JP7371405B2 - Nucleic acid sample quality evaluation method - Google Patents

Nucleic acid sample quality evaluation method Download PDF

Info

Publication number
JP7371405B2
JP7371405B2 JP2019166054A JP2019166054A JP7371405B2 JP 7371405 B2 JP7371405 B2 JP 7371405B2 JP 2019166054 A JP2019166054 A JP 2019166054A JP 2019166054 A JP2019166054 A JP 2019166054A JP 7371405 B2 JP7371405 B2 JP 7371405B2
Authority
JP
Japan
Prior art keywords
nucleic acid
oligonucleotide primer
sample
seq
set forth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019166054A
Other languages
Japanese (ja)
Other versions
JP2021040555A (en
Inventor
惇 野口
篤史 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2019166054A priority Critical patent/JP7371405B2/en
Publication of JP2021040555A publication Critical patent/JP2021040555A/en
Application granted granted Critical
Publication of JP7371405B2 publication Critical patent/JP7371405B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、試料中に含まれる核酸の品質評価方法に関する。特に本発明は、核酸増幅反応を利用して核酸試料の品質を評価する方法に関する。 The present invention relates to a method for evaluating the quality of nucleic acids contained in a sample. In particular, the present invention relates to a method for evaluating the quality of a nucleic acid sample using a nucleic acid amplification reaction.

近年、血液などの体液や臓器などの組織を構成する細胞を個別に解析し、基礎研究や臨床診断、治療へ応用する研究が進められている。例えば、がん患者の血液中を循環する腫瘍細胞(Circulating Tumor Cell、以下CTC)を対象に、当該細胞について形態学的分析、組織型分析や遺伝子解析を行ない、これら分析や解析により得られた知見に基づき、治療方針の決定や治療中における病態変化を判断する研究が進められている。 In recent years, research has been underway to analyze individual cells that make up body fluids such as blood and tissues such as organs, and to apply this to basic research, clinical diagnosis, and treatment. For example, morphological analysis, tissue type analysis, and genetic analysis are performed on tumor cells (Circulating Tumor Cells, hereinafter referred to as CTCs) circulating in the blood of cancer patients, and the results obtained from these analyzes and analyzes are Based on the findings, research is underway to determine treatment policies and determine changes in pathological conditions during treatment.

一方で同種の細胞であっても、タンパク質や核酸などの生体分子の量や質が異なる不均一性が、細胞ごとに存在することが知られている。特にCTCは高い頻度でアポトーシスを起こしていることが知られており、アポトーシスの進んだCTCでは、タンパク質や核酸などの生体分子の分解が進行していることが懸念される。したがって、CTCを個別に解析する場合、解析対象のCTCごとに解析の成功率が異なることが予想される。 On the other hand, it is known that even cells of the same type exhibit heterogeneity in the amount and quality of biomolecules such as proteins and nucleic acids. In particular, CTCs are known to undergo apoptosis at a high frequency, and there is concern that in CTCs with advanced apoptosis, biomolecules such as proteins and nucleic acids are degraded. Therefore, when analyzing CTCs individually, it is expected that the success rate of analysis will differ depending on the CTC to be analyzed.

また試料中に含まれる標的細胞を個別に解析する場合、一般的には、フローサイトメーターを用いて前記標的細胞を個別に回収したり、前記標的細胞を含む細胞群をスライドガラスなどの基板上に並べた後、顕微鏡およびマイクロマニュピレーターを用いて個別に回収した後、解析する。ここで標的細胞を個別に回収する際、夾雑細胞と区別して回収する必要があるため、通常は、標的細胞内に存在するタンパク質や核酸などの生体分子で当該標的細胞を標識してから回収する。例えば、CTCを回収するには、CTCなど上皮系細胞に特徴的な細胞内タンパク質であるサイトケラチンに対する蛍光標識抗体や、CTC内のDNAに対して強力に結合する蛍光色素であるDAPI(4’,6-diamidino-2-phenylindole)を用いて、CTCを蛍光標識し回収する。 In addition, when analyzing target cells contained in a sample individually, generally, the target cells are collected individually using a flow cytometer, or a group of cells containing the target cells is placed on a substrate such as a slide glass. After arranging the cells, they are collected individually using a microscope and micromanipulator, and then analyzed. When collecting target cells individually, it is necessary to collect them separately from contaminant cells, so usually, the target cells are labeled with biomolecules such as proteins and nucleic acids that are present within the target cells, and then collected. . For example, to recover CTCs, fluorescently labeled antibodies against cytokeratin, an intracellular protein characteristic of epithelial cells such as CTCs, or DAPI (4' , 6-diamidino-2-phenylindole), the CTCs are fluorescently labeled and collected.

しかしながら、標的細胞内の生体分子を標識する場合、当該細胞の固定処理や膜透過処理が必要であり、これら処理によりタンパク質や核酸などの生体分子が変性および/または溶出してしまう懸念がある。そのため、前述した細胞回収方法により個別に回収した細胞の生体分子を解析する場合に、当該生体分子の質や量が無処理の場合に比べて低下し、解析の成功率や精度の悪化が起こり得る。 However, when labeling biomolecules within target cells, fixation treatment and membrane permeabilization treatment of the cells are required, and there is a concern that biomolecules such as proteins and nucleic acids may be denatured and/or eluted due to these treatments. Therefore, when analyzing biomolecules from cells collected individually using the cell collection method described above, the quality and quantity of the biomolecules decreases compared to the case without treatment, resulting in a deterioration in the success rate and accuracy of analysis. obtain.

特に一細胞などの少数の細胞を対象とした解析においては、細胞中に含まれる生体分子の量が少ないことから、良好な解析結果を得るには前記細胞の質や前記細胞に含まれる生体分子の量が重要となる。とりわけ前記解析を、細胞内核酸の次世代シーケンサーによる塩基配列解析で行なう場合、解析に要するコストが依然として高いことから、解析対象細胞(核酸)の品質を評価した上、良好な結果を期待できる細胞のみを解析に供するのが好ましい。 In particular, when analyzing a small number of cells such as a single cell, the amount of biomolecules contained in the cell is small, so obtaining good analysis results depends on the quality of the cell and the biomolecules contained in the cell. The amount of is important. In particular, when performing the above-mentioned analysis using base sequence analysis of intracellular nucleic acids using a next-generation sequencer, the cost required for analysis is still high. It is preferable to subject only the sample to analysis.

核酸試料の品質評価方法として、試料中に含まれる標的核酸をPCR法などの核酸増幅
反応に供し、核酸増幅産物の有無またはその量に基づき評価する方法が知られている(特許文献1、非特許文献1から2)。しかしながら核酸増幅反応においては、標的核酸とハイブリダイズ可能なオリゴヌクレオチドの組み合わせ、すなわちフォワードプライマー(第一のプライマー)とリバースプライマー(第二のプライマー)との組み合わせ(以下、プライマーセットとも表記)を最適化する必要がある。さらに核酸試料の品質評価にあたって、増幅対象とする標的核酸上の領域(標的領域)は複数あると好ましい。複数の標的領域を用いた品質評価を行なう際、当該標的領域とハイブリダイズ可能なプライマーセットを標的領域毎に用意し、当該用意した複数のプライマーセットを含む核酸増幅試薬で複数の標的領域を同時に増幅し得るマルチプレックス核酸増幅を行なうと好ましい。しかしながらマルチプレックス核酸増幅ではプライマー同士の干渉などにより非特異的な増幅や増幅効率の低下が発生しやすく、プライマーセットの最適化が課題である。
As a method for evaluating the quality of a nucleic acid sample, a method is known in which a target nucleic acid contained in a sample is subjected to a nucleic acid amplification reaction such as a PCR method, and the evaluation is performed based on the presence or absence of a nucleic acid amplification product or its amount (Patent Document 1, Patent Documents 1 to 2). However, in nucleic acid amplification reactions, the combination of oligonucleotides that can hybridize with the target nucleic acid, that is, the combination of forward primer (first primer) and reverse primer (second primer) (hereinafter also referred to as primer set) is optimal. It is necessary to Furthermore, in evaluating the quality of a nucleic acid sample, it is preferable that there be a plurality of regions (target regions) on the target nucleic acid to be amplified. When performing quality evaluation using multiple target regions, prepare a primer set that can hybridize with the target region for each target region, and simultaneously target multiple target regions with a nucleic acid amplification reagent containing the multiple prepared primer sets. Preferably, multiplex nucleic acid amplification is performed. However, in multiplex nucleic acid amplification, nonspecific amplification and a decrease in amplification efficiency are likely to occur due to interference between primers, and optimization of primer sets is a challenge.

特表2016-538872号公報Special table 2016-538872 publication

EH van Beers,et al.,British J. Cancer,94,333-337(2006)EH van Beers, et al. , British J. Cancer, 94, 333-337 (2006) Rodolphe Marie,et al.,Lab on a Chip,18,1891-1902(2018)Rodolphe Marie, et al. , Lab on a Chip, 18, 1891-1902 (2018)

本発明の課題は、試料中に含まれる核酸に対して次世代シーケンサーを用いた塩基配列解析を行なうにあたり、当該核酸の品質を評価する方法を提供することにある。 An object of the present invention is to provide a method for evaluating the quality of nucleic acids contained in a sample when performing base sequence analysis using a next-generation sequencer.

上記課題を解決するために、本発明者らは鋭意検討を重ねた結果、本発明に到達した。 In order to solve the above problems, the present inventors have made extensive studies and have arrived at the present invention.

すなわち本発明は、
試料中に含まれる核酸を、当該核酸とハイブリダイズ可能なオリゴヌクレオチドプライマーセットを含む核酸増幅試薬と反応させる工程と、
前記反応工程で得られた核酸増幅産物量を評価する工程とを含む、
試料中に含まれる核酸の品質を評価する方法であって、
前記核酸がヒト細胞由来の核酸であり、前記オリゴヌクレオチドプライマーセットが、少なくとも下記(a)から(d)に示す、いずれか一つである、前記方法である。
(a)配列番号1に記載の配列を少なくとも含むオリゴヌクレオチドプライマーと、配列番号2に記載の配列を少なくとも含むオリゴヌクレオチドプライマーとのセット
(b)配列番号3に記載の配列を少なくとも含むオリゴヌクレオチドプライマーと、配列番号4に記載の配列を少なくとも含むオリゴヌクレオチドプライマーとのセット
(c)配列番号5に記載の配列を少なくとも含むオリゴヌクレオチドプライマーと、配列番号6に記載の配列を少なくとも含むオリゴヌクレオチドプライマーとのセット
(d)配列番号7に記載の配列を少なくとも含むオリゴヌクレオチドプライマーと、配列番号8に記載の配列を少なくとも含むオリゴヌクレオチドプライマーとのセット。
That is, the present invention
a step of reacting the nucleic acid contained in the sample with a nucleic acid amplification reagent containing an oligonucleotide primer set that can hybridize with the nucleic acid;
and a step of evaluating the amount of the nucleic acid amplification product obtained in the reaction step.
A method for evaluating the quality of nucleic acids contained in a sample, the method comprising:
In the method, the nucleic acid is a human cell-derived nucleic acid, and the oligonucleotide primer set is at least one of the following (a) to (d).
(a) A set of an oligonucleotide primer containing at least the sequence set forth in SEQ ID NO: 1 and an oligonucleotide primer containing at least the sequence set forth in SEQ ID NO: 2. (b) An oligonucleotide primer containing at least the sequence set forth in SEQ ID NO: 3. and a set of oligonucleotide primers containing at least the sequence set forth in SEQ ID NO: 4 (c) an oligonucleotide primer containing at least the sequence set forth in SEQ ID NO: 5, and an oligonucleotide primer containing at least the sequence set forth in SEQ ID NO: 6. (d) A set of an oligonucleotide primer containing at least the sequence set forth in SEQ ID NO: 7 and an oligonucleotide primer containing at least the sequence set forth in SEQ ID NO: 8.

以下、本発明を詳細に説明する。 The present invention will be explained in detail below.

本発明において、核酸を含む試料は、ヒト細胞由来の核酸を含む試料であれば特に限定はない。一例として、尿、全血、希釈血液、血漿、血清、唾液、精液、糞便、痰、髄液、腹水、羊水といったヒトから取得した試料や、細胞の凝集物、腫瘍、リンパ節、動脈といったヒトの器官または組織由来の試料や、ヒト由来の細胞や組織の培養物およびそれらの培養液といった培養試料があげられる。また、後述するオリゴヌクレオチドプライマーセットにより増幅される標的核酸を含み得る試料であれば、人工的に合成した前記標的核酸を含む水溶液など、生体分子に由来しない試料を用いてもよい。さらに前記核酸を含む試料は、後述するオリゴヌクレオチドプライマーセットを含む核酸増幅試薬により標的核酸を増幅可能な態様を維持している限り、エタノールなどによる細胞膜透過処理や、ホルムアルデヒドなどによる細胞固定処理や、ホルマリン固定パラフィン包埋などによる標本化処理や、抗体や蛍光標識物質による染色処理といった、種々の処理を施した試料であっても良い。 In the present invention, the sample containing nucleic acid is not particularly limited as long as it contains human cell-derived nucleic acid. Examples include human samples such as urine, whole blood, diluted blood, plasma, serum, saliva, semen, feces, sputum, cerebrospinal fluid, ascites, amniotic fluid, and human samples such as cell aggregates, tumors, lymph nodes, and arteries. Examples include samples derived from human organs or tissues, and culture samples such as human-derived cell and tissue cultures and their culture solutions. Furthermore, as long as the sample can contain the target nucleic acid to be amplified by the oligonucleotide primer set described below, a sample not derived from biomolecules may be used, such as an aqueous solution containing the target nucleic acid that has been artificially synthesized. Furthermore, the sample containing the nucleic acid can be subjected to cell membrane permeabilization treatment with ethanol etc., cell fixation treatment with formaldehyde etc., as long as it maintains a state in which the target nucleic acid can be amplified by a nucleic acid amplification reagent containing an oligonucleotide primer set described below. The sample may be subjected to various treatments such as formalin fixation, paraffin embedding, or staining with an antibody or fluorescent labeling substance.

本発明において、試料中から核酸を得る方法には特に限定はない。ヒト由来の生体試料や培養細胞などの試料を直接核酸増幅試薬と反応させても良く、有機溶媒や界面活性剤などを用いて試料から核酸を抽出しても良い。また、抽出した核酸の精製を行なっても良く、さらに全ゲノム増幅などの事前処理を行なっても良い。特に、一細胞や少数細胞を対象とする場合など、試料中に含まれる核酸の量がごく微量な場合は、予め全ゲノム増幅などの核酸試料の増幅操作を実施すると、試料中に含まれる核酸の量が増加し、前記核酸試料の一部を品質評価工程に供せるため、好ましい。 In the present invention, there are no particular limitations on the method for obtaining nucleic acids from a sample. A sample such as a human-derived biological sample or cultured cells may be directly reacted with a nucleic acid amplification reagent, or nucleic acids may be extracted from the sample using an organic solvent, a surfactant, or the like. Further, the extracted nucleic acid may be purified, and further pre-treatment such as whole genome amplification may be performed. In particular, when the amount of nucleic acid contained in a sample is extremely small, such as when targeting a single cell or a small number of cells, performing an amplification operation on the nucleic acid sample such as whole genome amplification in advance can reduce the amount of nucleic acid contained in the sample. This is preferable because the amount of the nucleic acid sample increases and a portion of the nucleic acid sample can be subjected to the quality evaluation process.

本発明における、オリゴヌクレオチドプライマーセットは、試料中に含まれる核酸とハイブリダイズ可能なオリゴヌクレオチドの組み合わせのことをいい、具体的には、前記核酸のうち標的核酸の相補鎖とハイブリダイズ可能な配列を少なくとも含むオリゴヌクレオチドであるフォワードプライマー(第一のプライマー)と、前記核酸のうち標的核酸の相同鎖とハイブリダイズ可能な配列を少なくとも含むオリゴヌクレオチドであるリバースプライマー(第二のプライマー)との組み合わせである。 In the present invention, the oligonucleotide primer set refers to a combination of oligonucleotides that can hybridize with a nucleic acid contained in a sample, and specifically refers to a sequence of the nucleic acids that can hybridize with a complementary strand of a target nucleic acid. A combination of a forward primer (first primer) that is an oligonucleotide that includes at least a sequence of the nucleic acid, and a reverse primer (second primer) that is an oligonucleotide that includes at least a sequence that can hybridize with a homologous strand of the target nucleic acid among the nucleic acids. It is.

本発明ではオリゴヌクレオチドプライマーセットとして、少なくとも下記(a)から(d)に示す、いずれか一つを用いることを特徴としている。 The present invention is characterized in that at least one of the following (a) to (d) is used as the oligonucleotide primer set.

(a)SMAD4遺伝子(GenBank No.NG_013013)の91850番目から91869番目までの塩基配列(配列番号1に記載の配列)を少なくとも含むオリゴヌクレオチドプライマー(フォワードプライマー)と、同遺伝子の91929番目から91948番目までの塩基配列の相補配列(配列番号2に記載の配列)を少なくとも含むオリゴヌクレオチドプライマー(リバースプライマー)との組み合わせ。 (a) An oligonucleotide primer (forward primer) containing at least the base sequence from 91850th to 91869th nucleotide sequence (sequence set forth in SEQ ID NO: 1) of the SMAD4 gene (GenBank No. NG_013013), and 91929th to 91948th nucleotide sequence of the same gene. A combination with an oligonucleotide primer (reverse primer) containing at least a complementary sequence (sequence set forth in SEQ ID NO: 2) of the base sequence up to.

(b)EGFR(Epidermal Growth Factor Receptor)遺伝子(GenBank No.NG_007726)の191258番目から191276番目までの塩基配列(配列番号3に記載の配列)を少なくとも含むオリゴヌクレオチドプライマー(フォワードプライマー)と、同遺伝子の191390番目から191409番目までの塩基配列の相補配列(配列番号4に記載の配列)を少なくとも含むオリゴヌクレオチドプライマー(リバースプライマー)との組み合わせ。 (b) An oligonucleotide primer (forward primer) containing at least the nucleotide sequence from 191258th to 191276th (sequence set forth in SEQ ID NO: 3) of the EGFR (Epidermal Growth Factor Receptor) gene (GenBank No. NG_007726), and the same gene A combination with an oligonucleotide primer (reverse primer) containing at least a complementary sequence of the base sequence from 191390th to 191409th (sequence set forth in SEQ ID NO: 4).

(c)KIT遺伝子(GenBank No.NG_007456)の45324番目から45346番目までの塩基配列(配列番号5に記載の配列)を少なくとも含むオリゴヌクレオチドプライマー(フォワードプライマー)と、同遺伝子の45502番目から45522番目までの塩基配列の相補配列(配列番号6に記載の配列)を少なくとも含むオリゴヌクレオチドプライマー(リバースプライマー)との組み合わせ。 (c) An oligonucleotide primer (forward primer) containing at least the nucleotide sequence from 45324th to 45346th nucleotide sequence (sequence set forth in SEQ ID NO: 5) of the KIT gene (GenBank No. NG_007456), and 45502nd to 45522nd nucleotide sequence of the same gene. A combination with an oligonucleotide primer (reverse primer) containing at least a complementary sequence (sequence set forth in SEQ ID NO: 6) of the base sequence up to.

(d)TP53(Tumor Protein 53)遺伝子(GenBank No.NG_017013)の16294番目から16318番目までの塩基配列(配列番号7に記載の配列)を少なくとも含むオリゴヌクレオチドプライマー(フォワードプライマー)と、同遺伝子の16520番目から16539番目までの塩基配列の相補配列(配列番号8に記載の配列)を少なくとも含むオリゴヌクレオチドプライマー(リバースプライマー)との組み合わせ。 (d) An oligonucleotide primer (forward primer) containing at least the nucleotide sequence from 16294th to 16318th (sequence set forth in SEQ ID NO: 7) of the TP53 (Tumor Protein 53) gene (GenBank No. NG_017013), and A combination with an oligonucleotide primer (reverse primer) containing at least a complementary sequence of the base sequence from position 16520 to position 16539 (sequence set forth in SEQ ID NO: 8).

本発明では、少なくとも前述した(a)から(d)に示す、いずれか一つのオリゴヌクレオチドプライマーセットを含む核酸増幅試薬と試料中に含まれる核酸とを反応させ、当該反応で得られた核酸増幅産物を評価すればよいが、前記核酸増幅試薬に前述した(a)から(d)に示すオリゴヌクレオチドプライマーセットのうちいずれか二つ以上含ませると試料中に含まれる核酸の品質を正確に評価できる点で好ましく、いずれか三つ以上前記核酸増幅試薬に含ませると試料中に含まれる核酸の品質をより正確に評価できる点でより好ましく、前述した(a)から(d)に示すオリゴヌクレオチドプライマーセットすべてを前記核酸増幅試薬に含ませると試料中に含まれる核酸の品質をさらにより正確に評価できる点でさらにより好ましい。さらに、前述した(a)から(d)に示す、いずれか一つのオリゴヌクレオチドプライマーセットを少なくとも含みさえすれば、試料中に含まれる核酸とハイブリダイズ可能な他のオリゴヌクレオチドプライマーセットを核酸増幅試薬に含ませて、試料中に含まれる核酸の品質評価を行なってもよい。 In the present invention, a nucleic acid amplification reagent containing at least one of the oligonucleotide primer sets shown in (a) to (d) above is reacted with a nucleic acid contained in a sample, and the nucleic acid amplification obtained by the reaction is However, if the nucleic acid amplification reagent contains two or more of the oligonucleotide primer sets shown in (a) to (d) above, the quality of the nucleic acids contained in the sample can be evaluated accurately. The oligonucleotides shown in (a) to (d) above are preferable in that they can be used, and it is more preferable to include any three or more in the nucleic acid amplification reagent because the quality of the nucleic acid contained in the sample can be evaluated more accurately. It is even more preferable to include all primer sets in the nucleic acid amplification reagent, since the quality of the nucleic acid contained in the sample can be evaluated even more accurately. Furthermore, as long as the nucleic acid amplification reagent contains at least one of the oligonucleotide primer sets shown in (a) to (d) above, other oligonucleotide primer sets capable of hybridizing with the nucleic acids contained in the sample can be used as a nucleic acid amplification reagent. The quality of nucleic acids contained in a sample may be evaluated by including them in a sample.

本発明で行なう核酸増幅法(試料中に含まれる核酸と核酸増幅試薬との反応方法)に特に限定はなく、PCR法などの当業者が通常用いる核酸増幅法を用いればよい。またループ構造を形成可能な配列やRNAポリメラーゼのプロモーター配列などをフォワードプライマーまたはリバースプライマーにあらかじめ付加したうえで、LAMP(Loop-Mediated Isothermal Amplification)法、NASBA(Nucleic Acid Sequence-Based Amplification)法、TMA(Transcription Mediated Amplification)法、TRC法(Transcription-Reverse Transcription Concerted)などの等温核酸増幅法に用いても良い。 There is no particular limitation on the nucleic acid amplification method (method of reacting a nucleic acid contained in a sample with a nucleic acid amplification reagent) carried out in the present invention, and any nucleic acid amplification method commonly used by those skilled in the art, such as PCR method, may be used. In addition, a sequence that can form a loop structure, an RNA polymerase promoter sequence, etc. is added to the forward primer or reverse primer in advance, and then LAMP (Loop-Mediated Isothermal Amplification) method, NASBA (Nucleic Acid Sequence-Based Amplification) method, etc. ation) law, TMA It may also be used in isothermal nucleic acid amplification methods such as (Transcription Mediated Amplification) method and TRC method (Transcription-Reverse Transcription Concerted).

核酸増幅させる際の試薬組成、反応温度、反応時間などは、使用する核酸増幅方法や核酸増幅酵素、対象とする核酸試料などに応じて適宜決定すれば良い。また、試料中に含まれる核酸と核酸増幅試薬と反応させるにあたって、核酸試料の全量を反応させても良いし、核酸試料の一部のみを反応させても良い。核酸試料の品質評価後に前記核酸試料に対して種々の解析を実施する場合は、核酸試料の一部のみを品質評価工程に供すると、前記核酸試料の残余を種々の解析に使用できる点で好ましい。 The reagent composition, reaction temperature, reaction time, etc. for nucleic acid amplification may be appropriately determined depending on the nucleic acid amplification method, nucleic acid amplification enzyme, target nucleic acid sample, etc. used. Furthermore, when reacting the nucleic acid contained in the sample with the nucleic acid amplification reagent, the entire amount of the nucleic acid sample may be reacted, or only a portion of the nucleic acid sample may be reacted. When performing various analyzes on the nucleic acid sample after quality evaluation of the nucleic acid sample, it is preferable to subject only a part of the nucleic acid sample to the quality evaluation process, since the remainder of the nucleic acid sample can be used for various analyses. .

前述した方法で増幅した標的核酸の量は従来から知られた核酸検出方法により評価できる。前記核酸検出方法の一例として、以下の(A)から(C)に示す方法があげられる;
(A)電気泳動や液体クロマトグラフィーを用いた方法、
(B)検出可能な標識で標識された核酸プローブによるハイブリダイゼーション法、
(C)当該増幅産物の塩基配列の一部とハイブリダイズすることで蛍光特性が変化するように設計された蛍光色素標識プローブを用いた方法。
The amount of target nucleic acid amplified by the method described above can be evaluated by conventionally known nucleic acid detection methods. Examples of the nucleic acid detection method include the methods shown in (A) to (C) below;
(A) Method using electrophoresis or liquid chromatography,
(B) a hybridization method using a nucleic acid probe labeled with a detectable label;
(C) A method using a fluorescent dye-labeled probe designed to change its fluorescent properties by hybridizing with a part of the base sequence of the amplification product.

前記(C)の蛍光色素標識プローブの一例として、FRET(蛍光共鳴エネルギー移動)を利用した蛍光標識プローブや、インターカレーター性蛍光色素で標識された核酸プローブがあげられる。なお標的核酸の検出は、標的核酸の増幅反応と分けて行なってもよく、前記(B)または(C)のプローブをあらかじめ核酸増幅試薬に含ませた上で、標的核酸の増幅反応と増幅した標的核酸の検出を同時に行なってもよい(例えば、リアルタイムPCR法やリアルタイムTRC法)。 Examples of the fluorescent dye labeled probe (C) include fluorescent labeled probes using FRET (fluorescence resonance energy transfer) and nucleic acid probes labeled with intercalating fluorescent dyes. Note that the detection of the target nucleic acid may be performed separately from the amplification reaction of the target nucleic acid, and the probe of (B) or (C) above is included in the nucleic acid amplification reagent in advance, and then the detection of the target nucleic acid is carried out separately from the amplification reaction of the target nucleic acid. Target nucleic acids may be detected simultaneously (eg, real-time PCR method or real-time TRC method).

本発明では前述した方法で検出した核酸増幅産物の量を評価することで、試料中に含まれる核酸の品質を評価する。評価基準は目的や状況に応じて適宜決定すればよい。例えば、単に核酸増幅産物の検出の有無で(すなわち定性的に)評価しても良いし、核酸増幅産物量(または濃度)に一定の閾値を設け、当該閾値を上回るか否かで(すなわち定量的に)評価してもよい。さらに複数のオリゴヌクレオチドプライマーセットを用いたマルチプレックス核酸増幅法で試料中に含まれる核酸を増幅させた場合は、各プライマーセットで増幅された産物の数(種類)もしくはその量もしくは割合、または増幅プロファイルなどに基づいて評価してもよい。 In the present invention, the quality of nucleic acids contained in a sample is evaluated by evaluating the amount of nucleic acid amplification products detected by the method described above. The evaluation criteria may be determined as appropriate depending on the purpose and situation. For example, it may be evaluated simply by the presence or absence of detection of nucleic acid amplification products (i.e., qualitatively), or by setting a certain threshold for the amount (or concentration) of nucleic acid amplification products and determining whether the amount (or concentration) of the nucleic acid amplification products is exceeded (i.e., quantitative evaluation). may be evaluated). Furthermore, if the nucleic acids contained in the sample are amplified by a multiplex nucleic acid amplification method using multiple oligonucleotide primer sets, the number (type) of products amplified by each primer set, their amount or ratio, or the amplification The evaluation may be based on a profile or the like.

本発明により品質が良好と評価された核酸は、その後更なる解析や処理に供することができる。前記解析や処理に特に制限はなく、一例として、塩基配列解析やハイブリダイゼーション解析、遺伝子クローニングなどの核酸を対象にした解析や処理があげられる。前記解析や処理に供する核酸試料は、前記核酸増幅試薬との反応後の溶液を用いても良いし、核酸を含む試料の一部を品質評価に供した場合は、当該試料の残余を用いても良い。なお核酸増幅試薬の影響を排除できる点では、核酸試料の残余を用いたほうが好ましい。 Nucleic acids evaluated to be of good quality according to the present invention can then be subjected to further analysis and processing. There are no particular limitations on the analysis or processing, and examples include analysis and processing targeting nucleic acids, such as base sequence analysis, hybridization analysis, and gene cloning. For the nucleic acid sample to be subjected to the analysis or processing, the solution after reaction with the nucleic acid amplification reagent may be used, or if a part of the sample containing the nucleic acid has been subjected to quality evaluation, the remainder of the sample may be used. Also good. Note that it is preferable to use the remainder of the nucleic acid sample in terms of eliminating the influence of the nucleic acid amplification reagent.

試料中に含まれる核酸の品質評価基準も特に制限はなく、試料の総数や品質の傾向、解析や処理のスループットなど、状況や目的に応じて適宜決定すればよい。すなわち、非常に良好な品質の試料のみを選抜しても良いし、ある程度幅広く選抜しても良い。なお複数のオリゴヌクレオチドプライマーセットを用いたマルチプレックス核酸増幅法で試料中に含まれる核酸を増幅させ、前記プライマーセットにより増幅された産物の種類数で核酸の品質を評価する場合は、増幅され得る増幅産物が全て検出された核酸試料のみを選抜しても良いし、複数の増幅産物が検出された核酸試料を選抜しても良いし、1つ以上の増幅産物が検出された試料を選抜しても良い。 There are no particular limitations on the quality evaluation criteria for nucleic acids contained in samples, and they may be determined as appropriate depending on the situation and purpose, such as the total number of samples, quality trends, and throughput of analysis and processing. That is, only samples of very good quality may be selected, or a relatively wide range of samples may be selected. Note that when nucleic acids contained in a sample are amplified by a multiplex nucleic acid amplification method using multiple oligonucleotide primer sets and the quality of the nucleic acids is evaluated by the number of types of products amplified by the primer sets, it is possible to amplify the nucleic acids. Only nucleic acid samples in which all amplification products have been detected may be selected, nucleic acid samples in which multiple amplification products have been detected may be selected, or samples in which one or more amplification products have been detected may be selected. It's okay.

本発明は、試料中に含まれる核酸の品質を評価するにあたり、当該核酸とハイブリダイズ可能なオリゴヌクレオチドプライマーセットを含む核酸増幅試薬と反応させ、当該反応により得られた前記核酸の増幅産物量に基づき評価する方法であって、前記核酸がヒト細胞由来の核酸であり、前記オリゴヌクレオチドプライマーセットとして、SMAD4遺伝子、EGFR遺伝子、KIT遺伝子、TP53遺伝子の中から選ばれる、少なくともいずれか一つの遺伝子の相補鎖とハイブリダイズ可能なオリゴヌクレオチドプライマーと、前記プライマーと同じ遺伝子の相同鎖とハイブリダイズ可能なオリゴヌクレオチドプライマーとの組み合わせを用いることを特徴としている。 In evaluating the quality of a nucleic acid contained in a sample, the present invention involves reacting it with a nucleic acid amplification reagent containing an oligonucleotide primer set that can hybridize with the nucleic acid, and determining the amount of the amplified product of the nucleic acid obtained by the reaction. A method for evaluation based on the method, wherein the nucleic acid is a nucleic acid derived from human cells, and the oligonucleotide primer set includes at least one gene selected from the SMAD4 gene, the EGFR gene, the KIT gene, and the TP53 gene. It is characterized by using a combination of an oligonucleotide primer that can hybridize with a complementary strand and an oligonucleotide primer that can hybridize with a homologous strand of the same gene as the primer.

本発明は、試料中に含まれる核酸の品質を迅速かつ簡便に評価できる。したがって本発明を用いて高品質な核酸試料を選抜することで、後の解析の成功率や精度を向上させ、効率的な解析を実施できる。 INDUSTRIAL APPLICATION This invention can evaluate the quality of the nucleic acid contained in a sample quickly and easily. Therefore, by selecting a high-quality nucleic acid sample using the present invention, the success rate and accuracy of subsequent analysis can be improved and efficient analysis can be performed.

実施例1で用いた、標的細胞を個別に検出・回収可能な細胞保持装置100を示す、分解図である。FIG. 2 is an exploded view showing a cell holding device 100 used in Example 1 and capable of individually detecting and recovering target cells. 図1に示した装置の正面図である。FIG. 2 is a front view of the device shown in FIG. 1; 回収手段400による、図1および図2に示した装置で保持した細胞の回収を示す図である。FIG. 3 is a diagram illustrating recovery of cells held in the apparatus shown in FIGS. 1 and 2 by a recovery means 400. FIG. 実施例3の結果を示す図である。FIG. 7 is a diagram showing the results of Example 3.

以下、本発明を実施例に基づいて更に詳細に説明するが、本発明はこれら実施例に限定されるものではない。 Hereinafter, the present invention will be explained in more detail based on Examples, but the present invention is not limited to these Examples.

実施例1 核酸試料の調製
以下に示す方法で、ヒトがん細胞株一細胞から、核酸試料を調製した。
Example 1 Preparation of Nucleic Acid Sample A nucleic acid sample was prepared from a human cancer cell line by the method shown below.

(1)24穴マイクロプレートで培養したヒト肺がん細胞株(H1975株)をトリプシンで剥離し、マイクロチューブに回収した。 (1) A human lung cancer cell line (H1975 strain) cultured in a 24-well microplate was detached with trypsin and collected in a microtube.

(2)600×gで5分間遠心分離を行ない上清を除去後、細胞ペレットをPEG-BSA(BSAとして0.1%(w/v))および280mMキシリトールを含む溶液(以下、「PEG-BSAキシリトール溶液」とも表記)で懸濁させることで洗浄した。当該洗浄操作を3回繰り返した。 (2) After centrifuging at 600 x g for 5 minutes and removing the supernatant, the cell pellet was mixed with a solution containing PEG-BSA (0.1% (w/v) as BSA) and 280 mM xylitol (hereinafter referred to as "PEG-BSA"). It was washed by suspending it in "BSA xylitol solution"). The washing operation was repeated three times.

(3)(2)で取得したがん細胞株懸濁液を、図1および図2に示す細胞保持装置100に導入した。信号発生器50から電極基板31・32に交流電圧(1MHz、20Vp-p)を10分間印加することで、誘電泳動力300により前記装置が有する保持部60にがん細胞株(標的細胞70)を保持させた。なお図1および図2に示す細胞保持装置100は、直径30μmの貫通孔12aを複数有した絶縁体12と直径30μmの貫通孔11aを複数有した遮光性のクロム膜(遮光部材11)と電極基板31とを上から絶縁体12-遮光部材11-電極基板31の順に密着して設け、さらに絶縁体12の上面に試料の導入口21、排出口22および貫通部23を有する厚さ1mmのスペーサー20を、スペーサー20の上面に電極基板32を、それぞれ密着して設けてなる装置である。なお貫通孔11a/12aおよび電極基板31により、直径30μm、深さ40μmからなる標的細胞70を保持可能な保持部60が約30万個形成されている。 (3) The cancer cell line suspension obtained in (2) was introduced into the cell holding device 100 shown in FIGS. 1 and 2. By applying an AC voltage (1 MHz, 20 Vp-p) from the signal generator 50 to the electrode substrates 31 and 32 for 10 minutes, cancer cell lines (target cells 70) are transferred to the holding part 60 of the device by the dielectrophoretic force 300. was held. Note that the cell holding device 100 shown in FIGS. 1 and 2 includes an insulator 12 having a plurality of through holes 12a with a diameter of 30 μm, a light-shielding chrome film (light-shielding member 11) having a plurality of through-holes 11a with a diameter of 30 μm, and an electrode. The substrate 31 is placed in close contact with the insulator 12 - the light shielding member 11 - the electrode substrate 31 from above in this order, and further has a sample inlet 21, an outlet 22 and a through part 23 on the upper surface of the insulator 12, and has a thickness of 1 mm. This is a device in which a spacer 20 and an electrode substrate 32 are provided in close contact with the upper surface of the spacer 20, respectively. The through holes 11a/12a and the electrode substrate 31 form approximately 300,000 holding portions 60 each having a diameter of 30 μm and a depth of 40 μm and capable of holding the target cells 70.

(4)導入口21から、0.01%(w/v)ポリ-L-リジンを含む280mMキシリトール水溶液を、前記交流電圧を印加しながら導入し、3分間静置後、前記交流電圧の印加を停止し、排出口22から前記水溶液を吸引除去した。 (4) Introduce a 280 mM xylitol aqueous solution containing 0.01% (w/v) poly-L-lysine from the inlet 21 while applying the AC voltage, and after leaving it for 3 minutes, apply the AC voltage. was stopped, and the aqueous solution was removed by suction from the outlet 22.

(5)導入口21から1%(w/v)ホルムアルデヒドを含むPBS(以下、「細胞固定試薬」とも表記)を導入し、10分間静置することで細胞を固定した。その後、排出口22から細胞固定試薬を吸引除去し、導入口21からPBS-T(Phosphate buffered saline with Tween20)を導入することで、残留した細胞固定試薬を洗浄した。 (5) PBS containing 1% (w/v) formaldehyde (hereinafter also referred to as "cell fixation reagent") was introduced from the introduction port 21, and the cells were fixed by standing for 10 minutes. Thereafter, the cell fixation reagent was removed by suction from the outlet 22, and PBS-T (Phosphate buffered saline with Tween 20) was introduced from the introduction port 21 to wash away the remaining cell fixation reagent.

(6)導入口21から95%(w/v)エタノールを含む水溶液(以下、膜透過試薬)を導入し、10分間静置することで細胞の膜透過処理を行なった。その後、排出口22から細胞固定試薬を吸引除去し、導入口21からPBS-Tを導入することで、残留した膜透過試薬を洗浄した。 (6) An aqueous solution containing 95% (w/v) ethanol (hereinafter referred to as a membrane permeation reagent) was introduced from the inlet 21 and allowed to stand for 10 minutes to permeabilize the cells. Thereafter, the cell fixation reagent was removed by suction from the outlet 22, and PBS-T was introduced from the inlet 21 to wash away the remaining membrane permeation reagent.

(7)導入口21からDAPI(4’,6-DiAmidino-2-PhenylIndole)(同仁化学研究所社製)を混合した細胞染色試薬850μLを導入し、20分静置することで細胞を標識した。その後、排出口22から細胞染色試薬を吸引除去し、導入口21からPBS-Tを導入することで、残留した細胞染色試薬を洗浄した。 (7) 850 μL of a cell staining reagent mixed with DAPI (4',6-DiAmidino-2-PhenylIndole) (manufactured by Dojindo Laboratories) was introduced from the introduction port 21, and the cells were labeled by allowing it to stand for 20 minutes. . Thereafter, the cell staining reagent was removed by suction from the outlet 22, and PBS-T was introduced from the inlet 21 to wash away the remaining cell staining reagent.

(8)蛍光顕微鏡200(Olympus社製IX71)を用いて、保持部60に保持されたDAPI陽性細胞(がん細胞株70)を検出後、図3に示すように、吸引手段であるマイクロマニピュレーター400を用いて、上面の電極基板32を取り外した細胞保持装置100の保持部60に保持されたがん細胞株70を吸引した。吸引したがん細胞株70を、0.2mLマイクロチューブヘ吐出した後、Ampli1 WGAキット(シリコン バイオシステムズ社製)を用いた全ゲノム増幅を実施することで、核酸試料を調製した。 (8) After detecting the DAPI-positive cells (cancer cell line 70) held in the holding part 60 using a fluorescence microscope 200 (IX71 manufactured by Olympus), as shown in FIG. 400 was used to suction the cancer cell line 70 held in the holding part 60 of the cell holding device 100 from which the electrode substrate 32 on the upper surface was removed. After discharging the aspirated cancer cell line 70 into a 0.2 mL microtube, a nucleic acid sample was prepared by performing whole genome amplification using the Ampli1 WGA kit (manufactured by Silicon Biosystems).

なお本実施例では、(8)で実施した、がん細胞株の吸引・全ゲノム増幅操作を合計11個のがん細胞株に対して行ない、それぞれ核酸試料aからkと命名した。 In this example, the cancer cell line aspiration and whole genome amplification operations performed in (8) were performed on a total of 11 cancer cell lines, and the nucleic acid samples were named nucleic acid samples a to k, respectively.

実施例2 核酸試料の品質評価
以下に示す方法で、実施例1で調製した核酸試料の品質評価を行なった。
Example 2 Quality Evaluation of Nucleic Acid Sample The quality of the nucleic acid sample prepared in Example 1 was evaluated by the method shown below.

(1)表1に記載の塩基配列からなるプライマー(Forward/Reverse primer 4対、計8種類)溶液(濃度:100μM)各2.5μLと、RNase-free水30μLとを混合し、プライマーMix溶液を調製した(濃度:各5μM)。 (1) Mix 2.5 μL each of primer solutions (concentration: 100 μM) consisting of the base sequences listed in Table 1 (4 pairs of Forward/Reverse primers, 8 types in total) and 30 μL of RNase-free water, and prepare a primer mix solution. were prepared (concentration: 5 μM each).

(2)(1)で調製したプライマーMix溶液を用いて、実施例1で調製した核酸試料(テンプレートDNA)上にある標的核酸を、PCR法により増幅した。PCR法での反応液組成、反応温度は、以下に示す。
(反応液組成)
HotStarTaq Master Mix(キアゲン社製) 12.5μL
RNase-free水 10μL
5μMプライマーMix溶液 1.5μL
核酸試料(実施例1) 1μL
(反応温度)
95℃で15分間:1サイクル
94℃で30秒間、55℃で30秒間、72℃で60秒間:40サイクル
72℃で10分間:1サイクル
(3)Agilent 2100 バイオアナライザおよびAgilent DNA1000キット(いずれもアジレント・テクノロジー社製)を用いてDNAの増幅を確認した。
(2) Using the primer mix solution prepared in (1), the target nucleic acid on the nucleic acid sample (template DNA) prepared in Example 1 was amplified by PCR. The reaction solution composition and reaction temperature in the PCR method are shown below.
(Reaction liquid composition)
HotStarTaq Master Mix (manufactured by Qiagen) 12.5μL
RNase-free water 10μL
5μM primer mix solution 1.5μL
Nucleic acid sample (Example 1) 1 μL
(reaction temperature)
95°C for 15 minutes: 1 cycle 94°C for 30 seconds, 55°C for 30 seconds, 72°C for 60 seconds: 40 cycles 72°C for 10 minutes: 1 cycle (3) Agilent 2100 Bioanalyzer and Agilent DNA1000 Kit (both Amplification of the DNA was confirmed using Agilent Technologies (Agilent Technologies, Inc.).

表2に、各プライマーセットによって増幅される核酸増幅産物の量を示す。核酸試料ごとに、核酸増幅産物(PCR産物)の量や種類が異なることが分かる。 Table 2 shows the amount of nucleic acid amplification products amplified by each primer set. It can be seen that the amount and type of nucleic acid amplification products (PCR products) differ for each nucleic acid sample.

実施例3 核酸試料の遺伝子変異解析
以下に示す方法で、核酸試料の遺伝子変異解析(がん関連遺伝子のターゲットシーケンスによる変異解析)を行った。
Example 3 Gene mutation analysis of a nucleic acid sample Gene mutation analysis of a nucleic acid sample (mutation analysis using target sequences of cancer-related genes) was performed using the method shown below.

実施例1で調製した核酸試料を、Agencourt AMPureXP(ベックマン・コールター社製)を用いて精製した。精製した試料に対して、Ion AmpliSeq Cancer Hotspot Panel v2(以下、CHPv2)およびIon AmpliSeq Library Kit Plus(いずれもThermo Fisher Scientific社製)を用いたライブラリー調製を行ない、Ion S5(Thermo Fisher Scientific社製)を用いて遺伝子変異解析を実施した。 The nucleic acid sample prepared in Example 1 was purified using Agencourt AMPureXP (manufactured by Beckman Coulter). The purified sample was subjected to library preparation using Ion AmpliSeq Cancer Hotspot Panel v2 (hereinafter referred to as CHPv2) and Ion AmpliSeq Library Kit Plus (both manufactured by Thermo Fisher Scientific). Ion S5 (manufactured by Thermo Fisher Scientific) ) was used to conduct gene mutation analysis.

図4に、遺伝子変異解析の検出率と、核酸試料の品質評価結果(実施例2)の関係を示す。ここで検出率とは、CHPv2の検出対象範囲にあるHotSpot(約2700ヶ所)のうち、塩基配列が解読できた部位の割合を表す。実施例2で検出された核酸増幅産物の量や数(種類)が多いほど、遺伝子変異解析の検出率が高いことが分かる。すなわち、ヒト細胞由来の核酸の品質を評価する際、当該核酸とハイブリダイズ可能なオリゴヌクレオチドプライマーセット(本実施例では、配列番号1に記載の配列を少なくとも含むオリゴヌクレオチドプライマーと配列番号2に記載の配列を少なくとも含むオリゴヌクレオチドプライマーとの組み合わせ、配列番号3に記載の配列を少なくとも含むオリゴヌクレオチドプライマーと配列番号4に記載の配列を少なくとも含むオリゴヌクレオチドプライマーとの組み合わせ、配列番号5に記載の配列を少なくとも含むオリゴヌクレオチドプライマーと配列番号6に記載の配列を少なくとも含むオリゴヌクレオチドプライマーとの組み合わせ、および配列番号7に記載の配列を少なくとも含むオリゴヌクレオチドプライマーと配列番号8に記載の配列を少なくとも含むオリゴヌクレオチドプライマーとの組み合わせ)を含む核酸増幅試薬と反応させ、前記反応で得られた核酸増幅産物量(数(種類)も含まれる、以下同じ)に基づき試料中に含まれる核酸を評価し、核酸増幅産物量が多い核酸を選択することで、核酸試料の解析を効率的に実施できる。 FIG. 4 shows the relationship between the detection rate of gene mutation analysis and the quality evaluation results of nucleic acid samples (Example 2). Here, the detection rate refers to the percentage of sites whose base sequences have been decoded among HotSpots (approximately 2,700 sites) within the CHPv2 detection target range. It can be seen that the larger the amount and number (types) of nucleic acid amplification products detected in Example 2, the higher the detection rate of gene mutation analysis. That is, when evaluating the quality of a nucleic acid derived from human cells, an oligonucleotide primer set that can hybridize with the nucleic acid (in this example, an oligonucleotide primer containing at least the sequence set forth in SEQ ID NO: 1 and an oligonucleotide primer set described in SEQ ID NO: 2) is used. A combination of an oligonucleotide primer containing at least the sequence set forth in SEQ ID NO: 3 and an oligonucleotide primer containing at least the sequence set forth in SEQ ID NO: 4, a combination of an oligonucleotide primer containing at least the sequence set forth in SEQ ID NO: 4, and a combination of an oligonucleotide primer containing at least the sequence set forth in SEQ ID NO: 4; A combination of an oligonucleotide primer containing at least the sequence set forth in SEQ ID NO: 6 and an oligonucleotide primer containing at least the sequence set forth in SEQ ID NO: 7, and an oligonucleotide primer containing at least the sequence set forth in SEQ ID NO: 7 and an oligonucleotide primer containing at least the sequence set forth in SEQ ID NO: 8. The nucleic acids contained in the sample are evaluated based on the amount of nucleic acid amplification products (including the number (type), the same applies hereinafter) obtained in the reaction, and the nucleic acids are By selecting nucleic acids with a large amount of amplification products, analysis of nucleic acid samples can be carried out efficiently.

100:細胞保持装置
11:遮光部材
12:絶縁体
11a・12a:貫通孔
20:スペーサー
21:導入口
22:排出口
23:貫通部
31・32:電極基板
40:導線
50:信号発生器
60:保持部
70:標的細胞(がん細胞株)
200:蛍光顕微鏡
300:誘電泳動力
400:マイクロマニピュレーター
100: Cell holding device 11: Light shielding member 12: Insulator 11a/12a: Through hole 20: Spacer 21: Inlet 22: Outlet 23: Penetrating part 31/32: Electrode substrate 40: Conductive wire 50: Signal generator 60: Holding part 70: Target cell (cancer cell line)
200: Fluorescence microscope 300: Dielectrophoretic force 400: Micromanipulator

Claims (2)

試料中に含まれる核酸を、当該核酸とハイブリダイズ可能なオリゴヌクレオチドプライマーセットを含む核酸増幅試薬と反応させる工程と、
前記反応工程で得られた核酸増幅産物量を評価する工程とを含む、
試料中に含まれる核酸の品質を、当該核酸を解析又は処理に供する前に評価する方法であって、
前記核酸がヒト細胞由来の核酸であり、前記オリゴヌクレオチドプライマーセットが、少なくとも下記(a)から(d)に示す、いずれか一つである、前記方法:
(a)配列番号1に記載の配列からなるオリゴヌクレオチドプライマーと、配列番号2に記載の配列からなるオリゴヌクレオチドプライマーとのセット
(b)配列番号3に記載の配列からなるオリゴヌクレオチドプライマーと、配列番号4に記載の配列からなるオリゴヌクレオチドプライマーとのセット
(c)配列番号5に記載の配列からなるオリゴヌクレオチドプライマーと、配列番号6に記載の配列からなるオリゴヌクレオチドプライマーとのセット
(d)配列番号7に記載の配列からなるオリゴヌクレオチドプライマーと、配列番号8に記載の配列からなるオリゴヌクレオチドプライマーとのセット。
a step of reacting the nucleic acid contained in the sample with a nucleic acid amplification reagent containing an oligonucleotide primer set that can hybridize with the nucleic acid;
and a step of evaluating the amount of the nucleic acid amplification product obtained in the reaction step.
A method for evaluating the quality of nucleic acids contained in a sample before subjecting the nucleic acids to analysis or processing, the method comprising:
The method, wherein the nucleic acid is a human cell-derived nucleic acid, and the oligonucleotide primer set is at least one of the following (a) to (d):
(a) A set of an oligonucleotide primer consisting of the sequence set forth in SEQ ID NO: 1 and an oligonucleotide primer consisting of the sequence set forth in SEQ ID NO: 2. (b) A set of an oligonucleotide primer consisting of the sequence set forth in SEQ ID NO: 3, and an oligonucleotide primer consisting of the sequence set forth in SEQ ID NO: 3. (c) A set of an oligonucleotide primer consisting of the sequence set forth in SEQ ID NO: 5 and an oligonucleotide primer consisting of the sequence set forth in SEQ ID NO: 6. (d) Sequence A set of an oligonucleotide primer consisting of the sequence set forth in SEQ ID NO: 7 and an oligonucleotide primer consisting of the sequence set forth in SEQ ID NO: 8.
前記解析又は処理が、塩基配列解析、ハイブリダイゼーション解析又は遺伝子クローニングである請求項1に記載の方法。The method according to claim 1, wherein the analysis or processing is base sequence analysis, hybridization analysis, or gene cloning.
JP2019166054A 2019-09-12 2019-09-12 Nucleic acid sample quality evaluation method Active JP7371405B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019166054A JP7371405B2 (en) 2019-09-12 2019-09-12 Nucleic acid sample quality evaluation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019166054A JP7371405B2 (en) 2019-09-12 2019-09-12 Nucleic acid sample quality evaluation method

Publications (2)

Publication Number Publication Date
JP2021040555A JP2021040555A (en) 2021-03-18
JP7371405B2 true JP7371405B2 (en) 2023-10-31

Family

ID=74861442

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019166054A Active JP7371405B2 (en) 2019-09-12 2019-09-12 Nucleic acid sample quality evaluation method

Country Status (1)

Country Link
JP (1) JP7371405B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015535431A (en) 2012-11-26 2015-12-14 ザ・ユニバーシティ・オブ・トレド Method for the standardized sequencing of nucleic acids and uses thereof
JP2018536430A (en) 2015-09-25 2018-12-13 コンテクスチュアル ゲノミクス インコーポレイテッド Molecular quality assurance methods for use in sequencing

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015535431A (en) 2012-11-26 2015-12-14 ザ・ユニバーシティ・オブ・トレド Method for the standardized sequencing of nucleic acids and uses thereof
JP2018536430A (en) 2015-09-25 2018-12-13 コンテクスチュアル ゲノミクス インコーポレイテッド Molecular quality assurance methods for use in sequencing

Also Published As

Publication number Publication date
JP2021040555A (en) 2021-03-18

Similar Documents

Publication Publication Date Title
US20210254148A1 (en) Measurement of nucleic acid variants using highly-multiplexed error-suppressed deep sequencing
US20180208998A1 (en) Methods and compositions to generate unique sequence dna probes, labeling of dna probes and the use of these probes
DK2279266T3 (en) PROCEDURE FOR DETECTING IGF1R DIFFERENCES IN CIRCULATING TUMOR CELLS USING FISH
CN103409504B (en) FISH (fluorescence in situ hybridization) probe, kit and detection method for detecting Her2 (human epidermal growth factor receptor 2) gene free from repetitive sequence
EP4077717B1 (en) Method of detecting an analyte
WO2021194699A1 (en) Single cell genetic analysis
CN114269916A (en) Device and method for sample analysis
JP2019502386A (en) Hybridization buffer containing guanidinium thiocyanate
JP2021000138A (en) Diagnostic methods and compositions
CN101875971A (en) Rapid detection of BRAF (Block-Repeated Active Flag) gene mutation
Sridhar et al. Molecular genetic testing methodologies in hematopoietic diseases: current and future methods
CN114729347A (en) High-sensitivity detection method for undifferentiated marker gene
JP7371405B2 (en) Nucleic acid sample quality evaluation method
Gasch et al. Whole genome amplification in genomic analysis of single circulating tumor cells
JP6248633B2 (en) Target nucleic acid detection method
Mocellin et al. Quantitative real-time PCR in cancer research
Cao et al. Establishment of scalable nanoliter digital LAMP technology for the quantitative detection of multiple myeloproliferative neoplasm molecular markers
EP2843047B1 (en) Nucleic acid detection method
JP2014187934A (en) Detection method of target nucleic acid
Li et al. Rapid detection of EGFR mutation in CTCs based on a double spiral microfluidic chip and the real-time RPA method
JP5584385B2 (en) Method for detecting and typing human papillomavirus
CN114085895B (en) Detection primer for rapidly detecting MSI and kit thereof
CN114107307B (en) Method for screening PD-L1 DNA nucleic acid aptamer in vitro and application thereof
KR20210137798A (en) Composition for detecting copy number variation of HER2 and kit comprising the same
WO2021045875A1 (en) Compartment-free single cell genetic analysis

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220822

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230704

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230829

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230919

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231002

R151 Written notification of patent or utility model registration

Ref document number: 7371405

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151