JP7372710B2 - Thermal comfort ventilation and pollutant control method for air stability in finite spaces - Google Patents

Thermal comfort ventilation and pollutant control method for air stability in finite spaces Download PDF

Info

Publication number
JP7372710B2
JP7372710B2 JP2022574699A JP2022574699A JP7372710B2 JP 7372710 B2 JP7372710 B2 JP 7372710B2 JP 2022574699 A JP2022574699 A JP 2022574699A JP 2022574699 A JP2022574699 A JP 2022574699A JP 7372710 B2 JP7372710 B2 JP 7372710B2
Authority
JP
Japan
Prior art keywords
jet
temperature
meters
kelvin
ventilation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022574699A
Other languages
Japanese (ja)
Other versions
JP2023520259A (en
Inventor
▲きょう▼光彩
▲とう▼暁瑞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hunan University
Original Assignee
Hunan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hunan University filed Critical Hunan University
Publication of JP2023520259A publication Critical patent/JP2023520259A/en
Application granted granted Critical
Publication of JP7372710B2 publication Critical patent/JP7372710B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F7/00Ventilation
    • F24F7/04Ventilation with ducting systems, e.g. by double walls; with natural circulation
    • F24F7/06Ventilation with ducting systems, e.g. by double walls; with natural circulation with forced air circulation, e.g. by fan positioning of a ventilator in or against a conduit
    • F24F7/08Ventilation with ducting systems, e.g. by double walls; with natural circulation with forced air circulation, e.g. by fan positioning of a ventilator in or against a conduit with separate ducts for supplied and exhausted air with provisions for reversal of the input and output systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/88Electrical aspects, e.g. circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/02Ducting arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Air Conditioning Control Device (AREA)
  • Ventilation (AREA)

Description

本発明は、有限空間の空気安定性のための熱的快適換気及び汚染物質制御方法に関する。 The present invention relates to thermal comfort ventilation and pollutant control methods for air stability in finite spaces.

室内空気汚染とは、空気中の1種又は複数種の物質の性質、濃度、及び室内人員の暴露持続時間が一定の程度に達し、室内人員に一連の不適応症状を引き起こす現象である。これは、粉塵、煙塵、微生物、ウイルス(新型コロナウイルス、SARS、MERSウイルス)などの有害な物質を放出し得る室内の汚染源の存在に起因し得る。室内空気の気流組織パターンは、空気中の汚染物質の流れ及び拡散方向を大きく決定する。室内の気流組織形式は、主に換気方式によって実現される。室内換気方式の不適切な選択も、室内汚染を悪化させ得る。工場では、エンジン燃焼室も機能する。 Indoor air pollution is a phenomenon in which the nature, concentration, and duration of exposure of one or more substances in the air and the duration of exposure of indoor personnel reach a certain level, causing a series of maladaptive symptoms in indoor personnel. This can be due to the presence of indoor pollution sources that can emit harmful substances such as dust, smoke, microorganisms, viruses (COVID-19, SARS, MERS virus). The airflow texture pattern of indoor air largely determines the flow and direction of diffusion of pollutants in the air. The airflow organization form in the room is mainly achieved by the ventilation system. Inappropriate selection of indoor ventilation methods can also exacerbate indoor pollution. At the factory, the engine combustion chamber also functions.

暖房換気空調では、夏は冷気を送って室温を下げ、冬は熱気を送って室温を上げる。冷気降温と熱気暖房は、噴流自体の温度と周囲媒体の温度に差が生じることが多い。このような周囲媒体の温度と等しくない噴流は、温度差噴流と呼ばれる。噴流自体が受ける浮力と重力はアンバランスであるため、下向き又は上向きに曲がる。その軌跡のずれの程度は、アルキメデス数(Ar数)に関係している。しかし、Ar数は、噴流と周囲環境との温度差がその運動軌跡に与える影響のみを考慮してるが、流体領域において、垂直温度勾配が噴流の運動軌跡にも影響を与えることを考慮していない。有限空間の空気安定性によれば、流体領域の垂直温度勾配が正である場合(安定型)、噴流はその元の慣性を保持し、その主流方向に沿って運動する。流体領域の垂直温度勾配が負である場合(不安定型)、噴流の初期慣性力は環境における強い対流によって破壊されやすいため、その運動軌跡が主流方向から逸脱し、拡散面積がより広くなる。流体領域内に垂直温度勾配がない場合(中性型)、噴流の運動軌跡の特徴は安定型と不安定型との間にある。有限空間の空気安定性が室内気流組織の表現形式に与える影響は、無次元基準数Gc数によって反映することができる。 Heating, ventilation, and air conditioning send cold air to lower the room temperature in the summer, and send hot air to raise the room temperature in the winter. Cold air cooling and hot air heating often result in a difference between the temperature of the jet itself and the temperature of the surrounding medium. Such jets whose temperature is not equal to the temperature of the surrounding medium are called differential temperature jets. The jet itself is unbalanced between buoyancy and gravity, so it bends downward or upward. The degree of deviation of the trajectory is related to the Archimedes number (Ar number). However, the Ar number only takes into account the effect that the temperature difference between the jet and the surrounding environment has on its motion trajectory, but it does not take into account that in the fluid region, vertical temperature gradients also affect the jet motion trajectory. do not have. According to air stability in finite space, if the vertical temperature gradient in the fluid region is positive (stable type), the jet retains its original inertia and moves along its main flow direction. When the vertical temperature gradient in the fluid region is negative (unstable type), the initial inertia of the jet is easily destroyed by strong convection in the environment, so its motion trajectory deviates from the mainstream direction and the diffusion area becomes wider. When there is no vertical temperature gradient in the fluid region (neutral type), the characteristics of the jet motion trajectory are between stable and unstable types. The influence of air stability in a finite space on the expression form of indoor airflow organization can be reflected by the dimensionless reference number Gc number.

本発明は、有限空間の空気安定性のための熱的快適換気及び汚染物質制御方法を提供することを目的とする。有限空間において、室内温度勾配状況に基づいてどの空気安定性作業条件に属するかを判断し、噴流拡散分散過程及び汚染物質拡散規則を得る。さらに、汚染物質排出方式に基づいてその流れ形式を判断し、有限空間の安定性に基づく噴流式に従って、噴流のタイプを判断し、汚染物質の方向を予測することにより、有限空間の換気設計指導方法を提供し、汚染物質の効率的な排出を保証し、室内の空気の質と人体の健康のニーズを満たす。 The present invention aims to provide a thermal comfort ventilation and pollutant control method for air stability in finite spaces. In a finite space, it is determined which air stability working condition belongs to based on the indoor temperature gradient situation, and the jet diffusion dispersion process and pollutant diffusion rules are obtained. Furthermore, by determining its flow form based on the pollutant discharge method, determining the jet type and predicting the direction of pollutants according to the jet formula based on the stability of the finite space, we can guide the ventilation design of finite spaces. provide a method to ensure efficient discharge of pollutants and meet the needs of indoor air quality and human health.

本発明の技術的解決手段は、有限空間の空気安定性のための熱的快適換気及び汚染物質制御方法であり、
温度勾配測定システムを設計し、該システムによって有限空間内の様々な高さの温度データを取得し、その温度勾配値を計算することにより、有限空間内の空気安定性作業条件、即ち安定型、中性型及び不安定型を判断し、安定型は噴流拡散分散過程を抑制し、不安定型は噴流拡散分散過程を加速し、中性型の噴流拡散分散に対する影響は安定型と不安定型との間にあり、前記温度勾配測定システムは、有限空間内に1本又は複数本の温度測定装置ロッドを適切な方式で、例えば梅の花の形に配置し、各測定ロッドで高さ方向に沿って等距離で複数の温度測定点、例えば5つを取り、温度自己計測器を利用して温度勾配測定を行い、温度勾配の計算式は、

Figure 0007372710000001
であり、
式中、Tは各高さの温度値で、ケルビンであり、∇Tは温度勾配であり、単位はケルビン/メートルであり、ΔTは部屋の上下表面の温度差、又は考慮されるある流れ層の上下の
温度差であり、単位はケルビンであり、Lは部屋の高さであり、単位はメートルであると
いう有限空間の安定性作業条件を判断するステップAと、
流出空間の大きさに応じて、該流体の流れが自由噴流であるか又は拘束噴流であるかを判断し、本発明で提案する噴流軌跡の相関式に従って噴流軌跡を予測し、慣性停滞現象が発生するか否かを判断し、前記噴流軌跡の相関式は、
Figure 0007372710000002

Figure 0007372710000003

Figure 0007372710000004
であり、
ここで、
Figure 0007372710000005

Figure 0007372710000006
であり、
式中、Arは無次元基準数アルキメデス数で、重力と粘性力の比を示し、Gcは発明者が提案した無次元基準数Gc数で、浮力と慣性力の垂直成分の比を示し、xは噴流の長さであり
、単位はメートルであり、Sn無次元開始セグメントの噴流のコア長さであり、Send 次元噴流減衰の最大距離であり、ν0は噴流の初速度であり、単位はメートル/秒であり
、ν1は噴流の開始セグメントのコア速度(ν1=0.9ν0)であり、単位はメートル/秒で
あり、ν2は噴流が最大距離まで減衰する時の速度であり、人体の健康のニーズを考慮し
て、ν2=0.1メートル/秒を取ることができ、他の産業又は特定の要件の場合はプロセス
条件のニーズによって決定することができ、完全な自由噴流である場合に(1-0.99
)ν0を取ることができ、タバコの吸い殻、薫香、藁等の材料の燃焼初速度は、浮力を駆
動力、即ち作用圧力とする方法を参照して決定することができ、yは噴流軸心の縦方向の
距離であり、単位はメートルであり、αは噴流の偏向角度であり、単位は度であり、d0はノズルの直径であり、単位はメートルであり、gは垂直方向の加速度であり、単位はメー
トル/秒の2乗であり、ν0は噴流の初速度であり、単位はメートル/秒であり、αは乱
流係数であり、Teは周囲ガスの温度であり、単位はケルビンであり、T0は噴流の温度であり、単位はケルビンであり、ΔT0は噴流と周囲環境との温度差であり、単位はケルビンであり、ΔTは部屋の上下表面の温度差、又は考慮されるある流れ層の上下の温度差であり
、単位はケルビンであり、Lは部屋の高さであり、単位はメートルであり、C、C1、C2は定数であり、実験又は数値方法によって較正することができ、Cを最初に1に設定すること
ができ、2次元数値シミュレーションの比較分析に従って、それぞれC1、C2を0.214、0.115に予備的に推奨することができるという噴流のタイプを判断し、噴流の流れ方向を予測するステップBと、
ステップA~Bで計算されたパラメータと噴流軌跡に従って、放射空調方式、室内排気方式及び排気口の選択位置を最適化制御することにより、換気方式の合理的な利用を実現するという換気方式を最適化制御するステップCとを特徴とする。The technical solution of the present invention is a thermal comfort ventilation and pollutant control method for air stability in limited space,
By designing a temperature gradient measurement system, acquiring temperature data at various heights within a finite space, and calculating its temperature gradient value, the air stability working conditions within the finite space, i.e., stable, The neutral type and the unstable type are determined. The stable type suppresses the jet diffusion dispersion process, the unstable type accelerates the jet diffusion dispersion process, and the influence of the neutral type on the jet diffusion dispersion is between the stable type and the unstable type. The temperature gradient measuring system is characterized in that one or more temperature measuring device rods are arranged in a suitable manner in a finite space, for example in the shape of a plum blossom, and each measuring rod measures the temperature along the height direction. Take multiple temperature measurement points, for example 5, at equal distances and measure the temperature gradient using a self-temperature measuring device.The formula for calculating the temperature gradient is:
Figure 0007372710000001
and
where T is the temperature value at each height in Kelvin, ∇T is the temperature gradient in Kelvin/meter, and ΔT is the temperature difference between the upper and lower surfaces of the room or some flow layer being considered. Step A of determining the stability working conditions of a finite space, where L is the temperature difference between above and below, the unit is Kelvin, L is the height of the room, and the unit is meters;
Depending on the size of the outflow space, it is determined whether the fluid flow is a free jet or a restricted jet, and the jet trajectory is predicted according to the jet trajectory correlation formula proposed in the present invention, so that the inertial stagnation phenomenon is avoided. The correlation equation of the jet trajectory is determined as follows:
Figure 0007372710000002

Figure 0007372710000003

Figure 0007372710000004
and
here,
Figure 0007372710000005
,
Figure 0007372710000006
and
In the formula, Ar is the dimensionless reference number Archimedean number, which indicates the ratio of gravitational force to viscous force, Gc is the dimensionless reference number Gc number proposed by the inventor, which indicates the ratio of the vertical component of buoyancy force and inertial force, and x is the length of the jet in meters, S n is the core length of the jet in the dimensionless starting segment , S end is the maximum distance of dimensionless jet attenuation , and ν 0 is the initial velocity of the jet , in meters/second, ν 1 is the core velocity of the starting segment of the jet (ν 1 =0.9ν 0 ), in meters/second, and ν 2 is the maximum distance at which the jet decays. The speed of time can be taken as ν 2 =0.1 m/s, taking into account the needs of human health, and for other industries or specific requirements can be determined by the needs of the process conditions; In the case of a completely free jet (1-0.99
) ν can be taken as 0 , and the initial combustion velocity of materials such as cigarette butts, incense, and straw can be determined with reference to the method in which the buoyant force is the driving force, i.e., the working pressure, and y is the jet axis. is the longitudinal distance of the center in meters, α is the deflection angle of the jet in degrees, d 0 is the nozzle diameter in meters, g is the vertical distance is the acceleration in meters/second squared, ν 0 is the initial velocity of the jet in meters/second, α is the turbulence coefficient, and T e is the temperature of the surrounding gas. , in Kelvin, T 0 is the temperature of the jet in Kelvin, ΔT 0 is the temperature difference between the jet and the surrounding environment in Kelvin, ΔT is the temperature of the upper and lower surfaces of the room difference, or the temperature difference above and below some considered flow layer, in Kelvin, L is the height of the room, in meters, C, C 1 , C 2 are constants, Can be calibrated by experiment or numerical methods, C can be initially set to 1, and C 1 , C 2 can be preliminarily set to 0.214, 0.115, respectively, according to the comparative analysis of two-dimensional numerical simulations. Step B of determining the type of jet that can be recommended and predicting the flow direction of the jet;
Optimize the ventilation method to realize rational use of the ventilation method by optimizing and controlling the radiant air conditioning method, indoor exhaust method, and selected position of the exhaust port according to the parameters and jet trajectory calculated in steps A to B. The method is characterized by a step C of controlling the

技術的解決手段のステップCに基づき、換気方式の最適化制御は次のようにアドバイスされる。
夏の床放射冷房又は冬の放射天井暖房(熱的快適性のニーズを満たす)の場合、安定型の状況が発生しやすく、この時、温度成層の制限作用により、汚染物質は一定の高さに まり、主流方向に沿って移動し、このような状況では、全体換気は汚染物質の迅速な希釈と排出に不都合であり、エネルギー消費量が大きい。この時、局所換気設計又は指向性換気設計を優先し、即ち、床放射冷房期間+局所又は指向性換気気流組織形式又は天井放射暖房期間+局所又は指向性換気気流組織形式を使用し、汚染源の位置及び汚染源の流れ方向に基づき、換気口の配置を合理的に設計する。上へ移動する場合、頂部に排気口を設置する必要があり、水平方向に沿って移動する場合、水平箇所に排気口を設計する。部屋に放射天井のみが取り付けられる場合、夏は放射冷天井が不安定型の状況を形成しやすく、部屋は、汚染物質を効果的に排出するための全体換気に適する。しかし、冬の放射暖房の状況は安定型の状況を形成し、冬に指向性換気を行うように、この時、事前にステップA~Bに基づいて汚染物質の軌跡を予測し、換気口を予め残す必要がある。不安定型及び中性型は全体換気に適し、夏に放射冷房、冬に床暖房を使用する部屋は、上冷下熱の温度分布状況を形成する。この時、室内は不安定型の状況であり、室内の対流運動が強く、汚染物質の分散希釈過程が加速され、全体換気方式を使用して汚染物質を排出することをアドバイスし、即ち、天井冷放射期間+全体換気の室内気流組織形式又は地上放射暖房期間+全体換気設計気流組織形式を形成し、任意の上面又は地上放射空調を使用しない場合に全体換気設計気流組織形式を使用することが好ましい。
Based on step C of the technical solution, the optimization control of the ventilation system is advised as follows.
In the case of radiant floor cooling in summer or radiant ceiling heating in winter (meeting thermal comfort needs), a stable situation is likely to occur, when pollutants are kept at a certain height due to the limiting effect of thermal stratification. In this situation , general ventilation is inconvenient for rapid dilution and discharge of pollutants, and energy consumption is large. At this time, give priority to local ventilation design or directional ventilation design, that is, use floor radiant cooling period + local or directional ventilation airflow system type or ceiling radiant heating period + local or directional ventilation airflow system type to eliminate the pollution source. Based on the location and flow direction of the pollution source, rationally design the placement of ventilation holes. When moving upward, it is necessary to install an exhaust outlet at the top, and when moving along the horizontal direction, an exhaust outlet should be designed at a horizontal location. If only a radiant ceiling is installed in the room, the radiant cold ceiling is likely to form an unstable type situation in summer, and the room is suitable for general ventilation to effectively discharge pollutants. However, the situation of radiant heating in winter forms a stable situation, and in order to perform directional ventilation in winter, the trajectory of pollutants is predicted in advance based on steps A to B, and the ventilation openings are It is necessary to leave it in advance. The unstable and neutral types are suitable for general ventilation, and rooms that use radiant cooling in the summer and floor heating in the winter form a temperature distribution situation of top cooling and bottom heat. At this time, the indoor situation is unstable, the convective movement in the room is strong, the dispersion and dilution process of pollutants is accelerated, and it is advised to use the general ventilation method to discharge pollutants, that is, ceiling cooling It is preferable to form an indoor airflow organization type of radiant period + general ventilation or a ground radiant heating period + general ventilation design airflow organization type, and use the overall ventilation design airflow organization type when any top or ground radiant air conditioning is not used. .

本発明はまた、噴流と周囲環境の温度、及び流体領域の上下境界面の温度差による噴流の運動軌跡への影響を考慮し、両者の噴流に対する作用効果はそれぞれAr数及びGc数(Gc数は浮力と慣性力の垂直成分の比である)で示される。有限空間の空気安定性の定義では、噴流希釈過程は分散拡散希釈過程であり、不安定型は汚染物質の拡散分散を加速でき、室内の汚染物質を排出し、室内気流組織の死角を減少させることに有益である。安定型は拡散分散過程を抑制するため、汚染物質の堆積を引き起こす。有限空間の空気安定性の定義に基づいて、温度差噴流軌跡の予測方法を修正し、温度差噴流軌跡を確実かつ正確に予測することができる。噴流の温度、周囲環境の温度及び流体の上下表面の温度を変えることで、様々な噴流運動を得ることができ、噴流軌跡を正確に予測することができる。これを拘束噴流、自由噴流及び停滞現象に対する新しい基準とする。噴流の長さが有限空間の寸法より大きい場合、噴流は拘束噴流である。噴流の長さが有限空間の寸法より小さい場合、噴流は自由噴流である。室内の障害物と汚染源との間の距離が噴流の長さより小さい場合、噴流軌跡に慣性停滞現象が発生する。噴流軌跡を通じて、空間内の排気方式及び排気口の選択位置をアドバイスすることにより、換気方式の合理的な利用を実現し、エネルギーを節約し、汚染物質を効率的に除去する。本発明は、空気環境において室内の換気設計を指導することに有益であり、水環境において工場の汚水排出を指導することに有益であり、各種の環境保護装置の内部、燃焼装置の内部の最適化に用いることもできる。 The present invention also considers the influence of the temperature of the jet and the surrounding environment, and the temperature difference between the upper and lower boundary surfaces of the fluid region on the motion trajectory of the jet, and the effects of both on the jet are determined by the Ar number and Gc number (Gc number). is the ratio of the vertical component of the buoyant force to the vertical component of the inertial force). In the definition of air stability in a finite space, the jet dilution process is a dispersion-diffusion dilution process, and the unstable type can accelerate the diffusion and dispersion of pollutants, exhaust indoor pollutants, and reduce the blind spot of indoor airflow organization. It is beneficial for The stable type suppresses the diffusion-dispersion process, leading to the deposition of pollutants. Based on the definition of air stability in a finite space, the prediction method of the temperature difference jet trajectory is modified, and the temperature difference jet trajectory can be predicted reliably and accurately. By changing the temperature of the jet, the temperature of the surrounding environment, and the temperature of the upper and lower surfaces of the fluid, various jet movements can be obtained and the jet trajectory can be accurately predicted. This is a new standard for confined jets, free jets, and stagnation phenomena. If the length of the jet is greater than the dimensions of the finite space, the jet is a restrained jet. If the length of the jet is less than the dimension of the finite space, the jet is a free jet. If the distance between the indoor obstacle and the pollution source is smaller than the length of the jet, an inertial stagnation phenomenon will occur in the jet trajectory. Through the jet trajectory, it advises the exhaust system and the selection position of the exhaust outlet in the space, realizing the rational utilization of the ventilation system, saving energy and efficiently removing pollutants. INDUSTRIAL APPLICABILITY The present invention is useful for guiding indoor ventilation design in an air environment, useful for guiding wastewater discharge in a factory in a water environment, and optimal for the inside of various environmental protection devices and combustion equipment. It can also be used for

実施例における様々な有限空間の空気安定性作業条件での汚染物質の噴流軌跡である。3 is a contaminant jet trajectory under various finite space air stability working conditions in an example; 安定型作業条件での指向性換気の概略図である。FIG. 2 is a schematic diagram of directional ventilation in stable working conditions. 中性型作業条件での全体換気の概略図である。Figure 2 is a schematic diagram of general ventilation under neutral working conditions. 不安定型作業条件での全体換気の概略図である。Figure 2 is a schematic diagram of general ventilation under unstable working conditions;

図中:1 放熱板、2 給気ダクト、3 給気口、4 排気ダクト、5 排気口、6 垂直方向温度勾配測定システムの配置方式、7 温度測定プローブ。 In the figure: 1 heat sink, 2 air supply duct, 3 air supply port, 4 exhaust duct, 5 exhaust port, 6 vertical temperature gradient measurement system arrangement method, 7 temperature measurement probe.

以下、実施例及び図面を参照しながら本発明及びその具体的な実施形態をさらに詳細に説明する。 Hereinafter, the present invention and specific embodiments thereof will be described in further detail with reference to Examples and drawings.

本発明は、
温度勾配測定システムを設計し、該システムによって有限空間内の様々な高さの温度データを取得し、その温度勾配値を計算することにより、有限空間内の空気安定性作業条件、即ち安定型、中性型及び不安定型を判断し、安定型は噴流拡散分散過程を抑制し、不安定型は噴流拡散分散過程を加速し、中性型の噴流拡散分散に対する影響は安定型と不安定型との間にあり、前記温度勾配測定システムは、有限空間内に1本又は複数本の温度測定装置ロッドを適切な方式で、例えば梅の花の形に配置し、各測定ロッドで高さ方向に沿って等距離で複数の温度測定点、例えば5つを取り、温度自己計測器を利用して温度勾配測定を行い、温度勾配の計算式は、

Figure 0007372710000007
であり、
式中、Tは各高さの温度値であり、ケルビンであり、∇Tは温度勾配であり、単位はケルビン/メートルであり、ΔTは部屋の上下表面の温度差、又は考慮されるある流れ層の上
下の温度差であり、単位はケルビンであり、Lは部屋の高さであり、単位はメートルであ
るという有限空間の安定性作業条件を判断するステップAと、
流出空間の大きさに応じて、該流体の流れが自由噴流であるか又は拘束噴流であるかを判断し、本発明で提案する噴流軌跡の相関式(下式(2)、(3)、(4)を参照)に従って噴流軌跡を予測し、慣性停滞現象が発生するか否かを判断し、
技術的解決手段の特徴Bに基づき、噴流軌跡の相関式は、
Figure 0007372710000008
Figure 0007372710000009
Figure 0007372710000010
であり、
ここで、
Figure 0007372710000011

Figure 0007372710000012
であり、
式中、Arは無次元基準数アルキメデス数で、重力と粘性力の比を示し、Gcは発明者が提案した無次元基準数Gc数で、浮力と慣性力の垂直成分の比を示し、xは噴流の長さであり
、単位はメートルであり、Sn無次元開始セグメントの噴流のコア長さであり、Send 次元噴流減衰の最大距離であり、ν0は噴流の初速度であり、単位はメートル/秒であり
、ν1は噴流の開始セグメントのコア速度(ν1=0.9ν0)であり、単位はメートル/秒で
あり、ν2は噴流が最大距離まで減衰する時の速度であり、人体の健康のニーズを考慮し
て、ν2=0.1メートル/秒を取ることができ、他の産業又は特定の要件の場合はプロセス条件のニーズによって決定することができ、完全な自由噴流である場合に(1-0.99)ν0を取ることができ、タバコの吸い殻、薫香、藁等の材料の燃焼初速度は、浮力を駆
動力(作用圧力)とする方法を参照して決定することができ、yは噴流軸心の縦方向の距
離であり、単位はメートルであり、αは噴流の偏向角度であり、単位は度であり、d0はノズルの直径であり、単位はメートルであり、gは垂直方向の加速度であり、単位はメート
ル/秒の2乗であり、ν0は噴流の初速度であり、単位はメートル/秒であり、αは乱流
係数であり、Teは周囲ガスの温度であり、単位はケルビンであり、T0は噴流の温度であり、単位はケルビンであり、ΔT0は噴流と周囲環境との温度差であり、単位はケルビンであり、ΔTは部屋の上下表面の温度差(又は考慮されるある流れ層の上下の温度差)であり
、単位はケルビンであり、Lは部屋の高さであり、単位はメートルであり、C、C1、C2は定数であり、実験又は数値方法によって較正することができ、Cを最初に1に設定すること
ができ、2次元数値シミュレーションの比較分析に従って、それぞれC1、C2を0.214、0.115に予備的に推奨することができるという噴流のタイプを判断し、噴流の流れ方向を予測するステップBと、
ステップA~Bで計算されたパラメータと噴流軌跡に従って、放射空調方式、室内排気方式及び排気口の選択位置を最適化制御することにより、換気方式の合理的な利用を実現するという換気方式を最適化制御するステップCとを特徴とする。The present invention
By designing a temperature gradient measurement system, acquiring temperature data at various heights within a finite space, and calculating its temperature gradient value, the air stability working conditions within the finite space, i.e., stable, The neutral type and the unstable type are determined. The stable type suppresses the jet diffusion dispersion process, the unstable type accelerates the jet diffusion dispersion process, and the influence of the neutral type on the jet diffusion dispersion is between the stable type and the unstable type. The temperature gradient measuring system is characterized in that one or more temperature measuring device rods are arranged in a suitable manner in a finite space, for example in the shape of a plum blossom, and each measuring rod measures the temperature along the height direction. Take multiple temperature measurement points, for example 5, at equal distances and measure the temperature gradient using a self-temperature measuring device.The formula for calculating the temperature gradient is:
Figure 0007372710000007
and
where T is the temperature value at each height in Kelvin, ∇T is the temperature gradient in Kelvin/meter, and ΔT is the temperature difference between the upper and lower surfaces of the room or some flow being considered. Step A of determining the stability working conditions in a finite space, where the temperature difference between the top and bottom of the layer is in Kelvin, and L is the height of the room in meters;
Depending on the size of the outflow space, it is determined whether the flow of the fluid is a free jet or a restricted jet, and the correlation equations of the jet trajectory proposed in the present invention (equations (2), (3), (4)) to predict the jet flow trajectory and determine whether an inertial stagnation phenomenon will occur.
Based on feature B of the technical solution, the correlation equation of the jet trajectory is:
Figure 0007372710000008
Figure 0007372710000009
Figure 0007372710000010
and
here,
Figure 0007372710000011
,
Figure 0007372710000012
and
In the formula, Ar is the dimensionless reference number Archimedean number, which indicates the ratio of gravitational force to viscous force, Gc is the dimensionless reference number Gc number proposed by the inventor, which indicates the ratio of the vertical component of buoyancy force and inertial force, and x is the length of the jet in meters, S n is the core length of the jet in the dimensionless starting segment , S end is the maximum distance of dimensionless jet attenuation , and ν 0 is the initial velocity of the jet , in meters/second, ν 1 is the core velocity of the starting segment of the jet (ν 1 =0.9ν 0 ), in meters/second, and ν 2 is the maximum distance at which the jet decays. The speed of time can be taken as ν 2 = 0.1 m/s, taking into account the needs of human health, and in the case of other industries or specific requirements can be determined by the needs of the process conditions; In the case of a completely free jet, (1-0.99)ν 0 can be obtained, and the initial combustion velocity of materials such as cigarette butts, incense, and straw can be determined using buoyancy as the driving force (working pressure). can be determined with reference to where y is the longitudinal distance of the jet axis in meters, α is the jet deflection angle in degrees, and d 0 is the nozzle diameter , in meters, g is the vertical acceleration in meters/second squared, ν 0 is the initial velocity of the jet in meters/second, and α is the turbulence is the flow coefficient, T e is the temperature of the surrounding gas in Kelvin, T 0 is the temperature of the jet in Kelvin, ΔT 0 is the temperature difference between the jet and the surrounding environment, The unit is Kelvin, ΔT is the temperature difference between the top and bottom surfaces of the room (or the temperature difference above and below some considered flow layer), in Kelvin, and L is the height of the room, in meters. , C, C 1 , C 2 are constants and can be calibrated by experiment or numerical methods, C can be initially set to 1, and according to the comparative analysis of two-dimensional numerical simulations, C 1 and C 2 are constants, respectively. , C2 can be preliminarily recommended to be 0.214, 0.115, and a step B of determining the type of jet and predicting the flow direction of the jet;
Optimize the ventilation method to realize rational use of the ventilation method by optimizing and controlling the radiant air conditioning method, indoor exhaust method, and selected position of the exhaust port according to the parameters and jet trajectory calculated in steps A to B. The method is characterized by a step C of controlling the

技術的解決手段のステップCに基づき、換気方式の最適化制御は次のようにアドバイスされる。
夏の床放射冷房又は冬の放射天井暖房(熱的快適性のニーズを満たす)の場合、安定型の状況が発生しやすく、この時、温度成層の制限作用により、汚染物質は一定の高さに集まり、主流方向に沿って移動し、このような状況では、全体換気は汚染物質の迅速な希釈と排出に不都合であり、エネルギー消費量が大きい。この時、局所換気設計又は指向性換気設計を優先し、即ち、床放射冷房期間+局所又は指向性換気気流組織形式又は天井放射暖房期間+局所又は指向性換気気流組織形式を使用し、汚染源の位置及び汚染源の流れ方向に基づき、換気口の配置を合理的に設計する。上へ移動する場合、頂部に排気口を設置する必要があり、水平方向に沿って移動する場合、水平箇所に排気口を設計する。部屋に放射天井のみが取り付けられる場合、夏は放射冷天井が不安定型の状況を形成しやすく、部屋は、汚染物質を効果的に排出するための全体換気に適する。しかし、冬の放射暖房の状況は安定型の状況を形成し、冬に指向性換気を行うように、この時、事前にステップA~Bに基づいて汚染物質の軌跡を予測し、換気口を予め残す必要がある。不安定型及び中性型は全体換気に適し、夏に放射冷房、冬に床暖房を使用する部屋は、上冷下熱の温度分布状況を形成し、この時、室内は不安定型の状況であり、室内の対流運動が強く、汚染物質の分散希釈過程が加速され、全体換気方式を使用して汚染物質を排出することをアドバイスし、即ち、天井冷放射期間+全体換気の室内気流組織形式又は地上放射暖房期間+全体換気設計気流組織形式を形成し、任意の上面又は地上放射空調を使用しない場合に全体換気設計気流組織形式を使用することが好ましい。
Based on step C of the technical solution, the optimization control of the ventilation system is advised as follows.
In the case of radiant floor cooling in summer or radiant ceiling heating in winter (meeting thermal comfort needs), a stable situation is likely to occur, when pollutants are kept at a certain height due to the limiting effect of thermal stratification. In this situation, general ventilation is inconvenient for rapid dilution and discharge of pollutants, and energy consumption is large. At this time, give priority to local ventilation design or directional ventilation design, that is, use floor radiant cooling period + local or directional ventilation airflow system type or ceiling radiant heating period + local or directional ventilation airflow system type to eliminate the pollution source. Based on the location and flow direction of the pollution source, rationally design the placement of ventilation holes. When moving upward, it is necessary to install an exhaust outlet at the top, and when moving along the horizontal direction, an exhaust outlet should be designed at a horizontal location. If only a radiant ceiling is installed in the room, the radiant cold ceiling is likely to form an unstable type situation in summer, and the room is suitable for general ventilation to effectively discharge pollutants. However, the situation of radiant heating in winter forms a stable situation, and in order to perform directional ventilation in winter, the trajectory of pollutants is predicted in advance based on steps A to B, and the ventilation openings are It is necessary to leave it in advance. The unstable and neutral types are suitable for general ventilation, and rooms that use radiant cooling in summer and floor heating in winter form a temperature distribution situation of top cooling and bottom heat, and at this time, the room is in an unstable situation. , the convective movement in the room is strong, the dispersion dilution process of pollutants is accelerated, it is advised to use the general ventilation method to exhaust the pollutants, that is, the indoor airflow organization form of ceiling cold radiation period + general ventilation or It is preferable to form a ground radiant heating period + general ventilation design airflow organization type and use the overall ventilation design airflow organization type when no top or ground radiant air conditioning is used.

ここで、長沙市のあるオフィスビルを例として説明する。オフィスの寸法は、長さSが
4.5メートル(x方向)、幅Wが4メートル(y方向)、高さLが2.4メートル(z方向
)である。室内の主な汚染源は、室内のオフィススタッフの呼気と見なすことができる。口部は、直径d0が0.012メートルの円形の開孔部と見なすことができる。呼気温度T0は307ケルビンである。呼気速度v0は3.9メートル/秒である。水平方向の呼気であるため、αは0度を取る。乱流係数aは0.076を取る。本例では、定数Cは一時的に1を取る。垂直方向の加速度gは9.8メートル/秒の2乗を取り、オフィス内の温度は放射板1によって制御され、換気システムは給気ダクト2、給気口3、排気ダクト4及び排気口5で構成され、オフィスの底部温度、頂部温度及び様々な高さの温度データは室内温度勾配測定システム6における温度測定プローブ7に基づいて得られ、計算して得られた温度勾配値に基づいて、それが属する安定性作業条件を判断する。
Here, we will explain an office building in Changsha City as an example. The dimensions of the office are: length S is 4.5 meters (x direction), width W is 4 meters (y direction), and height L is 2.4 meters (z direction). The main source of indoor pollution can be considered as the exhaled air of indoor office staff. The mouth can be considered as a circular aperture with a diameter d 0 of 0.012 meters. The exhaled air temperature T 0 is 307 Kelvin. The exhalation velocity v 0 is 3.9 meters/second. Since the exhalation is in the horizontal direction, α is 0 degrees. The turbulence coefficient a takes 0.076. In this example, the constant C temporarily takes on 1. The vertical acceleration g takes the square of 9.8 m/s, the temperature in the office is controlled by a radiation plate 1, and the ventilation system is divided into an air supply duct 2, an air supply inlet 3, an exhaust duct 4 and an exhaust outlet 5. The office bottom temperature, top temperature and temperature data at various heights are obtained based on the temperature measurement probe 7 in the indoor temperature gradient measurement system 6, and based on the calculated temperature gradient value, Determine the stability working conditions to which it belongs.

1)安定型作業条件:高さの増加に伴って、室内空気の温度が上昇し、即ち、室内空気の温度の垂直減少率が0より大きい。測定された空気温度は底部が295ケルビンであり、頂部が301ケルビンであり、この時、噴流と周囲環境との温度差ΔT0は9ケルビンを取ることができ(噴流温度は呼気温度T0で、307ケルビンであり、周囲環境温度Teは部屋内部の上下表面の温度の平均値、298ケルビンを取り)、したがって、

Figure 0007372710000013

Figure 0007372710000014
を得ることができ、
式(2)に代入すると、
Figure 0007372710000015
が得られ、
得られた噴流軌跡は図1に示すとおりであり、この時、該作業条件では、x2、x3は噴流長さの2乗又は3乗の演算値で、共に噴流偏向長さyと噴流長さxとの関係を示し、Ar、Gc及び噴流長さxを考慮する各要素の間の相互関係である。
式(3)に代入すると、
Figure 0007372710000016
が得られ、
式(4)に代入すると、
Figure 0007372710000017
が得られ、
この時、send>S、噴流は拘束噴流であり、ここで、send無次元噴流減衰の最大距離
あり、Sはオフィスの長さであり、単位はメートルであり、この安定した作業条件では、局所換気設計(指向性換気)を優先し、汚染源の位置及び汚染源の流れ方向に基づき、作業ステーションへの給気を設計し、頂部に排気口を設計する。具体的な配置は図2に示すとおりである。1) Stable working conditions: With the increase of height, the indoor air temperature increases, that is, the vertical decreasing rate of the indoor air temperature is greater than 0. The measured air temperature is 295 Kelvin at the bottom and 301 Kelvin at the top, and at this time, the temperature difference ΔT 0 between the jet and the surrounding environment can take 9 Kelvin (the jet temperature is the exhalation temperature T 0 , 307 Kelvin, and the ambient environment temperature Te is the average value of the temperature of the upper and lower surfaces inside the room, which is 298 Kelvin), therefore,
Figure 0007372710000013
,
Figure 0007372710000014
you can get
Substituting into formula (2), we get
Figure 0007372710000015
is obtained,
The jet trajectory obtained is as shown in Figure 1. At this time, under the working conditions, x 2 and x 3 are the calculated values of the square or cube of the jet length, and both are the jet deflection length y and the jet flow. It shows the relationship with length x, and is the interrelationship between each element considering Ar, Gc, and jet length x.
Substituting into formula (3), we get
Figure 0007372710000016
is obtained,
Substituting into formula (4), we get
Figure 0007372710000017
is obtained,
At this time, s end > S, the jet is a restrained jet, where s end is the maximum distance of dimensionless jet attenuation , S is the length of the office, the unit is meters, and this stable work In terms of conditions, give priority to local ventilation design (directional ventilation), design the air supply to the work station based on the location of the pollution source and the flow direction of the pollution source, and design the exhaust port at the top. The specific arrangement is as shown in FIG.

2)中性型作業条件:高さの増加に伴って、室内空気の温度が変化せず、即ち、室内空気の温度の垂直減少率は基本的に0に等しい。測定された室内空気温度は297ケルビンであり、この時、噴流と周囲環境との温度差ΔT0は10ケルビンを取ることができ(噴流温度は呼気温度T0で、307ケルビンであり、周囲環境温度Teは部屋内部の上下表面の温度の平均値、297ケルビンを取り)、したがって、

Figure 0007372710000018

Figure 0007372710000019
を得ることができ、
式(2)に代入すると、
Figure 0007372710000020
が得られ、
得られた噴流軌跡は図1に示すとおりであり、この時、該作業条件では、x2、x3は噴流長さの2乗又は3乗の演算値で、共に噴流偏向長さyと噴流長さxとの関係を示し、Ar、Gc及び噴流長さxを考慮する各要素の間の相互関係である。
式(3)に代入すると、
Figure 0007372710000021
が得られ、
式(4)に代入すると、
Figure 0007372710000022
が得られ、
この時、Send>S、噴流は無次元拘束噴流であり、ここで、Sendは噴流減衰の最大距離
あり、Sはオフィスの長さであり、単位はメートルであり、中性型作業条件は全体換気
に適し、具体的な配置は図3に示すとおりである。 2) Neutral working conditions: With the increase in height, the temperature of the indoor air does not change, that is, the vertical decreasing rate of the temperature of the indoor air is basically equal to 0. The measured indoor air temperature is 297 Kelvin, and at this time, the temperature difference ΔT 0 between the jet and the surrounding environment can be 10 Kelvin (the jet temperature is the expiratory temperature T 0 , which is 307 Kelvin, and the temperature difference ΔT 0 between the jet and the surrounding environment is 10 Kelvin). The temperature T e is the average value of the temperature of the upper and lower surfaces inside the room, which is 297 Kelvin), and therefore,
Figure 0007372710000018
,
Figure 0007372710000019
you can get
Substituting into formula (2), we get
Figure 0007372710000020
is obtained,
The jet trajectory obtained is as shown in Figure 1. At this time, under the working conditions, x 2 and x 3 are the calculated values of the square or cube of the jet length, and both are the jet deflection length y and the jet flow. It shows the relationship with length x, and is the interrelationship between each element considering Ar, Gc, and jet length x.
Substituting into formula (3), we get
Figure 0007372710000021
is obtained,
Substituting into formula (4), we get
Figure 0007372710000022
is obtained,
At this time, S end > S, the jet is a dimensionless restrained jet, where S end is the maximum distance of jet attenuation, S is the length of the office, the unit is meters, and the neutral type work The conditions are suitable for general ventilation, and the specific arrangement is as shown in Figure 3.

3)不安定型作業条件:高さの増加に伴って、室内空気の温度が逆に低下し、即ち、室内空気の温度の垂直減少率は0より小さい。測定された空気温度は底部が298ケルビンであり、頂部が293ケルビンである。この時、噴流と周囲環境との温度差ΔT0は11.5ケルビンを取ることができ(噴流温度は呼気温度T0で、307ケルビンであり、周囲環境温度Teは部屋内部の上下表面の温度の平均値295.5ケルビンを取る)、

Figure 0007372710000023

Figure 0007372710000024
を得ることができ、
式(2)に代入すると、
Figure 0007372710000025
が得られ、
得られた噴流軌跡は図1に示すとおりであり、この時、該作業条件では、x2、x3は噴流長さの2乗又は3乗の演算値で、共に噴流偏向長さyと噴流長さxとの関係を示し、Ar、Gc及び噴流長さxを考慮する各要素の間の相互関係である。
式(3)に代入すると、
Figure 0007372710000026
が得られ、
式(4)に代入すると、
Figure 0007372710000027
が得られ、
この時、send>S、噴流は拘束噴流であり、ここで、send無次元噴流減衰の最大距離
であり、Sはオフィスの長さであり、単位はメートルであり、不安定な作業条件下では、
室内の対流運動が強く、全体換気に適し、具体的な配置は図4に示すとおりである。3) Unstable working conditions: As the height increases, the indoor air temperature decreases, that is, the vertical decreasing rate of the indoor air temperature is less than 0. The measured air temperature is 298 Kelvin at the bottom and 293 Kelvin at the top. At this time, the temperature difference ΔT 0 between the jet and the surrounding environment can be taken as 11.5 Kelvin (the jet temperature is the exhalation temperature T 0 , which is 307 Kelvin, and the ambient environment temperature T e is the temperature of the upper and lower surfaces inside the room. Take the average temperature value of 295.5 Kelvin),
Figure 0007372710000023
,
Figure 0007372710000024
you can get
Substituting into formula (2), we get
Figure 0007372710000025
is obtained,
The jet trajectory obtained is as shown in Figure 1. At this time, under the working conditions, x 2 and x 3 are the calculated values of the square or cube of the jet length, and both are the jet deflection length y and the jet flow. It shows the relationship with length x, and is the interrelationship between each element considering Ar, Gc, and jet length x.
Substituting into formula (3), we get
Figure 0007372710000026
is obtained,
Substituting into formula (4), we get
Figure 0007372710000027
is obtained,
Then, s end > S, the jet is a restrained jet, where s end is the maximum distance of dimensionless jet attenuation
and S is the length of the office, in meters, and under unstable working conditions,
The indoor convection movement is strong and suitable for general ventilation, and the specific arrangement is as shown in Figure 4.

噴流減衰の最大距離を例とし、空間が中性型にある場合、Send=26.822メートルに対応する安定型及び不安定型における最大減衰距離は、中性型における最大噴流減衰距離より長く又は短く、それぞれ27.414メートル、26.821メートルであり、有限空間の空気安定性の特徴に合致する。Taking the maximum jet attenuation distance as an example, if the space is in the neutral type, the maximum attenuation distance in the stable and unstable types corresponding to S end = 26.822 meters is longer than the maximum jet attenuation distance in the neutral type, or The shortest lengths are 27.414 meters and 26.821 meters, respectively, meeting the characteristics of air stability in a finite space.

以上は本発明の具体的な実施形態に過ぎず、本発明の保護範囲を限定するものではなく、本発明の精神及び原則内で行われた任意の修正、同等の置換、改善等は、いずれも本発明の保護範囲内に含まれるべきである。 The above are only specific embodiments of the present invention, and do not limit the protection scope of the present invention, and any modifications, equivalent replacements, improvements, etc. made within the spirit and principles of the present invention are not intended to limit the scope of protection of the present invention. should also be included within the protection scope of the present invention.

工業作業場、データルーム、一般的な部屋及び病院などの場所では、夏の床放射冷房又は冬の放射天井暖房、又は自然の状況で地面温度が室内の気温及び天井より低い場合、安定型の状況が発生しやすく、この時、温度成層の制限作用により、汚染物質は一定の高さに集まり、主流方向に沿って移動し、このような状況では、全体換気は汚染物質の迅速な希釈と排出に不都合であり、エネルギー消費量が大きい。この時、局所換気設計又は指向性換気設計を優先し、即ち、床放射冷房期間+局所又は指向性換気気流組織形式又は天井放射暖房期間+局所又は指向性換気気流組織形式を使用し、汚染源の位置及び汚染源の流れ方向に基づき、換気口の配置を合理的に設計する。汚染物質が上へ移動する場合、頂部に排気口を設置する必要があり、水平方向に沿って移動する場合、水平箇所に排気口を設計する。部屋に放射天井のみが取り付けられる場合、夏は放射冷天井が不安定型の状況を形成しやすく、部屋は、汚染物質を効果的に排出するための全体換気に適する。しかし、冬の放射暖房の状況は安定型の状況を形成し、冬に指向性換気を行うように、この時、事前にステップA~Bに基づいて汚染物質の軌跡を予測し、換気口を予め残す必要がある。不安定型及び中性型は全体換気に適し、夏に放射冷房、冬に床暖房を使用する部屋は、上冷下熱の温度分布状況を形成し、この時、室内は不安定型の状況であり、室内の対流運動が強く、汚染物質の分散希釈過程が加速され、全体換気方式を使用して汚染物質を排出することをアドバイスし、即ち、天井冷放射期間+全体換気の室内気流組織形式又は地上放射暖房期間+全体換気設計気流組織形式を形成し、任意の上面又は地上放射空調を使用しない場合に全体換気設計気流組織形式を使用することが好ましい。全体換気を使用したデータルームは、給気気流と部屋内の空気との混合を加速するために、不安定型の作業条件を使用することが好ましい。指向性換気が要求される室内建築、例えば病院の手術室では、部屋内で安定型作業条件を作ることを考慮する必要がある。 In places such as industrial workplaces, data rooms, general rooms and hospitals, radiant floor cooling in summer or radiant ceiling heating in winter, or in natural situations where the ground temperature is lower than the indoor air temperature and ceiling, is a stable situation. is likely to occur, at this time, due to the limiting effect of temperature stratification, pollutants will gather at a certain height and move along the mainstream direction, and in this situation, general ventilation can be used to quickly dilute and discharge pollutants. This is inconvenient and consumes a lot of energy. At this time, give priority to local ventilation design or directional ventilation design, that is, use floor radiant cooling period + local or directional ventilation airflow system type or ceiling radiant heating period + local or directional ventilation airflow system type to eliminate the pollution source. Based on the location and flow direction of the pollution source, rationally design the placement of ventilation holes. If the pollutants move upward, it is necessary to install an exhaust outlet at the top, and if the pollutants move along the horizontal direction, the exhaust outlet should be designed at a horizontal location. If only a radiant ceiling is installed in the room, the radiant cold ceiling is likely to form an unstable type situation in summer, and the room is suitable for general ventilation to effectively discharge pollutants. However, the situation of radiant heating in winter forms a stable situation, and in order to perform directional ventilation in winter, the trajectory of pollutants is predicted in advance based on steps A to B, and the ventilation openings are It is necessary to leave it in advance. The unstable and neutral types are suitable for general ventilation, and rooms that use radiant cooling in summer and floor heating in winter form a temperature distribution situation of top cooling and bottom heat, and at this time, the room is in an unstable situation. , the convective movement in the room is strong, the dispersion dilution process of pollutants is accelerated, it is advised to use the general ventilation method to exhaust the pollutants, that is, the indoor airflow organization form of ceiling cold radiation period + general ventilation or It is preferable to form a ground radiant heating period + general ventilation design airflow organization type and use the overall ventilation design airflow organization type when no top or ground radiant air conditioning is used. Data rooms using general ventilation preferably use unstable type working conditions to accelerate the mixing of the supply air flow with the air in the room. In indoor architecture where directional ventilation is required, for example in a hospital operating room, consideration must be given to creating stable working conditions within the room.

Claims (1)

有限空間の空気安定性のための熱的快適換気及び汚染物質制御方法であって、温度勾配測定システムを設計し、該システムによって有限空間内の様々な高さの温度データを取得し、その温度勾配値を計算することにより、有限空間内の空気安定性作業条件、即ち安定型、中性型及び不安定型を判断し、安定型は噴流拡散分散過程を抑制し、不安定型は噴流拡散分散過程を加速し、中性型の噴流拡散分散に対する影響は安定型と不安定型との間にあり、前記温度勾配測定システムは、有限空間内に1本又は複数本の温度測定装置ロッドを適切な方式で、梅の花の形に配置し、各測定ロッドで高さ方向に沿って等距離で複数の温度測定点を取り、温度自己計測器を利用して温度勾配測定を行い、温度勾配の計算式は、

であり、
式中、Tは各高さの温度値であり、ケルビンであり、∇Tは温度勾配であり、単位はケルビン/メートルであり、ΔTは部屋の上下表面の温度差、又は考慮されるある流れ層の上下の温度差であり、単位はケルビンであり、Lは部屋の高さであり、単位はメートルであるという有限空間の安定性作業条件を判断するステップAと、
流出空間の大きさに応じて、流体の流れが自由噴流であるか又は拘束噴流であるかを判断し、本発明で提案する噴流軌跡の相関式に従って噴流軌跡を予測し、慣性停滞現象が発生するか否かを判断し、前記噴流軌跡の相関式は、



ここで、


であり、
式中、Arは無次元基準数アルキメデス数で、重力と粘性力の比を示し、Gcは発明者が提案した無次元基準数Gc数で、浮力と慣性力の垂直成分の比を示し、xは噴流の長さであり、単位はメートルであり、Snは無次元開始セグメントの噴流のコア長さであり、Sendは無次元噴流減衰の最大距離であり、ν0は噴流の初速度であり、単位はメートル/秒であり、ν1は噴流の開始セグメントのコア速度(ν1=0.9ν0)であり、単位はメートル/秒であり、ν2は噴流が最大距離まで減衰する時の速度であり、人体の健康のニーズを考慮して、ν2=0.1メートル/秒を取ることができ、他の産業又は特定の要件の場合はプロセス条件のニーズによって決定することができ、完全な自由噴流である場合に(1-0.99)ν0を取ることができ、タバコの吸い殻、薫香、藁のうちの何れかの材料の燃焼初速度は、浮力を駆動力、即ち作用圧力とする方法を参照して決定することができ、yは噴流軸心の縦方向の距離であり、単位はメートルであり、αは噴流の偏向角度であり、単位は度であり、d0はノズルの直径であり、単位はメートルであり、gは垂直方向の加速度であり、単位はメートル/秒の2乗であり、ν0は噴流の初速度であり、単位はメートル/秒であり、αは乱流係数であり、Teは周囲ガスの温度であり、単位はケルビンであり、T0は噴流の温度であり、単位はケルビンであり、ΔT0は噴流と周囲環境との温度差であり、単位はケルビンであり、ΔTは部屋の上下表面の温度差、又は考慮されるある流れ層の上下の温度差であり、単位はケルビンであり、Lは部屋の高さであり、単位はメートルであり、C、C1、C2は定数であり、実験又は数値方法によって較正することができ、Cを最初に1に設定することができ、2次元数値シミュレーションの比較分析に従って、それぞれC1、C2を0.214、0.115に予備的に推奨することができるという噴流のタイプを判断し、噴流の流れ方向を予測するステップBと、
ステップA~Bで計算されたパラメータと噴流軌跡に従って、放射空調方式、室内排気方式及び排気口の選択位置を最適化制御することにより、換気方式の合理的な利用を実現するという換気方式を最適化制御するステップCとを特徴とする有限空間の空気安定性のための熱的快適換気及び汚染物質制御方法。
Thermal comfort ventilation and pollutant control method for air stability in a finite space, the method includes designing a temperature gradient measurement system, acquiring temperature data at various heights in the finite space, and measuring the temperature. By calculating the gradient value, determine the air stability working conditions in the finite space, namely stable type, neutral type and unstable type, stable type suppresses the jet diffusion dispersion process, and unstable type suppresses the jet diffusion dispersion process. , the influence of the neutral type on the jet diffusion dispersion is between the stable type and the unstable type, and the temperature gradient measuring system is characterized by one or more temperature measuring device rods in a finite space in an appropriate manner. The temperature gradient was calculated using a self-temperature measuring device, which was placed in the shape of a plum blossom , and each measuring rod took multiple temperature measurement points at equal distances along the height direction. ceremony,

and
where T is the temperature value at each height in Kelvin, ∇T is the temperature gradient in Kelvin/meter, and ΔT is the temperature difference between the upper and lower surfaces of the room or some flow being considered. Step A of determining the stability working conditions in a finite space, where the temperature difference between the top and bottom of the layer is in Kelvin, and L is the height of the room in meters;
Depending on the size of the outflow space, it is determined whether the fluid flow is a free jet or a restricted jet, and the jet trajectory is predicted according to the jet trajectory correlation formula proposed in the present invention, and the inertial stagnation phenomenon is detected. The correlation equation of the jet flow trajectory is determined as follows:



here,

,
and
In the formula, Ar is the dimensionless reference number Archimedean number, which indicates the ratio of gravitational force to viscous force, Gc is the dimensionless reference number Gc number proposed by the inventor, which indicates the ratio of the vertical component of buoyancy force and inertial force, and x is the length of the jet in meters, Sn is the core length of the jet in the dimensionless starting segment, Send is the maximum distance of dimensionless jet attenuation, ν0 is the initial velocity of the jet, The unit is meters/second, ν1 is the core velocity of the starting segment of the jet (ν1=0.9ν0), the unit is meters/second, ν2 is the velocity when the jet decays to its maximum distance, and ν1 is the core velocity of the starting segment of the jet (ν1=0.9ν0). Considering the health needs of the jet, ν2=0.1 m/s can be taken, and in case of other industries or specific requirements it can be determined by the needs of the process conditions, if the jet is completely free (1-0.99) ν0 can be taken, and the initial combustion velocity of any material such as cigarette butts, incense, or straw is determined with reference to the method in which buoyancy is the driving force, that is, the working pressure. where y is the longitudinal distance of the jet axis in meters, α is the jet deflection angle in degrees, d0 is the nozzle diameter in meters , g is the vertical acceleration in meters/second squared, ν0 is the initial velocity of the jet in meters/second, α is the turbulence coefficient, and Te is is the temperature of the surrounding gas in Kelvin, T0 is the temperature of the jet in Kelvin, ΔT0 is the temperature difference between the jet and the surrounding environment in Kelvin, and ΔT is the temperature of the room in Kelvin. is the temperature difference between the top and bottom surfaces, or the temperature difference between the top and bottom of a certain flow layer considered, in Kelvin, L is the height of the room, in meters, and C, C1, C2 are constants. and can be calibrated by experiment or numerical methods, C can be initially set to 1, and according to the comparative analysis of two-dimensional numerical simulation, C1, C2 can be preliminarily set to 0.214, 0.115, respectively. Step B of determining the type of jet that can be recommended and predicting the flow direction of the jet;
Optimize the ventilation method to realize rational use of the ventilation method by optimizing and controlling the radiant air conditioning method, indoor exhaust method, and selected position of the exhaust port according to the parameters and jet trajectory calculated in steps A to B. A thermal comfort ventilation and pollutant control method for air stability in a finite space, characterized in that:
JP2022574699A 2020-07-03 2020-11-26 Thermal comfort ventilation and pollutant control method for air stability in finite spaces Active JP7372710B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN202010629312.4A CN111706951B (en) 2020-07-03 2020-07-03 Thermal comfort ventilation and pollutant control method for air stability of limited space
CN202010629312.4 2020-07-03
PCT/CN2020/131617 WO2022000965A1 (en) 2020-07-03 2020-11-26 Thermal comfort ventilation and pollutant control method for air stability of limited space

Publications (2)

Publication Number Publication Date
JP2023520259A JP2023520259A (en) 2023-05-16
JP7372710B2 true JP7372710B2 (en) 2023-11-01

Family

ID=72546176

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022574699A Active JP7372710B2 (en) 2020-07-03 2020-11-26 Thermal comfort ventilation and pollutant control method for air stability in finite spaces

Country Status (3)

Country Link
JP (1) JP7372710B2 (en)
CN (1) CN111706951B (en)
WO (1) WO2022000965A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111706951B (en) * 2020-07-03 2021-08-24 湖南大学 Thermal comfort ventilation and pollutant control method for air stability of limited space
CN112800661B (en) * 2020-12-29 2022-05-31 同济大学 Station air supply design method for moving individuals in industrial environment
CN113669866A (en) * 2021-08-20 2021-11-19 珠海格力电器股份有限公司 Control method of air conditioner and air conditioner
WO2024135282A1 (en) * 2022-12-23 2024-06-27 パナソニックIpマネジメント株式会社 Blower device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009186040A (en) 2008-02-04 2009-08-20 Takasago Thermal Eng Co Ltd Diffusion preventing device and diffusion preventing system of contaminant
JP2021169918A (en) 2020-04-16 2021-10-28 清水建設株式会社 Personal air conditioning system

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2613178B2 (en) * 1994-07-28 1997-05-21 株式会社恒富電業 Cold air generator
JPH1183140A (en) * 1997-09-16 1999-03-26 Mitsubishi Heavy Ind Ltd Air conditioner controller
JP2002022220A (en) * 2000-07-10 2002-01-23 Asahi Kasei Corp Simulation method of air flow in residence
CN1226559C (en) * 2003-09-16 2005-11-09 浙江大学 Fixed point jet flow air supply system
KR200448296Y1 (en) * 2008-03-26 2010-03-31 장용기 Energy saving type big space airconditioning system
CN201251374Y (en) * 2008-07-15 2009-06-03 魏仕英 Jet air cooler
CN103277857B (en) * 2013-05-30 2015-08-19 同济大学建筑设计研究院(集团)有限公司 Serve stratified air conditioning system and the power-economizing method thereof of Railway Passenger Stations large space
CN103971010A (en) * 2014-05-19 2014-08-06 华北电力大学 Method for judging thermal stratification phenomenon of lead and bismuth fluid
WO2015182061A1 (en) * 2014-05-27 2015-12-03 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ Method for controlling sensor executed by air conditioner
CN204739706U (en) * 2014-11-05 2015-11-04 四川迈铁龙科技有限公司 Efflux formula post air conditioner device
CN104633827A (en) * 2014-11-26 2015-05-20 东华大学 Optimized design method for impacting jet ventilation system
CN107301276B (en) * 2017-06-01 2020-08-04 上海理工大学 Method for calculating convection heat transfer load of large-space nozzle air supply layered air conditioner
CN111344523B (en) * 2017-11-09 2022-07-29 皇家飞利浦有限公司 Air purification monitoring system, air purification device, corresponding method and computer program product
CN108710744A (en) * 2018-05-16 2018-10-26 苏州黑盾环境股份有限公司 Central machine room air current composition and temperature computation method
CN111706951B (en) * 2020-07-03 2021-08-24 湖南大学 Thermal comfort ventilation and pollutant control method for air stability of limited space

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009186040A (en) 2008-02-04 2009-08-20 Takasago Thermal Eng Co Ltd Diffusion preventing device and diffusion preventing system of contaminant
JP2021169918A (en) 2020-04-16 2021-10-28 清水建設株式会社 Personal air conditioning system

Also Published As

Publication number Publication date
WO2022000965A1 (en) 2022-01-06
CN111706951B (en) 2021-08-24
JP2023520259A (en) 2023-05-16
CN111706951A (en) 2020-09-25

Similar Documents

Publication Publication Date Title
JP7372710B2 (en) Thermal comfort ventilation and pollutant control method for air stability in finite spaces
Karimipanah et al. Theoretical and experimental investigation of impinging jet ventilation and comparison with wall displacement ventilation
Yuan et al. Measurements and computations of room airflow with displacement ventilation.
Kobayashi et al. Numerical investigation and accuracy verification of indoor environment for an impinging jet ventilated room using computational fluid dynamics
Zhang et al. Parametrical analysis on the diffuse ceiling ventilation by experimental and numerical studies
Qin et al. Effects of ceiling exhaust location on thermal comfort and age of air in room under impinging jet supply scheme
Al Assaad et al. Simplified model for thermal comfort, IAQ and energy savings in rooms conditioned by displacement ventilation aided with transient personalized ventilation
Shao et al. Fast prediction of non-uniform temperature distribution: A concise expression and reliability analysis
Kuznetsov et al. Experimental and numerical study of heat transfer in production area heated by gas infrared source
Calautit et al. Numerical and experimental analysis of a multi-directional wind tower integrated with vertically-arranged heat transfer devices (VHTD)
Srebric et al. Validation of a zero-equation turbulence model for complex indoor airflow simulation
Einberg et al. CFD modelling of an industrial air diffuser—predicting velocity and temperature in the near zone
Wu et al. Assessment of mechanical exhaust in preventing vertical cross-household infections associated with single-sided ventilation
Tian et al. Evaluation of sidewall air supply with the stratified indoor environment in a consultation room
Jaszczur et al. Experimental analysis of the air stream generated by square ceiling diffusers to reduce energy consumption and improve thermal comfort
Cetin et al. Particle dispersion and deposition in displacement ventilation systems combined with floor heating
Lin et al. Validation of CFD model for research into displacement ventilation
Li et al. Comparative studies and optimizations of air distribution of underground building ventilation systems based on response surface methodology: A case study
Chou et al. Natural ventilation efficiency in a bedroom with a central-pivoting window
Ciuman et al. Numerical modelling of air distribution in the natatorium supported by the experiment
Teodosiu et al. Experimental and numerical investigation of mechanically ventilated rooms
Zhang et al. Airflow pattern and performance analysis of diffuse ceiling ventilation in an office room using cfd study
Awbi et al. A comparison between three methods of low-level air supplies
Karch et al. Comparison of aerodynamic characteristics for various slot diffusers
Rabani et al. CFD study on the effect of Archimedes number and heating rate on the thermal stratification of aventilated office

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221202

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20221226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230421

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230620

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230907

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230925

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231013

R150 Certificate of patent or registration of utility model

Ref document number: 7372710

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150