JP7374610B2 - Storage battery operation device and storage battery operation method - Google Patents

Storage battery operation device and storage battery operation method Download PDF

Info

Publication number
JP7374610B2
JP7374610B2 JP2019089302A JP2019089302A JP7374610B2 JP 7374610 B2 JP7374610 B2 JP 7374610B2 JP 2019089302 A JP2019089302 A JP 2019089302A JP 2019089302 A JP2019089302 A JP 2019089302A JP 7374610 B2 JP7374610 B2 JP 7374610B2
Authority
JP
Japan
Prior art keywords
storage battery
power
value
plan
maximum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019089302A
Other languages
Japanese (ja)
Other versions
JP2020188521A (en
Inventor
貴之 杉本
俊博 山根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Corp
Original Assignee
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Corp filed Critical Shimizu Corp
Priority to JP2019089302A priority Critical patent/JP7374610B2/en
Publication of JP2020188521A publication Critical patent/JP2020188521A/en
Application granted granted Critical
Publication of JP7374610B2 publication Critical patent/JP7374610B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/70Smart grids as climate change mitigation technology in the energy generation sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/12Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/14Energy storage units

Landscapes

  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Description

本発明は、蓄電池運転装置および蓄電池運転方法に関する。 The present invention relates to a storage battery operating device and a storage battery operating method.

2019年以降はFIT(Feed-in Tariff;固定価格買取制度)による太陽光の余剰電力の買い取り期間が満了となる家庭が登場し始めることを背景に、自家消費トレンドの進展、デマンドレスポンス(DR;Demand Response)や仮想発電所(VPP;Virtual Power Plant)用電源としての採用が増加し、蓄電池の市場拡大が期待されている。蓄電池は電力ピーク削減に有効な手段として一般によく知られている。電力ピーク削減を行う手法としては、あらかじめオペレータが設定した受電目標値(買電目標値)を超えるような場合に蓄電池を放電させることが考えられる(特許文献1)。しかしながら、設定した当該目標値が適切でないと、蓄電池容量が不足するなど、想定される電力ピーク削減量が得られない可能性がある。そこで、当該目標値の設定が不要で安定的な電力ピーク削減量が得られる手法が求められている。 From 2019 onwards, households will begin to see the expiry of their surplus solar power purchase period under FIT (Feed-in Tariff), and as a result, trends in self-consumption and demand response (DR) will increase. Demand response) and virtual power plants (VPP) are increasingly being adopted as power sources, and the market for storage batteries is expected to expand. Storage batteries are generally well known as an effective means for reducing power peaks. One possible method for reducing power peaks is to discharge the storage battery when the power reception target value (power purchase target value) set in advance by the operator is exceeded (Patent Document 1). However, if the set target value is not appropriate, there is a possibility that the expected power peak reduction amount will not be obtained due to insufficient storage battery capacity. Therefore, there is a need for a method that does not require setting the target value and can obtain a stable peak power reduction amount.

国際公開第2013/038483号International Publication No. 2013/038483

本発明は、上記事情に鑑みてなされたものであり、目標値の設定をしなくても安定的な電力ピーク削減量を得られる蓄電池運転装置および蓄電池運転方法を提供することを目的とする。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a storage battery operation device and a storage battery operation method that can obtain a stable peak power reduction amount without setting a target value.

上記課題を解決するため、本発明の一態様は、電力系統に接続された負荷に電力を供給する蓄電池の運転を計画する装置であって、蓄電池運転時間帯と単位時間毎の蓄電池出力値とが異なる複数の運転計画を作成し、前記運転計画毎に電力ピーク削減量を算出および比較して、前記電力ピーク削減量が最大となる前記運転計画を、採用する前記運転計画に決定する運転計画決定部を備え、前記運転計画決定部は、前記電力ピーク削減量が最大となる前記運転計画が複数ある場合、蓄電池運転時間の長さ、前記蓄電池の運転終了時刻、または前記蓄電池出力値の最低値に基づいて採用する前記運転計画を決定し、前記電力ピーク削減量が最大となる複数の前記運転計画について前記蓄電池運転時間の長さが同じである場合、前記蓄電池の運転開始時刻に基づいて採用する前記運転計画を決定する蓄電池運転装置である。 In order to solve the above problems, one aspect of the present invention is an apparatus for planning the operation of a storage battery that supplies power to a load connected to an electric power system, the apparatus comprising: a storage battery operation time period and a storage battery output value for each unit time; An operation plan in which a plurality of operation plans with different values are created, a power peak reduction amount is calculated and compared for each of the operation plans, and the operation plan with the maximum power peak reduction amount is determined as the operation plan to be adopted. If there is a plurality of operation plans in which the power peak reduction amount is the maximum, the operation plan determination section determines the length of the storage battery operation time , the operation end time of the storage battery, or the output value of the storage battery. The operation plan to be adopted is determined based on the lowest value, and if the length of the storage battery operation time is the same for the plurality of operation plans in which the power peak reduction amount is the maximum, the operation plan to be adopted is determined based on the operation start time of the storage battery. This is a storage battery operation device that determines the operation plan to be adopted .

また、本発明の一態様は、上記蓄電池運転装置であって、前記電力ピーク削減量が、1日の前記単位時間毎の予測負荷電力の最大値である予測負荷電力最大値から、前記各運転計画における前記単位時間毎の前記予測負荷電力から前記蓄電池出力値を減じた値の最大値である予測受電電力最大値を、引いた値である。 Further, one aspect of the present invention is the storage battery operation device, in which the power peak reduction amount is calculated from a maximum predicted load power value that is a maximum value of predicted load power for each unit time of the day. This is the value obtained by subtracting the maximum predicted received power value, which is the maximum value obtained by subtracting the storage battery output value from the predicted load power for each unit time in the plan.

また、本発明の一態様は、上記蓄電池運転装置であって、前記負荷の負荷電力の変動を補償するように前記蓄電池出力値を調節する負荷変動補償部をさらに備える。 Moreover, one aspect of the present invention is the storage battery operating device, further comprising a load fluctuation compensator that adjusts the storage battery output value so as to compensate for fluctuations in the load power of the load.

また、本発明の一態様は、電力系統に接続された負荷に電力を供給する蓄電池の運転を計画する方法であって、運転計画決定部によって、蓄電池運転時間帯と単位時間毎の蓄電池出力値とが異なる複数の運転計画を作成し、前記運転計画毎に電力ピーク削減量を算出および比較して、前記電力ピーク削減量が最大となる前記運転計画を、採用する前記運転計画に決定し、前記電力ピーク削減量が最大となる前記運転計画が複数ある場合、蓄電池運転時間の長さ、前記蓄電池の運転終了時刻、または前記蓄電池出力値の最低値に基づいて採用する前記運転計画を決定し、前記電力ピーク削減量が最大となる複数の前記運転計画について前記蓄電池運転時間の長さが同じである場合、前記蓄電池の運転開始時刻に基づいて採用する前記運転計画を決定する蓄電池運転方法である。 Further, one aspect of the present invention is a method for planning the operation of a storage battery that supplies power to a load connected to an electric power system, in which the operation plan determining unit determines the storage battery operation time period and the storage battery output value for each unit time. creating a plurality of operation plans with different values, calculating and comparing the amount of power peak reduction for each of the operation plans, and determining the operation plan with the maximum amount of power peak reduction as the operation plan to be adopted; If there is a plurality of operation plans in which the power peak reduction amount is maximum, the operation plan to be adopted is determined based on the length of the storage battery operation time , the operation end time of the storage battery, or the lowest value of the storage battery output value. and a storage battery operation method that determines the operation plan to be adopted based on the operation start time of the storage battery when the length of the storage battery operation time is the same for the plurality of operation plans in which the power peak reduction amount is the maximum. It is.

本発明の各態様によれば、目標値の設定をしなくても安定的な電力ピーク削減量を得られるようにする。 According to each aspect of the present invention, a stable peak power reduction amount can be obtained without setting a target value.

本発明の一実施形態に係る蓄電池運転装置の構成例を示す構成図である。1 is a configuration diagram showing a configuration example of a storage battery operating device according to an embodiment of the present invention. 図1に示す負荷変動補償部13の構成例を示す構成図である。2 is a configuration diagram showing an example of the configuration of a load fluctuation compensator 13 shown in FIG. 1. FIG. 図1に示す蓄電池運転装置10の動作例を示すフローチャートである。2 is a flowchart showing an example of the operation of the storage battery operating device 10 shown in FIG. 1. FIG. 図1に示す蓄電池運転装置10の動作例を説明するための模式図である。FIG. 2 is a schematic diagram for explaining an example of the operation of the storage battery operating device 10 shown in FIG. 1. FIG. 図1に示す蓄電池運転装置10の動作例を説明するための模式図である。FIG. 2 is a schematic diagram for explaining an example of the operation of the storage battery operating device 10 shown in FIG. 1. FIG. 図1に示す蓄電池運転装置10の動作例を説明するための模式図である。FIG. 2 is a schematic diagram for explaining an example of the operation of the storage battery operating device 10 shown in FIG. 1. FIG. 図1に示す蓄電池運転装置10の動作例が奏する効果を説明するための模式図である。FIG. 2 is a schematic diagram for explaining the effects of the operation example of the storage battery operating device 10 shown in FIG. 1. FIG. 図1に示す蓄電池運転装置10の動作例が奏する効果を説明するための模式図である。FIG. 2 is a schematic diagram for explaining the effects of the operation example of the storage battery operating device 10 shown in FIG. 1. FIG.

以下、図面を参照して本発明の実施形態について説明する。図1は、本発明の一実施形態に係る蓄電池運転装置10の構成例を示す構成図である。 Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a configuration diagram showing an example of the configuration of a storage battery operating device 10 according to an embodiment of the present invention.

図1に示す蓄電池運転装置10は、電力系統1に接続された負荷3に電力を供給する蓄電池4の運転を計画する装置であって、負荷3の消費電力である負荷電力を予測や計画したり、蓄電池4の運転計画(以下、蓄電池運転計画あるいは単に計画ともいう)を作成したりする。蓄電池運転装置10は、例えばパーソナルコンピュータ、サーバ等のコンピュータと、そのコンピュータの周辺装置等から構成される。蓄電池運転装置10は、コンピュータが有するハードウェアとソフトウェアとの組み合わせから構成される機能的要素として、通信部11と、運転計画決定部12と、負荷変動補償部13と、蓄電池制御部14とを有する。 A storage battery operating device 10 shown in FIG. 1 is a device that plans the operation of a storage battery 4 that supplies power to a load 3 connected to an electric power system 1, and predicts and plans the load power that is the power consumption of the load 3. or create an operation plan for the storage battery 4 (hereinafter also referred to as a storage battery operation plan or simply a plan). The storage battery operating device 10 is composed of a computer such as a personal computer or a server, and peripheral devices for the computer. The storage battery operation device 10 includes a communication section 11, an operation plan determination section 12, a load fluctuation compensation section 13, and a storage battery control section 14 as functional elements composed of a combination of hardware and software included in a computer. have

通信部11は、図示していない電力会社等が運営するサーバとデマンドレスポンス、仮想発電所等に係る所定の通信を行ったり、負荷3や蓄電池4が有する図示していない通信部との間で所定の通信を行ったりする。 The communication unit 11 performs predetermined communication related to demand response, virtual power plants, etc. with a server operated by an electric power company, etc. (not shown), and communicates with a communication unit (not shown) of the load 3 or the storage battery 4. Perform predetermined communications.

運転計画決定部12は、蓄電池4の運転計画を作成する。蓄電池4の運転計画は、将来の一定期間における所定の単位時間(例えば30分)毎の蓄電池4の出力の計画値(目標値)(以下、蓄電池出力値という)を示す情報である。本実施形態の運転計画決定部12は、蓄電池運転時間帯と単位時間毎の蓄電池出力値とが異なる複数の運転計画を作成し、運転計画毎に電力ピーク削減量を算出および比較して、比較結果に基づき採用する運転計画を決定する。電力ピーク削減量は、例えば、1日の単位時間毎の予測負荷電力の最大値である予測負荷電力最大値から、各運転計画における単位時間毎の予測負荷電力から蓄電池出力値を減じた値の最大値である予測受電電力最大値を、引いた値である。また、運転計画決定部12は、複数の運転計画の電力ピーク削減量が同一である場合、蓄電池運転時間に基づいて採用する運転計画を決定する。 The operation plan determining unit 12 creates an operation plan for the storage battery 4. The operation plan of the storage battery 4 is information indicating a planned value (target value) of the output of the storage battery 4 (hereinafter referred to as a storage battery output value) for each predetermined unit time (for example, 30 minutes) in a certain period of time in the future. The operation plan determining unit 12 of this embodiment creates a plurality of operation plans in which the storage battery operation time period and the storage battery output value for each unit time are different, calculates and compares the power peak reduction amount for each operation plan, and compares the Determine the operation plan to be adopted based on the results. The power peak reduction amount is, for example, the value obtained by subtracting the storage battery output value from the predicted load power for each unit time in each operation plan from the predicted load power maximum value, which is the maximum value of the predicted load power for each unit time in a day. This is the value obtained by subtracting the predicted maximum received power value, which is the maximum value. Moreover, when the power peak reduction amounts of a plurality of operation plans are the same, the operation plan determination unit 12 determines the operation plan to be adopted based on the storage battery operation time.

負荷変動補償部13は、負荷3の負荷電力の変動を補償するように蓄電池4の運転計画に基づく蓄電池出力値を調節した信号である、蓄電池出力指令値を生成する。すなわち、負荷変動補償部13は、負荷3の負荷電力の変動を補償するように蓄電池出力値を調節する。 The load fluctuation compensator 13 generates a storage battery output command value, which is a signal obtained by adjusting the storage battery output value based on the operation plan of the storage battery 4 so as to compensate for fluctuations in the load power of the load 3. That is, the load fluctuation compensator 13 adjusts the storage battery output value so as to compensate for fluctuations in the load power of the load 3.

蓄電池制御部14は、負荷変動補償部13が生成した蓄電池出力指令値に基づいて蓄電池4の出力を制御する。蓄電池出力指令値は、放電または充放電の指令値である。 The storage battery control unit 14 controls the output of the storage battery 4 based on the storage battery output command value generated by the load fluctuation compensation unit 13. The storage battery output command value is a command value for discharging or charging/discharging.

図2は、負荷変動補償部13の構成例を示す構成図である。図2に示す負荷変動補償部13は、バンドパスフィルタ131と、加算器132と、リミッタ133とを有する。バンドパスフィルタ131は、負荷電力の実測値を入力し、直流分と所定の低周波成分と高周波成分を除去した信号を加算器132へ出力する。バンドパスフィルタ131の出力信号は、負荷電力の変動分を表す。加算器132は、運転計画決定部12が決定した蓄電池出力値と、バンドパスフィルタ131の出力値とを加算し、加算結果をリミッタ133へ出力する。加算器132の出力信号は、負荷電力の変動分を補償する蓄電池出力値となる。リミッタ133は、加算器132の出力信号を所定の上下限値で制限して、蓄電池出力指令値を生成して出力する。蓄電池出力指令値は、蓄電池4の電池出力の指令値となる。図2に示す負荷変動補償部13によれば、蓄電池4の運転時間帯において蓄電池出力値をバイアス値として使用することで、蓄電池4によるピークカットと負荷変動補償を両立することができる。なお、運転時間帯以外については、蓄電池出力値は0kWである。 FIG. 2 is a configuration diagram showing an example of the configuration of the load fluctuation compensator 13. As shown in FIG. The load fluctuation compensator 13 shown in FIG. 2 includes a bandpass filter 131, an adder 132, and a limiter 133. The bandpass filter 131 inputs the measured value of the load power, and outputs a signal from which the DC component and predetermined low frequency components and high frequency components are removed to the adder 132. The output signal of the bandpass filter 131 represents a variation in load power. The adder 132 adds the storage battery output value determined by the operation plan determining unit 12 and the output value of the bandpass filter 131 and outputs the addition result to the limiter 133. The output signal of the adder 132 is a storage battery output value that compensates for variations in load power. The limiter 133 limits the output signal of the adder 132 to predetermined upper and lower limits, generates and outputs a storage battery output command value. The storage battery output command value is a command value for the battery output of the storage battery 4. According to the load fluctuation compensation unit 13 shown in FIG. 2, by using the storage battery output value as a bias value during the operation time of the storage battery 4, it is possible to achieve both peak cut by the storage battery 4 and load fluctuation compensation. Note that the storage battery output value is 0 kW outside the operating hours.

負荷3は、1または複数の需要家施設に設置されている1または複数の電気負荷であり、電力会社等の一般電気事業者が運営する電力系統1から配電系統2を介して受電した電力や、蓄電池4から放電された電力を電源として動作する。負荷3で消費された電力の実績値を表すデータは、直接または図示していない他の制御装置等を介して、蓄電池運転装置10へ例えば所定の周期で通知される。 The load 3 is one or more electrical loads installed in one or more customer facilities, and is the electric power received via the distribution system 2 from the power system 1 operated by a general electric utility such as an electric power company. , operates using the power discharged from the storage battery 4 as a power source. The data representing the actual value of the power consumed by the load 3 is notified to the storage battery operating device 10 at a predetermined period, for example, directly or via another control device (not shown).

蓄電池4は、1または複数の需要家施設に設置されている1または複数の充放電設備であり、配電系統2に接続され、例えば蓄電池運転装置10から受信した蓄電池出力指令値に基づき電力を充電したり放電したりする。蓄電池運転装置10は、1つの蓄電池4の電池出力を制御したり、複数の蓄電池4の電池出力を束ねて制御したりする。なお、電池出力は、蓄電池4の充放電電力である。蓄電池4の現在SOC値(後述する)等の計測値を表すデータは、直接または図示していない他の制御装置等を介して、蓄電池運転装置10へ例えば所定の周期で通知される。 The storage battery 4 is one or more charging/discharging equipment installed in one or more customer facilities, is connected to the power distribution system 2, and charges electric power based on the storage battery output command value received from the storage battery operating device 10, for example. or discharge. The storage battery operation device 10 controls the battery output of one storage battery 4 or collectively controls the battery output of a plurality of storage batteries 4. Note that the battery output is the charging/discharging power of the storage battery 4. Data representing measured values such as the current SOC value (described later) of the storage battery 4 is notified to the storage battery operating device 10 at, for example, a predetermined period, directly or via another control device (not shown).

次に、図3~図8を参照して、図1に示す蓄電池運転装置10の動作例について説明する。図3は、図1に示す蓄電池運転装置10の動作例を示すフローチャートである。図4~図8は、図1に示す蓄電池運転装置10の動作例等を説明するための模式図である。 Next, an example of the operation of the storage battery operating device 10 shown in FIG. 1 will be described with reference to FIGS. 3 to 8. FIG. 3 is a flowchart showing an example of the operation of the storage battery operating device 10 shown in FIG. 4 to 8 are schematic diagrams for explaining operation examples of the storage battery operating device 10 shown in FIG. 1.

本実施形態の蓄電池運転装置10は、電力ピーク削減量が最大となるように、蓄電池運転時間帯と蓄電池出力値を決定することで、蓄電池の運転計画を立案する。なお、この動作例では、図1に示す系統構成において(負荷電力=受電電力+電池出力)が成立するものとする。また、蓄電池運転装置10は、予測負荷電力(30分単位のデータ)に基づいて蓄電池の運転計画を立案する。予測負荷電力は、例えば特許文献1に記載されているように過去の実績値等に基づいて予測することができる。また、(蓄電池使用可能容量=定格容量×(現在SOC値-SOC下限値)÷100)である。ここで、SOC(State Of Charge)は、電池残量を表す単位であり、100%は満充電状態、0%は完全放電状態である。また、現在SOC値[%]は計測値とし、定格容量[kWh]とSOC下限値[%]はオペレータによる設定値である。 The storage battery operation device 10 of this embodiment creates a storage battery operation plan by determining the storage battery operation time period and the storage battery output value so that the power peak reduction amount is maximized. In this operation example, it is assumed that (load power=received power+battery output) holds true in the system configuration shown in FIG. Further, the storage battery operation device 10 creates an operation plan for the storage battery based on the predicted load power (data in units of 30 minutes). The predicted load power can be predicted based on past performance values, etc., as described in Patent Document 1, for example. Further, (usable capacity of storage battery = rated capacity x (current SOC value - lower limit SOC value) ÷ 100). Here, SOC (State of Charge) is a unit representing the remaining battery power, and 100% is a fully charged state and 0% is a completely discharged state. Further, the current SOC value [%] is a measured value, and the rated capacity [kWh] and the SOC lower limit value [%] are values set by the operator.

図3に示す処理では、まず、運転計画決定部12が、運転開始時間帯と運転終了時間帯が異なる各計画において蓄電池出力値を算出する(ステップS1)。ステップS1において、例えば、運転計画決定部12は、まず、図4に示すように、蓄電池運転開始時間帯と終了時間帯の範囲で蓄電池運転時間[h]を算出する。図4は、開始時間帯設定が「6:00」~「17:00」、終了時間帯設定が「6:00」~「17:00」の場合の蓄電池運転時間算出例を示す。図4に示す例において、例えば、開始時刻が6時00分で終了時刻が6時30分の場合、蓄電池の運転時間は0.5時間である。また、例えば、開始時刻が6時00分で終了時刻が17時00分の場合、蓄電池の運転時間は11.0時間である。なお、図4から図6において、記号「・」は当該セルの値が省略されていることを意味し、記号「-」は当該セルの値が無いことを意味する。 In the process shown in FIG. 3, first, the driving plan determining unit 12 calculates the storage battery output value for each plan in which the driving start time period and the driving end time period are different (step S1). In step S1, for example, the operation plan determining unit 12 first calculates the storage battery operation time [h] in the range of the storage battery operation start time period and the end time period, as shown in FIG. FIG. 4 shows an example of calculating the storage battery operating time when the start time slot setting is "6:00" to "17:00" and the end time slot setting is "6:00" to "17:00." In the example shown in FIG. 4, for example, if the start time is 6:00 and the end time is 6:30, the operating time of the storage battery is 0.5 hours. Further, for example, when the start time is 6:00 and the end time is 17:00, the operating time of the storage battery is 11.0 hours. Note that in FIGS. 4 to 6, the symbol "." means that the value of the cell concerned is omitted, and the symbol "-" means that there is no value of the cell concerned.

ステップS1において、次に、運転計画決定部12は、例えば、蓄電池使用可能容量[kWh]を運転時間[h]で割った値(=平均値)を各蓄電池運転時間帯の蓄電池出力値[kW]とする。ここで、運転計画決定部12は、蓄電池出力値が蓄電池出力上限値[kW]を超過する場合は、蓄電池出力上限値を出力値とする。図5は、蓄電池使用可能容量が60kWhで、蓄電池出力値上限値が30kWである場合の蓄電池出力値の算出例を示す。なお、蓄電池使用可能容量[kWh]と蓄電池出力上限値[kW]はオペレータによる設定値である。図5に示す例において、例えば、開始時刻が6時00分で終了時刻が6時30分の場合、図4に示すように蓄電池運転時間は0.5時間なので、蓄電池使用可能容量(60kWh)を0.5時間で除した値は120kWとなるが、この場合、上限値(30kW)を超えているので、蓄電池出力値は破線で囲んで示したように上限値の30kWとなる。また、例えば、開始時刻が6時00分で終了時刻が17時00分の場合、図4に示すように蓄電池運転時間は11.0時間なので、蓄電池出力値は、鎖線で囲んで示したように蓄電池使用可能容量(60kWh)を11.0時間で除した値の約5.45kWとなる。ただし、蓄電池出力値は、計画毎に1つの平均値とすることに限定されず、計画毎に複数の値を含むようにしてもよい。 In step S1, next, the operation plan determining unit 12 calculates, for example, the value (=average value) obtained by dividing the storage battery usable capacity [kWh] by the operation time [h] to the storage battery output value [kW ]. Here, when the storage battery output value exceeds the storage battery output upper limit value [kW], the operation plan determining unit 12 sets the storage battery output upper limit value as the output value. FIG. 5 shows an example of calculating the storage battery output value when the storage battery usable capacity is 60 kWh and the storage battery output value upper limit is 30 kW. Note that the storage battery usable capacity [kWh] and the storage battery output upper limit value [kW] are values set by the operator. In the example shown in Figure 5, for example, if the start time is 6:00 and the end time is 6:30, the storage battery operation time is 0.5 hours as shown in Figure 4, so the storage battery usable capacity (60kWh) The value divided by 0.5 hours is 120 kW, but in this case, since it exceeds the upper limit (30 kW), the storage battery output value becomes the upper limit of 30 kW, as shown surrounded by a broken line. For example, if the start time is 6:00 and the end time is 17:00, the battery operation time is 11.0 hours as shown in Figure 4, so the battery output value is as shown in the chain line. The usable capacity of the storage battery (60 kWh) is divided by 11.0 hours, which is approximately 5.45 kW. However, the storage battery output value is not limited to one average value for each plan, and may include a plurality of values for each plan.

次に、運転計画決定部12は、予測負荷電力最大値を算出する(ステップS2)。ステップS2において、運転計画決定部12は、1日の予測負荷電力の中で最大となる値を予測負荷電力最大値と決定する。 Next, the operation plan determining unit 12 calculates the predicted maximum load power value (step S2). In step S2, the operation plan determining unit 12 determines the maximum value among the daily predicted load powers as the maximum predicted load power value.

次に、運転計画決定部12は、各計画における予測受電電力最大値を算出する(ステップS3)。ステップS3において、運転計画決定部12は、まず、1日の各単位時間における予測受電電力を((予測受電電力)=(予測負荷電力)-(蓄電池出力値))の式で算出する。ここで、蓄電池出力値はステップS1で算出された値である。ステップS3において、運転計画決定部12は、次に、算出した予測受電電力の中で最大となる値を予測受電電力最大値とする。 Next, the operation plan determining unit 12 calculates the predicted maximum received power value in each plan (step S3). In step S3, the operation plan determining unit 12 first calculates the predicted received power for each unit time of the day using the formula ((predicted received power)=(predicted load power)−(storage battery output value)). Here, the storage battery output value is the value calculated in step S1. In step S3, the operation plan determining unit 12 next sets the maximum value among the calculated predicted received powers as the maximum predicted received power value.

次に、運転計画決定部12は、各計画における電力ピーク削減量を算出する(ステップS4)。ステップS4において、運転計画決定部12は、ステップS2で求めた予測負荷電力最大値からステップS3で求めた予測受電電力最大値を引いた値を電力ピーク削減量とする。 Next, the operation plan determining unit 12 calculates the power peak reduction amount in each plan (step S4). In step S4, the operation plan determining unit 12 sets the value obtained by subtracting the predicted maximum received power value obtained in step S3 from the predicted maximum load power value obtained in step S2 as the power peak reduction amount.

次に、運転計画決定部12は、蓄電池運転計画を決定する(ステップS5)。ステップS5において、運転計画決定部12は、開始時間帯から終了時間帯までの間で設定された全ての計画に対してステップS4で求めた各電力ピーク削減量を比較した結果に基づき、電力ピーク削減量が最大となる計画を採用する計画(実際に使用する計画)に決定する。その際、運転計画決定部12は、同じ電力ピーク削減量となる計画が複数ある場合は、蓄電池運転時間が最も短い計画を採用する。さらに運転時間数も同じである場合は、運転計画決定部12は、開始時刻が最も早い計画を採用する。ただし、同じ電力ピーク削減量となる計画が複数ある場合に採用計画を選択する手法はこれに限らず、例えば、終了時刻が最も早い計画を選択したり(例えば次の放電への準備時間の確保が容易)、蓄電池出力値の最低値が最も大きい計画(例えば変換回路の効率維持が容易)を選択したりすることができる。 Next, the operation plan determining unit 12 determines a storage battery operation plan (step S5). In step S5, the operation plan determining unit 12 determines the power peak reduction amount based on the result of comparing each power peak reduction amount obtained in step S4 with respect to all plans set from the start time period to the end time period. The plan that provides the maximum amount of reduction is determined as the plan that will be adopted (the plan that will actually be used). At this time, if there are multiple plans with the same peak power reduction amount, the operation plan determining unit 12 adopts the plan with the shortest storage battery operation time. Further, if the number of driving hours is also the same, the driving plan determining unit 12 adopts the plan with the earliest start time. However, when there are multiple plans with the same peak power reduction amount, the method for selecting the adopted plan is not limited to this. It is possible to select a plan with the highest minimum value of the storage battery output value (for example, it is easy to maintain the efficiency of the conversion circuit).

図6は、蓄電池運転計画決定例を説明するための模式図であり、各計画における電力ピーク削減量の例を示す。図6に示す例において、例えば、開始時刻が12時30分で終了時刻が13時00分の計画の場合、電力ピーク削減量は15kWである。また、例えば、開始時刻が12時30分で終了時刻が13時30分の計画の場合、電力ピーク削減量は30kWである。図6に示す例では、最大の電力ピーク削減量は30kWだが、複数存在する。運転計画決定部12は、この内、運転時間が最も短い運転時間が12時30分~13時30分である計画を採用する(破線で囲った値の計画を採用する)。 FIG. 6 is a schematic diagram for explaining an example of determining a storage battery operation plan, and shows an example of the power peak reduction amount in each plan. In the example shown in FIG. 6, for example, in the case of a plan in which the start time is 12:30 and the end time is 13:00, the power peak reduction amount is 15 kW. Further, for example, in the case of a plan in which the start time is 12:30 and the end time is 13:30, the power peak reduction amount is 30 kW. In the example shown in FIG. 6, the maximum power peak reduction amount is 30 kW, but there are multiple reductions. Of these, the driving plan determining unit 12 adopts the plan with the shortest driving time from 12:30 to 13:30 (adopts the plan with the value surrounded by the broken line).

次に、負荷変動補償部13が負荷電力とステップS5で決定された蓄電池出力値に基づき蓄電池出力指令値を決定する(ステップS6)。次に、蓄電池制御部14が通信部11を介して蓄電池4に対して蓄電池出力指令値を通知する(ステップS7)。蓄電池4では、通知された蓄電池出力指令値に基づいて電池出力が制御される。なお、蓄電池出力値と蓄電池出力指令値は単位時間毎(30分毎)に一定の値である。 Next, the load fluctuation compensator 13 determines a storage battery output command value based on the load power and the storage battery output value determined in step S5 (step S6). Next, the storage battery control unit 14 notifies the storage battery 4 of the storage battery output command value via the communication unit 11 (step S7). In the storage battery 4, the battery output is controlled based on the notified storage battery output command value. Note that the storage battery output value and the storage battery output command value are constant values for each unit time (every 30 minutes).

次に、運転計画決定部12は、運転計画の更新条件が成立したか否かを判断する(ステップS8)。運転計画の更新条件は、例えばステップS5で最後に運転計画が決定されてからの所定の時間が経過したことである。この所定の時間は例えばオペレータが設定することができ、例えば30分等の値とすることができる。あるいは、運転計画の更新条件は、例えば、オペレータが更新を指示した場合等としてもよい。更新条件が成立した場合(ステップS8で「YES」の場合)、運転計画決定部12は、ステップS1~ステップS7の処理を実行し、再度、蓄電池運転計画を決定し、更新された蓄電池運転計画に基づき負荷変動補償部13が蓄電池出力指令値を決定して蓄電池制御部14が蓄電池4へ通知する。一方、更新条件が成立しない場合(ステップS8で「NO」の場合)、運転計画決定部12は、図3に示す処理の終了条件が成立したか否かを判断する(ステップS9)。図3に示す処理の終了条件は、例えば開始時間帯が経過したことである。あるいは、図3に示す処理の終了条件は、オペレータが終了を指示した場合等である。終了条件が成立した場合(ステップS9で「YES」の場合)、運転計画決定部12は、図3に示す処理を終了する。一方、終了条件が成立しない場合(ステップS9で「NO」の場合)、運転計画決定部12は、ステップS8の判断を例えば一定の時間経過後に再度実行する。 Next, the driving plan determining unit 12 determines whether the driving plan update conditions are satisfied (step S8). The driving plan update condition is, for example, that a predetermined period of time has elapsed since the driving plan was last determined in step S5. This predetermined time can be set by the operator, for example, and can be set to a value such as 30 minutes. Alternatively, the update condition for the operation plan may be, for example, when the operator instructs the update. If the update condition is satisfied (“YES” in step S8), the operation plan determining unit 12 executes the processes of steps S1 to S7, determines the storage battery operation plan again, and uses the updated storage battery operation plan. Based on this, the load fluctuation compensator 13 determines a storage battery output command value, and the storage battery controller 14 notifies the storage battery 4 of the command value. On the other hand, if the update condition is not satisfied ("NO" in step S8), the operation plan determining unit 12 determines whether the end condition for the process shown in FIG. 3 is satisfied (step S9). The termination condition for the process shown in FIG. 3 is, for example, that the start time period has elapsed. Alternatively, the termination condition for the process shown in FIG. 3 is that the operator instructs termination. If the termination condition is satisfied (“YES” in step S9), the operation plan determining unit 12 terminates the process shown in FIG. 3. On the other hand, if the termination condition is not satisfied ("NO" in step S9), the operation plan determining unit 12 re-executes the determination in step S8, for example, after a certain period of time has elapsed.

ここで、図7と図8を参照して、図3を参照して説明した図1に示す蓄電池運転装置10の動作例の効果について説明する。図7と図8は、図1に示す蓄電池運転装置10の動作例が奏する効果を説明するための模式図である。図7と図8は、蓄電池使用可能容量が60kWhで、蓄電池出力値上限値が30kWである場合の、単位時間(30分)ごとの負荷電力の変化を表す図である。負荷電力は負荷電力=受電電力+電池出力(放電電力)であり、受電電力は白抜きの棒で表され、電池出力(放電電力)は網掛けした棒で表されている。図7が本実施形態によって電力ピーク削減量に基づき運転計画を決定した場合の例であり、図8が受電電力目標値を70kWとしてそれを超えた場合に蓄電池を運転して放電させる場合の例である。図7に示す例と図8に示す例において負荷電力は同一である。なお、図7に示す例において蓄電池出力値と蓄電池出力指令値は同一であるとする。 Here, with reference to FIGS. 7 and 8, the effects of the operational example of the storage battery operating device 10 shown in FIG. 1 described with reference to FIG. 3 will be described. 7 and 8 are schematic diagrams for explaining the effects of the operation example of the storage battery operating device 10 shown in FIG. 1. FIGS. 7 and 8 are diagrams showing changes in load power per unit time (30 minutes) when the storage battery usable capacity is 60 kWh and the storage battery output value upper limit is 30 kW. Load power is calculated as follows: load power = received power + battery output (discharged power); received power is represented by a white bar, and battery output (discharged power) is represented by a shaded bar. FIG. 7 is an example in which an operation plan is determined based on the power peak reduction amount according to the present embodiment, and FIG. 8 is an example in which the target received power is 70 kW, and when the target value is exceeded, the storage battery is operated and discharged. It is. The load power is the same in the example shown in FIG. 7 and the example shown in FIG. In the example shown in FIG. 7, it is assumed that the storage battery output value and the storage battery output command value are the same.

図7に示す例では、蓄電池使用可能容量の60kWhの放電が、9時00分から11時00分まで2時間に割り当てられている。図7に示す例では、9時00分から11時00分までの間、蓄電池出力値が30kWに設定され、1日の負荷電力最大値は120kW、受電電力最大値は90kW、そして電力ピーク削減量は30kW(=負荷電力最大値-受電電力最大値)である。一方、図8に示す例では、蓄電池使用可能容量の60kWhの放電が、8時30分から11時00分まで2時間半に割り当てられている。図8に示す例では、8時30分から9時00分までの間、蓄電池出力値が5kWに設定され、9時00分から10時30分までの間、蓄電池出力値が30kWに設定され、また、10時30分から11時00分までの間、蓄電池出力値が25kWに設定されている。そして、図8に示す例では、1日の負荷電力最大値が120kW、受電電力最大値が95kW、そして電力ピーク削減量は25kWである。 In the example shown in FIG. 7, the discharge of 60 kWh of the usable capacity of the storage battery is allocated to two hours from 9:00 to 11:00. In the example shown in Figure 7, the storage battery output value is set to 30 kW from 9:00 to 11:00, the maximum load power for the day is 120 kW, the maximum received power is 90 kW, and the peak power reduction amount is 30 kW (=maximum load power - maximum value of received power). On the other hand, in the example shown in FIG. 8, the discharge of 60 kWh of the usable capacity of the storage battery is allocated to two and a half hours from 8:30 to 11:00. In the example shown in FIG. 8, the storage battery output value is set to 5 kW from 8:30 to 9:00, the storage battery output value is set to 30 kW from 9:00 to 10:30, and , the storage battery output value is set to 25 kW from 10:30 to 11:00. In the example shown in FIG. 8, the daily maximum load power is 120 kW, the maximum received power is 95 kW, and the peak power reduction amount is 25 kW.

本実施形態の蓄電池運転装置10によれば、受電目標値の設定が不要となる。したがって、目標値の設定に関する試行錯誤を回避することができる。また、秒単位での充放電は不要である。したがって、急激な充放電による蓄電池劣化を抑制することができる。これらの特長によれば、本実施形態の蓄電池運転装置10によって、建物等における安定的な電力ピーク削減が可能である。 According to the storage battery operation device 10 of this embodiment, setting of a power reception target value is not necessary. Therefore, trial and error regarding setting the target value can be avoided. Furthermore, charging and discharging on a second-by-second basis is not necessary. Therefore, deterioration of the storage battery due to rapid charging and discharging can be suppressed. According to these features, the storage battery operation device 10 of this embodiment allows stable peak power reduction in buildings and the like.

以上のように、本実施形態の蓄電池運転装置10によれば、目標値の設定をしなくても安定的な電力ピーク削減量が得られる(ピークカットが最大となる)蓄電池出力値と運転時間帯を自動的に決定することができる。また、例えば、30分に1回蓄電池の運転計画を更新することができるので、予測誤差による影響を小さくすることができ、高い精度を有する計画が立案できる。また、各単位時間は一定出力(急激な充放電をしない)のため、蓄電池に優しい運転となる。また、1秒単位のデータ取得に関するコスト(計装費用)を抑えることができる。 As described above, according to the storage battery operating device 10 of the present embodiment, the storage battery output value and operation time can provide a stable peak power reduction amount (maximum peak cut) without setting a target value. The band can be determined automatically. Further, since the storage battery operation plan can be updated once every 30 minutes, for example, the influence of prediction errors can be reduced, and a highly accurate plan can be drawn up. In addition, since each unit time has a constant output (no rapid charging/discharging), the operation is gentle on the storage battery. Moreover, the cost (instrumentation cost) related to data acquisition in units of one second can be suppressed.

以上、この発明の実施形態について図面を参照して説明してきたが、具体的な構成は上記実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計変更等も含まれる。なお、図1では、蓄電池運転装置10が負荷3と蓄電池4を管理対象(あるいは制御対象)としているが、さらに配電系統2に接続されている発電設備を管理対象(あるいは制御対象)としてもよい。また、蓄電池4の運転時間帯は、連続する1つの時間帯に限らず、不連続の複数の時間帯を含んでいてもよい。また、蓄電池運転装置10を構成するソフトウェアの一部または全部は、コンピュータ読取可能な記録媒体や通信回線を介して頒布することができる。 Although the embodiments of the present invention have been described above with reference to the drawings, the specific configuration is not limited to the above-described embodiments, and may include design changes without departing from the gist of the present invention. In addition, in FIG. 1, the storage battery operation device 10 manages (or controls) the load 3 and the storage battery 4, but it may also manage (or control) the power generating equipment connected to the power distribution system 2. . Further, the operating time period of the storage battery 4 is not limited to one continuous time period, but may include a plurality of discontinuous time periods. Further, a part or all of the software constituting the storage battery operating device 10 can be distributed via a computer-readable recording medium or a communication line.

1 電力系統
2 配電系統
3 負荷
4 蓄電池
10 蓄電池運転装置
11 通信部
12 運転計画決定部
13 負荷変動補償部
14 蓄電池制御部
1 Power system 2 Distribution system 3 Load 4 Storage battery 10 Storage battery operation device 11 Communication unit 12 Operation plan determination unit 13 Load fluctuation compensation unit 14 Storage battery control unit

Claims (4)

電力系統に接続された負荷に電力を供給する蓄電池の運転を計画する装置であって、
蓄電池運転時間帯と単位時間毎の蓄電池出力値とが異なる複数の運転計画を作成し、前記運転計画毎に電力ピーク削減量を算出および比較して、前記電力ピーク削減量が最大となる前記運転計画を、採用する前記運転計画に決定する運転計画決定部を
備え、
前記運転計画決定部は、前記電力ピーク削減量が最大となる前記運転計画が複数ある場合、蓄電池運転時間の長さ、前記蓄電池の運転終了時刻、または前記蓄電池出力値の最低値に基づいて採用する前記運転計画を決定し、前記電力ピーク削減量が最大となる複数の前記運転計画について前記蓄電池運転時間の長さが同じである場合、前記蓄電池の運転開始時刻に基づいて採用する前記運転計画を決定する
蓄電池運転装置。
A device that plans the operation of a storage battery that supplies power to a load connected to an electric power system,
A plurality of operation plans with different storage battery operation time periods and storage battery output values for each unit time are created, and the power peak reduction amount is calculated and compared for each of the operation plans, and the operation in which the power peak reduction amount is the maximum is determined. an operation plan determining unit that determines a plan as the operation plan to be adopted;
When there is a plurality of operation plans in which the power peak reduction amount is the maximum, the operation plan determining unit determines the operation plan based on the length of the storage battery operation time , the operation end time of the storage battery, or the lowest value of the storage battery output value. The operation plan to be adopted is determined, and if the length of the storage battery operation time is the same for the plurality of operation plans in which the power peak reduction amount is the maximum, the operation plan to be adopted is determined based on the operation start time of the storage battery. decide on a plan
Storage battery operation device.
前記電力ピーク削減量が、1日の前記単位時間毎の予測負荷電力の最大値である予測負荷電力最大値から、前記各運転計画における前記単位時間毎の前記予測負荷電力から前記蓄電池出力値を減じた値の最大値である予測受電電力最大値を、引いた値である
請求項1に記載の蓄電池運転装置。
The power peak reduction amount is calculated from the maximum predicted load power that is the maximum value of the predicted load power for each unit time in a day, and from the predicted load power for each unit time in each operation plan. The storage battery operating device according to claim 1, wherein the value is a value obtained by subtracting a predicted received power maximum value, which is a maximum value of the subtracted values.
前記負荷の負荷電力の変動を補償するように前記蓄電池出力値を調節する負荷変動補償部をさらに備える
請求項1または2に記載の蓄電池運転装置。
The storage battery operating device according to claim 1 or 2, further comprising a load fluctuation compensator that adjusts the storage battery output value so as to compensate for fluctuations in load power of the load.
電力系統に接続された負荷に電力を供給する蓄電池の運転を計画する方法であって、
運転計画決定部によって、蓄電池運転時間帯と単位時間毎の蓄電池出力値とが異なる複数の運転計画を作成し、前記運転計画毎に電力ピーク削減量を算出および比較して、前記電力ピーク削減量が最大となる前記運転計画を、採用する前記運転計画に決定し、前記電力ピーク削減量が最大となる前記運転計画が複数ある場合、蓄電池運転時間の長さ、前記蓄電池の運転終了時刻、または前記蓄電池出力値の最低値に基づいて採用する前記運転計画を決定し、前記電力ピーク削減量が最大となる複数の前記運転計画について前記蓄電池運転時間の長さが同じである場合、前記蓄電池の運転開始時刻に基づいて採用する前記運転計画を決定する
蓄電池運転方法。
A method for planning the operation of a storage battery that supplies power to a load connected to an electric power system, the method comprising:
The operation plan determination unit creates a plurality of operation plans with different storage battery operation time periods and storage battery output values for each unit time, calculates and compares the power peak reduction amount for each of the operation plans, and calculates the power peak reduction amount. The operation plan with the maximum is determined as the operation plan to be adopted, and if there are multiple operation plans with the maximum power peak reduction amount, the length of the storage battery operation time , the operation end time of the storage battery, Alternatively, the operation plan to be adopted is determined based on the lowest value of the storage battery output value, and when the length of the storage battery operation time is the same for a plurality of the operation plans in which the power peak reduction amount is the maximum, the storage battery The operation plan to be adopted is determined based on the operation start time of
How to operate a storage battery.
JP2019089302A 2019-05-09 2019-05-09 Storage battery operation device and storage battery operation method Active JP7374610B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019089302A JP7374610B2 (en) 2019-05-09 2019-05-09 Storage battery operation device and storage battery operation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019089302A JP7374610B2 (en) 2019-05-09 2019-05-09 Storage battery operation device and storage battery operation method

Publications (2)

Publication Number Publication Date
JP2020188521A JP2020188521A (en) 2020-11-19
JP7374610B2 true JP7374610B2 (en) 2023-11-07

Family

ID=73223030

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019089302A Active JP7374610B2 (en) 2019-05-09 2019-05-09 Storage battery operation device and storage battery operation method

Country Status (1)

Country Link
JP (1) JP7374610B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009194947A (en) 2008-02-12 2009-08-27 Kansai Electric Power Co Inc:The Charge/discharge depth management device and method, and power storage system
JP2013114630A (en) 2011-11-30 2013-06-10 Fujitsu Ltd Calculation device, calculation program and calculation method
JP2013143838A (en) 2012-01-11 2013-07-22 Sanyo Electric Co Ltd Charge/discharge controller
JP2014023381A (en) 2012-07-23 2014-02-03 Sharp Corp Power supply system
WO2017033399A1 (en) 2015-08-21 2017-03-02 パナソニックIpマネジメント株式会社 Management device, charging and discharging control device, electricity storage system, and charging and discharging control method
US20180090943A1 (en) 2016-09-26 2018-03-29 Institute For Information Industry Charge and discharge control apparatus and method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009194947A (en) 2008-02-12 2009-08-27 Kansai Electric Power Co Inc:The Charge/discharge depth management device and method, and power storage system
JP2013114630A (en) 2011-11-30 2013-06-10 Fujitsu Ltd Calculation device, calculation program and calculation method
JP2013143838A (en) 2012-01-11 2013-07-22 Sanyo Electric Co Ltd Charge/discharge controller
JP2014023381A (en) 2012-07-23 2014-02-03 Sharp Corp Power supply system
WO2017033399A1 (en) 2015-08-21 2017-03-02 パナソニックIpマネジメント株式会社 Management device, charging and discharging control device, electricity storage system, and charging and discharging control method
US20180090943A1 (en) 2016-09-26 2018-03-29 Institute For Information Industry Charge and discharge control apparatus and method

Also Published As

Publication number Publication date
JP2020188521A (en) 2020-11-19

Similar Documents

Publication Publication Date Title
KR20210125040A (en) Integrated control of renewable power generation resources and electrical storage devices
EP2696463B1 (en) Wind power generation system, wind power generation control device and wind power generation control method
US10389165B2 (en) Energy management apparatus, energy management method and program recording medium
US20110257803A1 (en) Power control method, and power control apparatus
JP5519692B2 (en) Secondary battery control method and power storage device
KR20180046174A (en) Operating System and Method for Optimal Operation of a Renewable Energy based Islanded Micro-grid
WO2015017201A1 (en) Microgrid energy management system and method for controlling operation of a microgrid
JP6289423B2 (en) Storage battery system control method
EP2757650B1 (en) Peak-cut control device
JP6743953B2 (en) Energy management system, energy management method and computer program
JP6166338B2 (en) Energy storage system
EP4167417A1 (en) Device power supply method, system, and related device
KR20150115063A (en) Enegy management apparatus for controlling reference power and method thereof
JP6464247B2 (en) Power management apparatus, power management system, and power management method
JP6427826B2 (en) Control device, control method and program
JP6712802B2 (en) Power storage system, control device, and power storage device
JP7374610B2 (en) Storage battery operation device and storage battery operation method
EP3567691A1 (en) Composite power storage system and power storage method
JP7252116B2 (en) Renewable energy power generation system
JP6849154B1 (en) Power supply management device and power supply management method
JP2014168343A (en) Power storage system, controller of power storage system, control method of power storage system, and control program of power storage system
CN112655127B (en) Power control device and power system
KR101299269B1 (en) Battery Energy Storage System
JP2020171132A (en) Power management system
JP7299657B1 (en) Scenario creation device for power generation, power storage, and power transmission in self-consignment system using photovoltaic power generation facility

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230523

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230720

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231017

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231025

R150 Certificate of patent or registration of utility model

Ref document number: 7374610

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150