JP7372395B2 - Glass plate suitable for image display devices - Google Patents

Glass plate suitable for image display devices Download PDF

Info

Publication number
JP7372395B2
JP7372395B2 JP2022091209A JP2022091209A JP7372395B2 JP 7372395 B2 JP7372395 B2 JP 7372395B2 JP 2022091209 A JP2022091209 A JP 2022091209A JP 2022091209 A JP2022091209 A JP 2022091209A JP 7372395 B2 JP7372395 B2 JP 7372395B2
Authority
JP
Japan
Prior art keywords
glass plate
deformed
micro
dimensions
minutely
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022091209A
Other languages
Japanese (ja)
Other versions
JP2022130405A (en
Inventor
正博 筏井
真治 大泉
淳一 桐山
勉 田上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Mitsumura Printing Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Mitsumura Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd, Mitsumura Printing Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Publication of JP2022130405A publication Critical patent/JP2022130405A/en
Application granted granted Critical
Publication of JP7372395B2 publication Critical patent/JP7372395B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C15/00Surface treatment of glass, not in the form of fibres or filaments, by etching
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/118Anti-reflection coatings having sub-optical wavelength surface structures designed to provide an enhanced transmittance, e.g. moth-eye structures
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133302Rigid substrates, e.g. inorganic substrates
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133502Antiglare, refractive index matching layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/09Materials and properties inorganic glass

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Nonlinear Science (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Surface Treatment Of Glass (AREA)
  • Liquid Crystal (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Transforming Electric Information Into Light Information (AREA)

Description

本発明は、ガラス板、特に画像表示装置と組み合わせて使用することに適したガラス板に関する。 The present invention relates to a glass plate, particularly a glass plate suitable for use in combination with an image display device.

液晶表示装置に代表される画像表示装置の画像表示側に配置されるガラス板には、環境光の鏡面反射を抑制するために防眩機能が付与されることがある。防眩機能はガラス板の表面に形成された微小変形部、具体的には微小凹凸、により発現する。防眩機能は、グロスを指標としてその値が小さいほど優れていると評価される。一方、微小凹凸により生じる光の拡散はヘイズにより評価される。表示される画像の鮮明さを損なわないためには小さいヘイズが望ましい。通常、微小凹凸は、サンドブラスト法、エッチング法、或いはこれらの組み合わせによってガラス板の表面に形成される。 A glass plate disposed on the image display side of an image display device, typified by a liquid crystal display device, is sometimes provided with an anti-glare function in order to suppress specular reflection of environmental light. The anti-glare function is achieved by minute deformations, specifically minute irregularities, formed on the surface of the glass plate. The anti-glare function is evaluated to be better as the value is smaller, using gloss as an index. On the other hand, light diffusion caused by minute irregularities is evaluated by haze. A small haze is desirable in order not to impair the clarity of the displayed image. Usually, minute irregularities are formed on the surface of a glass plate by a sandblasting method, an etching method, or a combination thereof.

画像表示装置の高精細化に伴い、スパークルと呼ばれる現象が問題になっている。スパークルは、防眩機能が付与された防眩ガラスの主面の微小凹凸と画像表示装置の画素サイズとの関係に依存して発生する輝点である。スパークルは、特に画像表示装置に対してユーザの視点が相対的に移動する場合に不規則な光のゆらぎとして認識されやすくなるが、ユーザの視点が静止していても観察される。 As image display devices become more precise, a phenomenon called sparkle has become a problem. Sparkles are bright spots that occur depending on the relationship between minute irregularities on the main surface of anti-glare glass provided with an anti-glare function and the pixel size of an image display device. Sparkles are easily recognized as irregular light fluctuations, especially when the user's viewpoint moves relative to the image display device, but they can be observed even when the user's viewpoint is stationary.

特許文献1には、算術平均粗さRaが0.01~0.1μm、平均間隔RSmが1~20μmの基礎表面と、この基礎表面に分散した直径3~20μm、深さ0.2~1.5μmの窪み体と呼ばれる凹部とを有する主面を備えたガラス板が開示されている。この主面は、サンドブラスト法の後にエッチング法を適用することによって形成される。特許文献1の実施例には、上記主面を有するガラス板がスパークルを抑制できたことが開示されている。 Patent Document 1 describes a base surface with an arithmetic mean roughness Ra of 0.01 to 0.1 μm and an average spacing RSm of 1 to 20 μm, and a base surface with a diameter of 3 to 20 μm and a depth of 0.2 to 1 μm dispersed on this base surface. A glass plate is disclosed that has a main surface having a recess called a recess of .5 μm. This main surface is formed by applying an etching method after a sandblasting method. An example of Patent Document 1 discloses that a glass plate having the above-mentioned main surface was able to suppress sparkles.

特許文献2には、算術平均粗さRaが0.02~0.4μm、平均間隔RSmが5~30μmの主面を有するガラス板が開示されている。この主面の微小凹凸は、組成を調整したエッチング液を用いたエッチング法によって、サンドブラスト法による前処理を実施することなく形成される。特許文献2の実施例には、上記微小凹凸を有するガラス板がスパークルを抑制できたことが開示されている。 Patent Document 2 discloses a glass plate having a main surface with an arithmetic mean roughness Ra of 0.02 to 0.4 μm and an average spacing RSm of 5 to 30 μm. The fine irregularities on the main surface are formed by an etching method using an etching solution with an adjusted composition, without performing pretreatment by sandblasting. The example of Patent Document 2 discloses that the glass plate having the above-mentioned minute irregularities was able to suppress sparkles.

特許文献3には、表面粗さRMSの変化量に対するグロスの変化量ΔGloss/ΔRMSを-800以下としたガラス板が開示されている。このガラス板は、プレエッチングを伴うエッチング法、言い換えると2段階のエッチングによって作製される。特許文献3の実施例の欄によると、ΔGloss/ΔRMSが小さくなるほどスパークルは抑制される。 Patent Document 3 discloses a glass plate in which the amount of change in gloss ΔGloss/ΔRMS with respect to the amount of change in surface roughness RMS is -800 or less. This glass plate is manufactured by an etching method involving pre-etching, in other words, by a two-step etching method. According to the Examples section of Patent Document 3, the smaller ΔGloss/ΔRMS is, the more sparkles are suppressed.

特開2016-136232号公報Japanese Patent Application Publication No. 2016-136232 特表2017-523111号公報Special table 2017-523111 publication 国際公開第2014/112297号International Publication No. 2014/112297

スパークルを抑制するにつれて、グロス及びヘイズを共に小さい値に制御することは難
しくなる。例えば特許文献2において、スパークルが抑制されていない比較例4はグロス75%、ヘイズ3.0%であるのに対し、スパークルを抑制した実施例8はグロス75%、ヘイズ13.6%であり、グロスを同一とするとヘイズが10%程度高くなっている。特許文献3においても、スパークルが抑制された例1~6のグロスは、スパークルが抑制されておらずヘイズがほぼ同じ範囲にある例7~10のグロスよりも大きくなっている。以上の第1の観点からは、スパークルを抑制しながらグロス及びヘイズを適切に制御することに適した微小凹凸を備えたガラス板が望まれている。
As sparkle is suppressed, it becomes difficult to control both gloss and haze to small values. For example, in Patent Document 2, Comparative Example 4 in which sparkle is not suppressed has a gloss of 75% and haze of 3.0%, whereas Example 8 in which sparkle is suppressed has a gloss of 75% and a haze of 13.6%. , the haze is about 10% higher when the gloss is the same. Also in Patent Document 3, the glosses of Examples 1 to 6 in which sparkle is suppressed are larger than the glosses in Examples 7 to 10 in which sparkle is not suppressed and the haze is in approximately the same range. From the above-mentioned first viewpoint, a glass plate having minute irregularities suitable for appropriately controlling gloss and haze while suppressing sparkle is desired.

画像表示装置と組み合わせて使用されるガラス板はタッチパネルとして使用されることがある。タッチパネルの表面にはユーザに良好な操作感を提供することも求められる。以上の第2の観点からは、スパークルの抑制と共にユーザに良好な操作感を提供することに適した微小凹凸を備えたガラス板が望まれている。 A glass plate used in combination with an image display device is sometimes used as a touch panel. The surface of the touch panel is also required to provide a good operational feel to the user. From the above-mentioned second viewpoint, a glass plate having minute irregularities suitable for suppressing sparkle and providing a user with a good operational feeling is desired.

スパークルの抑制に適した従来の微小凹凸は、凹部及び凸部の大きさと位置とが基本的に不規則であるために、量産時にそれを正確に再現することが容易ではない。一方、本発明者の検討によると、大きさ及び位置の規則性を改善した微小凹凸からは、不自然な反射光、より具体的には反射光のムラが観察されることがある。以上の第3の観点からは、スパークルの抑制に適し、量産の際に再現性が高く、それ自体から発生する反射光のムラの緩和に適した、微小凹凸を備えたガラス板が望ましい。 Conventional fine irregularities suitable for suppressing sparkles are basically irregular in size and position of the concave portions and convex portions, so it is not easy to accurately reproduce them during mass production. On the other hand, according to studies by the present inventors, unnatural reflected light, more specifically uneven reflected light, may be observed from minute irregularities with improved regularity in size and position. From the above third viewpoint, a glass plate with minute irregularities is desirable, which is suitable for suppressing sparkles, has high reproducibility during mass production, and is suitable for alleviating unevenness in reflected light generated from the glass plate itself.

従来、エッチング法等によりガラス板の主面を部分的に後退させてこの主面に形成した微小凹凸の形状は、主面に垂直方向から見て、円、楕円、内角が鈍角若しくはそれ未満の角度である多角形、又は左記のいずれかの形状に近似できる形状に限られていた。また、主面に分散する微小凹凸の形状は互いに類似したものになることが通常であった。このため、主面設計の自由度が低く、これがスパークルを抑制したガラス板においてその他の諸特性、例えばグロス及びヘイズ、を制御しにくい一因になっていた。以上の第4の観点からは、スパークルの抑制に適し、かつ設計の自由度が高いガラス板が望ましい。 Conventionally, the shapes of minute irregularities formed on the main surface of a glass plate by partially recessing the main surface by etching, etc. are circles, ellipses, and shapes with internal angles that are obtuse or smaller when viewed from the direction perpendicular to the main surface. It was limited to polygons that were angles or shapes that could be approximated to any of the shapes listed on the left. Furthermore, the shapes of the minute irregularities dispersed on the main surface are usually similar to each other. Therefore, the degree of freedom in designing the main surface is low, which is one reason why it is difficult to control other properties such as gloss and haze in a glass plate that suppresses sparkle. From the above fourth viewpoint, a glass plate that is suitable for suppressing sparkles and has a high degree of freedom in design is desirable.

本発明の目的は、以上に挙げた観点の少なくとも1つから、スパークルの抑制に適し、かつ実用性に優れたガラス板を提供することにある。 An object of the present invention is to provide a glass plate that is suitable for suppressing sparkles and has excellent practicality from at least one of the above-mentioned viewpoints.

第1の観点を考慮し、本発明は、その第1の側面から、
複数の微小変形部を有する主面を備え、
前記複数の微小変形部は複数の凹部又は複数の凸部であり、
前記主面に垂直な方向から観察して前記微小変形部を囲む最小の直角四角形の互いに隣接する2辺の長さの平均値を当該微小変形部の寸法と定義したときに、前記複数の微小変形部の前記寸法の平均値が3.2μm~35.5μmであり、かつ
前記複数の微小変形部に占める前記寸法が0.5μm~3.0μmの微小変形部A1の個数基準の比率が5%未満であるとの条件a1、及び/又は、前記複数の微小変形部の前記寸法の変動係数が40%以下であるとの条件d1、を満たす、
ガラス板、を提供する。
Considering the first aspect, the present invention provides, from its first aspect:
A main surface having a plurality of micro-deformed parts,
The plurality of minutely deformed portions are a plurality of recesses or a plurality of convex portions,
When the average value of the lengths of two mutually adjacent sides of the smallest right-angled quadrangle surrounding the micro-deformed part when observed from the direction perpendicular to the main surface is defined as the dimension of the micro-deformed part, the plurality of micro-deformed parts The average value of the dimensions of the deformed parts is 3.2 μm to 35.5 μm, and the number-based ratio of the micro-deformed parts A1 having the dimensions of 0.5 μm to 3.0 μm to the plurality of micro-deformed parts is 5. %, and/or the condition d1 that the coefficient of variation of the dimensions of the plurality of slightly deformed parts is 40% or less,
We provide glass plates.

第2の観点を考慮し、本発明は、その第2の側面から、
複数の微小変形部を有する主面を備え、
前記複数の微小変形部は複数の凸部であり、
前記主面に垂直な方向から観察して前記微小変形部を囲む最小の直角四角形の互いに隣接する2辺の長さの平均値を当該微小変形部の寸法と定義したときに、前記複数の微小変形部の前記寸法の平均値が3.2μm~35.5μmである、
ガラス板、を提供する。
Considering the second aspect, the present invention provides the following aspects:
A main surface having a plurality of micro-deformed parts,
The plurality of minutely deformed parts are a plurality of convex parts,
When the average value of the lengths of two mutually adjacent sides of the smallest right-angled quadrangle surrounding the micro-deformed part when observed from the direction perpendicular to the main surface is defined as the dimension of the micro-deformed part, the plurality of micro-deformed parts The average value of the dimensions of the deformed part is 3.2 μm to 35.5 μm,
We provide glass plates.

第3の観点を考慮し、本発明は、その第3の側面から、まず、
複数の微小変形部を有する主面を備え、
前記複数の微小変形部は複数の凹部又は複数の凸部であり、
前記主面に垂直な方向から観察して前記微小変形部を囲む最小の直角四角形の互いに隣接する2辺の長さの平均値を当該微小変形部の寸法と定義したときに、前記複数の微小変形部の前記寸法の平均値が3.2μm~35.5μmであり、かつ
前記主面の200μm四方の領域を前記方向から観察して前記複数の微小変形部を周囲から区別する二値化処理Aをした画像の二次元フーリエ変換像に3~30個の輝点が観察されるか、又は前記二値化処理Aをした画像の二次元フーリエ変換像に1個の輝点が、前記二値化処理Aに代えて二値化処理Bをした画像の二次元フーリエ変換像に2以上の輝点がそれぞれ観察される、
ガラス板、を提供する。
ここで、二値化処理Aは画像を256×256の画素に区分けして実施する二値化処理であり、二値化処理Bは画像を65536×65536の画素に区分けして実施する二値化処理である。
Considering the third aspect, the present invention first provides the following from its third aspect:
A main surface having a plurality of micro-deformed parts,
The plurality of minutely deformed portions are a plurality of recesses or a plurality of convex portions,
When the average value of the lengths of two mutually adjacent sides of the smallest right-angled quadrangle surrounding the micro-deformed part when observed from the direction perpendicular to the main surface is defined as the dimension of the micro-deformed part, the plurality of micro-deformed parts The average value of the dimensions of the deformed portion is 3.2 μm to 35.5 μm, and binarization processing to distinguish the plurality of minutely deformed portions from the surroundings by observing a 200 μm square area of the main surface from the direction. Either 3 to 30 bright spots are observed in the two-dimensional Fourier transformed image of the image subjected to A, or one bright spot is observed in the two-dimensional Fourier transformed image of the image subjected to the binarization process A. Two or more bright spots are observed in the two-dimensional Fourier transform image of the image that has been subjected to binarization processing B instead of digitization processing A,
We provide glass plates.
Here, the binarization process A is a binarization process that is executed by dividing the image into 256 x 256 pixels, and the binarization process B is a binarization process that is executed by dividing the image into 65536 x 65536 pixels. It is a process of conversion.

二次元フーリエ変換像は、画像の縦横をそれぞれ所定数の画素に区分けし、微小変形部とその周囲の領域とが区別されるように画素の二値化処理を実施した処理画像から得ることができる。後述するように、主面の200μm四方の領域に代えて、寸法が0.5μm以上の微小変形部が80~150個存在する主面の領域に対して、二値化処理A又はBを実施し、その処理画像の二次元フーリエ変換像に基づいて輝点数をカウントしてもよい。この場合も、二値化処理Aをした画像の二次元フーリエ変換像に3~30個の輝点が観察されるか、又は二値化処理Aをした画像の二次元フーリエ変換像に1個の輝点が、二値化処理Aに代えて二値化処理Bをした画像の二次元フーリエ変換像に2以上の輝点がそれぞれ観察されることが好ましい。なお、二値化処理の際の画素数は「階調」の段階の数として表記されることがあり、本明細書ではこの表記に従う。すなわち、例えば256×256の階調での二値化処理は、画像の縦横それぞれを256等分して256×256の区分を定め、その区分ごとに二値化を実施する処理(二値化処理A)である。階調数は2の整数乗に設定され、その値が大きくなるほど輝点の検出感度は向上する。 A two-dimensional Fourier transform image can be obtained from a processed image in which the image is divided vertically and horizontally into a predetermined number of pixels, and the pixels are binarized so that the minute deformation part and the surrounding area are distinguished. can. As described later, instead of the 200 μm square area of the main surface, binarization processing A or B is performed on the region of the main surface where there are 80 to 150 micro-deformed parts with dimensions of 0.5 μm or more. However, the number of bright spots may be counted based on a two-dimensional Fourier transformed image of the processed image. In this case, either 3 to 30 bright spots are observed in the two-dimensional Fourier transformed image of the image subjected to binarization processing A, or one bright spot is observed in the two-dimensional Fourier transformed image of the image subjected to binarization processing A. It is preferable that two or more bright spots are observed in a two-dimensional Fourier transformed image of an image that has been subjected to binarization processing B instead of binarization processing A. Note that the number of pixels during the binarization process is sometimes expressed as the number of "gradation" stages, and this specification follows this notation. In other words, for example, binarization processing at 256 x 256 gradations involves dividing the image vertically and horizontally into 256 equal sections, determining 256 x 256 sections, and performing binarization for each section (binarization). Process A). The number of gradations is set to an integer power of 2, and the bright spot detection sensitivity improves as the value increases.

第4の観点を考慮し、本発明は、その第4の側面から、
複数の微小変形部を有する主面を備え、
前記複数の微小変形部は複数の凹部又は複数の凸部であり、
前記主面に垂直な方向から観察して前記微小変形部を囲む最小の直角四角形の互いに隣接する2辺の長さの平均値を当該微小変形部の寸法と定義したときに、前記複数の微小変形部の前記寸法の平均値が3.2μm以上であり、かつ
前記方向から観察したときに、前記複数の微小変形部は、i)前記直角四角形の辺から選択した前記直角四角形の頂点を含まない一部の後退部に接する直線部を有する微小変形部、又はii)少なくとも1つの内角が優角である多角形である微小変形部、に相当する第1微小変形部と、前記第1微小変形部と形状が相違する第2微小変形部と、を含む、
ガラス板、を提供する。
Considering the fourth aspect, the present invention provides the following aspects:
A main surface having a plurality of micro-deformed parts,
The plurality of minutely deformed portions are a plurality of recesses or a plurality of convex portions,
When the average value of the lengths of two mutually adjacent sides of the smallest right-angled quadrangle surrounding the micro-deformed part when observed from the direction perpendicular to the main surface is defined as the dimension of the micro-deformed part, the plurality of micro-deformed parts The average value of the dimensions of the deformed parts is 3.2 μm or more, and when observed from the direction, the plurality of slightly deformed parts include i) a vertex of the right-angled quadrangular selected from the sides of the right-angled quadrilateral; a first minute deformation portion corresponding to a minute deformation portion having a straight line portion in contact with a part of the setback portion, or ii) a minute deformation portion having a polygon in which at least one interior angle is a dominant angle; a second minutely deformed portion having a shape different from that of the deformed portion;
We provide glass plates.

本発明によれば、スパークルの抑制に適し、かつ実用性が高いガラス板を提供できる。本発明の第1の側面から提供されるガラス板は、スパークルを抑制しながらグロス及びヘイズを広い範囲で適切に制御することに適している。 According to the present invention, it is possible to provide a glass plate that is suitable for suppressing sparkles and has high practicality. The glass plate provided by the first aspect of the present invention is suitable for appropriately controlling gloss and haze over a wide range while suppressing sparkle.

本発明の第2の側面から提供されるガラス板は、スパークルを抑制しながらユーザに良好な操作感を提供することに適している。 The glass plate provided by the second aspect of the present invention is suitable for providing a user with a good operational feeling while suppressing sparkle.

本発明の第3の側面から提供されるガラス板は、スパークルの抑制に適し、量産による再現性が高く、それ自体から発生する反射光のムラの緩和にも適している。 The glass plate provided by the third aspect of the present invention is suitable for suppressing sparkles, has high reproducibility in mass production, and is also suitable for alleviating unevenness in reflected light generated from the glass plate itself.

本発明の第4の側面から提供されるガラス板は、スパークルの抑制に適し、かつ設計の自由度にも優れている。 The glass plate provided by the fourth aspect of the present invention is suitable for suppressing sparkles and has excellent design freedom.

本発明のガラス板の一例の主面の一部を拡大して示した平面図である。FIG. 2 is a plan view showing an enlarged part of the main surface of an example of the glass plate of the present invention. 微小変形部が凸部である場合の図1の断面図である。FIG. 2 is a cross-sectional view of FIG. 1 when the minute deformation portion is a convex portion. 微小変形部が凹部である場合の図1の断面図である。FIG. 2 is a cross-sectional view of FIG. 1 when the minute deformation portion is a recess. 微小変形部の各種形状を示す平面図である。FIG. 3 is a plan view showing various shapes of minutely deformed parts. 微小変形部の丸まった隅角部を示す平面図である。FIG. 7 is a plan view showing a rounded corner portion of a slightly deformed portion. 従来のガラス板の一例の主面の一部を拡大して示す平面図である。It is a top view which expands and shows a part of main surface of an example of a conventional glass plate. 従来のガラス板の別の例の主面の一部を拡大して示す断面図である。FIG. 2 is an enlarged cross-sectional view of a part of the main surface of another example of a conventional glass plate. 例1のガラス板の主面の50μm四方(50μm×50μmの領域)を走査型電子顕微鏡(SEM)で観察した像を示す図である。FIG. 2 is a diagram showing an image of a 50 μm square (50 μm×50 μm area) of the main surface of the glass plate of Example 1 observed with a scanning electron microscope (SEM). 例2のガラス板の主面の50μm四方をSEMで観察した像を示す図である。FIG. 3 is a diagram showing an image of a 50 μm square main surface of the glass plate of Example 2 observed by SEM. 例3のガラス板の主面の50μm四方をSEMで観察した像を示す図である。FIG. 3 is a diagram showing an image of a 50 μm square main surface of the glass plate of Example 3 observed by SEM. 例4のガラス板の主面の50μm四方をSEMで観察した像を示す図である。FIG. 3 is a diagram showing an image of a 50 μm square main surface of the glass plate of Example 4 observed by SEM. 例5のガラス板の主面の50μm四方をSEMで観察した像を示す図である。5 is a diagram showing an image of a 50 μm square main surface of the glass plate of Example 5 observed by SEM. FIG. 例6のガラス板の主面の50μm四方をSEMで観察した像を示す図である。FIG. 6 is a diagram showing an image of a 50 μm square main surface of the glass plate of Example 6 observed by SEM. 例7のガラス板の主面の50μm四方をSEMで観察した像を示す図である。FIG. 7 is a diagram showing an image of a 50 μm square main surface of the glass plate of Example 7 observed by SEM. 例8のガラス板の主面の200μm四方をSEMで観察した像と、この像から得た二次元フーリエ変換像(FT像)とを示す図である。FIG. 7 is a diagram showing an image obtained by observing a 200 μm square main surface of the glass plate of Example 8 using an SEM, and a two-dimensional Fourier transform image (FT image) obtained from this image. 例9のガラス板の主面の200μm四方をSEMで観察した像と、この像から得たFT像とを示す図である。FIG. 7 is a diagram showing an image obtained by observing a 200 μm square main surface of the glass plate of Example 9 using an SEM, and an FT image obtained from this image. 例10のガラス板の主面の200μm四方をSEMで観察した像と、この像から得たFT像とを示す図である。FIG. 3 is a diagram showing an image obtained by observing a 200 μm square main surface of the glass plate of Example 10 using an SEM, and an FT image obtained from this image. 例11のガラス板の主面の200μm四方をSEMで観察した像と、この像から得たFT像とを示す図である。FIG. 7 is a diagram showing an image obtained by observing a 200 μm square main surface of the glass plate of Example 11 using an SEM, and an FT image obtained from this image. 例12のガラス板の主面の200μm四方をSEMで観察した像と、この像から得たFT像とを示す図である。FIG. 7 is a diagram showing an image obtained by observing a 200 μm square main surface of the glass plate of Example 12 using an SEM, and an FT image obtained from this image. 例13のガラス板の主面の200μm四方をSEMで観察した像と、この像から得たFT像とを示す図である。FIG. 7 is a diagram showing an image obtained by observing a 200 μm square main surface of the glass plate of Example 13 using an SEM, and an FT image obtained from this image. 例14のガラス板の主面の200μm四方をSEMで観察した像と、この像から得たFT像とを示す図である。FIG. 7 is a diagram showing an image obtained by observing a 200 μm square main surface of the glass plate of Example 14 using an SEM, and an FT image obtained from this image. 例15のガラス板の主面の200μm四方をSEMで観察した像と、この像から得たFT像とを示す図である。FIG. 7 is a diagram showing an image obtained by observing a 200 μm square main surface of the glass plate of Example 15 using an SEM, and an FT image obtained from this image. 例16のガラス板の主面の200μm四方をSEMで観察した像と、この像から得たFT像とを示す図である。FIG. 7 is a diagram showing an image obtained by observing a 200 μm square main surface of the glass plate of Example 16 using an SEM, and an FT image obtained from this image. 例17のガラス板の主面の200μm四方をSEMで観察した像と、この像から得たFT像とを示す図である。FIG. 7 is a diagram showing an image obtained by observing a 200 μm square main surface of the glass plate of Example 17 using an SEM, and an FT image obtained from this image. 例18のガラス板の主面をSEMで観察した像と、この像から得たFT像とを示す図である。FIG. 7 is a diagram showing an image of the main surface of the glass plate of Example 18 observed by SEM and an FT image obtained from this image. 例22と同様にして得たガラス板の主面の200μm四方をSEMで観察した像を示す図である。FIG. 7 is a diagram showing an image obtained by observing a 200 μm square main surface of a glass plate obtained in the same manner as in Example 22 using an SEM. 例27と同様にして得たガラス板の主面の200μm四方をSEMで観察した像を示す図である。FIG. 7 is a diagram showing an image obtained by observing a 200 μm square main surface of a glass plate obtained in the same manner as in Example 27 using an SEM. 例1~35及び特許文献1~3実施例のガラス板のグロスとヘイズとの関係を示す図である。FIG. 3 is a diagram showing the relationship between the gloss and haze of the glass plates of Examples 1 to 35 and Patent Documents 1 to 3.

以下、本発明の各実施形態を説明するが、以下の説明は本発明を特定の実施形態に制限する趣旨ではない。各実施形態について繰り返しになる説明は基本的に省略する。各実施形態には、その実施形態に明らかに適用できない場合を除いてその他の実施形態についての説明を適用できる。 Hereinafter, each embodiment of the present invention will be described, but the following description is not intended to limit the present invention to a specific embodiment. Repetitive explanations for each embodiment will basically be omitted. Descriptions of other embodiments are applicable to each embodiment unless clearly applicable to that embodiment.

[第1の実施形態]
まず、第1の側面から提供されるガラス板の一形態を説明する。この一形態においてガラス板は複数の微小変形部を有する主面を備えている。複数の微小変形部は複数の凹部又は複数の凸部である。複数の微小変形部は、所定範囲の平均寸法を有し、寸法分布についての所定の条件を満たす。この条件は、少なくとも、以下に述べる条件a1及び/又は条件d1である。
[First embodiment]
First, one form of the glass plate provided from the first side will be described. In this one form, the glass plate has a main surface having a plurality of minutely deformed parts. The plurality of minutely deformed portions are a plurality of recesses or a plurality of convex portions. The plurality of minutely deformed portions have an average size within a predetermined range and satisfy a predetermined condition regarding size distribution. This condition is at least condition a1 and/or condition d1 described below.

図1に示すように、ガラス板10の主面1には複数の微小変形部2が形成されている。微小変形部2は、ガラス板10の主面1がガラス板の厚み方向(図1紙面垂直方向でもある)に局所的に変位した微小領域である。微小変形部2は、凸部(図2A)、凹部(図2B)のいずれであってもよい。図2A、Bに示した凸部又は凹部の断面形状は例示であって、これに限られるものではない。 As shown in FIG. 1, a plurality of minutely deformed portions 2 are formed on the main surface 1 of the glass plate 10. The minute deformation portion 2 is a minute region where the main surface 1 of the glass plate 10 is locally displaced in the thickness direction of the glass plate (also in the direction perpendicular to the plane of the paper in FIG. 1). The minute deformation portion 2 may be either a convex portion (FIG. 2A) or a concave portion (FIG. 2B). The cross-sectional shapes of the convex portions or concave portions shown in FIGS. 2A and 2B are examples, and the present invention is not limited thereto.

図1に示した微小変形部2は、主面1に垂直な方向から見て円形であるが、微小変形部の形状はこれに限らない。図3に各種形状の微小変形部2A~2Kを示す。微小変形部の形状は、例えば、円形2A、楕円形2B、多角形2C~2D及び2H~2K、これらの複数が互いに接するように若しくは一部重複するように組み合わされた形状2E~2F、左記いずれかの形状から1又は複数の部分が除去された形状2G、又は左記いずれかの形状に近似できる形状である。 Although the minutely deformed portion 2 shown in FIG. 1 is circular when viewed from the direction perpendicular to the main surface 1, the shape of the minutely deformed portion is not limited to this. FIG. 3 shows minutely deformed portions 2A to 2K of various shapes. The shapes of the minutely deformed portions are, for example, circular 2A, elliptical 2B, polygons 2C to 2D and 2H to 2K, shapes 2E to 2F in which a plurality of these shapes are combined so that they touch each other or partially overlap, and the shapes on the left. This is a shape 2G in which one or more parts are removed from any of the shapes, or a shape that can be approximated to any of the shapes described on the left.

微小変形部の形状は、少なくとも1つの内角が優角、言い換えると180°を超え360°未満の角度、である多角形2H~2Kであってもよい。内角に優角を有する多角形は、例えばL字型2H、凸字型2I、クランク型2J、疑似ダンベル型2Kである。主面1に垂直な方向から見て、微小変形部2Hはその内角に1つの優角2pを有し、微小変形部2I~2Kはその内角に2以上の優角2pを有する。 The shape of the minute deformation portion may be a polygon 2H to 2K in which at least one interior angle is a dominant angle, in other words, an angle greater than 180° and less than 360°. Examples of polygons having dominant interior angles include an L-shape 2H, a convex shape 2I, a crank shape 2J, and a pseudo-dumbbell shape 2K. When viewed from the direction perpendicular to the main surface 1, the slightly deformed portion 2H has one dominant angle 2p at its internal angle, and the slightly deformed portions 2I to 2K have two or more dominant angles 2p at their internal angles.

図3も微小変形部の形状を例示したものに過ぎない。なお、微小変形部の形状は、厳密には、微小変形部2とそれを囲む連続部5との境界、すなわち凸部であれば底部、凹部であれば開口部を基準に定められる。この基準は後述する面積比率及び平均最短距離にも適用される。 FIG. 3 is also only an example of the shape of the minutely deformed portion. Strictly speaking, the shape of the minutely deformed portion is determined based on the boundary between the minutely deformed portion 2 and the continuous portion 5 surrounding it, that is, the bottom in the case of a convex portion, and the opening in the case of a concave portion. This criterion is also applied to the area ratio and average shortest distance, which will be described later.

実際の微小変形部はその隅角部がやや丸まった形状になることがある。しかし形状を類型化して記述するため、本明細書では、隅角部における局部的な変形部がその隅角部を構成する線分の25%以下であればこの変形部を無視して形状を記述する。例えば、図4に示す微小変形部2Lは、正確には隅角部が丸まった正方形であるが、ここでは正方形として取り扱う。 The corners of the actual minutely deformed portions may be slightly rounded. However, in order to categorize and describe shapes, in this specification, if the local deformation at a corner is less than 25% of the line segment that makes up the corner, this deformation will be ignored and the shape will be described. Describe. For example, although the slightly deformed portion 2L shown in FIG. 4 is precisely a square with rounded corners, it is treated as a square here.

微小変形部の形状の種類は2以上に及んでいてもよく、3以上、さらには4以上であってもよい。なお、形状の種類は、互いに相似である形状を同一とみなしてその数等を定めることとする。複数種の微小変形部の存在は、主面における微小変形部の配置の自由度を向上させる。特に、平均寸法が所定範囲にある微小変形部を、主面に対する微小変形部の面積比率が所定範囲となり、かつ微小変形部が所定以上の平均最短距離を保つように配置するべき場合、複数種の形状の微小変形部の使用は、その配置の設計の自由度を向上させ、両立が難しい条件の成立を容易にする。主面の面内方向における微小変形部の周期性を所定範囲に低下させて配置するべき場合も同様である。 The number of types of shapes of the minutely deformed portions may be two or more, three or more, or even four or more. Note that the number of types of shapes is determined by considering shapes that are similar to each other to be the same. The presence of multiple types of micro-deformation parts improves the degree of freedom in arranging the micro-deformation parts on the main surface. In particular, if the micro-deformed parts whose average dimensions are within a predetermined range are to be arranged so that the area ratio of the micro-deformed parts to the main surface is within a predetermined range and the micro-deformed parts maintain an average shortest distance of a predetermined length or more, multiple types of micro-deformed parts can be arranged. The use of a minutely deformed part having the shape improves the degree of freedom in the design of its arrangement, and facilitates the establishment of conditions that are difficult to coexist. The same applies to the case where the periodicity of the minutely deformed portions in the in-plane direction of the main surface should be reduced to a predetermined range.

以下に述べる微小変形部の形状A及び形状Bは、上述した設計の自由度の向上への寄与が特に大きい。
(形状A)主面に垂直な方向から見て、微小変形部を囲む最小の直角四角形の辺から選択した直角四角形の頂点を含まない一部、言い換えると直角四角形の辺の一部であって直角四角形の頂点を含まない一部、が直角四角形の内部へと後退した領域(以下、「後退部」)に接する直線部を有する微小変形部
(形状B)主面に垂直な方向から見て、少なくとも1つの内角が優角である多角形である微小変形部
Shapes A and B of the minutely deformed portions described below make a particularly large contribution to the improvement in the degree of freedom of design described above.
(Shape A) When viewed from the direction perpendicular to the main surface, a portion of the sides of the smallest right-angled quadrilateral surrounding the minutely deformed portion that does not include the vertices of the right-angled quadrilateral, in other words, a portion of the sides of the right-angled quadrilateral. A minutely deformed part (shape B) having a straight part that touches a region where a part of the right quadrilateral that does not include the vertices retreats into the inside of the right quadrilateral (hereinafter referred to as the "recessed part") when viewed from a direction perpendicular to the main surface. , a slightly deformed part that is a polygon in which at least one interior angle is a dominant angle.

微小変形部2F、2Gは形状Aに相当する。これらの形状は、仮想的な最小の直角四角形3の辺の一部が後退した後退部3f、3gに接する直線部2f、2gを有している。後退して後退部3f、3gを形成する直角四角形3の辺の一部は直角四角形3の頂点3pを含まないように設定される。直線部2f、2gの長さは特に限定されないが、例えば1μm以上、さらには1.5μm以上である。なお、従来の防眩ガラスの主面でも偶発的に形成されることがあった円が部分的に重複した形状(図5A参照)は直線部を有さず、形状Aには相当しない。微小変形部2H~2Kは形状Bに相当する。形状A及びBは、従来の防眩ガラスではその形成が全く検討されていなかった。しかし、これらの形状は、互いに近接しすぎることなく微小変形部を主面に配置する際には有用である。 The minutely deformed portions 2F and 2G correspond to shape A. These shapes have straight portions 2f and 2g that touch receded portions 3f and 3g where a part of the side of the virtual minimum right-angled quadrilateral 3 is recessed. Some of the sides of the right quadrilateral 3 that retreat to form the retreated portions 3f and 3g are set so as not to include the apex 3p of the right quadrilateral 3. Although the lengths of the straight portions 2f and 2g are not particularly limited, they are, for example, 1 μm or more, and more preferably 1.5 μm or more. Note that a shape in which circles partially overlap (see FIG. 5A), which is sometimes formed accidentally on the main surface of conventional anti-glare glass, does not have a straight line portion and does not correspond to shape A. The minutely deformed portions 2H to 2K correspond to shape B. The formation of shapes A and B has not been considered at all in conventional anti-glare glass. However, these shapes are useful when arranging the minutely deformed portions on the main surface without being too close to each other.

微小変形部は、形状A又は形状Bに相当する形状を有する第1微小変形部と、第1微小変形部とは異なる形状を有する第2微小変形部とを含むことが好ましい。第2微小変形部は、形状A又は形状Bに相当する形状であってもそれ以外の形状であってもよい。第1微小変形部は、個数基準で、微小変形部全体の10%以上、さらには20%以上を占めていてもよく、90%以下、さらには80%以下であってもよい。第2微小変形部も同様の比率で主面に配置することができる。 Preferably, the minutely deformed portion includes a first minutely deformed portion having a shape corresponding to shape A or shape B, and a second minutely deformed portion having a shape different from the first minutely deformed portion. The second minute deformation portion may have a shape corresponding to shape A or shape B, or may have another shape. The first minutely deformed portions may account for 10% or more, or even 20% or more, of the entire minutely deformed portions, or may account for 90% or less, or even 80% or less, of the entire minutely deformed portions. The second minute deformation portion can also be arranged on the main surface in a similar ratio.

微小変形部の相互の平均最短距離は、4.5μm以上、さらには7μm以上、特に15μm以上であることが好ましく、305μm以下、さらに150μm以下、特に80μm以下、場合によっては50μm以下であってもよい。本明細書において、微小変形部の平均最短距離は、ガラス板の主面の直角四角形の領域内に存在する微小変形部の個数の平方根で当該直角四角形と同面積の正方形の一辺の長さを除して定めることとする。ただし、微小変形部が上記領域内に存在するかは、その微小変形部の幾何中心の位置に基づいて定める。また、上記領域は、30個以上、好ましくは50個以上、より好ましくは80~100個の微小変形部を含むように定めることとする。以下に述べる微小変形部の「寸法」に関する数値も、特に断らない限り、同様の個数の微小変形部が存在するように定めたある領域内の微小変形部に基づいて定めることとする。 The average shortest distance between the minutely deformed parts is preferably 4.5 μm or more, more preferably 7 μm or more, especially 15 μm or more, and may be 305 μm or less, further 150 μm or less, especially 80 μm or less, and even 50 μm or less in some cases. good. In this specification, the average shortest distance of minutely deformed portions is the square root of the number of minutely deformed portions that exist within the region of a right-angled quadrangle on the main surface of the glass plate, and is the length of one side of a square with the same area as the right-angled quadrangle. It shall be determined by excluding. However, whether a minutely deformed portion exists within the above region is determined based on the position of the geometric center of the minutely deformed portion. Further, the above-mentioned region is defined to include 30 or more, preferably 50 or more, and more preferably 80 to 100 minute deformations. Unless otherwise specified, the numerical values regarding the "dimensions" of the micro-deformed parts described below are also determined based on the micro-deformed parts in a certain area that is determined to have a similar number of micro-deformed parts.

微小変形部の「寸法」は以下のように定める。まず、主面1に垂直な方向から観察し、微小変形部2を囲む面積が最小となる直角四角形3を仮想的に設定する。次に、この仮想的な直角四角形3の隣接する2辺3a、3b(図3の微小変形部2A~2Bを参照)の長
さをそれぞれ測定する。最後に、2辺3a、3bの長さの平均値を算出し、それを寸法とする。円である微小変形部2Aの寸法はその円の直径となる。
The "dimensions" of the minutely deformed part are determined as follows. First, observation is made from a direction perpendicular to the principal surface 1, and a right-angled quadrilateral 3 with a minimum area surrounding the minutely deformed portion 2 is virtually set. Next, the lengths of the two adjacent sides 3a and 3b (see the minute deformations 2A and 2B in FIG. 3) of this virtual right-angled quadrilateral 3 are measured. Finally, calculate the average value of the lengths of the two sides 3a and 3b, and use it as the dimension. The dimension of the minutely deformed portion 2A, which is a circle, is the diameter of the circle.

複数の微小変形部の寸法の平均値は3.2μm以上、場合によっては4μm以上、さらには5μm以上、特に5.5μm以上、とりわけ6μm以上、場合によっては7μm以上、さらには9μm以上の範囲に調整されていることが望ましい。平均値がこれ以下になって微細な微小変形部が増加すると、ミー散乱による透過光の散乱が顕著になる。透過光の散乱をより確実に低下させて望ましいヘイズを達成するために、微小変形部は以下の条件a1を満たすことが望ましく、条件a2を満たすことがより望ましく、条件a3を満たすことがさらに望ましく、条件a4を満たすことが特に望ましく、条件a5を満たすことがとりわけ望ましい。 The average value of the dimensions of the plurality of micro-deformed parts is 3.2 μm or more, in some cases 4 μm or more, even 5 μm or more, especially 5.5 μm or more, especially 6 μm or more, in some cases 7 μm or more, and even 9 μm or more. Preferably adjusted. When the average value becomes less than this and the number of fine micro-deformed parts increases, scattering of transmitted light due to Mie scattering becomes noticeable. In order to more reliably reduce the scattering of transmitted light and achieve a desired haze, it is desirable that the slightly deformed portion satisfy the following condition a1, more preferably condition a2, and even more preferably condition a3. , it is particularly desirable that condition a4 be satisfied, and it is especially desirable that condition a5 be satisfied.

(条件a1)複数の微小変形部に占める寸法が0.5μm~3.0μmの微小変形部A1の個数基準の比率が5%未満、好ましくは3%未満である。
(条件a2)複数の微小変形部に占める寸法が0.5μm~3.6μmの微小変形部A2の個数基準の比率が5%未満、好ましくは3%未満である。
(条件a3)複数の微小変形部に占める寸法が0.5μm~4.0μmの微小変形部A3の個数基準の比率が5%未満、好ましくは3%未満である。
(条件a4)複数の微小変形部に占める寸法が0.5μm~5.3μmの微小変形部A4の個数基準の比率が5%未満、好ましくは3%未満である。
(条件a5)複数の微小変形部に占める寸法が0.5μm~6.5μmの微小変形部A5の個数基準の比率が5%未満、好ましくは3%未満である。
(Condition a1) The ratio of the number of micro-deformed parts A1 having dimensions of 0.5 μm to 3.0 μm in the plurality of micro-deformed parts is less than 5%, preferably less than 3%.
(Condition a2) The ratio of the number of micro-deformed portions A2 having dimensions of 0.5 μm to 3.6 μm in the plurality of micro-deformed portions is less than 5%, preferably less than 3%.
(Condition a3) The ratio of the number of micro-deformed parts A3 having dimensions of 0.5 μm to 4.0 μm in the plurality of micro-deformed parts is less than 5%, preferably less than 3%.
(Condition a4) The ratio of the number of micro-deformed parts A4 having dimensions of 0.5 μm to 5.3 μm in the plurality of micro-deformed parts is less than 5%, preferably less than 3%.
(Condition a5) The ratio of the number of micro-deformed parts A5 having dimensions of 0.5 μm to 6.5 μm in the plurality of micro-deformed parts is less than 5%, preferably less than 3%.

従来の防眩ガラスでは寸法が0.5μm~3.0μm程度の微細な微小凹凸に注意が払われてこなかった。ガラス板の主面の全面にサンドブラスト/エッチング法や表面凹凸を発達させる条件でエッチング法を適用すると、この程度に微細な微小凹凸が相当数発生し、可視域の光に対するミー散乱が顕著になりやすい。図5Aに、従来の防眩ガラスの主面の典型的な一例を示す。主面11に存在する微小変形部である凹部の径の分布は極めて広い。凹部の一部が隣接する凹部と接続して一体化していることも、凹部の径の分布をさらに広くしている。 In conventional anti-glare glass, no attention has been paid to minute irregularities with dimensions of about 0.5 μm to 3.0 μm. When a sandblasting/etching method or an etching method under conditions that develop surface irregularities is applied to the entire main surface of a glass plate, a considerable number of microscopic irregularities of this degree are generated, and Mie scattering of light in the visible range becomes noticeable. Cheap. FIG. 5A shows a typical example of the main surface of conventional anti-glare glass. The diameter distribution of the recesses, which are minute deformations present on the main surface 11, is extremely wide. The fact that a part of the recess is connected and integrated with an adjacent recess also further widens the diameter distribution of the recess.

図5Bに、図5Aの状態からエッチング等により主面の後退がさらに進行した状態の断面を示す。この状態では、凹部の径が拡大し、主面12から連続した平坦部が失われていく。図5Bに示した状態においても、微細な凹部は残存し、凹部の径の分布は依然として広い。 FIG. 5B shows a cross section in a state where the main surface has further retreated from the state shown in FIG. 5A by etching or the like. In this state, the diameter of the recess increases and the continuous flat portion from the main surface 12 is lost. Even in the state shown in FIG. 5B, fine recesses remain and the diameter distribution of the recesses is still wide.

微小変形部の寸法の平均値の上限は、ガラス板と組み合わせて使用する画像表示装置の画素密度、より詳細にはその画像表示装置のサブ画素サイズに応じて適宜定めるとよく、具体的には、サブ画素サイズの短辺の半分程度以下とすることが好ましい。微小変形部の寸法の平均値の上限は、(d/1.9)μm、好ましくは(d/2)μmの範囲に設定するとよい。ここで、サブ画素サイズdはサブ画素の短辺である。 The upper limit of the average value of the dimensions of the minutely deformed portions may be determined as appropriate depending on the pixel density of the image display device used in combination with the glass plate, more specifically, the sub-pixel size of the image display device. , is preferably about half or less of the short side of the sub-pixel size. The upper limit of the average value of the dimensions of the minutely deformed portions is preferably set in the range of (d/1.9) μm, preferably (d/2) μm. Here, the sub-pixel size d is the short side of the sub-pixel.

画素密度125ppiの画像表示装置は、通常dが67.5μm程度であるから、微小変形部2の寸法の平均値の上限は35.5μm、好ましくは33.8μmである。画素密度264ppiの画像表示装置についての上記上限は16.9μm、好ましくは16.0μmである。画素密度326ppiの画像表示装置についての上記上限は13.6μm、好ましくは13.0μmである。 In an image display device with a pixel density of 125 ppi, d is usually about 67.5 μm, so the upper limit of the average value of the dimensions of the minutely deformed portions 2 is 35.5 μm, preferably 33.8 μm. The above upper limit for an image display device with a pixel density of 264 ppi is 16.9 μm, preferably 16.0 μm. The above upper limit for an image display device with a pixel density of 326 ppi is 13.6 μm, preferably 13.0 μm.

防眩機能を有するガラス板が求められる画像表示装置の画素密度は概ね125ppi以上であるから、微小変形部の寸法の平均値の上限は35.5μm以下として、必要に応じ
て35.5μmよりも小さい範囲に設定するとよい。具体的には、組み合わせて使用する画像表示装置のサブ画素サイズの短辺をdμmとしたときに、微小変形部の寸法の平均値は35.5μm以下かつ(d/1.9)μm以下に設定するとよい。
Since the pixel density of an image display device that requires a glass plate having an anti-glare function is approximately 125 ppi or more, the upper limit of the average value of the dimensions of the minutely deformed portions is set to be 35.5 μm or less, and if necessary, It is best to set it to a small range. Specifically, when the short side of the sub-pixel size of the image display device used in combination is dμm, the average value of the dimensions of the minute deformation portion is 35.5 μm or less and (d/1.9) μm or less. It is recommended to set this.

微小変形部の寸法の平均値は、上述した理由から、通常、3.2μm~35.5μmに設定される。ただし、高精細化した画像表示装置にも適用される可能性があれば、微小変形部の寸法の平均値の上限を、例えば16.9μm以下、さらには13.6μm以下、必要があれば12μm以下、特に10μm未満に設定してもよい。 For the reasons mentioned above, the average value of the dimensions of the minutely deformed portions is usually set to 3.2 μm to 35.5 μm. However, if there is a possibility that it will be applied to high-definition image display devices, the upper limit of the average value of the dimensions of the minutely deformed portions should be set to, for example, 16.9 μm or less, further 13.6 μm or less, and 12 μm if necessary. Hereinafter, the thickness may be particularly set to less than 10 μm.

図5A及びBを参照して説明したように、従来の防眩ガラスでは凹部の径の分布が極めて広い。このため、微小変形部である凹部の寸法の平均値を上述の範囲に調整すると、寸法0.5μm~3.0μm程度の微細な微小変形部の比率が高くなる。その一方、微細な微小変形部の比率を低下させるためにエッチングを進行させると、微小変形部が大きくなり過ぎてスパークルを抑制できなくなる。 As explained with reference to FIGS. 5A and 5B, in the conventional anti-glare glass, the diameter distribution of the recesses is extremely wide. Therefore, when the average value of the dimensions of the concave portions, which are minutely deformed portions, is adjusted to the above-mentioned range, the ratio of minute and minutely deformed portions having dimensions of about 0.5 μm to 3.0 μm increases. On the other hand, if etching is allowed to proceed in order to reduce the ratio of minutely deformed portions, the minutely deformed portions will become too large, making it impossible to suppress sparkles.

微小変形部の形状によっては寸法がdに基づく計算値よりやや大きくてもスパークルの原因にならないことはある。しかし、スパークルをより確実に抑制するためには、微小変形部が以下の条件b及び/又は条件cを満たすことが望ましい。 Depending on the shape of the minutely deformed portion, even if the dimension is slightly larger than the calculated value based on d, it may not cause sparkles. However, in order to suppress sparkles more reliably, it is desirable that the minutely deformed portion satisfy the following condition b and/or condition c.

(条件b)複数の微小変形部に占める寸法が35.5μmを上回る微小変形部Bの個数基準の比率が15%未満、好ましくは10%未満である。
(条件c)組み合わせて使用する画像表示装置のサブ画素サイズの短辺をdμmとしたときに、複数の微小変形部に占める寸法が(d/1.9)μmを上回る微小変形部Cの個数基準の比率が15%未満、好ましくは10%未満である。
(Condition b) The ratio based on the number of micro-deformed parts B having a size exceeding 35.5 μm among the plurality of micro-deformed parts is less than 15%, preferably less than 10%.
(Condition c) When the short side of the sub-pixel size of the image display device used in combination is dμm, the number of micro-deformation parts C that occupy more than (d/1.9) μm. The reference ratio is less than 15%, preferably less than 10%.

微小変形部の寸法はバラツキが少なく揃っていることが好ましい。任意に選択した50個、好ましくは80~100個の微小変形部について測定した寸法の変動係数は、例えば40%以下、35%以下、30%以下、25%以下、23%以下、さらに22%以下であり、好ましくは21%以下であり、より好ましくは18%以下であり、場合によっては15%以下、13%以下、10%以下、さらには5%以下、特に3%以下である。従来は微小変形部の寸法の変動係数は着目されていなかった。変動係数に着目すれば、以下の望ましい条件d1を導くことができる。なお、変動係数は、周知のとおり、標準偏差を平均値で除して求めることができる。 It is preferable that the dimensions of the minutely deformed portions are uniform with little variation. The coefficient of variation of dimensions measured for 50 arbitrarily selected, preferably 80 to 100 micro-deformed parts is, for example, 40% or less, 35% or less, 30% or less, 25% or less, 23% or less, and even 22%. or less, preferably 21% or less, more preferably 18% or less, in some cases 15% or less, 13% or less, 10% or less, further 5% or less, especially 3% or less. Conventionally, no attention has been paid to the coefficient of variation of the dimensions of minutely deformed parts. By focusing on the coefficient of variation, the following desirable condition d1 can be derived. Note that, as is well known, the coefficient of variation can be obtained by dividing the standard deviation by the average value.

(条件d1)複数の微小変形部の寸法の変動係数が40%以下、さらには上述した値以下である。 (Condition d1) The coefficient of variation of the dimensions of the plurality of minutely deformed parts is 40% or less, and further, the above-mentioned value or less.

ただし、微小変形部の寸法には、上述の変動係数が3~40%、さらには3~23%、特に5~22%、場合によっては5~21%となる程度のバラツキが存在してもよい。この程度のバラツキは反射ムラの緩和に寄与することがある。反射ムラの緩和を重視するべき場合、変動係数は23%を超えていてもよい。例えば、微小変形部の寸法の変動係数が3~40%の範囲にあり、かつ当該寸法の平均値が13.6μm以下、特に9μm以上13.6μm以下であるガラス板は、画素密度326ppiの画像表示装置との組み合わせにおいて、スパークルを抑制し、かつ反射ムラを抑制することに適している。この場合、変動係数は、12.3%以上、さらには12.5%以上が特に好適であり、例えば12.3~35%である。また、この場合、上述した二値化処理Aをした画像の二次元フーリエ変換像の輝点が15個以下であると、反射ムラをさらに抑制することが可能となる。 However, even if there is variation in the dimensions of the minutely deformed part, the above-mentioned coefficient of variation may be 3 to 40%, further 3 to 23%, especially 5 to 22%, and in some cases 5 to 21%. good. This degree of variation may contribute to alleviation of reflection unevenness. If emphasis is placed on alleviating reflection unevenness, the coefficient of variation may exceed 23%. For example, a glass plate in which the coefficient of variation of the dimensions of minutely deformed portions is in the range of 3 to 40%, and the average value of the dimensions is 13.6 μm or less, particularly 9 μm or more and 13.6 μm or less, can produce images with a pixel density of 326 ppi. In combination with a display device, it is suitable for suppressing sparkle and uneven reflection. In this case, the coefficient of variation is particularly preferably 12.3% or more, more preferably 12.5% or more, for example 12.3 to 35%. Further, in this case, if the number of bright spots in the two-dimensional Fourier transform image of the image subjected to the binarization processing A described above is 15 or less, reflection unevenness can be further suppressed.

なお、互いに寸法が明確に異なり、かつ寸法によって区分可能な複数の寸法の微小変形部を意図的に形成する場合には、微小変形部の寸法のバラツキを種類ごとに検討してもよ
い。「互いに寸法が明確に異なる」と言えるのは、例えば、ガラス板の主面の微小変形部が、寸法の平均値がμα、最小値がminαである微小変形部αと、寸法の平均値がμβ、最大値がmaxβである微小変形部βとを含み、μα>μβ、かつminα-maxβ>1μmの関係が成立する場合である。後者の式はminα-maxβ>2μm、さらにminα-maxβ>3μmであってもよい。また、「区分可能」と言えるのは、minαとmaxβとの間の寸法を有する微小変形部が実質的に存在しない場合である。特定の寸法を有する微小変形部が「実質的に存在しない」とは、該当する微小変形部の比率、例えばminαとmaxβとの間の寸法を有する微小変形部の比率が個数基準で全体の3%未満、特に1%未満、とりわけ0.5%未満であることをいう。この例において、微小変形部は、微小変形部α、βのそれぞれと互いに寸法が明確に異なり、かつ区分可能な微小変形部γをさらに含んでいてもよい。互いに寸法が明確に異なり、かつ寸法によって区分可能な複数種の微小変形部が含まれる場合は、条件d1と共に、又は条件d1に代えて、以下の条件d2を満たすことが望ましい。
In addition, when a plurality of micro-deformed parts having clearly different dimensions and which can be classified by size are intentionally formed, variations in the dimensions of the micro-deformed parts may be examined for each type. It can be said that "the dimensions are clearly different from each other" because, for example, a small deformed part on the main surface of a glass plate has a small deformed part α whose average value is μα and a minimum value minα, and a slightly deformed part α whose average value is This is a case where the relationship of μα>μβ and minα−maxβ>1 μm holds, including μβ and a minute deformation portion β whose maximum value is maxβ. The latter equation may be minα-maxβ>2 μm, or even minα-maxβ>3 μm. Furthermore, it can be said to be "classifiable" if there are substantially no minute deformations having dimensions between minα and maxβ. The term "substantially no micro-deformed parts having specific dimensions" means that the ratio of the corresponding micro-deformed parts, for example, the ratio of micro-deformed parts having dimensions between minα and maxβ is 3 of the total number of micro-deformed parts. %, especially less than 1%, especially less than 0.5%. In this example, the minutely deformed portion may further include a minutely deformed portion γ that has clearly different dimensions from each of the minutely deformed portions α and β and can be distinguished. If a plurality of types of minutely deformed portions that have clearly different dimensions and can be classified based on their dimensions are included, it is desirable that the following condition d2 be satisfied together with or in place of the condition d1.

(条件d2)
互いに寸法が明確に異なり、かつ区分可能な複数の寸法の微小変形部が含まれている場合は、各微小変形部(α、β、γ・・・)の寸法それぞれについて算出した変動係数が、それぞれ23%以下、22%以下、21%以下、15%以下、10%以下、さらには7%以下、好ましくは5%以下である。なお、各微小変形部(α、β、γ・・・)は、個数基準で、微小変形部全体の15%以上、20%以上、さらには30%以上を占めるように設定される。
(Condition d2)
If a plurality of micro-deformed parts with clearly different dimensions and differentiable dimensions are included, the coefficient of variation calculated for each dimension of each micro-deformed part (α, β, γ...) is They are respectively 23% or less, 22% or less, 21% or less, 15% or less, 10% or less, further 7% or less, preferably 5% or less. Note that each of the minutely deformed portions (α, β, γ, . . . ) is set to occupy 15% or more, 20% or more, or even 30% or more of the entire minutely deformed portions in terms of number.

ガラス板は、条件d1及び/又は条件d2を満たしていることが好ましい。条件d2を満たすガラス板は、その前提として、条件a1を満たすことが好ましい。 It is preferable that the glass plate satisfies condition d1 and/or condition d2. The glass plate that satisfies condition d2 preferably satisfies condition a1 as a premise.

複数の微小変形部2は、凸部であっても凹部であっても構わない。ただし、以下の理由からは凸部であることが好ましい。第1に、タッチパネルとして使用するガラス板については、凸部が凹部よりも指への抵抗が小さい表面を提供できる。したがって、ユーザの操作感を重視するべき場合には凸部が有利である。第2に、エッチング法等によりガラス表面を後退させる過程において、時間の経過と共に凹部の寸法は所望の設計値から拡大することがあるのに対し、凸部の寸法は設計値からの拡大、いわゆるオーバーエッチングによる寸法の拡大、を容易に防止できる。このため、スパークルをより確実に防止するべき場合には凸部が有利である。後述するとおり、凹部又は凸部は、それぞれが実質的に平坦な連続部によって囲まれていることが好ましい。 The plurality of minutely deformed portions 2 may be either convex portions or concave portions. However, a convex portion is preferable for the following reasons. First, for a glass plate used as a touch panel, convex portions can provide a surface with less resistance to fingers than concave portions. Therefore, the convex portion is advantageous when the user's operational feeling is important. Second, in the process of receding the glass surface by etching, etc., the dimensions of the concave portion may expand from the desired design value over time, whereas the dimensions of the convex portion may expand from the design value, so-called Dimension expansion due to over-etching can be easily prevented. For this reason, the convex portion is advantageous when sparkles should be prevented more reliably. As described below, each depression or protrusion is preferably surrounded by a substantially flat continuous section.

ただし、エッチング加工の効率性、言い換えるとエッチングするガラスの量の少なさを重視するべき場合には、凹部が有利である。 However, when the efficiency of etching processing, in other words, the small amount of glass to be etched is important, the recessed portion is advantageous.

微小変形部2の深さ又は高さは、特に制限されないが、例えば0.1μm以上、好ましくは0.2μm以上、より好ましくは0.3μm以上であり、例えば1μm以下、好ましくは0.8μm以下、より好ましくは0.7μm以下である。 The depth or height of the minutely deformed portion 2 is not particularly limited, but is, for example, 0.1 μm or more, preferably 0.2 μm or more, more preferably 0.3 μm or more, and, for example, 1 μm or less, preferably 0.8 μm or less. , more preferably 0.7 μm or less.

図1に戻って、主面1においてそれぞれの微小変形部2を囲む連続部5について説明する。連続部5は、微小変形部2により分断されることなく、微小変形部2の間及びその周囲に広がっている。言い換えると、主面1において、微小変形部2は連続部5に囲まれた島状の領域を形成している。連続部5は実質的に平坦な領域であることが好ましい。本明細書において「実質的に平坦」な領域とは、その領域内の表面粗さ曲線に基づいて算術平均粗さRaの算出式により算出した表面粗さが0.07μm以下、好ましくは0.05μm以下、より好ましくは0.02μm以下、特に好ましくは0.01μm以下の領域である。実質的に平坦に該当するかは、例えば、断面SEM観察により評価することができる
。なお、図5Bから明らかなように、従来のエッチング法により凹凸を発達させたガラス板の表面には、実質的に平坦な領域が存在しない。従来のエッチング法では、表面凹凸を発達させるために、事前にサンドブラストして微細な凹部を生成してから、或いは析出物を局所的に生成させながら、エッチングを進行させる。これらの方法では、事実上、微小変形部の起点の位置と寸法の分布とを制御できないため、凹凸が発達した段階では主面の表面から平坦な領域が失われる(図5B)。
Returning to FIG. 1, the continuous portion 5 surrounding each of the minutely deformed portions 2 on the main surface 1 will be described. The continuous portion 5 is not separated by the minutely deformed portions 2, but extends between and around the minutely deformed portions 2. In other words, on the main surface 1, the minutely deformed portion 2 forms an island-shaped region surrounded by the continuous portion 5. Preferably, the continuous portion 5 is a substantially flat area. In this specification, a "substantially flat" region means that the surface roughness calculated using the formula for calculating the arithmetic mean roughness Ra based on the surface roughness curve in the region is 0.07 μm or less, preferably 0.07 μm or less. The range is 0.05 μm or less, more preferably 0.02 μm or less, particularly preferably 0.01 μm or less. Whether the surface is substantially flat can be evaluated by, for example, cross-sectional SEM observation. Note that, as is clear from FIG. 5B, there is no substantially flat area on the surface of the glass plate on which the unevenness has been developed by the conventional etching method. In conventional etching methods, in order to develop surface irregularities, etching is performed after sandblasting is performed in advance to generate fine recesses or while precipitates are locally generated. With these methods, it is practically impossible to control the starting point position and size distribution of the micro-deformed portions, so that when the unevenness develops, the flat area is lost from the surface of the main surface (FIG. 5B).

実質的に平坦な領域は、ガラス板の主面の40%以上、50%以上、さらには60%以上を占めていてもよい。この領域は微小変形部が占める面積の残部を占めていてもよい。 The substantially flat area may occupy 40% or more, 50% or more, or even 60% or more of the main surface of the glass plate. This region may occupy the remainder of the area occupied by the minutely deformed portion.

図1では、主面1上に同一の微小変形部2が規則的に配列している。この設計は、基本的には量産品の特性を安定化させる上では好ましい。大きさが不均一な微小変形部を不規則に配置した設計は、エッチング等による加工時に互いに結合して一体化し、過度に大きい微小変形部を生じさせやすい(図5A参照)。また、特に大きな面積のガラス板については特性の局所的な相違を十分に抑制することも容易ではない。規則的な配列によればこれらの不利益は解消される。しかし、微小変形部の配置の規則性が高い主面からは不自然な虹状の反射光のムラが観察されることがある。このムラはスパークルほどには目立たないが、抑制することが望ましい。 In FIG. 1, the same minute deformations 2 are regularly arranged on the main surface 1. This design is basically preferable in terms of stabilizing the characteristics of mass-produced products. A design in which micro-deformed portions of non-uniform size are irregularly arranged is likely to bond with each other and become integrated during processing such as etching, resulting in excessively large micro-deformed portions (see FIG. 5A). Furthermore, it is not easy to sufficiently suppress local differences in properties, especially for glass plates with large areas. Regular arrangement eliminates these disadvantages. However, unnatural rainbow-like unevenness of reflected light may be observed from the main surface where the arrangement of minutely deformed portions is highly regular. Although this unevenness is not as noticeable as sparkle, it is desirable to suppress it.

反射光のムラは、微小変形部の配列の規則性を緩和することにより抑制できる。具体的には、主面の200μm四方の領域、及び/又は寸法が0.5μm以上の微小変形部が80~150個存在する主面の領域、を主面に垂直な方向から観察して微小変形部を周囲の領域から区別する上述の二値化処理Aをした画像の二次元フーリエ変換像に、2~30個、さらに3~30個、好ましくは5~25個、より好ましくは9~18個、特に好ましくは13~17個、別のより好ましい例としては5~15個の輝点が観察される程度に、主面の面内方向についての微小変形部の配置の周期性を低下させることが好ましい。防眩機能を有する従来のガラス板は、微小変形部の配置に周期性が全くないか、あったとしてもその程度がごく低いため、上記二次元フーリエ変換像に観察される輝点は1つのみとなる。他方、図1に示した程度に周期性が高い配列は、上記二次元フーリエ変換像に数百程度以上の多数の輝点を発生させる。 The unevenness of reflected light can be suppressed by relaxing the regularity of the arrangement of the minutely deformed parts. Specifically, a 200 μm square area of the main surface and/or a region of the main surface where 80 to 150 micro-deformed parts with dimensions of 0.5 μm or more exist are observed from a direction perpendicular to the main surface to determine the micro-deformation. 2 to 30, more preferably 3 to 30, preferably 5 to 25, more preferably 9 to 30 pieces are added to the two-dimensional Fourier transformed image of the image that has been subjected to the above-mentioned binarization process A to distinguish the deformed part from the surrounding area. The periodicity of the arrangement of the minutely deformed portions in the in-plane direction of the main surface is reduced to such an extent that 18 bright spots, particularly preferably 13 to 17 bright spots, and another more preferred example 5 to 15 bright spots are observed. It is preferable to let In conventional glass plates with an anti-glare function, there is no periodicity in the arrangement of minute deformations, or even if there is, the degree of periodicity is very low, so only one bright spot is observed in the above two-dimensional Fourier transform image. Only. On the other hand, an array with high periodicity as shown in FIG. 1 generates a large number of bright spots, approximately several hundred or more, in the two-dimensional Fourier transformed image.

なお、「寸法が0.5μm以上の微小変形部が80~150個存在する主面の領域」は、主面上に直角四角形の領域として設定するとよい。この場合、微小変形部の個数は、直角四角形の領域にその一部が存在する微小変形部も含めてカウントすることとする。 Note that the "region of the main surface where 80 to 150 micro-deformed portions with dimensions of 0.5 μm or more exist" is preferably set as a right-angled quadrangular region on the main surface. In this case, the number of minutely deformed portions is counted including the minutely deformed portions that are partially present in the rectangular area.

微小変形部の配列の規則性を緩和すると、上述の輝点の数が、製造ロットによって、或いは局所的に、相違することがある。これは、エッチング条件等の製造条件が不可避的に僅かに変動することによって、微小変形部の位置や大きさが影響を受けたためと考えられる。本発明者の検討によると、このような輝点の数の不安定化は、その製造条件で得られる平均的な輝点の個数が15程度以下となる場合に顕著になり、この影響により輝点の個数が1つに減少したガラス板が得られることもある。このようなガラス板からも、輝点の個数が2以上のガラス板と実質的に変わらない程度に所望の特性が得られることが確認されている。これは、二値化処理Aによっては確認できない程度の規則性が存在するためと考えられる。実際に、輝点の個数が1つに減少した製造ロットのガラス板に対し、256×256より高い階調、例えば8192×8192の階調を適用して画像の二値化処理を実施すると、上述の輝点は2以上観察される。階調が高くなるほど輝点の数は増えるためである。また、配列の規則性をさらに緩和して設計したガラス板からも所望の特性を得ることは可能である。ただし、緩和の程度によっては、二値化処理Bのような数万程度の高い階調で二値化しなければ2以上の輝点数を測定できず、規則性の存在を確認できないことがある。以上を考慮に入れると、簡便には8192×8192の階調、厳密には二値化
処理B(65536×65536)により2以上の輝点が確認できることを前提として、二値化処理Aによる輝点の数が1つであるように微小変形部を設計してもよいことになる。一方、特許文献1~3に開示されている従来のガラス板を数千程度の高い階調、さらには二値化処理Bを適用して測定しても、得られる輝点の数は1つとなる。
If the regularity of the arrangement of the minutely deformed parts is relaxed, the number of bright spots described above may vary depending on the production lot or locally. This is thought to be because the position and size of the minutely deformed portions were affected by unavoidable slight variations in manufacturing conditions such as etching conditions. According to the inventor's study, such instability in the number of bright spots becomes noticeable when the average number of bright spots obtained under the manufacturing conditions is about 15 or less, and this effect causes the bright spots to become unstable. A glass plate may be obtained with the number of dots reduced to one. It has been confirmed that desired characteristics can be obtained from such a glass plate to the extent that it is substantially the same as a glass plate having two or more bright spots. This is considered to be due to the existence of regularity that cannot be confirmed by the binarization process A. In fact, when performing image binarization processing by applying a gradation higher than 256 x 256, for example 8192 x 8192, to a glass plate of a production lot in which the number of bright spots has been reduced to one, Two or more of the above-mentioned bright spots are observed. This is because the number of bright spots increases as the gradation becomes higher. Further, it is possible to obtain desired characteristics from a glass plate designed by further relaxing the regularity of the arrangement. However, depending on the degree of relaxation, the number of bright spots of 2 or more cannot be measured unless binarization is performed at a high gradation of about tens of thousands, such as in binarization process B, and the existence of regularity may not be confirmed. Taking the above into consideration, we assume that two or more bright spots can be confirmed by the gradation of 8192 x 8192, strictly speaking, by the binarization process B (65536 x 65536), and by the brightness by the binarization process A. This means that the minute deformation section may be designed so that the number of points is one. On the other hand, even if the conventional glass plates disclosed in Patent Documents 1 to 3 are measured with several thousand high gradations and even with the application of binarization processing B, the number of bright spots obtained is only one. Become.

微小変形部の面積比率、より詳しくは主面に垂直な方向から見た微小変形部の面積の合計の主面の面積に占める比率は、特に制限されないが、例えば1.5~60%、さらには1.5~50%、特に1.5~40%である。微小変形部の面積比率は、好ましくは2%以上、より好ましくは5%以上、場合によっては8%以上であり、好ましくは45%以下、より好ましくは40%以下、特に好ましくは30%以下、場合によっては25%以下、さらには23%以下、特に20%以下である。 The area ratio of the micro-deformed parts, more specifically, the ratio of the total area of the micro-deformed parts viewed from the direction perpendicular to the main surface to the area of the main surface is not particularly limited, but may be, for example, 1.5 to 60%, and is between 1.5 and 50%, particularly between 1.5 and 40%. The area ratio of the minutely deformed portion is preferably 2% or more, more preferably 5% or more, and in some cases 8% or more, preferably 45% or less, more preferably 40% or less, particularly preferably 30% or less, In some cases, it is 25% or less, further 23% or less, particularly 20% or less.

上述した微小変形部を有するガラス板は、スパークルを抑制しながらグロス及びヘイズを共に望ましい範囲に調整することに適している。具体的には、グロスをX(%)、ヘイズをY(%)と表示したときに、式(I)の関係を満たすことが可能である。326ppiの画像表示装置と組み合わせて使用してもスパークルを防止できる程度に微細に微小変形部を制御しても、具体的には例えば微小変形部の平均寸法を3.2μm~13.6μmに設定したとしても、式(I)を満たすガラス板を提供することもできる。 The glass plate having the minutely deformed portions described above is suitable for adjusting both gloss and haze to desired ranges while suppressing sparkle. Specifically, when gloss is expressed as X (%) and haze is expressed as Y (%), it is possible to satisfy the relationship of formula (I). Even if the micro-deformed portion is controlled finely enough to prevent sparkles even when used in combination with a 326 ppi image display device, specifically, for example, the average size of the micro-deformed portion is set to 3.2 μm to 13.6 μm. Even if it does, it is also possible to provide a glass plate that satisfies formula (I).

Y≦-1/6X+20 (I) Y≦-1/6X+20 (I)

本発明者の検討により、ヘイズが十分に抑制されていれば、グロスがある程度高くてもガラス板の実用性を確保できることが明らかになった。上述した微小変形部を有するガラス板は、このような範囲にヘイズ及びグロスに調整することにも適しており、具体的には式(II)の関係を満たすことが可能である。 Studies by the present inventors have revealed that the practicality of the glass plate can be ensured even if the gloss is high to some extent, as long as the haze is sufficiently suppressed. The glass plate having the minutely deformed portions described above is also suitable for adjusting haze and gloss within such a range, and specifically can satisfy the relationship of formula (II).

Y≦-1/40X+8 (II) Y≦-1/40X+8 (II)

式(II)を具備するガラス板において、Yの値は6以下、さらに5以下であってもよい。X及びYの値は、それぞれ100≦X≦160、0≦Y≦6、さらには100≦X≦150、0≦Y≦5の範囲に制限されていてもよい。式(II)は、Y≦-1/40X+7.5であってもよい。 In the glass plate having formula (II), the value of Y may be 6 or less, and further may be 5 or less. The values of X and Y may be limited to a range of 100≦X≦160, 0≦Y≦6, or further 100≦X≦150, 0≦Y≦5. Formula (II) may be Y≦−1/40X+7.5.

本発明により提供される、微小変形部を有するガラス板は、式(I)及び(II)の少なくとも1つの関係を満たすことができる。 A glass plate having a minutely deformed portion provided by the present invention can satisfy at least one of the relationships of formulas (I) and (II).

特許文献1~3において比較例として提示されているガラス板の中には、式(I)及び/又は(II)を満たす程度にヘイズ及びグロスが低いものが含まれている(特許文献2比較例1~5及び特許文献3実験例8)。しかし、従来、この程度にヘイズ及びグロスが低いガラス板は、特許文献1~3に報告されているとおりスパークルを抑制できないものであった。これは微小変形部が全体的に大きすぎるためである。このようなガラス板は、条件bを満たすことが難しく、寸法のバラツキが大きいために条件d1を満たすことも難しい。一方、スパークルが抑制されるように微小変形部全体の寸法を制御すると(特許文献1~3の各実施例)、微細な微小変形部の比率が増加して条件a1が満たされなくなり、特にヘイズを抑制することが難しくなる。特許文献1~3に開示されている従来のエッチング法では、条件d1が満たされる程度に微小変形部の寸法を揃えることも困難である。このため、特許文献1~3の実施例は、式(I)及び(II)の関係を満たしていない。 Among the glass plates presented as comparative examples in Patent Documents 1 to 3, there are those whose haze and gloss are low enough to satisfy formula (I) and/or (II) (Patent Document 2 Comparison) Examples 1 to 5 and Patent Document 3 Experimental Example 8). However, conventionally, glass plates with such low haze and gloss have been unable to suppress sparkles, as reported in Patent Documents 1 to 3. This is because the entire micro-deformed portion is too large. It is difficult for such a glass plate to satisfy condition b, and it is also difficult to satisfy condition d1 due to large dimensional variations. On the other hand, if the dimensions of the entire micro-deformed portion are controlled so that sparkles are suppressed (each example of Patent Documents 1 to 3), the ratio of the micro-deformed portion increases and condition a1 is no longer satisfied, and especially haze becomes difficult to suppress. In the conventional etching methods disclosed in Patent Documents 1 to 3, it is difficult to uniform the dimensions of the minutely deformed portions to the extent that condition d1 is satisfied. Therefore, the examples of Patent Documents 1 to 3 do not satisfy the relationships of formulas (I) and (II).

このような従来の技術水準に対し、本形態によれば、例えばスパークルが抑制されるよ
うに画素密度326ppiから計算される値以下、具体的には13.6μm以下、さらには12μm以下、場合によっては10μm未満にまで微小変形部の寸法の平均値を制限しても、式(I)及び/又は(II)の関係を満たすガラス板を提供することが可能である。言い換えると、本発明は、上述した側面から以下のガラス板を提供することもできる。
In contrast to such conventional technical standards, according to the present embodiment, for example, in order to suppress sparkles, the pixel density is equal to or less than a value calculated from 326 ppi, specifically, 13.6 μm or less, further 12 μm or less, depending on the case. Even if the average value of the dimensions of the minutely deformed portions is limited to less than 10 μm, it is possible to provide a glass plate that satisfies the relationship of formula (I) and/or (II). In other words, the present invention can also provide the following glass plates from the above-mentioned aspects.

複数の微小変形部を有する主面を備え、
前記複数の微小変形部は複数の凹部又は複数の凸部であり、
前記主面に垂直な方向から観察して前記微小変形部を囲む最小の直角四角形の互いに隣接する2辺の平均値を当該微小変形部の寸法と定義したときに、前記複数の微小変形部の前記寸法の平均値が3.2μm~13.6μmであり、かつ
グロスをX(%)、ヘイズをY(%)と表示したときに、式(I)及び(II)の少なくとも1つを満たす、
ガラス板。
A main surface having a plurality of micro-deformed parts,
The plurality of minutely deformed portions are a plurality of recesses or a plurality of convex portions,
When the average value of two mutually adjacent sides of the smallest right-angled quadrangle surrounding the micro-deformed part when observed from the direction perpendicular to the main surface is defined as the dimension of the micro-deformed part, the size of the plurality of micro-deformed parts is The average value of the dimensions is 3.2 μm to 13.6 μm, and at least one of formulas (I) and (II) is satisfied when gloss is expressed as X (%) and haze is expressed as Y (%). ,
glass plate.

このガラス板は、さらに条件b及び/又は条件cを満たしていてもよく、条件d1及び/又は条件d2を満たしていてもよく、第1の実施形態で述べたその他の特徴を具備していてもよい。なお、本明細書において、グロスは、日本工業規格(JIS) Z8741-1997の「鏡面光沢度測定方法」の「方法3(60度鏡面光沢)」に従って、ヘイズはJIS K7136:2000に従ってそれぞれ測定される。 This glass plate may further satisfy condition b and/or condition c, may satisfy condition d1 and/or condition d2, and may have other characteristics described in the first embodiment. Good too. In this specification, gloss is measured according to "Method 3 (60 degree specular gloss)" of "Specular gloss measurement method" of Japanese Industrial Standard (JIS) Z8741-1997, and haze is measured according to JIS K7136:2000. Ru.

[第2の実施形態]
次に、上述の第2の側面から提供されるガラス板の一形態を説明する。この一形態においてガラス板は複数の微小変形部を有する主面を備えている。複数の微小変形部は複数の凸部である。複数の微小変形部はそれぞれ実質的に平坦な連続部によって囲まれていることが好ましい。複数の微小変形部は所定範囲の平均寸法を有する。
[Second embodiment]
Next, one form of the glass plate provided from the above-mentioned second side will be described. In this one form, the glass plate has a main surface having a plurality of minutely deformed parts. The plurality of minutely deformed portions are a plurality of convex portions. Preferably, each of the plurality of micro-deformations is surrounded by a substantially flat continuous section. The plurality of minutely deformed portions have an average size within a predetermined range.

本形態においても、微小変形部の平均寸法は、3.2μm~35.5μmの範囲内に設定される。微小変形部の形状、寸法、相互の距離、面積比率の好ましい範囲及び条件は、第1の実施形態で述べたとおりである。本形態においても、上述した二次元フーリエ変換像には、第1の実施形態で述べた個数の輝点が観察される程度に微小変形部の配置の周期性を低下させることが好ましい。本形態によっても、式(I)及び/又は(II)を満たすガラス板を提供することが可能であり、その他第1の実施形態で述べたその他の特徴を具備することも可能である。 Also in this embodiment, the average size of the minutely deformed portions is set within the range of 3.2 μm to 35.5 μm. The shapes, dimensions, mutual distances, and preferable ranges and conditions of the area ratios of the minutely deformed portions are as described in the first embodiment. Also in this embodiment, it is preferable to reduce the periodicity of the arrangement of the minutely deformed portions to such an extent that the number of bright spots described in the first embodiment can be observed in the two-dimensional Fourier transformed image. According to this embodiment as well, it is possible to provide a glass plate that satisfies formula (I) and/or (II), and it is also possible to provide other features described in the first embodiment.

ただし本形態では、主面に形成されている微小変形部は凸部である。凸部の高さの好ましい範囲は第1の実施形態で述べたとおりである。微小変形部が凸部であるため、タッチパネルとしてガラス板を使用するユーザにより優れた操作感を提供できる。微小変形部が凹部であるガラス板との操作感の相違は、相対湿度が低い環境下でより顕著になる。また、微小変形部の製造に際して凸部はその寸法を所定限度以下に制御しやすいため、凸部によればスパークルがより確実に防止される。さらに、凸部を囲む連続部が実質的に平坦である場合、本形態によるガラス板の主面は、雰囲気から付着する粉塵やユーザの指から転写される皮脂の除去が相対的に容易になる。 However, in this embodiment, the minute deformation portion formed on the main surface is a convex portion. The preferred range of the height of the convex portion is as described in the first embodiment. Since the minutely deformed portion is a convex portion, it is possible to provide a user who uses a glass plate as a touch panel with a superior operational feeling. The difference in operational feel from a glass plate in which the minutely deformed portions are concave portions becomes more noticeable in an environment with low relative humidity. In addition, since the dimensions of the convex portion can be easily controlled to below a predetermined limit when manufacturing the minutely deformed portion, sparkles can be more reliably prevented by the convex portion. Furthermore, when the continuous portion surrounding the convex portion is substantially flat, the main surface of the glass plate according to this embodiment makes it relatively easy to remove dust adhering from the atmosphere and sebum transferred from the user's fingers. .

[第3の実施形態]
さらに、上述の第3の側面から提供されるガラス板の一形態を説明する。この一形態においてガラス板は複数の微小変形部を有する主面を備えている。複数の微小変形部は複数の凹部又は複数の凸部である。複数の微小変形部は所定範囲の平均寸法を有する。主面から得た所定の二次元フーリエ変換像は、所定範囲の個数の輝点を有する。所定範囲の個数は、二値化処理を256×256(二値化処理A)、必要に応じさらに65536×65536(二値化処理B)の階調で実施した場合に基づいて定めることができる。
[Third embodiment]
Furthermore, one form of the glass plate provided from the above-mentioned third aspect will be described. In this one form, the glass plate has a main surface having a plurality of minutely deformed parts. The plurality of minutely deformed portions are a plurality of recesses or a plurality of convex portions. The plurality of minutely deformed portions have an average size within a predetermined range. A predetermined two-dimensional Fourier transformed image obtained from the main surface has a number of bright spots within a predetermined range. The number of objects in the predetermined range can be determined based on the case where the binarization process is performed at a gradation of 256 x 256 (binarization process A) and, if necessary, further 65536 x 65536 (binarization process B). .

本形態においても、微小変形部の平均寸法は、3.2μm~35.5μmの範囲内に設定される。微小変形部の形状、寸法、相互の距離、面積比率の好ましい範囲及び条件は、第1の実施形態で述べたとおりである。本形態においても、微小変形部は好ましくは凸部であり、その好ましい高さは第1の実施形態で述べたとおりである。本形態によっても、式(I)及び/又は(II)を満たすガラス板を提供することが可能である。 Also in this embodiment, the average size of the minutely deformed portions is set within the range of 3.2 μm to 35.5 μm. The shapes, dimensions, mutual distances, and preferable ranges and conditions of the area ratios of the minutely deformed portions are as described in the first embodiment. Also in this embodiment, the minute deformation portion is preferably a convex portion, and its preferable height is as described in the first embodiment. Also according to this embodiment, it is possible to provide a glass plate that satisfies formula (I) and/or (II).

ただし本形態では、微小変形部の配列は、図1に示したような周期性が高い配列ではなく、二値化処理Aによる二次元フーリエ変換像に、3~30個、好ましくは5~25個、より好ましくは9~18個、特に好ましくは13~17個、別の好ましい例としては5~15個の輝点が観察される程度の周期性を有している。この程度に緩和した周期性は、量産の際の再現性の確保とそれ自体から発生する反射光のムラの緩和との両立に適している。上述したとおり、周期性を緩和すると、製造ロットによっては輝点の数が1つのみとなる場合がある。しかしこの場合も、256×256より高い階調、例えば数千程度、さらには65536×65536の階調による二値化処理Bを実施すると、2以上の輝点が観察されることから、程度が低いながらも周期性は確認できる。 However, in this embodiment, the arrangement of minute deformation parts is not a highly periodic arrangement as shown in FIG. 1, but 3 to 30, preferably 5 to 25, The periodicity is such that a number of bright spots can be observed, more preferably 9 to 18, particularly preferably 13 to 17, and another preferred example 5 to 15. Periodicity relaxed to this extent is suitable for both ensuring reproducibility during mass production and alleviating unevenness in reflected light generated from the light itself. As described above, when the periodicity is relaxed, the number of bright spots may be reduced to only one depending on the manufacturing lot. However, in this case as well, if binarization processing B is performed with a gradation higher than 256 x 256, for example several thousand gradations, or even 65536 x 65536, two or more bright spots will be observed, so the degree of Although it is low, periodicity can be confirmed.

上述したとおり、二次元フーリエ変換像は、ガラス板の主面の200μm四方の領域、又は寸法が0.5μm以上の微小変形部が80~150個存在する主面の領域、を主面に垂直な方向から観察して微小変形部を周囲の領域から区別する二値化処理をした画像から得ることができる。1辺を200μmとする領域の設定は簡便に実施できる。一方、個数に基づく領域の設定は、微小変形部の分布密度が小さい主面における微小変形部の周期性を正しく評価することに、より適している。 As mentioned above, a two-dimensional Fourier transform image is a 200 μm square area of the main surface of a glass plate, or a region of the main surface where 80 to 150 micro-deformed parts with dimensions of 0.5 μm or more exist, perpendicular to the main surface. It can be obtained from an image that is observed from a different direction and subjected to binarization processing to distinguish the minutely deformed portion from surrounding areas. Setting a region with each side of 200 μm can be easily performed. On the other hand, setting the area based on the number of regions is more suitable for correctly evaluating the periodicity of the minutely deformed portions on the main surface where the distribution density of the minutely deformed portions is small.

本形態では、ガラス板が、二次元フーリエ変換像が所定の個数の輝点を有するとの条件に代えて、微小変形部の寸法の変動係数が3~40%、さらには3~23%であるとの条件を具備していてもよい。この場合の変動係数の好ましい範囲は、5~22%であり、さらには8~21%、特に12.5~21%である。 In this embodiment, instead of the condition that the two-dimensional Fourier transformed image of the glass plate has a predetermined number of bright spots, the condition that the coefficient of variation of the dimensions of the minutely deformed portion is 3 to 40%, or even 3 to 23% is used. There may be a condition that there is. In this case, the preferred range of the coefficient of variation is 5 to 22%, more preferably 8 to 21%, particularly 12.5 to 21%.

本形態では、ガラス板が、二次元フーリエ変換像が所定の個数の輝点を有するとの条件に代えて、微小変形部の寸法の変動係数が3%以上であるとの条件と、条件a1、すなわち微細な微小変形部の比率が小さいとの条件とを具備していてもよい。この場合の変動係数の好ましい範囲は、5%以上、さらには8%以上、特に12.5%以上である。 In this embodiment, instead of the condition that the two-dimensional Fourier transformed image has a predetermined number of bright spots, the glass plate has the condition that the coefficient of variation of the dimension of the minute deformation part is 3% or more, and the condition a1. , that is, the ratio of minute deformed portions may be small. In this case, the preferred range of the coefficient of variation is 5% or more, further 8% or more, particularly 12.5% or more.

[第4の実施形態]
引き続き、上述の第4の側面から提供されるガラス板の一形態を説明する。この一形態においてガラス板は複数の微小変形部を有する主面を備えている。複数の微小変形部は複数の凹部又は複数の凸部である。複数の微小変形部は所定範囲の平均寸法を有する。複数の微小変形部は、所定形状の第1微小変形部と、第1微小変形部とは異なる形状を有する第2変形部とを含んでいる。
[Fourth embodiment]
Next, one form of the glass plate provided from the above-mentioned fourth aspect will be described. In this one form, the glass plate has a main surface having a plurality of minutely deformed parts. The plurality of minutely deformed portions are a plurality of recesses or a plurality of convex portions. The plurality of minutely deformed portions have an average size within a predetermined range. The plurality of small deformation parts include a first small deformation part having a predetermined shape, and a second deformation part having a shape different from the first small deformation part.

本形態において、微小変形部の平均寸法は、3.2μm以上、例えば3.2μm~50μm、好ましくは3.2μm~35.5μmの範囲に設定される。第1微小変形部は見かけ上の寸法が大きくてもスパークルを発生させにくい。微小変形部の形状、寸法、相互の距離、面積比率の好ましい範囲及び条件は、第1の実施形態で述べたとおりである。本形態においても、微小変形部は好ましくは凸部であり、その好ましい高さは第1の実施形態で述べたとおりである。本形態においても、上述した二次元フーリエ変換像には、第1の実施形態で述べた個数の輝点が観察される程度に微小変形部の配置の周期性を低下させることが好ましい。本形態によっても、式(I)及び/又は(II)を満たすガラス板を提供することが可能である。 In this embodiment, the average dimension of the minutely deformed portion is set to be 3.2 μm or more, for example, in the range of 3.2 μm to 50 μm, preferably in the range of 3.2 μm to 35.5 μm. Even if the first minutely deformed portion has a large apparent size, it is difficult to generate sparkles. The shapes, dimensions, mutual distances, and preferable ranges and conditions of the area ratios of the minutely deformed portions are as described in the first embodiment. Also in this embodiment, the minute deformation portion is preferably a convex portion, and its preferable height is as described in the first embodiment. Also in this embodiment, it is preferable to reduce the periodicity of the arrangement of the minutely deformed portions to such an extent that the number of bright spots described in the first embodiment can be observed in the two-dimensional Fourier transformed image. Also according to this embodiment, it is possible to provide a glass plate that satisfies formula (I) and/or (II).

ただし本形態では、微小変形部が、上述した形状A又は形状Bに相当する第1微小変形部と、第1微小変形部とは異なる形状を有する第2微小変形部を含んでいる。第2微小変形部は、形状A又は形状Bに相当するものであっても相当しないものであってもよい。第1微小変形部及び第2微小変形部の好ましい存在比率は第1の実施形態で述べたとおりである。第1微小変形部は、従来はその形成が意図されてこなかったものであり、その特徴ある形状から明らかなように、第2微小変形部と組み合わせることによって、主面上への微小変形部の配置の設計の自由度をより向上させる。特徴ある微小変形部の形状は、微小変形部の面積比率や規則性の調整を容易にする。 However, in this embodiment, the minutely deformed portion includes a first minutely deformed portion corresponding to the above-described shape A or shape B, and a second minutely deformed portion having a shape different from the first minutely deformed portion. The second minute deformation portion may or may not correspond to shape A or shape B. The preferable abundance ratio of the first slightly deformed portion and the second slightly deformed portion is as described in the first embodiment. The formation of the first minutely deformed portion was not previously intended, and as is clear from its distinctive shape, by combining it with the second minutely deformed portion, it is possible to create a minutely deformed portion on the main surface. Improve flexibility in layout design. The characteristic shape of the minutely deformed portion makes it easy to adjust the area ratio and regularity of the minutely deformed portion.

[画像表示装置としての実施形態]
最後に、画像表示装置としての実施形態について説明する。本発明は、その一形態として、サブ画素サイズの短辺がdμmである画像表示装置と、当該画像表示装置の画像表示側に配置されるガラス板とを備え、ガラス板が上述した第1~第4実施形態の少なくとも1つで述べたガラス板である、ガラス板を備えた画像表示装置を提供する。ただし、ガラス板の微小変形部の平均寸法は、好ましくは、3.2μm以上(d/1.9)μm以下、特に4μm以上(d/2)μm以下の範囲に設定される。
[Embodiment as an image display device]
Finally, an embodiment as an image display device will be described. As one form of the present invention, the present invention includes an image display device whose sub-pixel size has a short side of dμm, and a glass plate disposed on the image display side of the image display device, the glass plate having the above-mentioned first to An image display device including a glass plate, which is the glass plate described in at least one of the fourth embodiments, is provided. However, the average size of the minutely deformed portions of the glass plate is preferably set in a range of 3.2 μm or more (d/1.9) μm or less, particularly 4 μm or more and (d/2) μm or less.

[ガラス板]
ガラス板の組成に特段の制限はない。ガラス板は、ソーダライムガラス、アルミノシリケートガラス、無アルカリガラスに代表される各種組成を有するものであってよい。ガラス板の厚みは、特段の制限はないが、例えば0.1mm~4.0mmの範囲、特に0.5mm~3.0mmの範囲である。
[Glass plate]
There are no particular restrictions on the composition of the glass plate. The glass plate may have various compositions such as soda lime glass, aluminosilicate glass, and alkali-free glass. The thickness of the glass plate is not particularly limited, but is, for example, in the range of 0.1 mm to 4.0 mm, particularly in the range of 0.5 mm to 3.0 mm.

[ガラス板の加工]
(強化処理)
ガラス板には、必要に応じ、物理強化処理又は化学強化処理を施してもよい。これらの処理は、従来から実施されている方法により実施すれば足りるため、ここではその説明を省略する。
[Processing of glass plate]
(strengthening treatment)
The glass plate may be subjected to physical strengthening treatment or chemical strengthening treatment, if necessary. Since these processes can be performed using conventional methods, their explanation will be omitted here.

(薄膜形成)
ガラス板の表面には、必要に応じ、諸機能を付加するために薄膜を形成してもよい。薄膜は、微小変形部2を配置した主面1に形成してもよいし、反対側の主面に形成してもよい。薄膜としては、反射抑制膜、指紋付着防止膜等が挙げられる。これらの薄膜も、従来から実施されている方法により形成すれば足りるため、ここではその説明を省略する。薄膜は、典型的には、真空蒸着法、スパッタリング法、化学気相法等の気相成膜法、ゾルゲル法等の湿式成膜法により形成される。
(thin film formation)
If necessary, a thin film may be formed on the surface of the glass plate in order to add various functions. The thin film may be formed on the main surface 1 on which the minutely deformed portion 2 is arranged, or may be formed on the opposite main surface. Examples of the thin film include anti-reflection films and anti-fingerprint films. Since these thin films can also be formed by conventional methods, their explanation will be omitted here. The thin film is typically formed by a vapor deposition method such as a vacuum evaporation method, a sputtering method, or a chemical vapor deposition method, or a wet film deposition method such as a sol-gel method.

以下、実施例により本発明をより詳細に説明するが、以下の実施例は本発明を制限する趣旨で開示されるものではない。 EXAMPLES Hereinafter, the present invention will be explained in more detail with reference to Examples, but the following Examples are not disclosed with the intention of limiting the present invention.

[ガラス板の作製]
以下のようにしてガラス板の主面に微小変形部である微小凹凸を形成した。用いたガラス板は厚さ1.1mmのアルミノシリケートガラスである。このガラス板の一方の主面にフォトリソグラフィーにより各種の微小凹凸を形成した。フォトマスクの現像及び洗浄に引き続いて実施するエッチングに用いるエッチング液としては濃度1.5wt%のフッ酸(フッ化水素水溶液)を用いた。エッチングは、形成される凹部の深さ又は凸部の高さがほぼ0.3~0.6μmとなるように実施した。
[Preparation of glass plate]
Microscopic irregularities, which are microdeformed parts, were formed on the main surface of the glass plate in the following manner. The glass plate used was aluminosilicate glass with a thickness of 1.1 mm. Various fine irregularities were formed on one main surface of this glass plate by photolithography. Hydrofluoric acid (hydrogen fluoride aqueous solution) with a concentration of 1.5 wt % was used as an etching solution for etching performed subsequent to the development and cleaning of the photomask. Etching was carried out so that the depth of the recesses or the height of the protrusions formed was approximately 0.3 to 0.6 μm.

なお、例18のガラス板は、フォトリソグラフィーによらず、サンドブラストとフッ酸
によるエッチングにより作製した。
Note that the glass plate of Example 18 was produced not by photolithography but by sandblasting and etching with hydrofluoric acid.

[ガラス板の評価]
ガラス板の評価は以下のように実施した。
(微小変形部の寸法及び面積比率)
SEMを用い、微小変形部の主面を広さ126×95μmにわたって観察し、微小変形部の面積比率と寸法とを測定した。微小変形部の寸法は84個について測定した。
[Evaluation of glass plate]
Evaluation of the glass plate was carried out as follows.
(Dimensions and area ratio of minute deformation part)
Using SEM, the main surface of the micro-deformed portion was observed over a width of 126×95 μm, and the area ratio and dimensions of the micro-deformed portion were measured. The dimensions of 84 minutely deformed parts were measured.

(グロス及びヘイズ)
グロスは、JIS Z8741-1997の「鏡面光沢度測定方法」の「方法3(60度鏡面光沢)」に基づいて測定した。ヘイズは、JIS K7136:2000に基づいて測定した。
(Gross and haze)
Gloss was measured based on "Method 3 (60 degree specular gloss)" of "Method for measuring specular gloss" of JIS Z8741-1997. Haze was measured based on JIS K7136:2000.

(FT輝点数)
二次元フーリエ変換像における輝点数の測定には、画像処理ソフトウェア「Imagej 1.50i」を用いた。このソフトウェアは、パブリックドメインにあり、フーリエ解析機能を備えている。具体的には、SEM観察により得られた画像において微小変形部がその周囲から区別されるように閾値を設定し、フーリエ変換像を作成してその像に現れた揮点の数をカウントした。なお、上記ソフトウェアによる解析は基本的に256×256の階調(二値化処理A)で実施し、後述する場合は65536×65536の階調(二値化処理B)で実施した。
(FT bright spot number)
Image processing software "Imagej 1.50i" was used to measure the number of bright spots in the two-dimensional Fourier transformed image. This software is in the public domain and includes Fourier analysis capabilities. Specifically, a threshold value was set so that a minutely deformed part could be distinguished from its surroundings in an image obtained by SEM observation, a Fourier transform image was created, and the number of volatile points appearing in the image was counted. The analysis using the above software was basically carried out at 256 x 256 gradations (binarization processing A), and in the case described later, it was carried out at 65536 x 65536 gradations (binarization processing B).

(スパークル抑制効果)
緑色のサブ画素のみを発光させた階調表示(R,G,B)を(0,255,0)とした125ppi及び326ppiのディスプレイの表面に微小凹凸を形成した主面がディスプレイの外側を向くようにガラス板を載せ、ディスプレイを静止させた状態で画像のチラツキを評価した。結果は以下に基づいて評価した。
×:画面のチラツキが確認できる。
△:画面のチラツキが僅かに確認できる。
○:画面のチラツキが確認できない。
(Sparkle suppression effect)
The main surface of the 125ppi and 326ppi displays with minute irregularities formed on the surface faces the outside of the display, with a gradation display (R, G, B) of (0, 255, 0) in which only the green sub-pixel emits light. We placed a glass plate on top of the display and evaluated the flickering of the image while keeping the display stationary. The results were evaluated based on the following.
×: Flickering on the screen can be observed.
△: Slight flickering of the screen can be observed.
○: Flickering on the screen cannot be confirmed.

(反射ムラ)
表面が黒色の検査台の上方に20Wの蛍光灯を設置し、その蛍光灯の下方約30cmにガラス板を保持した。この状態でガラス板から約30cm離れた位置からガラス板の主面の表面反射を観察した。結果は以下に基づいて評価した。
×:虹色の干渉色を確認できる。
○:僅かに干渉色を確認できる。
◎:干渉色を確認できない。
(Uneven reflection)
A 20 W fluorescent lamp was installed above the examination table with a black surface, and a glass plate was held approximately 30 cm below the fluorescent lamp. In this state, the surface reflection of the main surface of the glass plate was observed from a position approximately 30 cm away from the glass plate. The results were evaluated based on the following.
×: Rainbow interference colors can be confirmed.
○: Slight interference color can be observed.
◎: Interference color cannot be confirmed.

結果を表1及び2に示す。また、SEMを用いて例1~18から得られたガラス板の主面を観察した結果を図6~23に示す。各SEM像は、50μm四方の領域(図6~12;例1~7)、200μm四方の領域(図13~22;例8~17)、100μm四方の領域(図23;例18)を観察したものである。また、図13~23には、得られたSEM像から得られた二次元フーリエ変換像を併せて示す。この変換像における輝点は○印で囲んだ位置にある。例1~7からは、50μm四方の領域の測定により少なくとも100を超える輝点が確認されたため、輝点数がさらに増加することになる200μm四方を対象とした測定は省略した。また、例18については、200μm四方の領域についての二次元フーリエ変換像も観察したが、輝点数は、図23と同様、1つのみとなった。図示を省略するが、例19~35についても、ガラス板の主面には微小変形部が形成されている。 The results are shown in Tables 1 and 2. Further, the results of observing the main surfaces of the glass plates obtained from Examples 1 to 18 using SEM are shown in FIGS. 6 to 23. Each SEM image observes a 50 μm square area (Figures 6 to 12; Examples 1 to 7), a 200 μm square area (Figures 13 to 22; Examples 8 to 17), and a 100 μm square area (Figure 23; Example 18). This is what I did. 13 to 23 also show two-dimensional Fourier transformed images obtained from the obtained SEM images. The bright spot in this converted image is located at a position surrounded by a circle. In Examples 1 to 7, at least more than 100 bright spots were confirmed by measuring a 50 μm square area, so measurements targeting a 200 μm square area where the number of bright spots would further increase were omitted. Regarding Example 18, a two-dimensional Fourier transform image of a 200 μm square area was also observed, but the number of bright spots was only one, as in FIG. 23. Although not shown, in Examples 19 to 35, minute deformations were also formed on the main surface of the glass plate.

なお、特許文献2図1及び図2のSEM像について、上記と同様にして二次元フーリエ変換像を作成したところ、例18と同様、輝点数は1であった。従来の防眩ガラスは、そのいずれについても、主面の面内方向についての微小変形部の周期性を確認することができなかった。 In addition, when a two-dimensional Fourier transform image was created in the same manner as described above for the SEM images of FIGS. 1 and 2 of Patent Document 2, the number of bright spots was 1, as in Example 18. In any of the conventional anti-glare glasses, it was not possible to confirm the periodicity of the minute deformation portions in the in-plane direction of the main surface.

輝点数が相対的に少なくなるように、具体的には15以下、さらには10以下となるように設計したガラス板を繰り返し製造すると、製造ロットによって輝点数が表1及び2に示した値よりも小さくなる場合があり、輝点数が1となったサンプルも確認された。このようなサンプルのSEMを用いた観察した結果を図24及び25に示す。図24及び25は、それぞれ例22及び27と同じ製造条件を適用して得られたサンプルから得られた結果である。ただし、輝点数を除いた表2の各項目については、これらのサンプルからも、それぞれ例22及び27とほぼ同様の良好な結果が得られた。また、図24及び25に示したサンプルについて、ソフトウェアによる解析をより高い階調、具体的には8192×8192又はそれ以上の階調、で実施してFT輝点数をカウントしたところ、それぞれの輝点数は2以上現れた。例32~35も、二値化処理AによるとFT輝点数は1となったが、ソフトウェアによる解析をより高い階調、具体的には65536×65536の階調(二値化処理B)で実施した場合にはFT輝点数は2以上になった。これに対し、同程度に高い階調で例18のサンプルを解析しても輝点数は1のままであった。 If a glass plate designed to have a relatively small number of bright spots, specifically 15 or less, or even 10 or less, is manufactured repeatedly, the number of bright spots will be lower than the values shown in Tables 1 and 2 depending on the production lot. In some cases, the number of bright spots is also small, and some samples have been confirmed to have one bright spot. The results of observation of such a sample using SEM are shown in FIGS. 24 and 25. 24 and 25 are results obtained from samples obtained by applying the same manufacturing conditions as Examples 22 and 27, respectively. However, regarding each item in Table 2 except for the number of bright spots, these samples gave almost the same good results as Examples 22 and 27, respectively. Furthermore, when we analyzed the samples shown in Figures 24 and 25 using software at higher gradations, specifically 8192 x 8192 or higher gradations, and counted the number of FT bright spots, we found that each A score of 2 or more appeared. In Examples 32 to 35, the number of FT bright spots was 1 according to binarization processing A, but the software analysis was performed at a higher gradation, specifically, at a gradation of 65536 x 65536 (binarization processing B). When carried out, the number of FT bright spots was 2 or more. On the other hand, even when the sample of Example 18 was analyzed at a similar high gradation level, the number of bright spots remained 1.

さらに、微小変形部の面積比率がほぼ同一であって微小変形部の形状(凹又は凸)が相違する例13及び14について、ガラス板の主面の触感テストを実施した。このテストは、主面を乾いた指先にて5回程度擦り付けることによって実施した。微小変形部が凸部である例14が例13よりも触感に優れていた。その他のガラス板についても同様の触感テストを実施したところ、面積比率が同じ範囲にある場合、微小変形部が凸部であるガラス板は、微小変形部が凹部であるガラス板よりも触感に優れていることが確認できた。 Furthermore, a tactile test was conducted on the main surface of the glass plate for Examples 13 and 14 in which the area ratio of the micro-deformed portions was approximately the same but the shape (concave or convex) of the micro-deformed portions was different. This test was conducted by rubbing the main surface with a dry fingertip about 5 times. Example 14, in which the minutely deformed portion was a convex portion, had better tactile sensation than Example 13. Similar tactile tests were conducted on other glass plates, and it was found that when the area ratios were in the same range, glass plates with convex micro-deformations had a better tactile feel than glass plates with concave micro-deformations. It was confirmed that

また、例1~17の連続部について断面SEMを用いて表面粗さ曲線を測定し、連絡部に相当する部分について同曲線から算術平均粗さRaと同様の式により平均粗さを算出したところ、その値はいずれも0.008μm以下になった。また、例1~17の微小変形部である凸部の頂部又は凹部の底部について同様に平均粗さを算出したところ、その値は、いずれも0.008μm以下になった。例19~35についても同様の測定を実施したところ、平均粗さは同様に低く抑えられていた。 In addition, the surface roughness curves of the continuous parts of Examples 1 to 17 were measured using a cross-sectional SEM, and the average roughness was calculated from the curves using the same formula as the arithmetic mean roughness Ra for the parts corresponding to the connecting parts. , the values were all 0.008 μm or less. Furthermore, when the average roughness was similarly calculated for the tops of the convex portions or the bottoms of the concave portions, which were the minutely deformed portions of Examples 1 to 17, the values were all 0.008 μm or less. Similar measurements were carried out for Examples 19 to 35, and the average roughness was similarly kept low.

図26に例1~16、19~35のグロスとヘイズとの関係を示す。図26に示した実線の斜線は、グロスをX(%)、ヘイズをY(%)と表示したときに、Y=-1/6X+20で示される。表1の例1~16のガラス板の特性は、図26においてこの直線の下方に、より詳しくは上記斜線とY=-1/6X+15で表される図26では図示を省略する斜線との間にプロットされる。特に例1~6のガラス板は、寸法の平均値が3.2μm~13.6μmであって、画素密度326ppiの画像表示装置と組み合わせにおいてスパークルを抑制しながらも、グロス及びヘイズとを従来よりもバランスよく低下させたものである。 FIG. 26 shows the relationship between gloss and haze for Examples 1 to 16 and 19 to 35. The solid diagonal line shown in FIG. 26 is expressed as Y=-1/6X+20 when gloss is expressed as X (%) and haze is expressed as Y (%). The characteristics of the glass plates of Examples 1 to 16 in Table 1 are shown below this straight line in FIG. 26, more specifically between the above diagonal line and the diagonal line not shown in FIG. 26 represented by Y=-1/6X+15. is plotted. In particular, the glass plates of Examples 1 to 6 have an average size of 3.2 μm to 13.6 μm, and when used in combination with an image display device with a pixel density of 326 ppi, sparkle can be suppressed, while gloss and haze can be suppressed compared to conventional glass plates. It is also a well-balanced reduction.

例19~35は、ヘイズが十分に抑えられているがグロスがやや高く、例22、25、27を除いてY≦-1/6X+20の関係を具備しない。しかし、これらのサンプルからも、実用上問題がない特性が得られることが確認された。特に、例19~35のガラス板は、画素密度326ppiの画像表示装置と組み合わせにおいてスパークルが抑制され、ヘイズが十分に低下し、かつ反射ムラも良好に抑制されたものであった。図26に示した破線の斜線は、Y=-1/40X+8で示される。例19~35のガラス板の特性は、図26においてこの直線の下方にプロットされている。 In Examples 19 to 35, the haze is sufficiently suppressed, but the gloss is slightly high, and except for Examples 22, 25, and 27, the relationship Y≦−1/6X+20 is not satisfied. However, it was confirmed that these samples also had properties that caused no problems in practical use. In particular, in the glass plates of Examples 19 to 35, when combined with an image display device with a pixel density of 326 ppi, sparkle was suppressed, haze was sufficiently reduced, and reflection unevenness was well suppressed. The dashed diagonal line shown in FIG. 26 is indicated by Y=-1/40X+8. The properties of the glass plates of Examples 19-35 are plotted below this straight line in FIG.

図26にプロットされたPD1~3は、それぞれ特許文献1~3においてスパークルを抑制できた実施例として開示されているガラス板の特性を示したものである。特許文献1~3の実施例のガラス板は、画素密度326ppiの画像表示装置と組み合わせにおいてスパークルを抑制しているが、グロス及びヘイズを共に小さく抑えることには成功していない。特許文献1~3の技術は、これらの文献に比較例として提示されているように、スパークルの発生を許容しなければグロスとヘイズとを適切に設定できない。特許文献1~3の実施例のガラス板は、寸法が3μm程度以下の微小変形部の比率が高いために特性がやや劣ることになったと考えられる。これらの特許文献に開示されている従来の技術では、適度な寸法の微小変形部を寸法のバラツキを抑制して形成することが難しい。 PD1 to PD3 plotted in FIG. 26 indicate the characteristics of glass plates disclosed as examples in which sparkle can be suppressed in Patent Documents 1 to 3, respectively. Although the glass plates of the examples of Patent Documents 1 to 3 suppress sparkle when combined with an image display device with a pixel density of 326 ppi, they have not succeeded in suppressing both gloss and haze. As shown in these documents as comparative examples, the techniques of Patent Documents 1 to 3 cannot appropriately set gloss and haze unless generation of sparkles is allowed. It is thought that the glass plates of the Examples of Patent Documents 1 to 3 had slightly inferior characteristics because they had a high proportion of minutely deformed portions with dimensions of about 3 μm or less. With the conventional techniques disclosed in these patent documents, it is difficult to form minutely deformed portions with appropriate dimensions while suppressing dimensional variations.

特許文献1~3に示されているような従来の防眩ガラスでは、その主面に形成された微小凹凸の形状及び配置が制御されていない。このため、わずかな製造条件の相違で大きく特性が変化することがある。例えば、図26の実線の斜線に最も近い*のガラス板(グロス66%、ヘイズ9.6%)は、エッチングの時間を5秒間短くするだけでグロス及びヘイズがともに大きく上昇する(グロス75%、へイズ13.6%;特許文献2実施例8及び9を参照)。 In conventional anti-glare glasses such as those shown in Patent Documents 1 to 3, the shape and arrangement of minute irregularities formed on the main surface thereof are not controlled. Therefore, a slight difference in manufacturing conditions may cause a large change in characteristics. For example, for the glass plate marked * closest to the solid diagonal line in Figure 26 (66% gloss, 9.6% haze), both the gloss and haze significantly increase by shortening the etching time by 5 seconds (75% gloss). , haze 13.6%; see Examples 8 and 9 of Patent Document 2).

表1の例1~4及び6~7を参照すると、寸法の標準偏差を測定した例から算出した寸法の変動係数(標準偏差/平均値)は、いずれも2.8~2.9%程度と十分に小さくなった。また、例5には、寸法が明確に異なり、区分可能な2種の微小変形部α、βが存在し(微小変形部αの最小寸法は微小変形部βの最大寸法よりも2μm以上大きい)、各微小変形部について算出した寸法の変動係数はともに2.8~2.9%程度であった。 Referring to Examples 1 to 4 and 6 to 7 in Table 1, the coefficient of variation (standard deviation/average value) of dimensions calculated from the examples in which the standard deviation of dimensions was measured is approximately 2.8 to 2.9%. It became small enough. Furthermore, in Example 5, there are two types of micro-deformed parts α and β that have clearly different dimensions and can be distinguished (the minimum dimension of the micro-deformed part α is 2 μm or more larger than the maximum dimension of the micro-deformed part β). The dimensional variation coefficients calculated for each minutely deformed portion were both about 2.8 to 2.9%.

微小変形部がランダムに配置されているように見える例8及び9においても、微小変形部の個数を相当数含む領域を対象として判断するとその配置に周期性が存在することが確認できた。例8、9とも200μm四方には130~140個の微小変形部が存在し、これに対応するFT輝点数は5である。一方、これの1/4程度の微小変形部を含む100μm四方の領域から得られるFT輝点数は、例8,9とも、従来のランダムな微小変形部と同様、1つのみであった。FT輝点数に基づく微小変形部の周期性の判定は、微小変形部を80~150個含むように領域を設定することが正確を期す上では望ましい。このような個数に基づく領域の設定は、微小変形部の平均最短距離が図示した例よりも長くその分布密度が図示した例よりも小さい、主面に対して特に有効と考えられる。 Even in Examples 8 and 9, where the minutely deformed portions appear to be arranged randomly, it was confirmed that there was periodicity in the arrangement when a region containing a considerable number of the minutely deformed portions was judged as the target. In both Examples 8 and 9, there are 130 to 140 minute deformations in a 200 μm square, and the corresponding number of FT bright spots is 5. On the other hand, in both Examples 8 and 9, the number of FT bright spots obtained from a 100 μm square area including a minutely deformed portion of about 1/4 of this was only one, similar to the conventional random minutely deformed portion. In determining the periodicity of the minutely deformed portions based on the number of FT bright spots, it is desirable to set the region to include 80 to 150 minutely deformed portions in order to ensure accuracy. Setting the area based on such a number is considered to be particularly effective for the main surface where the average shortest distance of the minutely deformed portions is longer than in the illustrated example and the distribution density thereof is smaller than in the illustrated example.

表1の例8~10、12~13及び15、並びに表2の例19~35を参照すると、変動係数は、3~35%の範囲にあり、ややバラツキが大きくなっている。この程度に微小変形部の寸法にバラツキが認められても、スパークル抑制効果を始めとする効果は十分に得られた。また、この程度に大きい変動係数は反射ムラの抑制に有効であった。例5、11、14及び16には、寸法が明確に異なり、区分可能な微小変形部が存在し、微小変形部の種類ごとに見ると、その寸法のバラツキは小さくなっている。例5と同様、例11、14及び16についても、確認した範囲では、区分可能な種類ごとに見た微小変形部の寸法の変動係数は、23%以下となっていた。また、例32は、微小変形部の寸法のバラツキがごく微小に抑えられている。このようなガラス板においても、微小変形部の配置の規則性を緩和すれば(二値化処理AによるFT輝点数:1)、反射ムラはある程度改善される。 Referring to Examples 8 to 10, 12 to 13, and 15 in Table 1, and Examples 19 to 35 in Table 2, the coefficient of variation is in the range of 3 to 35%, and the variation is somewhat large. Even if variations in the dimensions of the minutely deformed portions were observed to this extent, sufficient effects including the sparkle suppressing effect were obtained. Further, a coefficient of variation as large as this was effective in suppressing reflection unevenness. In Examples 5, 11, 14, and 16, there are minutely deformed portions that have clearly different dimensions and can be distinguished, and when looking at each type of minutely deformed portion, the variation in the dimensions is small. Similar to Example 5, in Examples 11, 14, and 16, the coefficient of variation of the dimensions of the minutely deformed portions for each classifiable type was 23% or less within the confirmed range. Furthermore, in Example 32, the variation in dimensions of the minutely deformed portions is suppressed to a very small level. Even in such a glass plate, if the regularity of the arrangement of the minutely deformed parts is relaxed (the number of FT bright spots by binarization processing A: 1), the reflection unevenness can be improved to some extent.

一方、例17の微小変形部の平均寸法は40μmを超えており、スパークル抑制効果が得られなかった。例18は、微小変形部の平均寸法が2μm程度であった。例18は、例1~17及び19~35とは異なり、寸法0.5~3.0μmの微小変形部を多数有し、透過光は激しく白濁していた。なお、例18は、各微小変形部が実質的に平坦な領域で囲
まれておらず、主面のほぼすべてに微小変形部が形成されている点においても、そのような領域が存在し、微小変形部の面積比率が半分以下であるその他の例と相違していた(図6~25参照)。
On the other hand, the average size of the minutely deformed portions in Example 17 exceeded 40 μm, and no sparkle suppressing effect was obtained. In Example 18, the average size of the minutely deformed portions was about 2 μm. Unlike Examples 1 to 17 and 19 to 35, Example 18 had many minute deformations with dimensions of 0.5 to 3.0 μm, and the transmitted light was extremely cloudy. In addition, in Example 18, each micro-deformation part is not surrounded by a substantially flat area, and such a region exists, even in that the micro-deformation part is formed on almost the entire main surface. This was different from other examples in which the area ratio of the minutely deformed portion was less than half (see FIGS. 6 to 25).

Figure 0007372395000001
Figure 0007372395000001

Figure 0007372395000002
Figure 0007372395000002

表1において、例1~16は寸法0.5μm~3.6μmの微小変形部A2の個数基準の比率が3%未満であった。例7~16は寸法0.5μm~4.0μmの微小変形部A3の個数基準の比率が3%未満であった。例10~16は寸法0.5μm~5.3μmの微小変形部A4の個数基準の比率が3%未満であった。例10~11、14~16は寸法0.5μm~6.5μmの微小変形部A5の個数基準の比率が3%未満であった。また、表2において、例19~35は寸法0.5μm~3.6μmの微小変形部A2の個数基準の比率が3%未満であった。例23~35は寸法0.5μm~4.0μmの微小変形部A3の個数基準の比率が3%未満であった。例28~35は寸法0.5μm~5.3μmの微小変形部A4の個数基準の比率が3%未満であった。例30~35は寸法0.5μm~6.5μmの微小変形部A5の個数基準の比率が3%未満であった。また、例1~10、12~13、15~16、18~35は、寸法が35.5μmを上回る微小変形部Bの個数基準の比率が15%未満であった。 In Table 1, in Examples 1 to 16, the ratio based on the number of minutely deformed portions A2 with dimensions of 0.5 μm to 3.6 μm was less than 3%. In Examples 7 to 16, the ratio based on the number of minutely deformed portions A3 having dimensions of 0.5 μm to 4.0 μm was less than 3%. In Examples 10 to 16, the ratio based on the number of minutely deformed portions A4 having dimensions of 0.5 μm to 5.3 μm was less than 3%. In Examples 10 to 11 and 14 to 16, the ratio based on the number of minutely deformed portions A5 having dimensions of 0.5 μm to 6.5 μm was less than 3%. Furthermore, in Table 2, in Examples 19 to 35, the ratio based on the number of minutely deformed portions A2 having dimensions of 0.5 μm to 3.6 μm was less than 3%. In Examples 23 to 35, the ratio based on the number of minutely deformed portions A3 having dimensions of 0.5 μm to 4.0 μm was less than 3%. In Examples 28 to 35, the ratio based on the number of minutely deformed portions A4 having dimensions of 0.5 μm to 5.3 μm was less than 3%. In Examples 30 to 35, the number-based ratio of minutely deformed portions A5 having dimensions of 0.5 μm to 6.5 μm was less than 3%. Further, in Examples 1 to 10, 12 to 13, 15 to 16, and 18 to 35, the ratio based on the number of minutely deformed portions B having a dimension of more than 35.5 μm was less than 15%.

なお、本実施例に記載のようなフォトリソグラフィー-エッチングによれば、良好な性
能を示すガラスを再現性よく製造することができる。この製造方法は、製品間のバラツキや不良率を大幅に低下させることにも適している。
Note that according to photolithography-etching as described in this example, glass exhibiting good performance can be manufactured with good reproducibility. This manufacturing method is also suitable for significantly reducing product-to-product variation and defect rate.

本発明によるガラス板は、特に画像表示装置の画像表示側に配置する防眩機能を有するガラスとして利用価値が高い。 The glass plate according to the present invention is particularly useful as a glass having an anti-glare function to be placed on the image display side of an image display device.

Claims (12)

複数の微小変形部を有する主面を備え、
前記複数の微小変形部は複数の凹部であり、
前記主面に垂直な方向から観察して前記微小変形部を囲む最小の直角四角形の互いに隣接する2辺の長さの平均値を当該微小変形部の寸法と定義したときに、前記複数の微小変形部の前記寸法の平均値が3.2μm~35.5μmであり、かつ
前記複数の微小変形部に占める前記寸法が0.5μm~3.0μmの微小変形部A1の個数基準の比率が5%未満であるとの条件a1、及び/又は、前記複数の微小変形部の前記寸法の変動係数が40%以下であるとの条件d1、を満たし、
前記主面の200μm四方の領域を前記方向から観察して前記複数の微小変形部を周囲から区別する二値化処理Aをした画像の二次元フーリエ変換像に3~30個の輝点が観察されるか、又は前記二値化処理Aをした画像の二次元フーリエ変換像に1個の輝点が、前記二値化処理Aに代えて二値化処理Bをした画像の二次元フーリエ変換像に2以上の輝点がそれぞれ観察される、ガラス板。
ここで、二値化処理Aは画像を256×256の画素に区分けして実施する二値化処理であり、二値化処理Bは画像を65536×65536の画素に区分けして実施する二値化処理である。
A main surface having a plurality of micro-deformed parts,
The plurality of minute deformation parts are a plurality of recesses ,
When the average value of the lengths of two mutually adjacent sides of the smallest right-angled quadrangle surrounding the micro-deformed part when observed from the direction perpendicular to the main surface is defined as the dimension of the micro-deformed part, the plurality of micro-deformed parts The average value of the dimensions of the deformed parts is 3.2 μm to 35.5 μm, and the number-based ratio of the micro-deformed parts A1 having the dimensions of 0.5 μm to 3.0 μm to the plurality of micro-deformed parts is 5. %, and/or the condition d1 that the coefficient of variation of the dimensions of the plurality of slightly deformed parts is 40% or less ,
3 to 30 bright spots are observed in a two-dimensional Fourier transformed image of an image obtained by observing a 200 μm square area of the principal surface from the direction and performing binarization processing A to distinguish the plurality of minute deformations from the surroundings. or one bright spot in the two-dimensional Fourier transform image of the image that has undergone the binarization process A, or the two-dimensional Fourier transform of the image that has undergone the binarization process B instead of the binarization process A. A glass plate on which two or more bright spots are observed in each image .
Here, the binarization process A is a binarization process that is executed by dividing the image into 256 x 256 pixels, and the binarization process B is a binarization process that is executed by dividing the image into 65536 x 65536 pixels. It is a process of conversion.
前記主面において前記複数の微小変形部はそれぞれ実質的に平坦な連続部によって囲まれている、請求項1に記載のガラス板。 The glass plate according to claim 1, wherein each of the plurality of minutely deformed portions is surrounded by a substantially flat continuous portion on the main surface. 前記主面の面積に対する前記複数の微小変形部の面積の合計が占める比率が1.5~60%である、請求項1に記載のガラス板。 The glass plate according to claim 1, wherein the ratio of the total area of the plurality of minutely deformed parts to the area of the main surface is 1.5 to 60%. 前記複数の微小変形部の前記寸法の変動係数が23%以下である、請求項1に記載のガラス板。 The glass plate according to claim 1, wherein a coefficient of variation of the dimensions of the plurality of minutely deformed portions is 23% or less. 前記複数の微小変形部の前記寸法の変動係数が23%を超える、請求項1に記載のガラス板。 The glass plate according to claim 1, wherein a coefficient of variation of the dimensions of the plurality of minutely deformed portions exceeds 23%. 前記複数の微小変形部に占める前記寸法が0.5μm~3.6μmの微小変形部A2の個数基準の比率が5%未満であるとの条件a2を満たす、請求項1に記載のガラス板。 The glass plate according to claim 1, which satisfies a condition a2 that a number-based ratio of the micro-deformed portions A2 having the dimensions of 0.5 μm to 3.6 μm in the plurality of micro-deformed portions is less than 5%. 前記複数の微小変形部に占める前記寸法が0.5μm~4.0μmの微小変形部A3の個数基準の比率が5%未満であるとの条件a3を満たす、請求項6に記載のガラス板。 7. The glass plate according to claim 6, which satisfies condition a3 that a number-based ratio of the micro-deformed portions A3 having the dimensions of 0.5 μm to 4.0 μm in the plurality of micro-deformed portions is less than 5%. 前記複数の微小変形部の前記寸法の平均値が3.2μm以上13.6μm以下である、請求項1に記載のガラス板。 The glass plate according to claim 1, wherein the average value of the dimensions of the plurality of minutely deformed portions is 3.2 μm or more and 13.6 μm or less. 前記複数の微小変形部の前記寸法の平均値が7μm以上13.6μm以下である、請求項に記載のガラス板。 The glass plate according to claim 8 , wherein the average value of the dimensions of the plurality of minutely deformed portions is 7 μm or more and 13.6 μm or less. グロスをX(%)、ヘイズをY(%)と表示したときに、Y≦-1/6X+20及びY≦-1/40X+8の少なくとも1つの関係式を満たす、請求項1に記載のガラス板。 The glass plate according to claim 1, which satisfies at least one relational expression of Y≦-1/6X+20 and Y≦-1/40X+8 when gloss is expressed as X (%) and haze is expressed as Y (%). 前記複数の微小変形部の前記寸法の変動係数が3%以上である、請求項1に記載のガラス板。 The glass plate according to claim 1, wherein the coefficient of variation of the dimensions of the plurality of minutely deformed parts is 3% or more. 前記複数の微小変形部に占める前記寸法が35.5μmを上回る微小変形部Bの個数基準の比率が15%未満であるとの条件bを満たす、請求項1に記載のガラス板。 The glass plate according to claim 1, which satisfies condition b that the number-based ratio of the micro-deformed portions B having the dimension exceeding 35.5 μm to the plurality of micro-deformed portions is less than 15%.
JP2022091209A 2018-07-09 2022-06-03 Glass plate suitable for image display devices Active JP7372395B2 (en)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
JP2018130000 2018-07-09
JP2018130000 2018-07-09
JP2019017246 2019-02-01
JP2019017246 2019-02-01
JP2019081614 2019-04-23
JP2019081614 2019-04-23
JP2021160656A JP7085051B2 (en) 2018-07-09 2021-09-30 Glass plate suitable for image display devices

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2021160656A Division JP7085051B2 (en) 2018-07-09 2021-09-30 Glass plate suitable for image display devices

Publications (2)

Publication Number Publication Date
JP2022130405A JP2022130405A (en) 2022-09-06
JP7372395B2 true JP7372395B2 (en) 2023-10-31

Family

ID=69141819

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2020530123A Active JP6955106B2 (en) 2018-07-09 2019-07-01 Glass plate suitable for image display devices
JP2021160656A Active JP7085051B2 (en) 2018-07-09 2021-09-30 Glass plate suitable for image display devices
JP2022091209A Active JP7372395B2 (en) 2018-07-09 2022-06-03 Glass plate suitable for image display devices

Family Applications Before (2)

Application Number Title Priority Date Filing Date
JP2020530123A Active JP6955106B2 (en) 2018-07-09 2019-07-01 Glass plate suitable for image display devices
JP2021160656A Active JP7085051B2 (en) 2018-07-09 2021-09-30 Glass plate suitable for image display devices

Country Status (7)

Country Link
US (1) US20210230052A1 (en)
EP (1) EP3822234A4 (en)
JP (3) JP6955106B2 (en)
KR (1) KR20210030422A (en)
CN (3) CN115432936B (en)
TW (1) TWI795576B (en)
WO (1) WO2020013012A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210230052A1 (en) 2018-07-09 2021-07-29 Nippon Sheet Glass Company, Limited Glass plate suitable for image display device
US20220011478A1 (en) * 2020-07-09 2022-01-13 Corning Incorporated Textured region of a substrate to reduce specular reflectance incorporating surface features with an elliptical perimeter or segments thereof, and method of making the same
JP2022085125A (en) * 2020-11-27 2022-06-08 日東電工株式会社 Multilayer structure
CN117836248A (en) * 2021-07-06 2024-04-05 康宁公司 Anti-glare substrate for display article having textured regions comprising one or more surfaces at two, three, or four elevations and surface features providing at least a portion of the one or more surfaces and method of making the same
WO2023028019A1 (en) * 2021-08-25 2023-03-02 Corning Incorporated Textured glass-based articles

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016186935A1 (en) 2015-05-15 2016-11-24 Corning Incorporated Glass article comprising light extraction features and methods for making the same
WO2016187194A1 (en) 2015-05-18 2016-11-24 Corning Incorporated Glass articles comprising light extraction features and methods for making the same
JP2017510531A (en) 2013-12-17 2017-04-13 コーニング インコーポレイテッド High speed laser drilling method for glass and glass products
JP2018018378A (en) 2016-07-29 2018-02-01 兼松株式会社 Touch panel cover glass
WO2020013012A1 (en) 2018-07-09 2020-01-16 日本板硝子株式会社 Glass plate suitable for image display device

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2764559B2 (en) * 1995-06-12 1998-06-11 大日本印刷株式会社 Lens array sheet, surface light source and transmissive display
CN1165781C (en) * 1999-08-24 2004-09-08 株式会社辻电 Protective film for prism lens
US7329611B2 (en) * 2002-04-11 2008-02-12 Nec Corporation Method for forming finely-structured parts, finely-structured parts formed thereby, and product using such finely-structured part
US7150904B2 (en) * 2004-07-27 2006-12-19 Ut-Battelle, Llc Composite, ordered material having sharp surface features
US8598771B2 (en) * 2009-09-15 2013-12-03 Corning Incorporated Glass and display having anti-glare properties
WO2011072227A1 (en) * 2009-12-10 2011-06-16 Nano Terra Inc. Structured smudge-resistant anti-reflective coatings and methods of making and using the same
US9017566B2 (en) * 2010-04-30 2015-04-28 Corning Incorporated Anti-glare surface treatment method and articles thereof
US9446979B2 (en) * 2011-11-02 2016-09-20 Corning Incorporated Method for sparkle control and articles thereof
JP5784528B2 (en) * 2011-11-28 2015-09-24 日本板硝子株式会社 Antiglare glass substrate and method for producing the same
US20150174625A1 (en) * 2011-11-30 2015-06-25 Corning Incorporated Articles with monolithic, structured surfaces and methods for making and using same
KR20150109358A (en) 2013-01-21 2015-10-01 아사히 가라스 가부시키가이샤 Transparent substrate
KR101470306B1 (en) * 2013-09-17 2014-12-09 (주)에스이피 Maskless Etching Apparatus By Condensing Behavior of Etching Gas, And Etching Method For Fabricating Nano or Micro Scale Pattern Using The Same
KR102396551B1 (en) * 2013-12-19 2022-05-12 코닝 인코포레이티드 Textured surfaces for display applications
JP2015143756A (en) * 2014-01-31 2015-08-06 パナソニックIpマネジメント株式会社 Optical sheet and light-emitting device
JP6681381B2 (en) 2014-07-09 2020-04-15 エージーシー グラス ユーロップAgc Glass Europe Low sparkle glass plate
WO2016113970A1 (en) * 2015-01-14 2016-07-21 セントラル硝子株式会社 Antiglare glass sheet article for display device and method of manufacturing same
JP6652696B2 (en) 2015-01-14 2020-02-26 セントラル硝子株式会社 Anti-glare glass plate article for display device and method for producing the same
US10239782B2 (en) * 2015-02-26 2019-03-26 Corning Incorporated Method for controlling surface features on glass-ceramic articles and articles formed therefrom
CN107924003B (en) * 2016-02-01 2020-08-25 Agc株式会社 Light-transmitting structure

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017510531A (en) 2013-12-17 2017-04-13 コーニング インコーポレイテッド High speed laser drilling method for glass and glass products
WO2016186935A1 (en) 2015-05-15 2016-11-24 Corning Incorporated Glass article comprising light extraction features and methods for making the same
WO2016187194A1 (en) 2015-05-18 2016-11-24 Corning Incorporated Glass articles comprising light extraction features and methods for making the same
JP2018018378A (en) 2016-07-29 2018-02-01 兼松株式会社 Touch panel cover glass
WO2020013012A1 (en) 2018-07-09 2020-01-16 日本板硝子株式会社 Glass plate suitable for image display device

Also Published As

Publication number Publication date
JPWO2020013012A1 (en) 2021-08-02
CN115448607A (en) 2022-12-09
WO2020013012A1 (en) 2020-01-16
EP3822234A1 (en) 2021-05-19
KR20210030422A (en) 2021-03-17
TW202010721A (en) 2020-03-16
CN112368247B (en) 2022-10-25
CN115432936A (en) 2022-12-06
JP6955106B2 (en) 2021-10-27
TWI795576B (en) 2023-03-11
EP3822234A4 (en) 2022-04-27
JP2022130405A (en) 2022-09-06
JP2022017240A (en) 2022-01-25
CN112368247A (en) 2021-02-12
CN115432936B (en) 2023-09-01
US20210230052A1 (en) 2021-07-29
JP7085051B2 (en) 2022-06-15

Similar Documents

Publication Publication Date Title
JP7372395B2 (en) Glass plate suitable for image display devices
US20190256410A1 (en) Translucent structure
US20220384763A1 (en) Transparent display device, simulation method, and manufacturing method
JP7026785B2 (en) High-strength anti-fingerprint glass, its manufacturing method, exterior parts of high-strength anti-fingerprint glass and its manufacturing method
JP6285888B2 (en) Conductive film, display device including the same, and method for evaluating conductive film
DE202015104242U1 (en) Optical film
TWI688886B (en) Conductive film, display device equipped with the same, and method for evaluating conductive film
KR20130058705A (en) Anti-glare surface and method of making
TW202216629A (en) Textured region of a substrate to reduce specular reflectance incorporating surface features with an elliptical perimeter or segments thereof, and method of making the same
CN108439813B (en) Low-glare anti-glare glass-based article with bend reduction and method of reducing bend in anti-glare glass-based article
JP2022546623A (en) Roughened antiglare glass article and method for producing the same
TW202104117A (en) Glass substrate with a textured surface with surface features having a certain ratio of height-to-width to provide anti-glare properties and increased resistance to scratches
US11807572B2 (en) Glass plate, glass plate having anti-reflection layer, and method for producing glass plate
US20020067445A1 (en) Reflecting panel structure of reflective liquid crystal display
WO2016060142A1 (en) Conductive film, display device provided therewith, and conductive film evaluation method
JP2019050855A (en) Skin evaluation method
US20240158290A1 (en) Dual textured glass articles and methods of making the same
CN115003639A (en) Glass substrate, display device, and method for manufacturing glass substrate
TW202311194A (en) Anti-glare substrate for a display article with a textured region including one or more surfaces at two, three, or four elevations, and surfaces features providing at least a portion of the one or more surfaces, and method of making the same
US20200096681A1 (en) Transparent substrate
JP2018160214A (en) Pen input device, substrate for pen input device, and method for manufacturing the same
TW202338125A (en) Inspecting method of metal mask
JP2014074788A (en) Original plate for low reflection structure molding and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220603

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230606

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230802

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230926

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231019

R150 Certificate of patent or registration of utility model

Ref document number: 7372395

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150