JP7373160B2 - Separation method of catalyst components - Google Patents

Separation method of catalyst components Download PDF

Info

Publication number
JP7373160B2
JP7373160B2 JP2019120885A JP2019120885A JP7373160B2 JP 7373160 B2 JP7373160 B2 JP 7373160B2 JP 2019120885 A JP2019120885 A JP 2019120885A JP 2019120885 A JP2019120885 A JP 2019120885A JP 7373160 B2 JP7373160 B2 JP 7373160B2
Authority
JP
Japan
Prior art keywords
water
soluble polymer
nitrile rubber
weight
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019120885A
Other languages
Japanese (ja)
Other versions
JP2021006606A (en
Inventor
一法 古川
重蔵 小山田
英孝 川喜田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zeon Corp
Saga University NUC
Original Assignee
Zeon Corp
Saga University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zeon Corp, Saga University NUC filed Critical Zeon Corp
Priority to JP2019120885A priority Critical patent/JP7373160B2/en
Publication of JP2021006606A publication Critical patent/JP2021006606A/en
Application granted granted Critical
Publication of JP7373160B2 publication Critical patent/JP7373160B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、白金族元素含有触媒に由来する白金族元素を、水素化ニトリルゴムから分離する触媒成分の分離方法に関する。 The present invention relates to a catalyst component separation method for separating platinum group elements derived from platinum group element-containing catalysts from hydrogenated nitrile rubber.

従来から、ニトリルゴム(アクリロニトリル-ブタジエン共重合ゴム)は、耐油性、機械的特性、耐薬品性等を活かして、ホースやチューブなどの自動車用ゴム部品の材料として使用されており、また、ニトリルゴムのポリマー主鎖中の炭素-炭素二重結合を水素化した水素化ニトリルゴム(水素化アクリロニトリル-ブタジエン共重合ゴム)はさらに耐熱性に優れるため、ベルト、ホース、ダイアフラム等のゴム部品に使用されている。 Nitrile rubber (acrylonitrile-butadiene copolymer rubber) has traditionally been used as a material for automotive rubber parts such as hoses and tubes due to its oil resistance, mechanical properties, and chemical resistance. Hydrogenated nitrile rubber (hydrogenated acrylonitrile-butadiene copolymer rubber), which is made by hydrogenating the carbon-carbon double bonds in the rubber's polymer main chain, has even better heat resistance, so it is used in rubber parts such as belts, hoses, and diaphragms. has been done.

このような水素化ニトリルゴムは、たとえば、次の製造プロセスにより、製造される。すなわち、α,β-エチレン性不飽和ニトリル単量体や、共役ジエン単量体を含む単量体混合物を乳化重合し、乳化重合により得られるニトリルゴムのラテックスを凝固・乾燥し、次いで、凝固・乾燥により得られたニトリルゴムを水溶性有機溶媒に溶解することで、ニトリルゴムの水溶性有機溶媒溶液を得て、これに水素化触媒としての白金族元素含有触媒を添加し、水素化することにより製造される(たとえば、特許文献1参照)。 Such hydrogenated nitrile rubber is manufactured, for example, by the following manufacturing process. That is, a monomer mixture containing an α,β-ethylenically unsaturated nitrile monomer and a conjugated diene monomer is emulsion polymerized, the nitrile rubber latex obtained by emulsion polymerization is coagulated and dried, and then coagulated.・Dissolve the nitrile rubber obtained by drying in a water-soluble organic solvent to obtain a solution of nitrile rubber in a water-soluble organic solvent, and add a platinum group element-containing catalyst as a hydrogenation catalyst to this for hydrogenation. (For example, see Patent Document 1).

一方で、このような製造方法により製造される水素化ニトリルゴムには、水素化触媒としての白金族元素含有触媒に由来する白金族元素が比較的多く残存してしまう問題がある。そこで、特許文献2では、ニトリルゴムを、白金族元素含有触媒の存在下で水素化反応させることで得られた、水素化ニトリルゴムの水溶性有機溶媒溶液に、水溶性高分子の水溶液を添加し、次いで攪拌を行うことにより、水溶性高分子中に白金族元素含有触媒を取り込ませながら、水溶性高分子を析出させることによって、水素化ニトリルゴムに含まれる白金族元素含有触媒に由来する白金族元素を、水素化ニトリルゴムから分離する技術が提案されている。 On the other hand, hydrogenated nitrile rubber produced by such a production method has a problem in that a relatively large amount of platinum group elements derived from a platinum group element-containing catalyst as a hydrogenation catalyst remains. Therefore, in Patent Document 2, an aqueous solution of a water-soluble polymer is added to a water-soluble organic solvent solution of hydrogenated nitrile rubber obtained by hydrogenating nitrile rubber in the presence of a catalyst containing a platinum group element. Then, by stirring, the platinum group element-containing catalyst is incorporated into the water-soluble polymer, and the water-soluble polymer is precipitated. Techniques have been proposed for separating platinum group elements from hydrogenated nitrile rubber.

特表2015-515532号公報Special table 2015-515532 publication 国際公開第2018/016400号International Publication No. 2018/016400

しかしながら、水溶性高分子の析出と同時に、一部の水素化ニトリルゴムが凝集し、凝集した水素化ニトリルゴムが、水溶性高分子による白金族元素含有触媒の取り込みを妨げて、結果として、水素化ニトリルゴムと白金族元素とを高効率で分離させることができない問題がある。同時に、白金族元素含有触媒を取り込むために用いた水溶性高分子中に、ニトリルゴムが混入して、比較的多量のニトリルゴムを含有する水溶性高分子しか回収できず、水溶性高分子の再利用に支障が生じる問題もある。 However, at the same time as the water-soluble polymer is precipitated, some of the hydrogenated nitrile rubber aggregates, and the aggregated hydrogenated nitrile rubber prevents the water-soluble polymer from taking up the platinum group element-containing catalyst. There is a problem in that it is not possible to separate nitrile rubber and platinum group elements with high efficiency. At the same time, nitrile rubber was mixed into the water-soluble polymer used to incorporate the platinum group element-containing catalyst, and only water-soluble polymers containing a relatively large amount of nitrile rubber could be recovered. There are also problems that hinder reuse.

本発明は、このような実状に鑑みてなされたものであり、白金族元素含有触媒に由来する白金族元素を、水素化ニトリルゴムから高効率で分離でき、さらには、水素化ニトリルゴムからの白金族元素の分離に用いた後の水溶性高分子を、高純度かつ高収率で容易に回収することができる触媒成分の分離方法を提供することを目的とする。 The present invention has been made in view of the above circumstances, and is capable of separating platinum group elements derived from platinum group element-containing catalysts from hydrogenated nitrile rubber with high efficiency. It is an object of the present invention to provide a method for separating catalyst components that can easily recover water-soluble polymers used for separation of platinum group elements with high purity and high yield.

本発明者等は、水溶性有機溶媒と水との重量比を特定の範囲内に調整した水溶性高分子溶液を予め調製しておき、白金族元素含有触媒の存在下で水素化反応させることで得られた、水素化ニトリルゴムの水溶性有機溶媒溶液と、水溶性高分子溶液とを混合し、次いで攪拌を行うことにより、白金族元素を、水素化ニトリルゴムから高効率で分離できること、さらには、水素化ニトリルゴムからの白金族元素の分離に用いた水溶性高分子中に、ニトリルゴムが混入にくく、高収率で高純度の水溶性高分子を回収できることを見出し、本発明を完成するに至った。 The present inventors previously prepared a water-soluble polymer solution in which the weight ratio of water-soluble organic solvent and water was adjusted within a specific range, and conducted a hydrogenation reaction in the presence of a platinum group element-containing catalyst. Platinum group elements can be separated from hydrogenated nitrile rubber with high efficiency by mixing the water-soluble organic solvent solution of hydrogenated nitrile rubber obtained in and the water-soluble polymer solution and then stirring; Furthermore, they discovered that nitrile rubber is less likely to be mixed into the water-soluble polymer used to separate platinum group elements from hydrogenated nitrile rubber, and that a highly purified water-soluble polymer can be recovered in high yield. It was completed.

すなわち、本発明によれば、ニトリルゴムを、白金族元素含有触媒の存在下で水素化反応させることで得られた、水素化ニトリルゴムの水溶性有機溶媒溶液、および、水溶性高分子溶液を混合することにより、混合液を得る混合工程と、前記混合液を攪拌することで、水溶性高分子中に、前記白金族元素を取り込ませながら、前記水溶性高分子を析出させる水溶性高分子析出工程と、を備え、前記水溶性高分子溶液が、前記水溶性高分子、水溶性有機溶媒および水を含有し、前記水溶性高分子溶液中の前記水溶性有機溶媒と水との重量比が、1:1~3:1である水素化ニトリルゴムの触媒成分の分離方法が提供される。 That is, according to the present invention, a water-soluble organic solvent solution of hydrogenated nitrile rubber and a water-soluble polymer solution obtained by hydrogenating nitrile rubber in the presence of a platinum group element-containing catalyst are used. a mixing step of obtaining a mixed solution by mixing; and a water-soluble polymer that precipitates the water-soluble polymer while incorporating the platinum group element into the water-soluble polymer by stirring the mixed solution. a precipitation step, wherein the water-soluble polymer solution contains the water-soluble polymer, a water-soluble organic solvent, and water, and a weight ratio of the water-soluble organic solvent to water in the water-soluble polymer solution. is 1:1 to 3:1.

本発明の触媒成分の分離方法において、前記混合液中の水の濃度が、0.020~0.050重量%であることが好ましい。
本発明の触媒成分の分離方法において、前記水溶性高分子溶液中の前記水溶性高分子の濃度が、1~40重量%であることが好ましい。
本発明の触媒成分の分離方法において、前記水溶性高分子が、アミノ基含有ポリアクリルアミドであることが好ましい。
本発明の触媒成分の分離方法において、前記白金族元素が、パラジウムであることが好ましい。
In the method for separating catalyst components of the present invention, the concentration of water in the liquid mixture is preferably 0.020 to 0.050% by weight.
In the method for separating catalyst components of the present invention, the concentration of the water-soluble polymer in the water-soluble polymer solution is preferably 1 to 40% by weight.
In the method for separating catalyst components of the present invention, it is preferable that the water-soluble polymer is an amino group-containing polyacrylamide.
In the method for separating catalyst components of the present invention, it is preferable that the platinum group element is palladium.

また、本発明によれば、水溶性有機溶媒中、白金族元素含有触媒の存在下で、ニトリルゴムを水素化することで、水素化ニトリルゴムの水溶性有機溶媒溶液を得る水素化工程と、前記水素化ニトリルゴムの水溶性有機溶媒溶液、および、水溶性高分子溶液を混合することにより、混合液を得る混合工程と、前記混合液を攪拌することで、水溶性高分子中に、前記白金族元素を取り込ませながら、前記水溶性高分子を析出させる水溶性高分子析出工程と、を備え、前記水溶性高分子溶液が、前記水溶性高分子、水溶性有機溶媒および水を含有し、前記水溶性高分子溶液中の前記水溶性有機溶媒と水との重量比が、1:1~3:1である水素化ニトリルゴムの製造方法が提供される。 Further, according to the present invention, a hydrogenation step of hydrogenating nitrile rubber in a water-soluble organic solvent in the presence of a platinum group element-containing catalyst to obtain a solution of hydrogenated nitrile rubber in a water-soluble organic solvent; A mixing step of obtaining a mixed solution by mixing the water-soluble organic solvent solution of the hydrogenated nitrile rubber and the water-soluble polymer solution; a water-soluble polymer precipitation step of precipitating the water-soluble polymer while incorporating a platinum group element, the water-soluble polymer solution containing the water-soluble polymer, a water-soluble organic solvent, and water. There is provided a method for producing hydrogenated nitrile rubber, wherein the weight ratio of the water-soluble organic solvent to water in the water-soluble polymer solution is 1:1 to 3:1.

本発明によれば、白金族元素含有触媒に由来する白金族元素を、水素化ニトリルゴムから高効率で分離でき、さらには、水素化ニトリルゴムからの白金族元素の分離に用いた後の水溶性高分子を、高純度かつ高収率で容易に回収することができる触媒成分の分離方法を提供することができる。 According to the present invention, the platinum group element derived from the platinum group element-containing catalyst can be separated from hydrogenated nitrile rubber with high efficiency, and furthermore, the platinum group element derived from the platinum group element-containing catalyst can be separated from the hydrogenated nitrile rubber. It is possible to provide a method for separating catalyst components, which can easily recover a reactive polymer with high purity and high yield.

本発明の水素化ニトリルゴムの触媒成分の分離方法は、ニトリルゴムを、白金族元素含有触媒の存在下で水素化反応させることで得られた、水素化ニトリルゴムの水溶性有機溶媒溶液、および、水溶性高分子溶液を混合することにより、混合液を得る混合工程と、前記混合液を攪拌することで、水溶性高分子中に、前記白金族元素を取り込ませながら、前記水溶性高分子を析出させる水溶性高分子析出工程と、を備える。 The method for separating the catalyst component of hydrogenated nitrile rubber of the present invention includes a water-soluble organic solvent solution of hydrogenated nitrile rubber obtained by subjecting nitrile rubber to a hydrogenation reaction in the presence of a platinum group element-containing catalyst; , a mixing step of obtaining a mixed solution by mixing water-soluble polymer solutions, and stirring the mixed solution to incorporate the platinum group element into the water-soluble polymer while incorporating the platinum group element into the water-soluble polymer. and a water-soluble polymer precipitation step.

本発明で用いるニトリルゴムとしては、たとえば、α,β-エチレン性不飽和ニトリル単量体と、共役ジエン単量体とを少なくとも含む単量体混合物を共重合することにより得られる共重合体が挙げられる。 The nitrile rubber used in the present invention is, for example, a copolymer obtained by copolymerizing a monomer mixture containing at least an α,β-ethylenically unsaturated nitrile monomer and a conjugated diene monomer. Can be mentioned.

α,β-エチレン性不飽和ニトリル単量体としては、ニトリル基を有するα,β-エチレン性不飽和化合物であれば特に限定されず、たとえば、アクリロニトリル;α-クロロアクリロニトリル、α-ブロモアクリロニトリルなどのα-ハロゲノアクリロニトリル;メタクリロニトリルなどのα-アルキルアクリロニトリル;などが挙げられる。これらのなかでも、アクリロニトリルおよびメタクリロニトリルが好ましく、アクリロニトリルがより好ましい。α,β-エチレン性不飽和ニトリル単量体は、一種単独でも、複数種を併用してもよい。 The α,β-ethylenically unsaturated nitrile monomer is not particularly limited as long as it is an α,β-ethylenically unsaturated compound having a nitrile group, such as acrylonitrile; α-chloroacrylonitrile, α-bromoacrylonitrile, etc. α-halogenoacrylonitrile; α-alkylacrylonitrile such as methacrylonitrile; and the like. Among these, acrylonitrile and methacrylonitrile are preferred, and acrylonitrile is more preferred. The α,β-ethylenically unsaturated nitrile monomers may be used alone or in combination.

ニトリルゴム中における、α,β-エチレン性不飽和ニトリル単量体単位の含有量は、全単量体単位に対して、5~60重量%、好ましくは10~50重量%、より好ましくは15~50重量%である。α,β-エチレン性不飽和ニトリル単量体単位の含有量を上記範囲とすることにより、得られるゴム架橋物を、耐寒性および耐油性に優れたものとすることができる。 The content of α,β-ethylenically unsaturated nitrile monomer units in the nitrile rubber is 5 to 60% by weight, preferably 10 to 50% by weight, more preferably 15% by weight based on the total monomer units. ~50% by weight. By setting the content of the α,β-ethylenically unsaturated nitrile monomer unit within the above range, the resulting rubber crosslinked product can have excellent cold resistance and oil resistance.

共役ジエン単量体としては、1,3-ブタジエン、イソプレン、2,3-ジメチル-1,3-ブタジエン、1,3-ペンタジエン、クロロプレンなどの炭素数4~6の共役ジエン単量体が好ましく、1,3-ブタジエンおよびイソプレンがより好ましく、1,3-ブタジエンが特に好ましい。共役ジエン単量体は一種単独でも、複数種を併用してもよい。 As the conjugated diene monomer, conjugated diene monomers having 4 to 6 carbon atoms such as 1,3-butadiene, isoprene, 2,3-dimethyl-1,3-butadiene, 1,3-pentadiene, and chloroprene are preferred. , 1,3-butadiene and isoprene are more preferred, and 1,3-butadiene is particularly preferred. The conjugated diene monomers may be used alone or in combination.

ニトリルゴム中における、共役ジエン単量体単位(水素化反応により、水素化されている部分も含む)の含有量は、全単量体単位に対して、好ましくは40~95重量%、より好ましくは50~90重量%、さらに好ましくは50~85重量%である。共役ジエン単量体単位の含有量を上記範囲とすることにより、得られるゴム架橋物を、耐熱性や耐化学的安定性を良好に保ちながら、ゴム弾性に優れたものとすることができる。 The content of conjugated diene monomer units (including portions hydrogenated by hydrogenation reaction) in the nitrile rubber is preferably 40 to 95% by weight, more preferably 40 to 95% by weight based on all monomer units. is 50 to 90% by weight, more preferably 50 to 85% by weight. By setting the content of the conjugated diene monomer unit within the above range, the resulting rubber crosslinked product can have excellent rubber elasticity while maintaining good heat resistance and chemical stability.

また、本発明で用いるニトリルゴムは、α,β-エチレン性不飽和ニトリル単量体および共役ジエン単量体に加えて、これらと共重合可能な他の単量体を共重合したものであってもよい。このような共重合可能な他の単量体としては、α,β-エチレン性不飽和モノカルボン酸単量体、α,β-エチレン性不飽和多価カルボン酸単量体、α,β-エチレン性不飽和モノカルボン酸エステル単量体、α,β-エチレン性不飽和ジカルボン酸モノエステル単量体、エチレン、α-オレフィン単量体、芳香族ビニル単量体、フッ素含有ビニル単量体、共重合性老化防止剤などが挙げられる。 Furthermore, the nitrile rubber used in the present invention is a product obtained by copolymerizing an α,β-ethylenically unsaturated nitrile monomer and a conjugated diene monomer with other monomers that can be copolymerized with these. It's okay. Other copolymerizable monomers include α,β-ethylenically unsaturated monocarboxylic acid monomers, α,β-ethylenically unsaturated polycarboxylic acid monomers, and α,β-ethylenically unsaturated monocarboxylic acid monomers. Ethylenically unsaturated monocarboxylic acid ester monomer, α,β-ethylenically unsaturated dicarboxylic acid monoester monomer, ethylene, α-olefin monomer, aromatic vinyl monomer, fluorine-containing vinyl monomer , copolymerizable anti-aging agents, etc.

α,β-エチレン性不飽和モノカルボン酸単量体としては、アクリル酸、メタクリル酸、エチルアクリル酸、クロトン酸、ケイ皮酸などが挙げられる。 Examples of the α,β-ethylenically unsaturated monocarboxylic acid monomer include acrylic acid, methacrylic acid, ethyl acrylic acid, crotonic acid, and cinnamic acid.

α,β-エチレン性不飽和多価カルボン酸単量体としては、フマル酸やマレイン酸などのブテンジオン酸、イタコン酸、シトラコン酸、メサコン酸、グルタコン酸、アリルマロン酸、テラコン酸などが挙げられる。また、α,β-不飽和多価カルボン酸の無水物としては、無水マレイン酸、無水イタコン酸、無水シトラコン酸などが挙げられる。 Examples of the α,β-ethylenically unsaturated polycarboxylic acid monomer include butenedionic acid such as fumaric acid and maleic acid, itaconic acid, citraconic acid, mesaconic acid, glutaconic acid, allylmalonic acid, and terraconic acid. Further, examples of anhydrides of α,β-unsaturated polycarboxylic acids include maleic anhydride, itaconic anhydride, citraconic anhydride, and the like.

α,β-エチレン性不飽和モノカルボン酸エステル単量体としては、アクリル酸メチル、アクリル酸エチル、アクリル酸n-ブチル、アクリル酸イソブチル、アクリル酸n-ドデシル、メタクリル酸メチル、メタクリル酸エチルなどの炭素数1~18のアルキル基を有する(メタ)アクリル酸エステル(「メタクリル酸エステルおよびアクリル酸エステル」の略記。以下同様。);アクリル酸メトキシメチル、アクリル酸エトキシプロピル、アクリル酸メトキシブチル、アクリル酸エトキシドデシル、メタクリル酸メトキシエチル、メタクリル酸メトキシブチル、メタクリル酸エトキシペンチルなどの炭素数2~18のアルコキシアルキル基を有する(メタ)アクリル酸エステル;アクリル酸α-シアノエチル、メタクリル酸α-シアノエチル、メタクリル酸シアノブチルなどの炭素数2~12のシアノアルキル基を有する(メタ)アクリル酸エステル;アクリル酸2-ヒドロキシエチル、アクリル酸2-ヒドロキシプロピル、メタクリル酸2-ヒドロキシエチルなどの炭素数1~12のヒドロキシアルキル基を有する(メタ)アクリル酸エステル;アクリル酸トリフルオロエチル、メタクリル酸テトラフルオロプロピルなどの炭素数1~12のフルオロアルキル基を有する(メタ)アクリル酸エステル;などが挙げられる。 Examples of α,β-ethylenically unsaturated monocarboxylic acid ester monomers include methyl acrylate, ethyl acrylate, n-butyl acrylate, isobutyl acrylate, n-dodecyl acrylate, methyl methacrylate, and ethyl methacrylate. (Meth)acrylic ester having an alkyl group having 1 to 18 carbon atoms (abbreviation for "methacrylic ester and acrylic ester". The same applies hereinafter); methoxymethyl acrylate, ethoxypropyl acrylate, methoxybutyl acrylate, (Meth)acrylic acid esters having an alkoxyalkyl group having 2 to 18 carbon atoms, such as ethoxydodecyl acrylate, methoxyethyl methacrylate, methoxybutyl methacrylate, and ethoxypentyl methacrylate; α-cyanoethyl acrylate, α-cyanoethyl methacrylate (meth)acrylic acid esters having a cyanoalkyl group having 2 to 12 carbon atoms, such as cyanobutyl methacrylate; 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, 2-hydroxyethyl methacrylate, etc. Examples include (meth)acrylic esters having 12 hydroxyalkyl groups; (meth)acrylic esters having fluoroalkyl groups having 1 to 12 carbon atoms, such as trifluoroethyl acrylate and tetrafluoropropyl methacrylate.

α,β-エチレン性不飽和ジカルボン酸モノエステル単量体としては、マレイン酸モノメチル、マレイン酸モノエチル、マレイン酸モノプロピル、マレイン酸モノn-ブチルなどのマレイン酸モノアルキルエステル;マレイン酸モノシクロペンチル、マレイン酸モノシクロヘキシル、マレイン酸モノシクロヘプチルなどのマレイン酸モノシクロアルキルエステル;マレイン酸モノメチルシクロペンチル、マレイン酸モノエチルシクロヘキシルなどのマレイン酸モノアルキルシクロアルキルエステル;フマル酸モノメチル、フマル酸モノエチル、フマル酸モノプロピル、フマル酸モノn-ブチルなどのフマル酸モノアルキルエステル;フマル酸モノシクロペンチル、フマル酸モノシクロヘキシル、フマル酸モノシクロヘプチルなどのフマル酸モノシクロアルキルエステル;フマル酸モノメチルシクロペンチル、フマル酸モノエチルシクロヘキシルなどのフマル酸モノアルキルシクロアルキルエステル;シトラコン酸モノメチル、シトラコン酸モノエチル、シトラコン酸モノプロピル、シトラコン酸モノn-ブチルなどのシトラコン酸モノアルキルエステル;シトラコン酸モノシクロペンチル、シトラコン酸モノシクロヘキシル、シトラコン酸モノシクロヘプチルなどのシトラコン酸モノシクロアルキルエステル;シトラコン酸モノメチルシクロペンチル、シトラコン酸モノエチルシクロヘキシルなどのシトラコン酸モノアルキルシクロアルキルエステル;イタコン酸モノメチル、イタコン酸モノエチル、イタコン酸モノプロピル、イタコン酸モノn-ブチルなどのイタコン酸モノアルキルエステル;イタコン酸モノシクロペンチル、イタコン酸モノシクロヘキシル、イタコン酸モノシクロヘプチルなどのイタコン酸モノシクロアルキルエステル;イタコン酸モノメチルシクロペンチル、イタコン酸モノエチルシクロヘキシルなどのイタコン酸モノアルキルシクロアルキルエステル;などが挙げられる。 Examples of α,β-ethylenically unsaturated dicarboxylic acid monoester monomers include monoalkyl maleates such as monomethyl maleate, monoethyl maleate, monopropyl maleate, and mono-n-butyl maleate; monocyclopentyl maleate; Monocycloalkyl maleate esters such as monocyclohexyl maleate and monocycloheptyl maleate; monoalkylcycloalkyl maleate esters such as monomethylcyclopentyl maleate and monoethylcyclohexyl maleate; monomethyl fumarate, monoethyl fumarate, monofumarate Fumaric acid monoalkyl esters such as propyl and mono-n-butyl fumarate; fumaric acid monocycloalkyl esters such as monocyclopentyl fumarate, monocyclohexyl fumarate, and monocycloheptyl fumarate; monomethylcyclopentyl fumarate, monoethylcyclohexyl fumarate monoalkyl cycloalkyl fumarate esters such as monomethyl citraconate, monoethyl citraconate, monopropyl citraconate, mono-n-butyl citraconate; monocyclopentyl citraconate, monocyclohexyl citraconate, mono-citraconate Citraconic acid monocycloalkyl esters such as cycloheptyl; citraconic acid monocycloalkyl esters such as monomethylcyclopentyl citraconate, monoethylcyclohexyl citraconate; monomethyl itaconate, monoethyl itaconate, monopropyl itaconate, mono n-butyl itaconate itaconate monoalkyl esters such as monocyclopentyl itaconate, monocyclohexyl itaconate, monocycloheptyl itaconate; monoalkylcycloalkyl itaconate such as monomethylcyclopentyl itaconate, monoethylcyclohexyl itaconate, etc. Ester; etc. are mentioned.

α-オレフィン単量体としては、炭素数が3~12のものが好ましく、たとえば、プロピレン、1-ブテン、4-メチル-1-ペンテン、1-ヘキセン、1-オクテンなどが挙げられる。 The α-olefin monomer preferably has 3 to 12 carbon atoms, and includes, for example, propylene, 1-butene, 4-methyl-1-pentene, 1-hexene, and 1-octene.

芳香族ビニル単量体としては、スチレン、α-メチルスチレン、ビニルピリジンなどが挙げられる。 Examples of the aromatic vinyl monomer include styrene, α-methylstyrene, and vinylpyridine.

フッ素含有ビニル単量体としては、フルオロエチルビニルエーテル、フルオロプロピルビニルエーテル、o-トリフルオロメチルスチレン、ペンタフルオロ安息香酸ビニル、ジフルオロエチレン、テトラフルオロエチレンなどが挙げられる。 Examples of the fluorine-containing vinyl monomer include fluoroethyl vinyl ether, fluoropropyl vinyl ether, o-trifluoromethylstyrene, vinyl pentafluorobenzoate, difluoroethylene, and tetrafluoroethylene.

共重合性老化防止剤としては、N-(4-アニリノフェニル)アクリルアミド、N-(4-アニリノフェニル)メタクリルアミド、N-(4-アニリノフェニル)シンナムアミド、N-(4-アニリノフェニル)クロトンアミド、 N-フェニル-4-(3-ビニルベンジルオキシ)アニリン、N-フェニル-4-(4-ビニルベンジルオキシ)アニリンなどが挙げられる。 Copolymerizable anti-aging agents include N-(4-anilinophenyl)acrylamide, N-(4-anilinophenyl)methacrylamide, N-(4-anilinophenyl)cinnamamide, and N-(4-anilinophenyl)acrylamide. phenyl)crotonamide, N-phenyl-4-(3-vinylbenzyloxy)aniline, N-phenyl-4-(4-vinylbenzyloxy)aniline, and the like.

これらの共重合可能なその他の単量体は、複数種類を併用してもよい。その他の単量体の単位の含有量は、ニトリルゴム中、好ましくは50重量%以下、より好ましくは40重量%以下、さらに好ましくは10重量%以下である。 A plurality of types of these other copolymerizable monomers may be used in combination. The content of other monomer units in the nitrile rubber is preferably 50% by weight or less, more preferably 40% by weight or less, even more preferably 10% by weight or less.

本発明で用いるニトリルゴムの製造方法は、特に限定されないが、上述した単量体を共重合し、必要に応じて、得られる共重合体中の炭素-炭素二重結合を水素化することによって製造することができる。重合方法は、特に限定されず公知の乳化重合法や溶液重合法によればよいが、工業的生産性の観点から乳化重合法が好ましい。乳化重合に際しては、乳化剤、重合開始剤、分子量調整剤に加えて、通常用いられる重合副資材を使用することができる。使用する乳化剤も特に限定されず、アニオン性界面活性剤、カチオン性界面活性剤、両性界面活性剤、ノニオン性界面活性剤などを使用できるが、アニオン性界面活性剤が好ましい。これらの乳化剤は、それぞれ単独で使用しても2種以上を併用してもよい。その使用量は特に限定されない。 The method for producing the nitrile rubber used in the present invention is not particularly limited, but may be carried out by copolymerizing the above-mentioned monomers and, if necessary, hydrogenating the carbon-carbon double bonds in the resulting copolymer. can be manufactured. The polymerization method is not particularly limited and may be any known emulsion polymerization method or solution polymerization method, but emulsion polymerization method is preferred from the viewpoint of industrial productivity. During emulsion polymerization, commonly used polymerization auxiliary materials can be used in addition to emulsifiers, polymerization initiators, and molecular weight regulators. The emulsifier used is not particularly limited either, and anionic surfactants, cationic surfactants, amphoteric surfactants, nonionic surfactants, etc. can be used, but anionic surfactants are preferred. These emulsifiers may be used alone or in combination of two or more. The amount used is not particularly limited.

乳化重合により得られるニトリルゴムのラテックスの固形分濃度は特に限定されないが、通常2~70重量%、好ましくは5~60重量%である。その固形分濃度はブレンド法、希釈法、濃縮法など公知の方法により適宜調節することができる。 The solid content concentration of the nitrile rubber latex obtained by emulsion polymerization is not particularly limited, but is usually 2 to 70% by weight, preferably 5 to 60% by weight. The solid content concentration can be appropriately adjusted by known methods such as blending, dilution, and concentration.

ニトリルゴムの水素化反応は、乳化重合により得られるラテックスに対し、ラテックス状態のまま行ってもよいが、触媒活性等の観点より、乳化重合により得られるラテックスを、凝固・乾燥して固形状のニトリルゴムを得て、得られたニトリルゴムを、水溶性有機溶媒に溶解して、重合体溶液の状態で行うことが好ましい。水溶性有機溶媒を用いることにより、後述する水溶性高分子による、白金族元素含有触媒に由来する白金族元素の、水素化ニトリルゴムからの分離を好適に行うことができる。 The hydrogenation reaction of nitrile rubber may be carried out on the latex obtained by emulsion polymerization in its latex state, but from the viewpoint of catalytic activity etc., the latex obtained by emulsion polymerization may be coagulated and dried to form a solid state. It is preferable to obtain nitrile rubber and dissolve the obtained nitrile rubber in a water-soluble organic solvent to form a polymer solution. By using a water-soluble organic solvent, the platinum group element derived from the platinum group element-containing catalyst can be suitably separated from the hydrogenated nitrile rubber by the water-soluble polymer described below.

ラテックスの凝固・乾燥は、公知の方法により行えばよいが、凝固して得られるクラムと塩基性水溶液とを接触させる処理工程を設けることにより、得られるニトリルゴムをテトラヒドロフラン(THF)に溶解して測定される重合体溶液のpHが7を超えるように改質することが好ましい。THFに溶解して測定される重合体溶液のpHは、好ましくは7.2~12、より好ましくは7.5~11.5、最も好ましくは8~11の範囲である。このクラムと塩基性水溶液との接触処理により、溶液系水素化を速やかに進行させることが可能となる。 Coagulation and drying of the latex may be performed by a known method, but by providing a treatment step in which the crumb obtained by coagulation is brought into contact with a basic aqueous solution, the resulting nitrile rubber is dissolved in tetrahydrofuran (THF). It is preferable to modify the polymer solution so that the pH of the measured polymer solution exceeds 7. The pH of the polymer solution measured in THF is preferably in the range 7.2-12, more preferably 7.5-11.5, most preferably 8-11. By contacting the crumb with the basic aqueous solution, solution-based hydrogenation can proceed rapidly.

水素化反応を行う際の重合体溶液中における、ニトリルゴムの濃度は、好ましくは1~70重量%、より好ましくは1~40重量%、特に好ましくは2~20重量%である。水溶性有機溶媒としては、たとえば、アセトン、メチルエチルケトン、ジエチルケトン、メチルイソプロピルケトンなどのケトン類;テトラヒドロフラン、ジオキサンなどのエーテル類;酢酸エチルなどのエステル類;などが挙げられる。これらの有機溶媒の中でもケトン類が好ましく用いられ、アセトンが特に好適に用いられる。 The concentration of nitrile rubber in the polymer solution during the hydrogenation reaction is preferably 1 to 70% by weight, more preferably 1 to 40% by weight, particularly preferably 2 to 20% by weight. Examples of water-soluble organic solvents include ketones such as acetone, methyl ethyl ketone, diethyl ketone, and methyl isopropyl ketone; ethers such as tetrahydrofuran and dioxane; and esters such as ethyl acetate. Among these organic solvents, ketones are preferably used, and acetone is particularly preferably used.

本発明において、水素化反応を行う際には、水素化触媒として、白金族元素含有触媒を使用する。白金族元素含有触媒としては、白金族元素、すなわち、ルテニウム、ロジウム、パラジウム、オスミウム、イリジウムまたは白金を含有する触媒であればよく、特に限定されないが、触媒活性や入手容易性の観点からパラジウム化合物、ロジウム化合物が好ましく、パラジウム化合物がより好ましい。また、2種以上の白金族元素化合物を併用してもよいが、その場合もパラジウム化合物を主たる触媒成分とすることが好ましい。 In the present invention, when performing the hydrogenation reaction, a platinum group element-containing catalyst is used as the hydrogenation catalyst. The platinum group element-containing catalyst may be any catalyst containing a platinum group element, that is, ruthenium, rhodium, palladium, osmium, iridium, or platinum, and is not particularly limited, but from the viewpoint of catalytic activity and availability, palladium compounds may be used. , rhodium compounds are preferred, and palladium compounds are more preferred. Further, two or more types of platinum group element compounds may be used in combination, but in that case as well, it is preferable to use a palladium compound as the main catalyst component.

パラジウム化合物は、通常、II価またはIV価のパラジウム化合物が用いられ、その形態は塩や錯塩である。 As the palladium compound, a II-valent or IV-valent palladium compound is usually used, and its form is a salt or a complex salt.

パラジウム化合物としては、例えば、酢酸パラジウム、シアン化パラジウム、フッ化パラジウム、塩化パラジウム、臭化パラジウム、ヨウ化パラジウム、硝酸パラジウム、硫酸パラジウム、酸化パラジウム、水酸化パラジウム、ジクロロ(シクロオクタジエン)パラジウム、ジクロロ(ノルボルナジエン)パラジウム、ジクロロビス(トリフェニルホスフィン)パラジウム、テトラクロロパラジウム酸ナトリウム、ヘキサクロロパラジウム酸アンモニウム、テトラシアノパラジウム酸カリウムなどが挙げられる。 Examples of palladium compounds include palladium acetate, palladium cyanide, palladium fluoride, palladium chloride, palladium bromide, palladium iodide, palladium nitrate, palladium sulfate, palladium oxide, palladium hydroxide, dichloro(cyclooctadiene)palladium, Examples include dichloro(norbornadiene)palladium, dichlorobis(triphenylphosphine)palladium, sodium tetrachloropalladate, ammonium hexachloropalladate, potassium tetracyanopalladate, and the like.

これらのパラジウム化合物の中でも、酢酸パラジウム、硝酸パラジウム、硫酸パラジウム、塩化パラジウム、テトラクロロパラジウム酸ナトリウム、へキサクロロパラジウム酸アンモニウムが好ましく、酢酸パラジウム、硝酸パラジウムおよび塩化パラジウムがより好ましい。 Among these palladium compounds, palladium acetate, palladium nitrate, palladium sulfate, palladium chloride, sodium tetrachloropalladate, and ammonium hexachloropalladate are preferred, and palladium acetate, palladium nitrate, and palladium chloride are more preferred.

ロジウム化合物としては、たとえば、塩化ロジウム、臭化ロジウム、ヨウ化ロジウム、硝酸ロジウム、硫酸ロジウム、酢酸ロジウム、蟻酸ロジウム、プロピオン酸ロジウム、酪酸ロジウム、吉草酸ロジウム、ナフテン酸ロジウム、アセチルアセトン酸ロジウム、酸化ロジウム、三水酸化ロジウムなどが挙げられる。 Examples of rhodium compounds include rhodium chloride, rhodium bromide, rhodium iodide, rhodium nitrate, rhodium sulfate, rhodium acetate, rhodium formate, rhodium propionate, rhodium butyrate, rhodium valerate, rhodium naphthenate, rhodium acetylacetonate, and rhodium oxide. Examples include rhodium and rhodium trihydroxide.

本発明において、白金族元素含有触媒としては、上述したパラジウム化合物やロジウム化合物をそのまま使用してもよいし、あるいは、上述したパラジウム化合物やロジウム化合物などの触媒成分を担体に担持させて、担持型触媒として使用してもよい。 In the present invention, as the platinum group element-containing catalyst, the above-mentioned palladium compounds and rhodium compounds may be used as they are, or the catalyst components such as the above-mentioned palladium compounds and rhodium compounds may be supported on a carrier. May be used as a catalyst.

担持型触媒を形成するための担体としては、一般的に金属触媒の担体として用いられているものであればよいが、具体的には、炭素、ケイ素、アルミニウム、マグネシウムなどを含有する無機化合物が好ましく、その中でも、パラジウム化合物やロジウム化合物などの触媒成分の吸着効率がより高まるという観点より、担体の特性として、平均粒子径が1μm~200μm、比表面積が200~2000m/gであるものを使用するのが好ましい。 The carrier for forming the supported catalyst may be any carrier that is generally used as a carrier for metal catalysts, but specifically, inorganic compounds containing carbon, silicon, aluminum, magnesium, etc. Among them, from the viewpoint of further increasing the adsorption efficiency of catalyst components such as palladium compounds and rhodium compounds, carriers having characteristics of an average particle diameter of 1 μm to 200 μm and a specific surface area of 200 to 2000 m 2 /g are preferred. It is preferable to use

このような担体は、活性炭、活性白土、タルク、クレー、アルミナゲル、シリカ、けいそう土、合成ゼオライトなど公知の触媒用担体の中から適宜に選択する。担体への触媒成分の担持方法としては、たとえば、含浸法、コーティング法、噴霧法、沈殿法などが挙げられる。触媒成分の担持量は、触媒と担体との合計量に対する触媒成分の割合で通常0.5~80重量%、好ましくは1~50重量%、より好ましくは2~30重量%である。触媒成分を担持した担体は、反応器の種類や反応形式などに応じて、例えば球状、円柱状、多角柱状、ハニカム状などに成形することができる。 Such a carrier is appropriately selected from known catalyst carriers such as activated carbon, activated clay, talc, clay, alumina gel, silica, diatomaceous earth, and synthetic zeolite. Examples of the method for supporting the catalyst component on the carrier include an impregnation method, a coating method, a spraying method, and a precipitation method. The amount of catalyst component supported is usually 0.5 to 80% by weight, preferably 1 to 50% by weight, and more preferably 2 to 30% by weight, based on the total amount of catalyst and carrier. The carrier supporting the catalyst component can be shaped into, for example, a spherical shape, a cylindrical shape, a polygonal column shape, a honeycomb shape, etc., depending on the type of reactor and reaction type.

また、パラジウム化合物やロジウム化合物などの白金族元素の塩を担体に担持させずに、白金族元素含有触媒としてそのまま使用する場合においては、これらの化合物を安定させるための安定化剤を併用することが好ましい。安定化剤を、パラジウム化合物やロジウム化合物などの白金族元素含有触媒を溶解または分散させた媒体中に存在させることにより、ニトリルゴムを高水素添加率で水素化することができる。 In addition, when using a salt of a platinum group element such as a palladium compound or a rhodium compound as a platinum group element-containing catalyst without supporting it on a carrier, a stabilizer should be used in combination to stabilize these compounds. is preferred. By providing a stabilizer in a medium in which a platinum group element-containing catalyst such as a palladium compound or a rhodium compound is dissolved or dispersed, nitrile rubber can be hydrogenated at a high hydrogenation rate.

このような安定化剤としては、たとえば、ポリビニルピロリドン、ポリビニルアルコール、ポリビニルアセタール、ポリアルキルビニルエーテルなどの側鎖に極性基を有するビニル化合物の重合体;ポリアクリル酸のナトリウム、ポリアクリル酸カリウムなどのポリアクリル酸の金属塩;ポリエチレンオキサイド、ポリプロピレンオキサイド、エチレンオキサイド-プロピレンオキサイド共重合体などのポリエーテル;カルボキシメチルセルロース、ヒドロキシプロピルセルロースなどのセルロース誘導体;ゼラチン、アルブミンなどの天然高分子;などが挙げられる。これらの中でも、側鎖に極性基を有するビニル化合物の重合体、またはポリエーテルが好ましい。側鎖に極性基を有するビニル化合物の重合体の中では、ポリビニルピロリドン、ポリアルキルビニルエーテルが好ましく、ポリメチルビニルエーテルがより好ましい。 Examples of such stabilizers include polymers of vinyl compounds having polar groups in side chains such as polyvinylpyrrolidone, polyvinyl alcohol, polyvinyl acetal, and polyalkyl vinyl ether; sodium polyacrylate, potassium polyacrylate, etc. Metal salts of polyacrylic acid; polyethers such as polyethylene oxide, polypropylene oxide, and ethylene oxide-propylene oxide copolymers; cellulose derivatives such as carboxymethyl cellulose and hydroxypropyl cellulose; natural polymers such as gelatin and albumin; . Among these, polymers of vinyl compounds having polar groups in side chains or polyethers are preferred. Among polymers of vinyl compounds having polar groups in side chains, polyvinylpyrrolidone and polyalkyl vinyl ether are preferred, and polymethyl vinyl ether is more preferred.

また、水素化反応に際しては、還元剤を併用してもよく、還元剤としては、ヒドラジン、ヒドラジン水和物、酢酸ヒドラジン、ヒドラジン硫酸塩、ヒドラジン塩酸塩等のヒドラジン類、またはヒドラジンを遊離する化合物などが挙げられる。 In addition, in the hydrogenation reaction, a reducing agent may be used in combination, and examples of reducing agents include hydrazines such as hydrazine, hydrazine hydrate, hydrazine acetate, hydrazine sulfate, and hydrazine hydrochloride, or compounds that liberate hydrazine. Examples include.

水素化反応の温度は、通常0~200℃、好ましくは5~150℃、より好ましくは10~100℃である。水素化反応の温度を上記範囲とすることにより、副反応を抑えながら、反応速度を十分なものとすることができる。 The temperature of the hydrogenation reaction is usually 0 to 200°C, preferably 5 to 150°C, more preferably 10 to 100°C. By controlling the temperature of the hydrogenation reaction within the above range, the reaction rate can be made sufficient while suppressing side reactions.

水素化反応を行う際における、水素の圧力は、通常、0.1~20MPaであり、好ましくは0.1~15MPa、より好ましくは0.1~10MPaである。反応時間は特に限定されないが、通常30分~50時間である。なお、水素ガスは、先ず窒素などの不活性ガスで反応系を置換し、さらに水素で置換した後に加圧することが好ましい。 The hydrogen pressure during the hydrogenation reaction is usually 0.1 to 20 MPa, preferably 0.1 to 15 MPa, and more preferably 0.1 to 10 MPa. The reaction time is not particularly limited, but is usually 30 minutes to 50 hours. Note that it is preferable that the hydrogen gas be pressurized after first replacing the reaction system with an inert gas such as nitrogen, and then replacing it with hydrogen.

水素化ニトリルゴムの重量平均分子量(Mw)は、好ましくは50,000~1,000,000、より好ましくは70,000~800,000、さらに好ましくは100,000~600,000である。水素化ニトリルゴムの重量平均分子量(Mw)は、ゲル・パーミエーション・クロマトグラフィー法を用いて、標準ポリスチレン換算にて求めることができる。 The weight average molecular weight (Mw) of the hydrogenated nitrile rubber is preferably 50,000 to 1,000,000, more preferably 70,000 to 800,000, even more preferably 100,000 to 600,000. The weight average molecular weight (Mw) of hydrogenated nitrile rubber can be determined in terms of standard polystyrene using gel permeation chromatography.

そして、白金族元素含有触媒として、担持型触媒を使用した場合には、濾過や遠心分離などにより担持型触媒を分離することにより、水素化ニトリルゴムの水溶性有機溶媒溶液を得ることができる。 When a supported catalyst is used as the platinum group element-containing catalyst, a water-soluble organic solvent solution of hydrogenated nitrile rubber can be obtained by separating the supported catalyst by filtration, centrifugation, or the like.

そして、本発明においては、上記のようにして得られた水素化ニトリルゴムの水溶性有機溶媒溶液と、水溶性高分子溶液を混合することにより、混合液を得た後、得られた混合液を攪拌する。本発明によれば、水素化ニトリルゴムの水溶性有機溶媒溶液と、水溶性高分子溶液を混合し、得られた混合液を撹拌することで、水素化ニトリルゴムの水溶性有機溶媒溶液に含まれる、白金族元素に水溶性高分子が配位し、白金族元素が水溶性高分子に取り込まれ、その一方で、水溶性高分子が、水溶性有機溶媒の影響により脱水和することで、水溶性高分子を、白金族元素を取り込んだ状態で析出させることができる。これにより、水素化触媒、特に、白金族元素含有触媒に由来する白金族元素を、水素化ニトリルゴムから適切に分離させることができる。また、水溶性高分子中に白金族元素を取り込ませることにより、白金族元素の回収をも可能とすることができる。 In the present invention, a mixed solution is obtained by mixing the water-soluble organic solvent solution of hydrogenated nitrile rubber obtained as described above and a water-soluble polymer solution. Stir. According to the present invention, by mixing a water-soluble organic solvent solution of hydrogenated nitrile rubber and a water-soluble polymer solution and stirring the resulting mixture, The water-soluble polymer coordinates with the platinum group element, the platinum group element is incorporated into the water-soluble polymer, and on the other hand, the water-soluble polymer is dehydrated due to the influence of the water-soluble organic solvent. Water-soluble polymers can be precipitated with platinum group elements incorporated therein. Thereby, the hydrogenation catalyst, particularly the platinum group element derived from the platinum group element-containing catalyst, can be appropriately separated from the hydrogenated nitrile rubber. Furthermore, by incorporating the platinum group element into the water-soluble polymer, it is also possible to recover the platinum group element.

さらに、本発明によれば、水素化ニトリルゴムの水溶性有機溶媒溶液に、水溶性高分子を添加する際に、水溶性有機溶媒と水とを特定の重量比で含有する溶液の状態で添加するものであり、これにより、水素化ニトリルゴムの凝集を抑制しながら、水素化ニトリルゴムの水溶性有機溶媒溶液中に含まれる、白金族元素含有触媒に由来する白金族元素を取り込んだ水溶性高分子を析出させることができる。したがって、従来の技術のように、水溶性高分子の析出と同時に、一部の水素化ニトリルゴムが凝集し、凝集した水素化ニトリルゴムが、白金族元素の水溶性高分子への取り込みを妨げるという問題が生じにくく、白金族元素を、水素化ニトリルゴムから一層高い効率で分離できる。さらには、白金族元素を取り込んだ状態で析出する水溶性高分子に、凝集した水素化ニトリルゴムが混入しにくいので、水溶性高分子を、高純度かつ高収率で容易に回収することができ、再利用に供することができる。 Furthermore, according to the present invention, when adding a water-soluble polymer to a water-soluble organic solvent solution of hydrogenated nitrile rubber, the water-soluble polymer is added in the form of a solution containing a water-soluble organic solvent and water in a specific weight ratio. As a result, while suppressing agglomeration of hydrogenated nitrile rubber, a water-soluble compound containing a platinum group element derived from a platinum group element-containing catalyst contained in a water-soluble organic solvent solution of hydrogenated nitrile rubber is produced. Polymers can be precipitated. Therefore, as in the conventional technology, some hydrogenated nitrile rubber aggregates at the same time as the water-soluble polymer is precipitated, and the aggregated hydrogenated nitrile rubber prevents the incorporation of platinum group elements into the water-soluble polymer. This problem is less likely to occur, and platinum group elements can be separated from hydrogenated nitrile rubber with higher efficiency. Furthermore, since the agglomerated hydrogenated nitrile rubber is difficult to mix with the water-soluble polymer that precipitates while incorporating platinum group elements, the water-soluble polymer can be easily recovered with high purity and high yield. It can be used for reuse.

水素化ニトリルゴムの水溶性有機溶媒溶液と混合する水溶性高分子溶液は、水溶性高分子、水溶性有機溶媒および水を含有するものである。 The water-soluble polymer solution to be mixed with the water-soluble organic solvent solution of hydrogenated nitrile rubber contains a water-soluble polymer, a water-soluble organic solvent, and water.

本発明で用いる水溶性高分子としては、水溶性を有し、水に可溶な高分子であればよく、特に限定されない。このような水溶性高分子としては、アミノ基含有ポリ(メタ)アクリルアミド(「アミノ基含有ポリメタクリルアミドおよび/またはアミノ基含有ポリアクリルアミド」の意味。以下、同様。)、ヒドロキシ基含有ポリ(メタ)アクリルアミドなどの変性基含有ポリ(メタ)アクリルアミド;アミノ基含有(メタ)アクリレート系重合体(「アミノ基含有メタクリル系重合体および/またはアミノ基含有アクリル系重合体」の意味。以下、同様。)、カルボキシキル基含有(メタ)アクリレート系重合体、スルホン酸基含有(メタ)アクリレート系重合体、リン酸基含有(メタ)アクリレート系重合体などの変性基含有(メタ)アクリレート系重合体;アルキルセルロース、ヒドロキシアルキルセルロース、アルキルヒドロキシアルキルセルロースなどのセルロース誘導体;などが挙げられるが、これらの中でも、白金族元素との親和性が高く、水素化ニトリルゴムからの白金族元素の分離効果がより高いという観点より、変性基含有(メタ)アクリレート系重合体および変性基含有ポリ(メタ)アクリルアミドが好ましく、変性基含有ポリ(メタ)アクリルアミドがより好ましく、アミノ基含有ポリ(メタ)アクリルアミドがさらに好ましい。また、水溶性高分子に白金族元素含有触媒に由来する白金族元素を取り込ませた後、水溶性高分子を適切に析出させるという観点より、水溶性高分子としては、電気的に中性な水溶性高分子(すなわち、カチオン化やアニオン化がされてない水溶性高分子)であることが好ましく、電気的に中性なアミノ基含有ポリ(メタ)アクリルアミド(すなわち、カチオン化やアニオン化がされてないアミノ基含有ポリ(メタ)アクリルアミド)が特に好ましい。 The water-soluble polymer used in the present invention is not particularly limited as long as it has water solubility and is soluble in water. Such water-soluble polymers include amino group-containing poly(meth)acrylamide (meaning "amino group-containing polymethacrylamide and/or amino group-containing polyacrylamide"; the same shall apply hereinafter), hydroxy group-containing poly(meth)acrylamide, ) Modified group-containing poly(meth)acrylamide such as acrylamide; amino group-containing (meth)acrylate polymer (meaning "amino group-containing methacrylic polymer and/or amino group-containing acrylic polymer". The same applies hereinafter. ), modified group-containing (meth)acrylate polymers such as carboxykyl group-containing (meth)acrylate polymers, sulfonic acid group-containing (meth)acrylate polymers, and phosphoric acid group-containing (meth)acrylate polymers; Cellulose derivatives such as alkylcellulose, hydroxyalkylcellulose, and alkylhydroxyalkylcellulose; among these, cellulose derivatives have a high affinity with platinum group elements and are more effective in separating platinum group elements from hydrogenated nitrile rubber. From the viewpoint of high performance, modified group-containing (meth)acrylate polymers and modified group-containing poly(meth)acrylamides are preferred, modified group-containing poly(meth)acrylamides are more preferred, and amino group-containing poly(meth)acrylamides are even more preferred. . In addition, from the viewpoint of properly precipitating the water-soluble polymer after incorporating the platinum group element derived from the platinum group element-containing catalyst into the water-soluble polymer, electrically neutral It is preferably a water-soluble polymer (i.e., a water-soluble polymer that has not been cationized or anionized), and an electrically neutral amino group-containing poly(meth)acrylamide (i.e., a water-soluble polymer that has not been cationized or anionized). Particularly preferred are amino group-containing poly(meth)acrylamides).

アミノ基含有ポリ(メタ)アクリルアミドとしては、アミノ基含有(メタ)アクリルアミド単位を主成分とする重合体であって、少なくとも一部にアミノ基を含有する重合体であればよく、特に限定されない。アミノ基含有ポリ(メタ)アクリルアミドは、たとえば、アミノ基含有(メタ)アクリルアミド単量体の単独重合体、二種以上のアミノ基含有(メタ)アクリルアミド単量体の共重合体、一種以上のアミノ基含有(メタ)アクリルアミドと、これと共重合可能な一種以上の単量体との共重合体などが挙げられる。 The amino group-containing poly(meth)acrylamide is not particularly limited as long as it is a polymer mainly composed of amino group-containing (meth)acrylamide units, and at least a portion thereof contains an amino group. Amino group-containing poly(meth)acrylamide is, for example, a homopolymer of amino group-containing (meth)acrylamide monomers, a copolymer of two or more types of amino group-containing (meth)acrylamide monomers, or a copolymer of two or more types of amino group-containing (meth)acrylamide monomers. Examples include copolymers of group-containing (meth)acrylamide and one or more monomers copolymerizable with the group-containing (meth)acrylamide.

アミノ基含有(メタ)アクリルアミド単量体としては、N,N-ジアルキルアミノアルキル(メタ)アルキルアミドが好ましく、N,N-ジメチルアミノエチルアクリルアミド、N,N-ジメチルアミノエチルメタクリルアミド、N,N-ジエチルアミノエチルアクリルアミド、N,N-ジエチルアミノエチルメタクリルアミド、N,N-ジメチルアミノプロピルアクリルアミド、N,N-ジメチルアミノプロピルメタクリルアミド、N,N-ジエチルアミノプロピルアクリルアミド、N,N-ジエチルアミノプロピルメタクリルアミドがより好ましく、N,N-ジメチルアミノエチルメタクリルアミドが特に好ましい。アミノ基含有(メタ)アクリルアミド単量体は一種単独でも、複数種を併用してもよい。
アミノ基含有ポリ(メタ)アクリルアミド中における、アミノ基含有(メタ)アクリルアミド単量体単位の含有割合は、水素化ニトリルゴムからの白金族元素の分離効果をより高めるという観点より、好ましくは30~100重量%、より好ましくは50~100重量%、特に好ましくは70~100重量%である。
As the amino group-containing (meth)acrylamide monomer, N,N-dialkylaminoalkyl (meth)alkylamide is preferable, and N,N-dimethylaminoethyl acrylamide, N,N-dimethylaminoethyl methacrylamide, N,N -diethylaminoethyl acrylamide, N,N-diethylaminoethylmethacrylamide, N,N-dimethylaminopropylacrylamide, N,N-dimethylaminopropylmethacrylamide, N,N-diethylaminopropylacrylamide, N,N-diethylaminopropylmethacrylamide More preferred is N,N-dimethylaminoethylmethacrylamide, particularly preferred. The amino group-containing (meth)acrylamide monomer may be used alone or in combination.
The content ratio of amino group-containing (meth)acrylamide monomer units in the amino group-containing poly(meth)acrylamide is preferably 30 to 30, from the viewpoint of further enhancing the separation effect of platinum group elements from hydrogenated nitrile rubber. The amount is 100% by weight, more preferably 50 to 100% by weight, particularly preferably 70 to 100% by weight.

アミノ基含有(メタ)アクリレート系重合体としては、(メタ)アクリル酸エステル単位を主成分とする重合体であって、少なくとも一部にアミノ基を含有する重合体であればよく、特に限定されない。アミノ基含有(メタ)アクリレート系重合体は、たとえば、アミノ基含有(メタ)アクリル酸エステル単量体の単独重合体、二種以上のアミノ基含有(メタ)アクリル酸エステル単量体の共重合体、一種以上のアミノ基含有(メタ)アクリル酸エステル単量体と、これと共重合可能な一種以上の単量体との共重合体などが挙げられる。 The amino group-containing (meth)acrylate polymer is not particularly limited, as long as it is a polymer containing (meth)acrylic acid ester units as a main component and at least partially contains amino groups. . The amino group-containing (meth)acrylate polymer is, for example, a homopolymer of an amino group-containing (meth)acrylic ester monomer, or a copolymer of two or more amino group-containing (meth)acrylic ester monomers. Examples include a copolymer of one or more amino group-containing (meth)acrylic acid ester monomers and one or more monomers copolymerizable therewith.

アミノ基含有(メタ)アクリル酸エステル単量体の具体例としては、N,N-ジメチルアミノエチルアクリレート(DMAEA)、N,N-ジメチルアミノエチルメタクリレート(DMAEMA)、N,N-ジメチルアミノプロピルアクリレート、N,N-ジメチルアミノプロピルメタクリレート、N,N-t-ブチルアミノエチルアクリレート、N,N-t-ブチルアミノエチルメタクリレート、N,N-モノメチルアミノエチルアクリレート、N,N-モノメチルアミノエチルメタクリレート等のアミノアルキル(メタ)アクリレート;N,N-ジメチルアクリルアミド、N,N-ジメチルメタクリルアミド、N,N-ジエチルアクリルアミド、N,N-ジエチルメタクリルアミド、N,N-ジメチルアミノプロピルアクリルアミド、N,N-ジメチルアミノプロピルメタクリルアミド、N,N-ジメチルアミノエチルアクリルアミド、N,N-ジメチルアミノエチルメタクリルアミド、N-イソプロピルアクリルアミド等のN-アミノアルキル(メタ)アクリルアミド;などが挙げられる。アミノ基含有(メタ)アクリル酸エステル単量体は一種単独でも、複数種を併用してもよい。これらのなかでも、アミノアルキル(メタ)アクリレートが好ましく、N,N-ジメチルアミノエチルメタクリレート(DMAEMA)が特に好ましい。 Specific examples of amino group-containing (meth)acrylic acid ester monomers include N,N-dimethylaminoethyl acrylate (DMAEA), N,N-dimethylaminoethyl methacrylate (DMAEMA), and N,N-dimethylaminopropyl acrylate. , N,N-dimethylaminopropyl methacrylate, N,N-t-butylaminoethyl acrylate, N,N-t-butylaminoethyl methacrylate, N,N-monomethylaminoethyl acrylate, N,N-monomethylaminoethyl methacrylate, etc. Aminoalkyl (meth)acrylate; N,N-dimethylacrylamide, N,N-dimethylmethacrylamide, N,N-diethylacrylamide, N,N-diethylmethacrylamide, N,N-dimethylaminopropylacrylamide, N,N N-aminoalkyl (meth)acrylamides such as -dimethylaminopropyl methacrylamide, N,N-dimethylaminoethyl acrylamide, N,N-dimethylaminoethyl methacrylamide, and N-isopropylacrylamide; and the like. The amino group-containing (meth)acrylic acid ester monomers may be used alone or in combination. Among these, aminoalkyl (meth)acrylates are preferred, and N,N-dimethylaminoethyl methacrylate (DMAEMA) is particularly preferred.

また、共重合可能な単量体の具体例としては、アクリル酸、メタクリル酸、イタコン酸、マレイン酸、フマル酸、無水マレイン酸、無水イタコン酸、無水フマル酸等の不飽和カルボン酸;2-ヒドロキシエチルアクリレート、ヒドロキシプロピルアクリレート、4-ヒドロキシブチルアクリレート、2-ヒドロキシエチルメタクリレート、ヒドロキシプロピルメタクリレート、4-ヒドロキシブチルメタクリレート等の水酸基含有ビニル;スチレン、2-メチルスチレン、t-ブチルスチレン、クロルスチレン、ビニルアニソール、ビニルナフタレン、ジビニルベンゼン等の芳香族ビニル;アクリルアミド、メタクリルアミド、N-メチロールメタクリルアミド、N-メチロールアクリルアミド、ジアセトンアクリルアミド、マレイン酸アミド等のアミド;酢酸ビニル、プロピオン酸ビニル等のビニルエステル;塩化ビニリデン、フッ化ビニリデン等のハロゲン化ビニリデン;塩化ビニル、ビニルエーテル、ビニルケトン、ビニルアミド、クロロプレン、エチレン、プロピレン、イソプレン、ブタジエン、クロロプレン、ビニルピロリドン、2-メトキシエチルアクリレート、2-エトキシエチルアクリレート、グリシジルアクリレート、グリシジルメタアクリレート、アリルグリシジルエーテル、アクリロニトリル、メタアクリロニトリル、エチレングリコールジメタクリレート、ジエチレングリコールジメタクリレート、トリエチレングリコールジメタクリレート、ポリエチレングリコールジメタクリレート、ポリプロピレングリコールジメタクリレート、ネオペンチルグリコールジメタクリレート、1,3-ブチレングリコールジメタクリレート、1,6-ヘキサンジオールジメタクリレート、ネオペンチルグリコールジメタクリレート、ポリエチレングリコールジアクリレート、1,6-ヘキサンジオールジアクリレート、ネオペンチルグリコールジアクリレート、トリプロピレングリコールジアクリレート、ポリプロピレングリコールジアクリレート、トリメチロールプロパントリメタクリレート、トリメチロールプロパントリアクリレート、テトラメチロールメタントリアクリレート、テトラメチロールメタンテトラアクリレート、アリルメタアクリレート、ジシクロペンテニルアクリレート、ジシクロペンテニルオキシエチルアクリレート、イソプロペニル-α,α-ジメチルベンジルイソシアネート、アリルメルカプタン等が挙げられる。共重合可能な単量体は一種単独でも、複数種を併用してもよい。 Specific examples of copolymerizable monomers include unsaturated carboxylic acids such as acrylic acid, methacrylic acid, itaconic acid, maleic acid, fumaric acid, maleic anhydride, itaconic anhydride, and fumaric anhydride; Hydroxyl group-containing vinyls such as hydroxyethyl acrylate, hydroxypropyl acrylate, 4-hydroxybutyl acrylate, 2-hydroxyethyl methacrylate, hydroxypropyl methacrylate, 4-hydroxybutyl methacrylate; styrene, 2-methylstyrene, t-butylstyrene, chlorstyrene, Aromatic vinyls such as vinyl anisole, vinylnaphthalene, divinylbenzene; Amides such as acrylamide, methacrylamide, N-methylolmethacrylamide, N-methylolacrylamide, diacetone acrylamide, maleic acid amide; Vinyls such as vinyl acetate, vinyl propionate, etc. Ester; vinylidene halides such as vinylidene chloride and vinylidene fluoride; vinyl chloride, vinyl ether, vinyl ketone, vinylamide, chloroprene, ethylene, propylene, isoprene, butadiene, chloroprene, vinylpyrrolidone, 2-methoxyethyl acrylate, 2-ethoxyethyl acrylate, Glycidyl acrylate, glycidyl methacrylate, allyl glycidyl ether, acrylonitrile, methacrylonitrile, ethylene glycol dimethacrylate, diethylene glycol dimethacrylate, triethylene glycol dimethacrylate, polyethylene glycol dimethacrylate, polypropylene glycol dimethacrylate, neopentyl glycol dimethacrylate, 1,3 -Butylene glycol dimethacrylate, 1,6-hexane diol dimethacrylate, neopentyl glycol dimethacrylate, polyethylene glycol diacrylate, 1,6-hexane diol diacrylate, neopentyl glycol diacrylate, tripropylene glycol diacrylate, polypropylene glycol diacrylate Acrylate, trimethylolpropane trimethacrylate, trimethylolpropane triacrylate, tetramethylolmethane triacrylate, tetramethylolmethanetetraacrylate, allyl methacrylate, dicyclopentenyl acrylate, dicyclopentenyloxyethyl acrylate, isopropenyl-α,α-dimethyl Examples include benzyl isocyanate and allyl mercaptan. The copolymerizable monomers may be used alone or in combination.

アミノ基含有(メタ)アクリレート系重合体中における、アミノ基含有(メタ)アクリル酸エステル単量体単位の含有割合は、水素化ニトリルゴムからの白金族元素の分離効果をより高めるという観点より、好ましくは30~100重量%、より好ましくは50~100重量%、特に好ましくは70~100重量%である。 The content ratio of the amino group-containing (meth)acrylic acid ester monomer unit in the amino group-containing (meth)acrylate polymer is determined from the viewpoint of further enhancing the separation effect of platinum group elements from hydrogenated nitrile rubber. The amount is preferably 30 to 100% by weight, more preferably 50 to 100% by weight, particularly preferably 70 to 100% by weight.

本発明で用いる水溶性高分子の重量平均分子量(Mw)は、水素化ニトリルゴムからの白金族元素の分離効果をより高めるという観点より、好ましくは1,000~1,500,000、より好ましくは5,000~1,200,000、さらに好ましくは10,000~1,000,000、さらにより好ましくは20,000~1,000,000、さらに一層好ましくは100,000~1,000,000である。水溶性高分子の重量平均分子量(Mw)は、ゲル・パーミエーション・クロマトグラフィー法を用いて、標準ポリスチレンあるいは標準ポリエチレングリコール換算にて求めることができる。 The weight average molecular weight (Mw) of the water-soluble polymer used in the present invention is preferably 1,000 to 1,500,000, more preferably is 5,000 to 1,200,000, more preferably 10,000 to 1,000,000, even more preferably 20,000 to 1,000,000, even more preferably 100,000 to 1,000, It is 000. The weight average molecular weight (Mw) of a water-soluble polymer can be determined in terms of standard polystyrene or standard polyethylene glycol using gel permeation chromatography.

水溶性高分子溶液の調製に用いる水溶性有機溶媒としては、たとえば、アセトン、メチルエチルケトン、ジエチルケトン、メチルイソプロピルケトンなどのケトン類;テトラヒドロフラン、ジオキサンなどのエーテル類;酢酸エチルなどのエステル類;などが挙げられる。これらの有機溶媒の中でもケトン類が好ましく用いられ、アセトンが特に好適に用いられる。特に、ニトリルゴムの水素化反応に用いた水溶性有機溶媒と、同じ水溶性有機溶媒を用いることが、水素化ニトリルゴムからの白金族元素の分離をより効率的に行い、また、高純度の水溶性高分子を高い収率で回収するという観点から好適である。 Examples of the water-soluble organic solvent used for preparing the water-soluble polymer solution include ketones such as acetone, methyl ethyl ketone, diethyl ketone, and methyl isopropyl ketone; ethers such as tetrahydrofuran and dioxane; and esters such as ethyl acetate. Can be mentioned. Among these organic solvents, ketones are preferably used, and acetone is particularly preferably used. In particular, using the same water-soluble organic solvent as the one used in the hydrogenation reaction of nitrile rubber allows for more efficient separation of platinum group elements from hydrogenated nitrile rubber. This method is suitable from the viewpoint of recovering water-soluble polymers in high yield.

水溶性高分子溶液中の水溶性高分子の濃度は、水素化ニトリルゴムからの白金族元素の分離をより効率的に行い、また、高純度の水溶性高分子を高い収率で回収するという観点より、好ましくは1~40重量%、より好ましくは2~30重量%、さらに好ましくは5~20重量%である。 The concentration of the water-soluble polymer in the water-soluble polymer solution is said to enable more efficient separation of platinum group elements from hydrogenated nitrile rubber and to recover high-purity water-soluble polymers in high yields. From this point of view, it is preferably 1 to 40% by weight, more preferably 2 to 30% by weight, and still more preferably 5 to 20% by weight.

水溶性高分子溶液中の水溶性有機溶媒と水との重量比は、水素化ニトリルゴムからの白金族元素の分離をより効率的に行い、また、高純度の水溶性高分子を高い収率で回収するという観点より、好ましくは1:1~3:1、より好ましくは1.3:1~2.5:1、さらに好ましくは1.4:1~2.3:1である。 The weight ratio of the water-soluble organic solvent to water in the water-soluble polymer solution allows for more efficient separation of platinum group elements from hydrogenated nitrile rubber, and also allows high purity water-soluble polymers to be produced in high yield. From the viewpoint of recovery, the ratio is preferably 1:1 to 3:1, more preferably 1.3:1 to 2.5:1, and still more preferably 1.4:1 to 2.3:1.

また、水素化ニトリルゴムの水溶性有機溶媒溶液と水溶性高分子溶液とを混合することにより得られる混合液中の水溶性高分子の含有量は、水素化ニトリルゴムからの白金族元素の分離をより効率的に行い、また、高純度の水溶性高分子を高い収率で回収するという観点より、水素化ニトリルゴム100重量部に対して、好ましくは0.01~50重量部、より好ましくは0.05~25重量部、さらに好ましくは0.05~5重量部、特に好ましくは0.05~1重量部である。 In addition, the content of water-soluble polymer in the mixed solution obtained by mixing a water-soluble organic solvent solution of hydrogenated nitrile rubber and a water-soluble polymer solution is determined by the separation of platinum group elements from hydrogenated nitrile rubber. From the viewpoint of performing the process more efficiently and recovering high-purity water-soluble polymers at a high yield, it is preferably 0.01 to 50 parts by weight, more preferably 0.01 to 50 parts by weight per 100 parts by weight of hydrogenated nitrile rubber. is 0.05 to 25 parts by weight, more preferably 0.05 to 5 parts by weight, particularly preferably 0.05 to 1 part by weight.

また、水素化ニトリルゴムの水溶性有機溶媒溶液と水溶性高分子溶液とを混合することにより得られる混合液中の水の濃度は、水素化ニトリルゴムからの白金族元素の分離をより効率的に行い、また、高純度の水溶性高分子を高い収率で回収するという観点より、混合液に対して、好ましくは0.005~0.060重量%であり、より好ましくは0.020~0.050重量%であり、さらに好ましくは0.020~0.030重量%である。 In addition, the concentration of water in the mixture obtained by mixing a water-soluble organic solvent solution of hydrogenated nitrile rubber and a water-soluble polymer solution makes the separation of platinum group elements from hydrogenated nitrile rubber more efficient. In addition, from the viewpoint of recovering high-purity water-soluble polymers in high yield, the amount is preferably 0.005 to 0.060% by weight, more preferably 0.020 to 0.060% by weight, based on the mixed liquid. The amount is 0.050% by weight, more preferably 0.020 to 0.030% by weight.

混合液を攪拌する攪拌方法としては、特に限定されないが、たとえば、攪拌機を用いた方法や振とう器を用いた方法などが挙げられ、なかでも、攪拌機を用いた方法が好ましい。攪拌を行う際における攪拌条件は、特に限定されず、攪拌温度は、特に限定されず、好ましくは5~50℃、より好ましくは10~40℃である。攪拌レイノルズ数は、水素化ニトリルゴムからの白金族元素の分離をより効率的に行うという観点から、好ましくは900~2500、より好ましくは2000~2300である。撹拌レイノルズ数(Re)は、Re=ρnd/μで表される値である。ここで、ρは撹拌する混合液の密度(kg/m)を、dは撹拌翼直径(m)を、μは撹拌する混合液の粘度(kg/(m・s))を、nは撹拌翼の回転速度(l/s=N/60)をそれぞれ表す。 The stirring method for stirring the liquid mixture is not particularly limited, and examples thereof include a method using a stirrer and a method using a shaker. Among them, a method using a stirrer is preferable. The stirring conditions during stirring are not particularly limited, and the stirring temperature is not particularly limited, but is preferably 5 to 50°C, more preferably 10 to 40°C. The stirring Reynolds number is preferably 900 to 2,500, more preferably 2,000 to 2,300 from the viewpoint of more efficiently separating platinum group elements from hydrogenated nitrile rubber. The stirring Reynolds number (Re) is a value expressed by Re=ρnd 2 /μ. Here, ρ is the density of the mixed liquid to be stirred (kg/m 3 ), d is the diameter of the stirring blade (m), μ is the viscosity of the mixed liquid to be stirred (kg/(m・s)), and n is the Each represents the rotational speed (l/s=N/60) of the stirring blade.

本発明によれば、水素化ニトリルゴムの水溶性有機溶媒溶液と特定の組成を有する水溶性高分子溶液とを混合し、次いで、これを撹拌することにより、水素化ニトリルゴムの水溶性有機溶媒溶液に含まれる、白金族元素含有触媒に由来する白金族元素を水溶性高分子に取り込ませて、水溶性高分子を析出させるものであり、これにより、得られる水素化ニトリルゴム中に含まれる白金族元素の含有量を、効果的に低減することができるものである。具体的には、水素化ニトリルゴム中に含まれる白金族元素の含有量を、好ましくは50重量ppm以下、より好ましくは40重量ppm以下、さらに好ましくは30重量ppm以下に低減することができるものである。そして、このような本発明により得られる水素化ニトリルゴムは、白金族元素の含有量が低減されたものであることから、白金族元素に起因する架橋反応の進行の阻害を有効に抑制することができ、これにより、耐熱老化性および耐圧縮永久歪み性などの各種特性を適切に向上させることができる。さらには、水素化ニトリルゴムだけでなく、水素化ニトリルゴムから白金族元素含有触媒に由来する白金族元素を分離するために用いた水溶性高分子についても、高純度かつ高収率で回収することができ、これにより、水溶性高分子を容易に再利用することができ、水溶性高分子を水素化ニトリルゴムの触媒成分の分離方法に再利用した場合であっても、水素化ニトリルゴムからの白金族元素の分離を効率的に行うことができる。 According to the present invention, by mixing a water-soluble organic solvent solution of hydrogenated nitrile rubber and a water-soluble polymer solution having a specific composition and then stirring this, the water-soluble organic solvent of hydrogenated nitrile rubber The platinum group element derived from the platinum group element-containing catalyst contained in the solution is incorporated into the water-soluble polymer to precipitate the water-soluble polymer. The content of platinum group elements can be effectively reduced. Specifically, the content of platinum group elements contained in hydrogenated nitrile rubber can be reduced to preferably 50 weight ppm or less, more preferably 40 weight ppm or less, and even more preferably 30 weight ppm or less. It is. Since the hydrogenated nitrile rubber obtained by the present invention has a reduced content of platinum group elements, it is possible to effectively suppress the inhibition of the progress of the crosslinking reaction caused by platinum group elements. As a result, various properties such as heat aging resistance and compression set resistance can be appropriately improved. Furthermore, not only hydrogenated nitrile rubber but also water-soluble polymers used to separate platinum group elements derived from platinum group element-containing catalysts from hydrogenated nitrile rubber can be recovered with high purity and high yield. As a result, the water-soluble polymer can be easily reused, and even when the water-soluble polymer is reused in the method for separating the catalyst component of hydrogenated nitrile rubber, it is possible to easily reuse the water-soluble polymer. Platinum group elements can be efficiently separated from

以下に、実施例および比較例を挙げて本発明を具体的に説明する。以下において、特記しない限り「部」は重量基準である。なお、試験、評価は以下によった。 The present invention will be specifically explained below with reference to Examples and Comparative Examples. In the following, "parts" are based on weight unless otherwise specified. The test and evaluation were as follows.

<製造例1>
(水素化アクリロニトリル-ブタジエン共重合体の製造)
反応器に、オレイン酸カリウム2部、イオン交換水180部、アクリロニトリル37部、およびt-ドデシルメルカプタン0.5部を、この順に仕込んだ。次いで、反応器内部を窒素で置換した後、ブタジエン63部を添加し、反応器を10℃に冷却して、クメンハイドロパーオキサイド0.01部、および硫酸第一鉄0.01部を添加した。次いで、反応器を10℃に保ったまま内容物を16時間攪拌した。その後、反応器内へ5重量%のハイドロキノン水溶液を添加して重合反応を停止させた後、重合反応液から未反応の単量体を除去することで、アクリロニトリル-ブタジエン共重合体のラテックスを得た。重合転化率は90%であった。
<Manufacture example 1>
(Production of hydrogenated acrylonitrile-butadiene copolymer)
A reactor was charged with 2 parts of potassium oleate, 180 parts of ion-exchanged water, 37 parts of acrylonitrile, and 0.5 part of t-dodecylmercaptan in this order. Next, after purging the inside of the reactor with nitrogen, 63 parts of butadiene was added, the reactor was cooled to 10°C, and 0.01 part of cumene hydroperoxide and 0.01 part of ferrous sulfate were added. . The contents were then stirred for 16 hours while the reactor was maintained at 10°C. After that, a 5% by weight aqueous hydroquinone solution was added into the reactor to stop the polymerization reaction, and unreacted monomers were removed from the polymerization reaction solution to obtain a latex of acrylonitrile-butadiene copolymer. Ta. The polymerization conversion rate was 90%.

次いで、上記とは別の反応器に、塩化カルシウム(凝固剤)3部を溶解した凝固水300部を入れ、これを50℃で攪拌しながら、上記にて得られたラテックスを凝固水中へ滴下した。そして、ここへ水酸化カリウム水溶液を加えてpHを11.5に保ちながら重合体クラムを析出させた後、凝固水から重合体クラムを分取して水洗後、50℃で減圧乾燥した。次いで、得られた重合体クラムをアセトンに溶解することで、重合体含量が15重量%のアセトン溶液を調製した。 Next, 300 parts of coagulated water in which 3 parts of calcium chloride (coagulant) was dissolved was placed in a separate reactor from the above, and while stirring this at 50°C, the latex obtained above was dropped into the coagulated water. did. Then, an aqueous potassium hydroxide solution was added thereto to precipitate the polymer crumb while maintaining the pH at 11.5, and then the polymer crumb was separated from the coagulated water, washed with water, and then dried under reduced pressure at 50°C. Next, the obtained polymer crumb was dissolved in acetone to prepare an acetone solution having a polymer content of 15% by weight.

そして、得られたアクリロニトリル-ブタジエン共重合体のアセトン溶液にシリカ担持型パラジウム(Pd)触媒(Pd量は「Pd金属/アクリロニトリル-ブタジエン共重合体」の比で1000重量ppm)を加えて、これを攪拌機付オートクレーブに投入し、窒素ガスを10分間流すことで溶存酸素を除去した。次いで、系内を2回水素ガスで置換後、5MPaの水素を加圧し、内容物を50℃に加温して6時間攪拌することで、水素化反応を行った。 Then, a silica-supported palladium (Pd) catalyst (Pd amount is 1000 ppm by weight in the ratio of "Pd metal/acrylonitrile-butadiene copolymer") was added to the acetone solution of the obtained acrylonitrile-butadiene copolymer. was placed in an autoclave equipped with a stirrer, and dissolved oxygen was removed by flowing nitrogen gas for 10 minutes. Next, after replacing the inside of the system with hydrogen gas twice, hydrogen was pressurized at 5 MPa, and the contents were heated to 50° C. and stirred for 6 hours to perform a hydrogenation reaction.

水素化反応終了後、反応系を室温に冷却し、系内の水素を窒素で置換した。そして、水素化反応により得られた水素化アクリロニトリル-ブタジエン共重合体の溶液について、濾過を行うことで、シリカ担持型パラジウム触媒を回収し、ろ過後の水素化アクリロニトリル-ブタジエン共重合体の溶液を得た。 After the hydrogenation reaction was completed, the reaction system was cooled to room temperature, and the hydrogen in the system was replaced with nitrogen. Then, the solution of hydrogenated acrylonitrile-butadiene copolymer obtained by the hydrogenation reaction is filtered to recover the silica-supported palladium catalyst, and the solution of hydrogenated acrylonitrile-butadiene copolymer after filtration is filtered. Obtained.

上記にて得られた、ろ過後の水素化アクリロニトリル-ブタジエン共重合体の溶液のうち一部を採取し、これを10倍量の水中に投入して、共重合体を析出させ、得られた共重合体を真空乾燥機で24時間乾燥することで、固形状の水素化アクリロニトリル-ブタジエン共重合体を得た。得られた固形状の水素化アクリロニトリル-ブタジエン共重合体について、原子吸光測定により、共重合体中のパラジウム量を測定したところ、パラジウム量は142重量ppmであった。また、JIS K6235に準じてヨウ素価を測定したところ、ヨウ素価は、7.4であった。 A portion of the filtered hydrogenated acrylonitrile-butadiene copolymer solution obtained above was collected and poured into 10 times the amount of water to precipitate the copolymer. The copolymer was dried in a vacuum dryer for 24 hours to obtain a solid hydrogenated acrylonitrile-butadiene copolymer. Regarding the obtained solid hydrogenated acrylonitrile-butadiene copolymer, the amount of palladium in the copolymer was measured by atomic absorption spectrometry, and the amount of palladium was 142 ppm by weight. Further, when the iodine value was measured according to JIS K6235, the iodine value was 7.4.

<製造例2>
(水溶性高分子製造用モノマーの合成)
p-メトシキフェノール0.005部、N,N-ジメチルエチレンジアミン6.0部、水酸化ナトリウム4.5部をイオン交換水35.0部に溶解した後、反応器を5℃に冷却し、さらにジクロロメタン45.0部を加えた。反応器を5℃に保ちながら撹拌し、塩化メタクリロイル9.5部を10分かけて滴下した。反応器を5℃に保ちながらさらに1時間攪拌した後、ジクロロメタンで4回抽出を行った。抽出液は無水硫酸ナトリウムで乾燥した後、溶媒をエバポレーターで除去し、N-[2-(ジメチルアミノ)エチル]メタクリルアミドを得た。
<Manufacture example 2>
(Synthesis of monomer for water-soluble polymer production)
After dissolving 0.005 parts of p-methoxyphenol, 6.0 parts of N,N-dimethylethylenediamine, and 4.5 parts of sodium hydroxide in 35.0 parts of ion-exchanged water, the reactor was cooled to 5°C. Furthermore, 45.0 parts of dichloromethane was added. The reactor was stirred while being maintained at 5°C, and 9.5 parts of methacryloyl chloride was added dropwise over 10 minutes. After stirring for an additional hour while maintaining the reactor at 5°C, extraction was performed four times with dichloromethane. After drying the extract over anhydrous sodium sulfate, the solvent was removed using an evaporator to obtain N-[2-(dimethylamino)ethyl]methacrylamide.

<製造例3>
(水溶性高分子の製造)
反応器に、製造例2で得られたN-[2-(ジメチルアミノ)エチル]メタクリルアミドを29.5部、イオン交換水70.0部、過硫酸アンモニウム0.5部を仕込み、次いで、反応器内部を窒素で置換した後、反応器を30℃に加温して、30℃に保ったまま内容物を96時間攪拌した。得られた高分子水溶液をアセトン中へ滴下し、重合体を析出させた後、アセトン中から重合体を分取してアセトン洗浄を行った後、50℃で減圧乾燥することにより固体状の水溶性高分子(ポリ(N-[2-(ジメチルアミノ)エチル]メタクリルアミド))を得た。得られた水溶性高分子について、GPC測定により、ポリスチレン換算の重量平均分子量(Mw)を測定したところ、重量平均分子量(Mw)は200,000であった。
<Manufacture example 3>
(Production of water-soluble polymer)
A reactor was charged with 29.5 parts of N-[2-(dimethylamino)ethyl]methacrylamide obtained in Production Example 2, 70.0 parts of ion-exchanged water, and 0.5 parts of ammonium persulfate, and then the reaction After purging the inside of the reactor with nitrogen, the reactor was heated to 30°C, and the contents were stirred for 96 hours while maintaining the temperature at 30°C. The resulting aqueous polymer solution was dropped into acetone to precipitate the polymer, and then the polymer was separated from the acetone and washed with acetone, followed by drying under reduced pressure at 50°C to form a solid aqueous solution. A polymer (poly(N-[2-(dimethylamino)ethyl]methacrylamide)) was obtained. Regarding the obtained water-soluble polymer, the weight average molecular weight (Mw) in terms of polystyrene was measured by GPC measurement, and the weight average molecular weight (Mw) was 200,000.

<製造例4>
アセトンと蒸留水が重量比で1.5:1の比率となるよう混合したアセトン/水溶液に、製造例3で得られた水溶性高分子を溶かして、水溶性高分子の含有量が6.86重量%である水溶性高分子溶液を得た。
<Manufacture example 4>
The water-soluble polymer obtained in Production Example 3 was dissolved in an acetone/water solution in which acetone and distilled water were mixed at a weight ratio of 1.5:1, and the content of the water-soluble polymer was 6. A water-soluble polymer solution having a concentration of 86% by weight was obtained.

<製造例5>
アセトンと蒸留水が重量比で2.0:1の比率となるよう混合したアセトン/水溶液に、製造例3で得られた水溶性高分子を溶かして、水溶性高分子の含有量が6.98重量%である水溶性高分子溶液を得た。
<Manufacture example 5>
The water-soluble polymer obtained in Production Example 3 was dissolved in an acetone/water solution in which acetone and distilled water were mixed at a weight ratio of 2.0:1, and the content of the water-soluble polymer was 6.0:1. A water-soluble polymer solution having a concentration of 98% by weight was obtained.

<製造例6>
アセトンと蒸留水が重量比で1.5:1の比率となるよう混合したアセトン/水溶液に、製造例3で得られた水溶性高分子を溶かして、水溶性高分子の含有量が9.15重量%である水溶性高分子溶液を得た。
<Manufacture example 6>
The water-soluble polymer obtained in Production Example 3 was dissolved in an acetone/water solution in which acetone and distilled water were mixed at a weight ratio of 1.5:1 to obtain a water-soluble polymer content of 9. A water-soluble polymer solution having a concentration of 15% by weight was obtained.

<製造例7>
アセトンと蒸留水が重量比で2.0:1の比率となるよう混合したアセトン/水溶液に、製造例3で得られた水溶性高分子を溶かして、水溶性高分子の含有量が9.30重量%である水溶性高分子溶液を得た。
<Manufacture example 7>
The water-soluble polymer obtained in Production Example 3 was dissolved in an acetone/water solution in which acetone and distilled water were mixed at a weight ratio of 2.0:1, and the content of the water-soluble polymer was 9. A water-soluble polymer solution having a concentration of 30% by weight was obtained.

<製造例8>
アセトンと蒸留水が重量比で1.5:1の比率となるよう混合したアセトン/水溶液に、製造例3で得られた水溶性高分子を溶かして、水溶性高分子の含有量が9.73重量%である水溶性高分子溶液を得た。
<Manufacture example 8>
The water-soluble polymer obtained in Production Example 3 was dissolved in an acetone/water solution in which acetone and distilled water were mixed at a weight ratio of 1.5:1 to obtain a water-soluble polymer content of 9. A water-soluble polymer solution having a concentration of 73% by weight was obtained.

<製造例9>
アセトンと蒸留水が重量比で2.0:1の比率となるよう混合したアセトン/水溶液に、製造例3で得られた水溶性高分子を溶かして、水溶性高分子の含有量が9.88重量%である水溶性高分子溶液を得た。
<Manufacture example 9>
The water-soluble polymer obtained in Production Example 3 was dissolved in an acetone/water solution in which acetone and distilled water were mixed at a weight ratio of 2.0:1, and the content of the water-soluble polymer was 9. A water-soluble polymer solution having a concentration of 88% by weight was obtained.

<製造例10>
蒸留水のみ(アセトンと蒸留水の重量比で0:1)に、製造例3で得られた水溶性高分子を溶かして、水溶性高分子の含有量が6.86重量%である水溶性高分子溶液を得た。
<Manufacture example 10>
The water-soluble polymer obtained in Production Example 3 was dissolved in only distilled water (weight ratio of acetone and distilled water 0:1) to obtain a water-soluble polymer with a water-soluble polymer content of 6.86% by weight. A polymer solution was obtained.

<実施例1>
製造例1で得られた、ろ過後の水素化アクリロニトリル-ブタジエン共重合体の溶液を一部採取し、これをセパラブルフラスコに移し、水素化アクリロニトリル-ブタジエン共重合体の濃度が7重量%となるように、アセトンを添加して濃度調整を行った後、この溶液の一部を採取して加熱減量法で水素化アクリロニトリル-ブタジエン共重合体の溶液の濃度を測定したところ、7.1重量%であった。この水素化アクリロニトリル-ブタジエン共重合体の溶液中の水素化アクリロニトリル-ブタジエン共重合体100部に対して、製造例4で得られた水溶性高分子溶液を、水溶性高分子の量が0.075部となるよう添加して、混合液を調製した。次いで、調製した混合液を、二枚パドル翼(直径80mm)を用いて、撹拌レイノルズ数(以下、撹拌Re数という)が2200となる条件で、24時間攪拌を行った。そして、24時間の撹拌により、水溶性高分子は固体となって沈降した。次いで、ろ過を行うことにより、ろ物とろ液とに分離させた。
<Example 1>
A portion of the filtered solution of the hydrogenated acrylonitrile-butadiene copolymer obtained in Production Example 1 was collected and transferred to a separable flask, and the concentration of the hydrogenated acrylonitrile-butadiene copolymer was 7% by weight. After adjusting the concentration by adding acetone, a portion of this solution was sampled and the concentration of the hydrogenated acrylonitrile-butadiene copolymer solution was measured by the heating loss method, and it was found to be 7.1 wt. %Met. The water-soluble polymer solution obtained in Production Example 4 was added to 100 parts of the hydrogenated acrylonitrile-butadiene copolymer in the hydrogenated acrylonitrile-butadiene copolymer solution so that the amount of the water-soluble polymer was 0. A mixed solution was prepared by adding 0.075 parts. Next, the prepared mixed solution was stirred for 24 hours using two paddle blades (diameter 80 mm) under conditions such that the stirring Reynolds number (hereinafter referred to as stirring Re number) was 2200. After stirring for 24 hours, the water-soluble polymer became solid and precipitated. Next, by performing filtration, it was separated into a filtrate and a filtrate.

引き続き、100ccのアセトンを用いて、ろ紙上で、ろ物の洗浄を行った。この洗浄操作を合計3回実施し、ろ物を真空乾燥器にて12時間乾燥させた。乾燥させたろ物には、パラジウムを吸着させた水溶性高分子が主に含まれており、少量の水素化アクリロニトリル-ブタジエン共重合体が残留していた。乾燥させたろ物の重量は、仕込んだ水溶性高分子の重量に対して、91重量%に相当する量であった。仕込んだ水溶性高分子の重量に対する乾燥させたろ物の重量の割合(重量%)を、「アミノ基含有ポリアクリルアミド回収率」として、表1に示す。 Subsequently, the filtered material was washed on the filter paper using 100 cc of acetone. This washing operation was carried out three times in total, and the filtered material was dried in a vacuum dryer for 12 hours. The dried filtrate mainly contained a water-soluble polymer adsorbed with palladium, with a small amount of hydrogenated acrylonitrile-butadiene copolymer remaining. The weight of the dried filtrate was equivalent to 91% by weight based on the weight of the water-soluble polymer charged. The ratio (% by weight) of the weight of the dried filtrate to the weight of the water-soluble polymer charged is shown in Table 1 as the "amino group-containing polyacrylamide recovery rate."

乾燥させたろ物に残留した水素化アクリロニトリル-ブタジエン共重合体の濃度を次の方法により測定した。乾燥させたろ物を蒸留水に投入して、ろ物中に含まれるパラジウムを吸着させた水溶性高分子を溶解させ、溶解しなかった水素化アクリロニトリル-ブタジエン共重合体を回収した。回収した水素化アクリロニトリル-ブタジエン共重合体の重量を計量したところ、乾燥させたろ物の重量に対して4重量%にあたる量であった。乾燥させたろ物の重量に対する水素化アクリロニトリル-ブタジエン共重合体の重量の割合(重量%)を、「水素化アクリロニトリル-ブタジエン共重合体の濃度」として、表1に示す。 The concentration of the hydrogenated acrylonitrile-butadiene copolymer remaining in the dried filtrate was measured by the following method. The dried filtrate was poured into distilled water to dissolve the water-soluble polymer adsorbed with palladium contained in the filtrate, and the undissolved hydrogenated acrylonitrile-butadiene copolymer was recovered. When the weight of the recovered hydrogenated acrylonitrile-butadiene copolymer was measured, it was found to be 4% by weight based on the weight of the dried filtrate. The ratio of the weight of the hydrogenated acrylonitrile-butadiene copolymer to the weight of the dried filtrate (% by weight) is shown in Table 1 as the "concentration of the hydrogenated acrylonitrile-butadiene copolymer."

以上のことから、水溶性高分子溶液を用いる分離方法によって、ろ物の合計3回の洗浄および乾燥の後に、91重量%の回収率でパラジウムを吸着させた水溶性高分子を回収でき、回収された水溶性高分子中には、4重量%の水素化アクリロニトリル-ブタジエン共重合体しか含まれていないことが分かった。 From the above, by the separation method using a water-soluble polymer solution, after washing and drying the filtrate three times in total, water-soluble polymers with palladium adsorbed can be recovered with a recovery rate of 91% by weight. It was found that the water-soluble polymer contained only 4% by weight of hydrogenated acrylonitrile-butadiene copolymer.

一方、ろ物の洗浄に用いたアセトンは、混合液の24時間撹拌後のろ過により生じたろ液とともに、ろ液として回収した。回収したろ液には、水素化アクリロニトリル-ブタジエン共重合体およびアセトンが主に含まれており、少量の水溶性高分子、水およびパラジウムが残留していた。回収したろ液に等量の蒸留水を入れることで、ろ液から水素化アクリロニトリル-ブタジエン共重合体を析出させた。得られた析出物を真空乾燥器で24時間乾燥することで、固形状の水素化アクリロニトリル-ブタジエン共重合体を得た。得られた共重合体について、原子吸光測定により、水素化アクリロニトリル-ブタジエン共重合体のパラジウム量を測定したところ、パラジウム量は34重量ppmであった。このとき、水素化アクリロニトリル-ブタジエン共重合体からの水溶性高分子によるパラジウムを分離する分離効率(水溶性高分子によるPd分離効率(重量%)=[(水溶性高分子による処理前の水素化アクリロニトリル-ブタジエン共重合体中のパラジウム量)-(水溶性高分子による処理後の水素化アクリロニトリル-ブタジエン共重合体中のパラジウム量)]÷(水溶性高分子による処理前の水素化アクリロニトリル-ブタジエン共重合体中のパラジウム量)×100)は76重量%であった。 On the other hand, the acetone used for washing the filtrate was recovered as a filtrate together with the filtrate produced by filtration after stirring the mixed solution for 24 hours. The collected filtrate mainly contained hydrogenated acrylonitrile-butadiene copolymer and acetone, with small amounts of water-soluble polymer, water, and palladium remaining. By adding an equal amount of distilled water to the collected filtrate, a hydrogenated acrylonitrile-butadiene copolymer was precipitated from the filtrate. The obtained precipitate was dried in a vacuum dryer for 24 hours to obtain a solid hydrogenated acrylonitrile-butadiene copolymer. Regarding the obtained copolymer, the amount of palladium in the hydrogenated acrylonitrile-butadiene copolymer was measured by atomic absorption spectrometry, and the amount of palladium was 34 ppm by weight. At this time, separation efficiency for separating palladium by water-soluble polymer from hydrogenated acrylonitrile-butadiene copolymer (Pd separation efficiency by water-soluble polymer (wt%) = [(hydrogenation before treatment with water-soluble polymer) Amount of palladium in acrylonitrile-butadiene copolymer) - (amount of palladium in hydrogenated acrylonitrile-butadiene copolymer after treatment with water-soluble polymer)] ÷ (hydrogenated acrylonitrile-butadiene before treatment with water-soluble polymer) The amount of palladium in the copolymer (×100) was 76% by weight.

<実施例2>
製造例5で得られた水溶性高分子溶液を用いた以外は、実施例1と同様の操作を行った。ろ物として回収した水溶性高分子の回収率は92重量%であり、その中に含まれる水素化アクリロニトリル-ブタジエン共重合体の量は3重量%であった。また、ろ液として回収した水素化アクリロニトリル-ブタジエン共重合体中のパラジウム量は27重量ppmであり、水溶性高分子によるPd分離効率は81重量%であった。
<Example 2>
The same operation as in Example 1 was performed except that the water-soluble polymer solution obtained in Production Example 5 was used. The recovery rate of the water-soluble polymer recovered as a filtrate was 92% by weight, and the amount of hydrogenated acrylonitrile-butadiene copolymer contained therein was 3% by weight. Furthermore, the amount of palladium in the hydrogenated acrylonitrile-butadiene copolymer recovered as a filtrate was 27 ppm by weight, and the Pd separation efficiency by the water-soluble polymer was 81% by weight.

<実施例3>
セパラブルフラスコに量り取った水素化アクリロニトリル-ブタジエン共重合体の溶液に、水素化アクリロニトリル-ブタジエン共重合体の溶液中の水素化アクリロニトリル-ブタジエン共重合体100部に対して、製造例6で得られた水溶性高分子溶液を、水溶性高分子の量が0.1部となるよう添加した以外は、実施例1と同様の操作を行った。ろ物として回収した水溶性高分子の回収率は91重量%であり、その中に含まれる水素化アクリロニトリル-ブタジエン共重合体の量は5重量%であった。また、ろ液として回収した水素化アクリロニトリル-ブタジエン共重合体中のパラジウム量は9重量ppmであり、水溶性高分子によるPd分離効率は94重量%であった。
<Example 3>
A solution of hydrogenated acrylonitrile-butadiene copolymer weighed into a separable flask was added to 100 parts of the hydrogenated acrylonitrile-butadiene copolymer obtained in Production Example 6. The same operation as in Example 1 was performed except that the water-soluble polymer solution obtained was added so that the amount of water-soluble polymer was 0.1 part. The recovery rate of the water-soluble polymer recovered as a filtrate was 91% by weight, and the amount of hydrogenated acrylonitrile-butadiene copolymer contained therein was 5% by weight. Further, the amount of palladium in the hydrogenated acrylonitrile-butadiene copolymer recovered as a filtrate was 9 ppm by weight, and the Pd separation efficiency by the water-soluble polymer was 94% by weight.

<実施例4>
セパラブルフラスコに量り取った水素化アクリロニトリル-ブタジエン共重合体の溶液に、水素化アクリロニトリル-ブタジエン共重合体の溶液中の水素化アクリロニトリル-ブタジエン共重合体100部に対して、製造例7で得られた水溶性高分子溶液を、水溶性高分子の量が0.1部となるよう添加した以外は、実施例1と同様の操作を行った。ろ物として回収した水溶性高分子の回収率は94重量%であり、その中に含まれる水素化アクリロニトリル-ブタジエン共重合体の量は3重量%であった。また、ろ液として回収した水素化アクリロニトリル-ブタジエン共重合体中のパラジウム量は6重量ppmであり、水溶性高分子によるPd分離効率は96重量%であった。
<Example 4>
Add the hydrogenated acrylonitrile-butadiene copolymer solution weighed into a separable flask to 100 parts of the hydrogenated acrylonitrile-butadiene copolymer obtained in Production Example 7. The same operation as in Example 1 was performed except that the water-soluble polymer solution obtained was added so that the amount of water-soluble polymer was 0.1 part. The recovery rate of the water-soluble polymer recovered as a filtrate was 94% by weight, and the amount of hydrogenated acrylonitrile-butadiene copolymer contained therein was 3% by weight. Further, the amount of palladium in the hydrogenated acrylonitrile-butadiene copolymer recovered as a filtrate was 6 ppm by weight, and the Pd separation efficiency by the water-soluble polymer was 96% by weight.

<実施例5>
セパラブルフラスコに量り取った水素化アクリロニトリル-ブタジエン共重合体の溶液に、水素化アクリロニトリル-ブタジエン共重合体の溶液中の水素化アクリロニトリル-ブタジエン共重合体100部に対して、製造例8で得られた水溶性高分子溶液を、水溶性高分子の量が0.107部となるよう添加した以外は、実施例1と同様の操作を行った。ろ物として回収した水溶性高分子の回収率は91重量%であり、その中に含まれる水素化アクリロニトリル-ブタジエン共重合体の量は5重量%であった。また、ろ液として回収した水素化アクリロニトリル-ブタジエン共重合体中のパラジウム量は26重量ppmであり、水溶性高分子によるPd分離効率は82重量%であった。
<Example 5>
Add the hydrogenated acrylonitrile-butadiene copolymer solution weighed into a separable flask to 100 parts of the hydrogenated acrylonitrile-butadiene copolymer obtained in Production Example 8. The same operation as in Example 1 was performed except that the water-soluble polymer solution obtained was added so that the amount of water-soluble polymer was 0.107 parts. The recovery rate of the water-soluble polymer recovered as a filtrate was 91% by weight, and the amount of hydrogenated acrylonitrile-butadiene copolymer contained therein was 5% by weight. Furthermore, the amount of palladium in the hydrogenated acrylonitrile-butadiene copolymer recovered as a filtrate was 26 ppm by weight, and the Pd separation efficiency by the water-soluble polymer was 82% by weight.

<実施例6>
セパラブルフラスコに量り取った水素化アクリロニトリル-ブタジエン共重合体の溶液に、水素化アクリロニトリル-ブタジエン共重合体の溶液中の水素化アクリロニトリル-ブタジエン共重合体100部に対して、製造例9で得られた水溶性高分子溶液を、水溶性高分子の量が0.107部となるよう添加した以外は、実施例1と同様の操作を行った。ろ物として回収した水溶性高分子の回収率は95重量%であり、その中に含まれる水素化アクリロニトリル-ブタジエン共重合体の量は4重量%であった。また、ろ液として回収した水素化アクリロニトリル-ブタジエン共重合体中のパラジウム量は20重量ppmであり、水溶性高分子によるPd分離効率は86重量%であった。
<Example 6>
To the solution of the hydrogenated acrylonitrile-butadiene copolymer weighed in a separable flask, add the hydrogenated acrylonitrile-butadiene copolymer obtained in Production Example 9 to 100 parts of the hydrogenated acrylonitrile-butadiene copolymer in the solution of the hydrogenated acrylonitrile-butadiene copolymer. The same operation as in Example 1 was performed except that the water-soluble polymer solution obtained was added so that the amount of water-soluble polymer was 0.107 parts. The recovery rate of the water-soluble polymer recovered as a filtrate was 95% by weight, and the amount of hydrogenated acrylonitrile-butadiene copolymer contained therein was 4% by weight. Further, the amount of palladium in the hydrogenated acrylonitrile-butadiene copolymer recovered as a filtrate was 20 ppm by weight, and the Pd separation efficiency by the water-soluble polymer was 86% by weight.

<実施例7>
セパラブルフラスコに量り取った水素化アクリロニトリル-ブタジエン共重合体の溶液の水素化アクリロニトリル-ブタジエン共重合体の濃度が2.5重量%になるよう濃度調整した以外は、実施例1と同様の操作を行った。ろ物として回収した水溶性高分子の回収率は93重量%であり、その中に含まれる水素化アクリロニトリル-ブタジエン共重合体の量は3重量%であった。また、ろ液として回収した水素化アクリロニトリル-ブタジエン共重合体中のパラジウム量は16重量ppmであり、水溶性高分子によるPd分離効率は89重量%であった。
<Example 7>
The same procedure as in Example 1 was performed, except that the concentration of the hydrogenated acrylonitrile-butadiene copolymer in the hydrogenated acrylonitrile-butadiene copolymer solution weighed into a separable flask was adjusted to 2.5% by weight. I did it. The recovery rate of the water-soluble polymer recovered as a filtrate was 93% by weight, and the amount of hydrogenated acrylonitrile-butadiene copolymer contained therein was 3% by weight. Furthermore, the amount of palladium in the hydrogenated acrylonitrile-butadiene copolymer recovered as a filtrate was 16 ppm by weight, and the Pd separation efficiency by the water-soluble polymer was 89% by weight.

<実施例8>
セパラブルフラスコに量り取った水素化アクリロニトリル-ブタジエン共重合体の溶液の水素化アクリロニトリル-ブタジエン共重合体の濃度が9.6重量%になるよう濃度調整した以外は、実施例1と同様の操作を行った。ろ物として回収した水溶性高分子の回収率は92重量%であり、その中に含まれる水素化アクリロニトリル-ブタジエン共重合体の量は3重量%であった。また、ろ液として回収した水素化アクリロニトリル-ブタジエン共重合体中のパラジウム量は40重量ppmであり、水溶性高分子によるPd分離効率は72重量%であった。
<Example 8>
The same procedure as in Example 1 was performed, except that the concentration of the hydrogenated acrylonitrile-butadiene copolymer in the hydrogenated acrylonitrile-butadiene copolymer solution weighed into a separable flask was adjusted to 9.6% by weight. I did it. The recovery rate of the water-soluble polymer recovered as a filtrate was 92% by weight, and the amount of hydrogenated acrylonitrile-butadiene copolymer contained therein was 3% by weight. Furthermore, the amount of palladium in the hydrogenated acrylonitrile-butadiene copolymer recovered as a filtrate was 40 ppm by weight, and the Pd separation efficiency by the water-soluble polymer was 72% by weight.

<比較例1>
製造例1で得られた、ろ過後の水素化アクリロニトリル-ブタジエン共重合体の溶液を一部採取し、これをセパラブルフラスコに移し、水素化アクリロニトリル-ブタジエン共重合体の濃度が7重量%となるように、アセトンを添加して濃度調整を行った後、この溶液の一部を採取して加熱減量法で水素化アクリロニトリル-ブタジエン共重合体の溶液の濃度を測定したところ、7.1重量%であった。この水素化アクリロニトリル-ブタジエン共重合体の溶液中の水素化アクリロニトリル-ブタジエン共重合体100部に対して、製造例10で得られた水溶性高分子溶液を、水溶性高分子の量が0.075部となるよう添加した。次いで、二枚パドル翼(直径80mm)を用いて、撹拌レイノルズ数(以下、撹拌Re数という)が2200となる条件で、24時間攪拌を行った。そして、24時間の撹拌により、水溶性高分子は固体となって沈降した。次いで、ろ過を行うことにより、ろ物とろ液とに分離させた。
<Comparative example 1>
A portion of the filtered solution of the hydrogenated acrylonitrile-butadiene copolymer obtained in Production Example 1 was collected and transferred to a separable flask, and the concentration of the hydrogenated acrylonitrile-butadiene copolymer was 7% by weight. After adjusting the concentration by adding acetone, a portion of this solution was sampled and the concentration of the hydrogenated acrylonitrile-butadiene copolymer solution was measured by the heating loss method, and it was found to be 7.1 wt. %Met. The water-soluble polymer solution obtained in Production Example 10 was added to 100 parts of the hydrogenated acrylonitrile-butadiene copolymer in the hydrogenated acrylonitrile-butadiene copolymer solution so that the amount of the water-soluble polymer was 0. The total amount was 0.075 parts. Next, stirring was performed for 24 hours using two paddle blades (diameter 80 mm) under conditions such that the stirring Reynolds number (hereinafter referred to as stirring Re number) was 2200. After stirring for 24 hours, the water-soluble polymer became solid and precipitated. Next, by performing filtration, it was separated into a filtrate and a filtrate.

引き続き、100ccのアセトンを用いて、ろ紙上で、ろ物の洗浄を行った。この洗浄操作を合計8回実施し、ろ物を真空乾燥器にて12時間乾燥させた。乾燥させたろ物には、パラジウムを吸着させた水溶性高分子が主に含まれており、少量の水素化アクリロニトリル-ブタジエン共重合体が残留していた。乾燥させたろ物の重量は、仕込んだ水溶性高分子の重量に対して、93重量%に相当する量であった。 Subsequently, the filtered material was washed on the filter paper using 100 cc of acetone. This washing operation was carried out a total of 8 times, and the filtrate was dried in a vacuum dryer for 12 hours. The dried filtrate mainly contained a water-soluble polymer adsorbed with palladium, with a small amount of hydrogenated acrylonitrile-butadiene copolymer remaining. The weight of the dried filtrate was equivalent to 93% by weight based on the weight of the water-soluble polymer charged.

乾燥させたろ物に残留した水素化アクリロニトリル-ブタジエン共重合体の含有量を次の方法により測定した。乾燥させたろ物を蒸留水に投入して、ろ物中に含まれるパラジウムを吸着させた水溶性高分子を溶解させ、溶解しなかった水素化アクリロニトリル-ブタジエン共重合体を回収した。回収した水素化アクリロニトリル-ブタジエン共重合体の重量を計量したところ、乾燥させたろ物の重量に対して13重量%にあたる量であった。 The content of hydrogenated acrylonitrile-butadiene copolymer remaining in the dried filtrate was measured by the following method. The dried filtrate was poured into distilled water to dissolve the water-soluble polymer adsorbed with palladium contained in the filtrate, and the undissolved hydrogenated acrylonitrile-butadiene copolymer was recovered. The recovered hydrogenated acrylonitrile-butadiene copolymer was weighed and found to be 13% by weight based on the weight of the dried filtrate.

以上のことから、比較例1では、ろ物の合計8回の洗浄および乾燥の後に、パラジウムを吸着させた水溶性高分子を、93重量%の回収率で回収できたが、回収した水溶性高分子には、13重量%という多量の水素化アクリロニトリル-ブタジエン共重合体が含まれていることが分かった。 From the above, in Comparative Example 1, the water-soluble polymer adsorbed with palladium was recovered with a recovery rate of 93% by weight after washing and drying the filtrate a total of 8 times, but the recovered water-soluble polymer It was found that the polymer contained as much as 13% by weight of hydrogenated acrylonitrile-butadiene copolymer.

一方、ろ物の洗浄に用いたアセトンは、混合液の24時間撹拌後のろ過により生じたろ液とともに、ろ液として回収した。回収したろ液には、水素化アクリロニトリル-ブタジエン共重合体およびアセトンが主に含まれており、少量の水溶性高分子、水およびパラジウムが残留していた。回収したろ液に等量の蒸留水を入れることで、ろ液から水素化アクリロニトリル-ブタジエン共重合体を析出させた。得られた析出物を真空乾燥器で24時間乾燥することで、固形状の水素化アクリロニトリル-ブタジエン共重合体を得た。得られた共重合体について、原子吸光測定により、水素化アクリロニトリル-ブタジエン共重合体のパラジウム量を測定したところ、パラジウム量は41重量ppmであった。このとき、水溶性高分子によるPd分離効率は71重量%であった。 On the other hand, the acetone used for washing the filtrate was recovered as a filtrate together with the filtrate produced by filtration after stirring the mixed solution for 24 hours. The collected filtrate mainly contained hydrogenated acrylonitrile-butadiene copolymer and acetone, with small amounts of water-soluble polymer, water, and palladium remaining. By adding an equal amount of distilled water to the collected filtrate, a hydrogenated acrylonitrile-butadiene copolymer was precipitated from the filtrate. The obtained precipitate was dried in a vacuum dryer for 24 hours to obtain a solid hydrogenated acrylonitrile-butadiene copolymer. Regarding the obtained copolymer, the amount of palladium in the hydrogenated acrylonitrile-butadiene copolymer was measured by atomic absorption spectrometry, and the amount of palladium was 41 ppm by weight. At this time, the Pd separation efficiency by the water-soluble polymer was 71% by weight.

これは、水溶性高分子を溶解する溶媒が、蒸留水単一であるため、水溶性高分子溶液を水素化アクリロニトリル-ブタジエン共重合体のアセトン溶液に添加した際、アセトンに溶解していた水素化アクリロニトリル-ブタジエン共重合体が凝集し、水溶性高分子と共に析出してしまったためである。そのため、ろ別した水溶性高分子の洗浄では、水素化アクリロニトリル-ブタジエン共重合体の凝集物をろ液側へ移すために行った洗浄回数が増え、さらに水溶性高分子中に含まれる水素化アクリロニトリル-ブタジエン共重合体の重量濃度も増加している。また、水溶性高分子の凝集・沈殿と共に水素化アクリロニトリル-ブタジエン共重合体の凝集も同時に発生しているため、凝集した水素化アクリロニトリル-ブタジエン共重合体の内側に取り込まれたパラジウムが水溶性高分子に吸着せず、Pd分離効率は若干劣る結果となった。 This is because the only solvent for dissolving water-soluble polymers is distilled water, so when a water-soluble polymer solution is added to an acetone solution of hydrogenated acrylonitrile-butadiene copolymer, the hydrogen dissolved in acetone This is because the acrylonitrile-butadiene copolymer aggregated and precipitated together with the water-soluble polymer. Therefore, when washing the filtered water-soluble polymer, the number of washings increased to transfer the aggregates of hydrogenated acrylonitrile-butadiene copolymer to the filtrate side, and the hydrogenation contained in the water-soluble polymer The weight concentration of acrylonitrile-butadiene copolymer has also increased. In addition, since the aggregation and precipitation of the water-soluble polymer and the aggregation of the hydrogenated acrylonitrile-butadiene copolymer occur simultaneously, palladium incorporated inside the agglomerated hydrogenated acrylonitrile-butadiene copolymer becomes highly water-soluble. Pd was not adsorbed to the molecules, and the Pd separation efficiency was slightly inferior.

表1に示すように、水溶性高分子、水溶性有機溶媒および水を含有し、水溶性有機溶媒と水との重量比が特定の範囲内にある水溶性高分子溶液を用いることによって、水素化アクリロニトリル-ブタジエン共重合体を凝集させることなくパラジウムを分離することが出来、パラジウムを吸着させた水溶性高分子を容易に高収率で回収することが出来る。また、その時の水溶性高分子によるPd分離効率も高く、良好な結果であった(実施例1~8)。 As shown in Table 1, by using a water-soluble polymer solution containing a water-soluble polymer, a water-soluble organic solvent, and water, and in which the weight ratio of the water-soluble organic solvent to water is within a specific range, hydrogen Palladium can be separated without agglomerating the acrylonitrile-butadiene copolymer, and water-soluble polymers adsorbed with palladium can be easily recovered in high yield. Furthermore, the Pd separation efficiency by the water-soluble polymer at that time was also high, and the results were good (Examples 1 to 8).

Figure 0007373160000001
Figure 0007373160000001

Claims (7)

ニトリルゴムを、白金族元素含有触媒の存在下で水素化反応させることで得られた、水素化ニトリルゴムの水溶性有機溶媒溶液、および、水溶性高分子溶液を混合することにより、混合液を得る混合工程と、
前記混合液を攪拌することで、水溶性高分子中に、前記白金族元素を取り込ませながら、前記水溶性高分子を析出させる水溶性高分子析出工程と、を備え、
前記水溶性高分子が、電気的に中性な変性基含有(メタ)アクリレート系重合体および電気的に中性な変性基含有ポリ(メタ)アクリルアミドから選択される少なくとも一種であり、
前記水溶性高分子溶液が、前記水溶性高分子、水溶性有機溶媒および水を含有し、前記水溶性高分子溶液中の前記水溶性有機溶媒と水との重量比が、1:1~3:1である水素化ニトリルゴムの触媒成分の分離方法。
By mixing a water-soluble organic solvent solution of hydrogenated nitrile rubber obtained by hydrogenating nitrile rubber in the presence of a platinum group element-containing catalyst and a water-soluble polymer solution, a mixed solution is prepared. a mixing step to obtain;
a water-soluble polymer precipitation step of precipitating the water-soluble polymer while incorporating the platinum group element into the water-soluble polymer by stirring the mixed solution;
The water-soluble polymer is at least one selected from an electrically neutral modified group-containing (meth)acrylate polymer and an electrically neutral modified group-containing poly(meth)acrylamide,
The water-soluble polymer solution contains the water-soluble polymer, a water-soluble organic solvent, and water, and the weight ratio of the water-soluble organic solvent to water in the water-soluble polymer solution is 1:1 to 3. : A method for separating catalyst components of hydrogenated nitrile rubber according to 1.
前記混合液中の水の濃度が、0.020~0.050重量%である請求項1に記載の水素化ニトリルゴムの触媒成分の分離方法。 The method for separating a catalyst component of hydrogenated nitrile rubber according to claim 1, wherein the concentration of water in the mixed liquid is 0.020 to 0.050% by weight. 前記水溶性高分子溶液中の前記水溶性高分子の濃度が、1~40重量%である請求項1または2に記載の水素化ニトリルゴムの触媒成分の分離方法。 The method for separating a catalyst component of hydrogenated nitrile rubber according to claim 1 or 2, wherein the concentration of the water-soluble polymer in the water-soluble polymer solution is 1 to 40% by weight. 前記水溶性高分子が、電気的に中性な変性基含有ポリ(メタ)アクリルアミドである請求項1~3のいずれかに記載の水素化ニトリルゴムの触媒の分離方法 The method for separating a hydrogenated nitrile rubber catalyst according to any one of claims 1 to 3, wherein the water-soluble polymer is an electrically neutral modified group-containing poly(meth)acrylamide.. 前記水溶性高分子が、アミノ基含有ポリ(メタ)アクリルアミドである請求項1~のいずれかに記載の水素化ニトリルゴムの触媒成分の分離方法。 The method for separating a catalyst component of hydrogenated nitrile rubber according to any one of claims 1 to 4 , wherein the water-soluble polymer is an amino group-containing poly (meth) acrylamide. 前記白金族元素が、パラジウムである請求項1~のいずれかに記載の水素化ニトリルゴムの触媒成分の分離方法。 The method for separating a catalyst component of hydrogenated nitrile rubber according to any one of claims 1 to 5 , wherein the platinum group element is palladium. 水溶性有機溶媒中、白金族元素含有触媒の存在下で、ニトリルゴムを水素化することで、水素化ニトリルゴムの水溶性有機溶媒溶液を得る水素化工程と、
前記水素化ニトリルゴムの水溶性有機溶媒溶液、および、水溶性高分子溶液を混合することにより、混合液を得る混合工程と、
前記混合液を攪拌することで、水溶性高分子中に、前記白金族元素を取り込ませながら、前記水溶性高分子を析出させる水溶性高分子析出工程と、を備え、
前記水溶性高分子が、電気的に中性な変性基含有(メタ)アクリレート系重合体および電気的に中性な変性基含有ポリ(メタ)アクリルアミドから選択される少なくとも一種であり、
前記水溶性高分子溶液が、前記水溶性高分子、水溶性有機溶媒および水を含有し、前記水溶性高分子溶液中の前記水溶性有機溶媒と水との重量比が、1:1~3:1である水素化ニトリルゴムの製造方法。
A hydrogenation step of hydrogenating nitrile rubber in a water-soluble organic solvent in the presence of a platinum group element-containing catalyst to obtain a solution of hydrogenated nitrile rubber in a water-soluble organic solvent;
a mixing step of obtaining a mixed solution by mixing the water-soluble organic solvent solution of the hydrogenated nitrile rubber and the water-soluble polymer solution;
a water-soluble polymer precipitation step of precipitating the water-soluble polymer while incorporating the platinum group element into the water-soluble polymer by stirring the mixed solution;
The water-soluble polymer is at least one selected from an electrically neutral modified group-containing (meth)acrylate polymer and an electrically neutral modified group-containing poly(meth)acrylamide,
The water-soluble polymer solution contains the water-soluble polymer, a water-soluble organic solvent, and water, and the weight ratio of the water-soluble organic solvent to water in the water-soluble polymer solution is 1:1 to 3. : 1. A method for producing hydrogenated nitrile rubber.
JP2019120885A 2019-06-28 2019-06-28 Separation method of catalyst components Active JP7373160B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019120885A JP7373160B2 (en) 2019-06-28 2019-06-28 Separation method of catalyst components

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019120885A JP7373160B2 (en) 2019-06-28 2019-06-28 Separation method of catalyst components

Publications (2)

Publication Number Publication Date
JP2021006606A JP2021006606A (en) 2021-01-21
JP7373160B2 true JP7373160B2 (en) 2023-11-02

Family

ID=74165489

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019120885A Active JP7373160B2 (en) 2019-06-28 2019-06-28 Separation method of catalyst components

Country Status (1)

Country Link
JP (1) JP7373160B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018016400A1 (en) 2016-07-20 2018-01-25 日本ゼオン株式会社 Method for separating catalyst component

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018016400A1 (en) 2016-07-20 2018-01-25 日本ゼオン株式会社 Method for separating catalyst component

Also Published As

Publication number Publication date
JP2021006606A (en) 2021-01-21

Similar Documents

Publication Publication Date Title
US10000583B2 (en) Nano-sized hydrogenated diene-based latex particles
US10618037B2 (en) Method for recovering catalyst
JP7057921B2 (en) Separation method of catalyst components
JP7182222B2 (en) Method for recovering platinum group elements
JP5967342B1 (en) Method for producing highly saturated nitrile rubber
JP7373160B2 (en) Separation method of catalyst components
JP4782355B2 (en) Nitrile group-containing conjugated diene rubber and process for producing the same
TWI297695B (en) Process for hydrogenating unsaturated polymers containing double bonds
JP4124004B2 (en) Hydrogenated conjugated diene polymer latex, process for producing the same, and hydrogenated conjugated diene polymer rubber
JP4456478B2 (en) Method for hydrogenating polymers in dispersion media
JPWO2006022298A1 (en) Cosmetic puff and method for producing the same
JP2004141694A (en) Recovery method of hydrogenation catalyst
JP4123852B2 (en) Hydrogenation catalyst stabilizer, hydrogenation catalyst solution and preparation method thereof, hydrogenation reaction method
JP4110267B2 (en) Catalyst recovery method
JP2013503232A (en) Nano-sized diene polymer latex particles
JP6809529B2 (en) Method for Producing Dispersion of Metal-Containing Particles and Method for Producing Hydrogenated Conjugated Diene Polymer
WO2023190768A1 (en) Method for recovering platinum group element
US20220023840A1 (en) Metal-supported catalyst and method for producing hydrogenated conjugated-diene-based polymer
JP6246803B2 (en) Hydrogenation of diene polymer latex in the presence of in situ synthesized catalyst.
JP2004292681A (en) Manufacturing process of latex of hydrogenated conjugated diene polymer
TW300230B (en) Process for preparing spherical crosslinked copolymer beads
TW201936754A (en) Method for producing carboxy group-containing hydrogenated nitrile rubber

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220617

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230523

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230711

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231013

R150 Certificate of patent or registration of utility model

Ref document number: 7373160

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150