (D50=105 μm) was used.
- Amorphous aluminum nitride (no surface treatment, specific gravity 3.26 g/cm 3 ) with a center particle diameter of 15 μm (D50=15 μm) was used.
(4) Viscosity modifier: decyltrimethoxysilane (specific gravity 0.90 g/cm 3 ) was used.

2.混合方法
上記液状ジメチルポリシロキサンと液状オルガノポリシロキサンと熱伝導性フィラーと粘度調整剤を、下記表1に示した組成となるように混合し、熱伝導性グリース組成物を得た。
以上のようにして得た熱伝導性グリース組成物を評価した。組成と評価結果を次の表1にまとめて示す。
2. Mixing Method The liquid dimethylpolysiloxane, liquid organopolysiloxane, thermally conductive filler, and viscosity modifier were mixed to have the composition shown in Table 1 below to obtain a thermally conductive grease composition.
The thermally conductive grease composition obtained as described above was evaluated. The composition and evaluation results are summarized in Table 1 below.

Figure 0007376756000003
Figure 0007376756000003

以上の結果から、実施例1~3のグリース組成物は、低粘度であり、垂直に挟持した際に垂れ落ちにくく、熱伝導性フィラーが高充填可能で、熱伝導率も高い熱伝導性グリース組成物であることがわかった。
これに対し、比較例1はマトリックス樹脂として液状オルガノポリシロキサン(B)としてメチルオクチルシリコーンオイルを加えなかったため、落下試験の結果が悪かった。比較例2は液状オルガノポリシロキサンの添加割合が少なかったため、落下試験の結果が悪かった。比較例3は液状オルガノポリシロキサンの添加割合が多すぎため、粘度が高い問題があった。
From the above results, the grease compositions of Examples 1 to 3 are thermally conductive greases that have low viscosity, do not easily drip when vertically clamped, can be filled with a high degree of thermally conductive filler, and have high thermal conductivity. It turned out to be a composition.
On the other hand, in Comparative Example 1, methyloctyl silicone oil was not added as the liquid organopolysiloxane (B) as the matrix resin, so the drop test results were poor. Comparative Example 2 had poor drop test results because the proportion of liquid organopolysiloxane added was small. Comparative Example 3 had a problem of high viscosity because the proportion of liquid organopolysiloxane added was too large.

本発明の熱伝導性グリース組成物は、電気部品又は電子部品等の発熱体と放熱体の間に介在させる熱伝導材料(Thermal Interface Material)として好適である。 The thermally conductive grease composition of the present invention is suitable as a thermal interface material interposed between a heat generating element and a heat radiating element of electrical or electronic components.

1 熱伝導率測定装置
2 センサ
3a,3b 試料
4 センサの先端
5 印加電流用電極
6 抵抗値用電極(温度測定用電極)
11 ガラスプレート
12 アルミプレート
13 スペーサー
14 熱伝導性グリース
15 2枚のプレートにより挟持された熱伝導性グリース組成物
16 試験前の試験片
17 試験後の試験片
18 落下距離
1 Thermal conductivity measurement device 2 Sensors 3a, 3b Sample 4 Sensor tip 5 Applied current electrode 6 Resistance value electrode (temperature measurement electrode)
11 Glass plate 12 Aluminum plate 13 Spacer 14 Thermal conductive grease 15 Thermal conductive grease composition 16 sandwiched between two plates Test piece 17 before test Test piece 18 after test Falling distance

Claims (7)

マトリックス樹脂と熱伝導性フィラーを含む熱伝導性グリース組成物であって、
前記マトリックス樹脂は、40℃における動粘度が100~10,000mm2/sの液状ジメチルポリシロキサン(A)と、40℃における動粘度が1~10,000mm2/sの液状オルガノポリシロキサン(B)を含み、
前記液状ジメチルポリシロキサン(A)と前記液状オルガノポリシロキサン(B)の合計量を100質量部としたとき、前記マトリックス樹脂は、前記液状ジメチルポリシロキサン(A)を50質量部以上97質量部以下、前記液状オルガノポリシロキサン(B)を3質量部以上50質量部以下含み、
前記液状オルガノポリシロキサン(B)が有する、両末端のケイ素原子に結合した有機基を除いた有機基全数を100%とすると、前記有機基全数のうちの30~70%がメチル基であり、30~70%が炭素数2~14の飽和炭化水素基であり、
前記液状ジメチルポリシロキサン(A)と前記液状オルガノポリシロキサン(B)の合計量100質量部に対して、前記熱伝導性フィラーを400~2500質量部含み、
前記熱伝導性フィラーは、中心粒径が1μm以上5μm以下のアルミナを20~2000質量部含む、熱伝導性グリース組成物。
A thermally conductive grease composition comprising a matrix resin and a thermally conductive filler,
The matrix resin includes liquid dimethylpolysiloxane (A) having a kinematic viscosity of 100 to 10,000 mm 2 /s at 40°C, and liquid organopolysiloxane (B) having a kinematic viscosity of 1 to 10,000 mm 2 /s at 40°C. ), including
When the total amount of the liquid dimethylpolysiloxane (A) and the liquid organopolysiloxane (B) is 100 parts by mass, the matrix resin contains 50 parts by mass or more and 97 parts by mass or less of the liquid dimethylpolysiloxane (A). , containing 3 parts by mass or more and 50 parts by mass or less of the liquid organopolysiloxane (B),
If the total number of organic groups excluding the organic groups bonded to the silicon atoms at both ends of the liquid organopolysiloxane (B) is 100%, 30 to 70% of the total number of organic groups are methyl groups, 30 to 70% are saturated hydrocarbon groups having 2 to 14 carbon atoms,
Containing 400 to 2500 parts by mass of the thermally conductive filler based on 100 parts by mass of the total amount of the liquid dimethylpolysiloxane (A) and the liquid organopolysiloxane (B),
The thermally conductive filler is a thermally conductive grease composition containing 20 to 2000 parts by mass of alumina having a center particle size of 1 μm or more and 5 μm or less.
前記熱伝導性フィラーは、
中心粒径が100μmを超える球状アルミナを20~1500質量部と、
中心粒径が5μm以上50μm以下の窒化アルミニウムを20~500質量部と、
中心粒径が1μm以上5μm以下の不定形粉砕アルミナを20~1000質量部と、
中心粒径が0.1μm以上1μm未満の不定形粉砕アルミナを20~500質量部含む、請求項1に記載の熱伝導性グリース組成物。
The thermally conductive filler is
20 to 1500 parts by mass of spherical alumina with a center particle size exceeding 100 μm,
20 to 500 parts by mass of aluminum nitride with a center particle size of 5 μm or more and 50 μm or less,
20 to 1000 parts by mass of amorphous pulverized alumina with a center particle size of 1 μm or more and 5 μm or less,
The thermally conductive grease composition according to claim 1, comprising 20 to 500 parts by mass of amorphous pulverized alumina having a center particle size of 0.1 μm or more and less than 1 μm.
前記熱伝導性グリース組成物は、粘度調整剤として、さらにRaSi(OR')4-a(但し、Rは炭素数8~12の非置換または置換有機基、R'は炭素数1~4のアルキル基、aは0もしくは1)で示されるアルコキシシラン化合物又はその部分加水分解物を、前記液状ジメチルポリシロキサン(A)と前記液状オルガノポリシロキサン(B)の合計量100質量部に対して、0.1~10質量部含む、請求項1又は2に記載の熱伝導性グリース組成物。 The thermally conductive grease composition further contains R a Si(OR') 4-a (where R is an unsubstituted or substituted organic group having 8 to 12 carbon atoms, and R' is an unsubstituted or substituted organic group having 1 to 12 carbon atoms) as a viscosity modifier. An alkoxysilane compound represented by the alkyl group of 4, a is 0 or 1) or a partial hydrolyzate thereof, based on 100 parts by mass of the total amount of the liquid dimethylpolysiloxane (A) and the liquid organopolysiloxane (B). The thermally conductive grease composition according to claim 1 or 2, comprising 0.1 to 10 parts by mass. 前記熱伝導性フィラーは、RaSi(OR')4-a(但し、Rは炭素数8~12の非置換または置換有機基、R'は炭素数1~4のアルキル基、aは0もしくは1)で示されるアルコキシシラン化合物又はその部分加水分解物で表面前処理されている、請求項1又は2に記載の熱伝導性グリース組成物。 The thermally conductive filler is R a Si(OR') 4-a (where R is an unsubstituted or substituted organic group having 8 to 12 carbon atoms, R' is an alkyl group having 1 to 4 carbon atoms, and a is 0 The thermally conductive grease composition according to claim 1 or 2, wherein the surface is pretreated with an alkoxysilane compound represented by 1) or a partially hydrolyzed product thereof. 前記熱伝導性グリース組成物の熱伝導率は、1.0W/m・K以上10.0W/m・K以下である請求項1又は2に記載の熱伝導性グリース組成物。 The thermally conductive grease composition according to claim 1 or 2, wherein the thermal conductivity of the thermally conductive grease composition is 1.0 W/m·K or more and 10.0 W/m·K or less. 前記熱伝導性グリース組成物の、B型粘度計で測定した23℃での絶対粘度が、1,000~10,000Pa・sである、請求項1又は2に記載の熱伝導性グリース組成物。 The thermally conductive grease composition according to claim 1 or 2, wherein the thermally conductive grease composition has an absolute viscosity of 1,000 to 10,000 Pa·s at 23° C. as measured with a B-type viscometer. . 2枚のプレート間に前記熱伝導性グリース組成物を0.4g配置し、前記熱伝導性グリース組成物からなる層の厚さが0.5mmとなるように前記2枚のプレートで前記熱伝導性グリース組成物を挟持した状態で、前記プレートの主面が地面に対して垂直となるように、これらをヒートショック試験機内に保持し、次いで、-40℃で30分間保持してから、昇温し、その後、125℃で30分保持してから、-40℃まで降温するという1サイクルを、500サイクル行うヒートショック試験において、前記試験のスタート時からの熱伝導性グリース組成物の落下が5mm以内である、請求項1又は2に記載の熱伝導性グリース組成物。 0.4 g of the thermally conductive grease composition is placed between two plates, and the thermal conduction is carried out between the two plates so that the thickness of the layer made of the thermally conductive grease composition is 0.5 mm. The plates were held in a heat shock tester with the adhesive grease composition sandwiched between them so that the main surfaces of the plates were perpendicular to the ground, then kept at -40°C for 30 minutes, and then heated. In a heat shock test in which 500 cycles of heating, holding at 125°C for 30 minutes, and then lowering the temperature to -40°C were performed, it was found that the thermally conductive grease composition dropped from the start of the test. The thermally conductive grease composition according to claim 1 or 2, which has a diameter of 5 mm or less.
JP2023553059A 2022-09-27 2023-06-13 Thermal conductive grease composition Active JP7376756B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2022153788 2022-09-27
JP2022153788 2022-09-27
PCT/JP2023/021847 WO2024070069A1 (en) 2022-09-27 2023-06-13 Thermally conductive grease composition

Publications (3)

Publication Number Publication Date
JP7376756B1 true JP7376756B1 (en) 2023-11-08
JPWO2024070069A1 JPWO2024070069A1 (en) 2024-04-04
JPWO2024070069A5 JPWO2024070069A5 (en) 2024-09-05

Family

ID=88645973

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2023553059A Active JP7376756B1 (en) 2022-09-27 2023-06-13 Thermal conductive grease composition

Country Status (1)

Country Link
JP (1) JP7376756B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7500884B1 (en) 2022-09-26 2024-06-17 富士高分子工業株式会社 Thermally conductive grease composition

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008222776A (en) * 2007-03-09 2008-09-25 Shin Etsu Chem Co Ltd Heat-conductive silicone grease composition
JP2014084403A (en) * 2012-10-23 2014-05-12 Shin Etsu Chem Co Ltd Thermally conductive silicone grease composition
JP2015140395A (en) * 2014-01-29 2015-08-03 信越化学工業株式会社 Thermal conductive silicone grease composition

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008222776A (en) * 2007-03-09 2008-09-25 Shin Etsu Chem Co Ltd Heat-conductive silicone grease composition
JP2014084403A (en) * 2012-10-23 2014-05-12 Shin Etsu Chem Co Ltd Thermally conductive silicone grease composition
JP2015140395A (en) * 2014-01-29 2015-08-03 信越化学工業株式会社 Thermal conductive silicone grease composition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7500884B1 (en) 2022-09-26 2024-06-17 富士高分子工業株式会社 Thermally conductive grease composition

Also Published As

Publication number Publication date
JPWO2024070069A1 (en) 2024-04-04

Similar Documents

Publication Publication Date Title
TWI731435B (en) Thermal conductive composition and thermal conductive sheet using the same
JP6531238B2 (en) One-component curable heat conductive silicone grease composition and electronic / electrical parts
JP7047199B1 (en) Thermally conductive grease composition
JP5614909B2 (en) Putty-like heat transfer material and manufacturing method thereof
TWI743247B (en) Thermally conductive silicone composition and its hardened product, and manufacturing method
BR112019000641B1 (en) GEL-TYPE THERMAL INTERFACE MATERIAL
JP7376756B1 (en) Thermal conductive grease composition
CN101624514A (en) Heat-conductive silicone composition
JP7015424B1 (en) Thermally conductive silicone grease composition and its manufacturing method
TW201843282A (en) Silicone resin composition for die-bonding and cured product
WO2022158029A1 (en) Thermally conductive silicone grease composition and production method for same
JPWO2020137086A1 (en) Thermal conductivity composition and thermal conductivity sheet using it
KR101775288B1 (en) Silicone composition having excellent long-term storage stability and heat-radiating function
JP7095194B1 (en) Thermally conductive grease and its manufacturing method
WO2024070069A1 (en) Thermally conductive grease composition
JP7500884B1 (en) Thermally conductive grease composition
WO2021084787A1 (en) Thermally conductive grease and method for manufacturing same
KR20160150290A (en) Silicone polymer composition having an excellent heat-radiating function
WO2022215292A1 (en) Thermally conductive grease composition
JP2006143978A (en) Heat conductive silicone composition
TWI724816B (en) Heat-resistant and thermally conductive composition and heat-resistant and thermally conductive sheet
JP7041793B1 (en) Silicone gel composition and silicone gel sheet
CN109906249A (en) Silicone composition with excellent heat dissipation performance
TW202134349A (en) Thermally conductive silicone gel composition

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230913

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230913

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20230913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231005

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231013

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231024

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231026

R150 Certificate of patent or registration of utility model

Ref document number: 7376756

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150