JP7370827B2 - Piping and its construction method - Google Patents

Piping and its construction method Download PDF

Info

Publication number
JP7370827B2
JP7370827B2 JP2019212358A JP2019212358A JP7370827B2 JP 7370827 B2 JP7370827 B2 JP 7370827B2 JP 2019212358 A JP2019212358 A JP 2019212358A JP 2019212358 A JP2019212358 A JP 2019212358A JP 7370827 B2 JP7370827 B2 JP 7370827B2
Authority
JP
Japan
Prior art keywords
piping
joint
pipe
temperature
bent portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019212358A
Other languages
Japanese (ja)
Other versions
JP2021085413A (en
Inventor
健一郎 小林
健 長谷部
尚武 増子
周二 木原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp filed Critical Organo Corp
Priority to JP2019212358A priority Critical patent/JP7370827B2/en
Publication of JP2021085413A publication Critical patent/JP2021085413A/en
Application granted granted Critical
Publication of JP7370827B2 publication Critical patent/JP7370827B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Branch Pipes, Bends, And The Like (AREA)
  • Joints Allowing Movement (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)

Description

本発明は配管とその施工方法に関し、特に配管の熱伸縮を吸収するための配管の施工方法に関する。 The present invention relates to piping and a method of constructing the same, and particularly to a method of constructing a piping for absorbing thermal expansion and contraction of the piping.

配管の熱伸縮を吸収する方策の一つとして、エルボやベンドを用いて配管を施工する方法がある。この方法は液体のよどみが発生しにくいという利点を有する。その他の方策として、配管に伸縮継手を設ける方法がある。伸縮継手は大きな設置スペースを必要としないため、スペースが限られている場合に有利である。伸縮継手としてはベローズを用いるタイプと、配管の長さ方向に摺動するスライド部材を用いるタイプ(特許文献1)と、が知られている。 One way to absorb the thermal expansion and contraction of piping is to construct the piping using elbows or bends. This method has the advantage that liquid stagnation is less likely to occur. Another option is to install expansion joints in the piping. Expansion joints do not require a large installation space, so they are advantageous when space is limited. As expansion joints, there are known types that use bellows and types that use slide members that slide in the length direction of piping (Patent Document 1).

特開2011-127738号公報Japanese Patent Application Publication No. 2011-127738

エルボやベンドを用いて配管を施工する方法は、エルボやベンドを配管部材(例えば、配管を構成する管)と同じ材料で形成しているため、配管の熱伸縮を吸収しきれない場合があり、配管に隙間が生じたり、配管が破損する可能性がある。一方、配管の熱伸縮の吸収性を向上させるためには広い設置スペースが必要となる。 In the method of constructing piping using elbows and bends, because the elbows and bends are made of the same material as the piping components (for example, the pipes that make up the piping), they may not be able to absorb the thermal expansion and contraction of the piping. , gaps may occur in the piping or the piping may be damaged. On the other hand, in order to improve the ability of piping to absorb thermal expansion and contraction, a large installation space is required.

配管に伸縮継手を設ける方法は、流体のよどみが発生しやすい。さらに、ベローズタイプの伸縮継手は、内圧のかかる配管に適用するとベローズの変形が制限され所望の性能を発揮できない場合がある。また、ベローズタイプの伸縮継手は、内圧による反力の副作用を生じ、配管を破損させる可能性がある。さらに、ベローズのような可動部やスライド部材のような摺動部を有する部材は劣化しやすく、メンテナンスや交換の頻度が高くなる傾向がある。 The method of providing expansion joints in piping tends to cause fluid stagnation. Furthermore, when a bellows type expansion joint is applied to piping subject to internal pressure, the deformation of the bellows is restricted and the desired performance may not be achieved. In addition, bellows type expansion joints produce a side effect of reaction force due to internal pressure, which may cause damage to the piping. Furthermore, members having movable parts such as bellows and sliding parts such as slide members tend to deteriorate easily and require frequent maintenance and replacement.

本発明は、狭い設置スペースで熱伸縮を吸収でき、メンテナンスや交換の頻度を抑制可能な配管とその施工方法を提供することを目的とする。 An object of the present invention is to provide piping and its construction method that can absorb thermal expansion and contraction in a narrow installation space and suppress the frequency of maintenance and replacement.

本発明は、2つの配管部材を屈曲部を介して接続する配管とその施工方法に関する。配管は超純水または純水が流れるようにされた屋外配管であり、配管の施工時の環境温度と配管を流れる超純水または純水の温度との差が所定の温度を上回る。屈曲部は曲げ部を構成する継手を有し、継手の弾性係数は配管部材の弾性係数より小さい。 The present invention relates to piping that connects two piping members via a bent portion , and a method for constructing the piping. The pipe is an outdoor pipe through which ultrapure water or pure water flows, and the difference between the environmental temperature at the time of construction of the pipe and the temperature of the ultrapure water or pure water flowing through the pipe exceeds a predetermined temperature. The bent portion has a joint that constitutes the bent portion, and the elastic modulus of the joint is smaller than the elastic modulus of the piping member.

本発明によれば、狭い設置スペースで熱伸縮を吸収でき、メンテナンスや交換の頻度を抑制可能な配管とその施工方法を提供することができる。 According to the present invention, it is possible to provide piping and its construction method that can absorb thermal expansion and contraction in a narrow installation space and can suppress the frequency of maintenance and replacement.

本発明の第1の実施形態に係る配管の概要図である。FIG. 1 is a schematic diagram of piping according to the first embodiment of the present invention. 配管の曲がり部の詳細図である。FIG. 3 is a detailed view of a bent part of the pipe. 変形しやすい継手を用いたことによる効果を示す模式図である。FIG. 3 is a schematic diagram showing the effect of using a joint that is easily deformed. 90度エルボのたわみを説明する図である。It is a figure explaining the deflection of a 90 degree elbow. 本発明の第2の実施形態に係る配管の概要図である。FIG. 3 is a schematic diagram of piping according to a second embodiment of the present invention.

図面を参照して本発明の配管の施工方法のいくつかの実施形態について説明する。各図において、X軸とY軸は互いに直交する水平軸を、Z軸はX軸及びY軸と直交する鉛直軸を意味する。X軸については、第1の設備2から第2の設備3を向く方向を+X方向といい、その反対方向を-X方向という。Y軸についても向きを区別するため、+Y方向、-Y方向という場合がある。図1は本発明の第1の実施形態に係る配管1の概要図(アイソメ図)である。配管1は屋外に設置され、タンク、ポンプ、処理装置などの第1の設備2と、タンク、ポンプ、処理装置などの第2の設備3との間を結んでいる。流体は第1の設備2から第2の設備3に向けて流れる。 Some embodiments of the piping construction method of the present invention will be described with reference to the drawings. In each figure, the X-axis and the Y-axis are horizontal axes that are orthogonal to each other, and the Z-axis is a vertical axis that is orthogonal to the X- and Y-axes. Regarding the X-axis, the direction from the first equipment 2 to the second equipment 3 is called the +X direction, and the opposite direction is called the -X direction. To distinguish the direction of the Y-axis, it is sometimes referred to as +Y direction and -Y direction. FIG. 1 is a schematic diagram (isometric diagram) of a piping 1 according to a first embodiment of the present invention. Piping 1 is installed outdoors and connects first equipment 2, such as a tank, pump, or processing device, and second equipment 3, such as a tank, pump, or processing device. The fluid flows from the first installation 2 towards the second installation 3.

本実施形態の配管1は互いに離れた2点間である第1の設備2,第2の設備3間をX方向に直線状に延び、+Y方向に膨らむ屈曲部6が部分的に設けられたものである。すなわち、配管1は、第1の設備2から屈曲部6の始点である第1の点P1までの区間を+X方向に直線状に延びる第1の配管(第1の配管部材)4と、第1の配管4と同一の直線上に設けられ、屈曲部6の終点である第2の点P2から第2の設備3までの区間を+X方向に直線状に延びる第2の配管(第2の配管部材)5と、第1の配管4と第2の配管5との間に設けられた屈曲部6と、を有している。配管1を流れる流体は限定されず、例えば、水(超純水及び純水を含む)、油、ガスなどが挙げられる。配管1を流れる流体の温度は所定の温度とされている。流体の温度は変動してもよく、配管経路に沿って変化してもよい。 The piping 1 of this embodiment extends linearly in the X direction between the first equipment 2 and the second equipment 3, which are two points apart from each other, and is partially provided with a bent portion 6 that bulges in the +Y direction. It is something. That is, the piping 1 includes a first piping (first piping member) 4 that extends linearly in the + A second pipe (second pipe) is provided on the same straight line as the first pipe 4 and extends linearly in the + A bent portion 6 is provided between the first pipe 4 and the second pipe 5. The fluid flowing through the pipe 1 is not limited, and examples thereof include water (including ultrapure water and pure water), oil, gas, and the like. The temperature of the fluid flowing through the pipe 1 is set to a predetermined temperature. The temperature of the fluid may vary and may vary along the piping path.

屈曲部6はX-Y面内にほぼU字型の経路に沿って設けられている。屈曲部6は継手7と短管8と接続配管9とが組み合わされたものである。屈曲部6は、一端側が第1の配管4に接続され、+Y方向に曲げられて+Y方向に延び、+X方向に曲げられて+X方向に延び、-Y方向に曲げられて-Y方向に延び、再び+X方向に曲げられて+X方向に延び、他端側が第2の配管5に接続されている。屈曲部6の曲げ部は継手7で構成されている。継手7と継手7の間には短管8及び接続配管9が設けられている。図2により詳細に示すように、継手7の両側にはフランジ81に接続された短管8が設けられ、フランジ81は隣接する接続配管9のフランジ91、及び第1の配管4若しくは第2の配管5のフランジ(図2には第1の配管4のフランジ41を示す)とボルト(図示せず)で接続されている。フランジ81とフランジ91との間、及びフランジ81とフランジ41との間にはガスケット11が設けられている。短管8は省略することもできる。短管8と継手7は熱圧着、熱融着、熱溶着、電気融着等によって接合されている。継手7は直交する2つの配管(接続配管9同士、接続配管9と第1の配管4、または接続配管9と第2の配管5)を接続するエルボないしベンドである。2つの配管は互いに非平行である限り90度以外の角度(例えば45度や60度)をなしていてもよい。屈曲部6は配管1の熱伸縮を吸収するために設けられることから、屈曲部6には配管の変位を拘束する配管サポートは設けられていない。ただし、自重(Z方向下方の荷重)を支持するための最低限のサポートを設けることは可能である。 The bent portion 6 is provided along a substantially U-shaped path in the XY plane. The bent portion 6 is a combination of a joint 7, a short pipe 8, and a connecting pipe 9. The bent part 6 has one end connected to the first pipe 4, is bent in the +Y direction and extends in the +Y direction, is bent in the +X direction and extends in the +X direction, and is bent in the -Y direction and extends in the -Y direction. , is bent again in the +X direction and extends in the +X direction, and the other end side is connected to the second pipe 5. The bent portion of the bent portion 6 is constituted by a joint 7. A short pipe 8 and a connecting pipe 9 are provided between the joints 7 . As shown in more detail in FIG. 2, short pipes 8 connected to flanges 81 are provided on both sides of the joint 7, and the flanges 81 are connected to the flange 91 of the adjacent connecting pipe 9 and the first pipe 4 or the second pipe 4. It is connected to the flange of the pipe 5 (FIG. 2 shows the flange 41 of the first pipe 4) with bolts (not shown). Gaskets 11 are provided between the flanges 81 and 91 and between the flanges 81 and 41. The short tube 8 can also be omitted. The short pipe 8 and the joint 7 are joined by thermocompression bonding, heat fusion bonding, thermal welding, electric fusion bonding, or the like. The joint 7 is an elbow or bend that connects two orthogonal pipes (the connecting pipes 9, the connecting pipe 9 and the first pipe 4, or the connecting pipe 9 and the second pipe 5). The two pipes may form an angle other than 90 degrees (for example, 45 degrees or 60 degrees) as long as they are not parallel to each other. Since the bent portion 6 is provided to absorb thermal expansion and contraction of the piping 1, the bent portion 6 is not provided with a piping support for restraining displacement of the piping. However, it is possible to provide a minimum amount of support to support its own weight (downward load in the Z direction).

ところで、高温の流体が流れる配管については、従来から熱伸縮を考慮した設計が行われており、必要に応じ上述したエルボやベンドを含む屈曲部が設けられている。しかし、常温に近い流体が流れる配管については通常熱伸縮が問題となることはなく、熱伸縮に起因する配管の熱変形は考慮されない。これに対し、本願発明者はこのような場合であっても、特定の条件で熱伸縮が問題となることを見出した。一例として、非常に長い直線配管を屋外設置する場合を考える。ここでは、500m離れた設備間に配管を直線状に据え付けるものとする(図1において、屈曲部6を直線配管106に置き換えたものを想定する)。夏場などの高温環境で施工する場合、外気温は30~40℃に達し、配管自体はさらに高温になる可能性がある。しかし、設備間の距離500mは不変であるため、配管は「高温環境下において500mの長さとなるように」据え付けられることになる。通常、500mの配管は複数の区間に分割されて施工されるため、最後に据え付けられる区間の配管の長さが調整されて、配管に軸方向の応力が生じないようにされる。これによって、隣接する配管同士のフランジ接続や溶接も適切に行うことができる。一方、運転開始後に常温の流体が流通すると、配管の温度は流体の温度と同程度となる。しかし、施工中の配管の温度と流体が流通しているときの配管の温度の差が大きいため、非常に大きな熱変形が生じる可能性がある。例えば施工中の配管の温度が60℃、流体が流通しているときの配管の温度を20℃とすると、温度差は40℃である。配管が塩ビ管である場合、塩ビ(ポリ塩化ビニル)の線膨張係数は6~8×10-5/K程度であるので、6~8×10-5/K×40K×500m=1.2~1.4mもの熱伸縮が配管の軸方向に生じる。このように、施工時の環境温度(より正確には配管の温度)と流体の温度の差及び配管の直線長さによっては、たとえ流体の温度が常温であっても極めて大きな熱変形が生じる可能性がある。 Incidentally, piping through which high-temperature fluid flows has conventionally been designed in consideration of thermal expansion and contraction, and bent portions including the above-mentioned elbows and bends are provided as necessary. However, thermal expansion and contraction usually does not pose a problem for piping through which a fluid close to room temperature flows, and thermal deformation of the piping due to thermal expansion and contraction is not taken into account. On the other hand, the inventor of the present application has found that even in such a case, thermal expansion and contraction becomes a problem under specific conditions. As an example, consider the case where a very long straight pipe is installed outdoors. Here, it is assumed that piping is installed in a straight line between facilities 500 m apart (in FIG. 1, it is assumed that the bent portion 6 is replaced with a straight piping 106). When construction is carried out in a high-temperature environment such as in the summer, the outside temperature can reach 30 to 40 degrees Celsius, and the pipes themselves can become even hotter. However, since the 500m distance between the facilities remains unchanged, the piping will be installed "to have a length of 500m in a high-temperature environment." Normally, a 500 m long pipe is constructed by dividing it into multiple sections, so the length of the pipe in the last section to be installed is adjusted to prevent axial stress from occurring in the pipe. This allows appropriate flange connection and welding between adjacent pipes. On the other hand, when fluid at room temperature flows after the start of operation, the temperature of the piping becomes approximately the same as the temperature of the fluid. However, because there is a large difference between the temperature of the piping during construction and the temperature of the piping when fluid is flowing, there is a possibility that a very large thermal deformation will occur. For example, if the temperature of the piping during construction is 60°C and the temperature of the piping when fluid is flowing is 20°C, the temperature difference is 40°C. If the piping is PVC pipe, the coefficient of linear expansion of PVC (polyvinyl chloride) is about 6 to 8 x 10 -5 /K, so 6 to 8 x 10 -5 /K x 40K x 500m = 1.2 Thermal expansion and contraction of ~1.4 m occurs in the axial direction of the pipe. In this way, depending on the difference between the environmental temperature at the time of construction (more precisely, the temperature of the piping) and the fluid temperature, and the straight length of the piping, extremely large thermal deformation can occur even if the fluid temperature is room temperature. There is sex.

以上の理由から、本実施形態では配管1に屈曲部6を設けて配管1の熱伸縮を吸収している。しかしながら、屈曲部6はスペースを必要とするため、できるだけ屈曲部6をコンパクトに構成することが望ましい。このため、本実施形態では、さらに継手7に変形しやすい材料を用いて継手7自体の曲げ変形性能を高めている。具体的には、継手7の弾性係数が配管部材の弾性係数より小さくされており、より詳細には、継手7のヤング率が配管部材のヤング率より小さくされている。継手7の材料としては例えばポリエチレンが挙げられるが、他にポリプロピレン、強化ポリプロピレンなどを用いることもできる。特にポリエチレンは塑性変形範囲においても、想定外の熱応力や外力を吸収する能力が高い。 For the above reasons, in this embodiment, the bent portion 6 is provided in the pipe 1 to absorb thermal expansion and contraction of the pipe 1. However, since the bent portion 6 requires space, it is desirable to configure the bent portion 6 as compactly as possible. Therefore, in this embodiment, the joint 7 is made of a material that is easily deformed to improve the bending deformation performance of the joint 7 itself. Specifically, the elastic modulus of the joint 7 is made smaller than the elastic modulus of the piping member, and more specifically, the Young's modulus of the joint 7 is made smaller than the Young's modulus of the piping member. Examples of the material for the joint 7 include polyethylene, but other materials such as polypropylene and reinforced polypropylene can also be used. In particular, polyethylene has a high ability to absorb unexpected thermal stress and external force even in the range of plastic deformation.

図3は、変形しやすい継手7を用いたことによる効果を示す模式図である。第1の配管4は非常に長い直線配管であり、その端部に第1のエルボ7Aが接続され、第1のエルボ7Aに第1の接続配管9Aが接続され、第1の接続配管9Aに第2のエルボ7Bを介して、第2の接続配管9Bが接続されている。比較例のエルボ107Aは第1の配管4、第1及び第2の接続配管9A,9Bと同じ材料(例えば塩ビ)で作成され、本実施形態の第1のエルボ7Aと同一の中心線Cと同一の肉厚t(図2参照)を有している。比較例のエルボ107Aに第1の接続配管109Aが接続され、第1の接続配管109Aに第2のエルボ107Bを介して、第2の接続配管109Bが接続されている。本実施形態の第1のエルボ7Aは比較例のエルボ107Aよりもヤング率の小さいポリエチレンで作成されている。破線は施工時の第1のエルボ7Aと第1の接続配管9Aを示している(比較例においても同様)。ここでは、第1の配管4が-X方向に大きく収縮した場合を説明する(-X方向の熱収縮量をΔXとする)。第1の接続配管9Aと第2の接続配管9Bの熱伸縮量は小さいので、第2のエルボ7Bの位置は不変とする。この結果、第1のエルボ7AはX方向に広がるように変形する。この変形は、第1の配管4が伸縮しない(つまり、第1のエルボ7Aの第1の配管4側の端部の位置が不変である)とした場合に、第1のエルボ7Aの第1の接続配管9Aと接続される端部に径方向(+X方向)の引張力を掛けた場合の変形と同様と考えられる。 FIG. 3 is a schematic diagram showing the effect of using the easily deformable joint 7. The first pipe 4 is a very long straight pipe, and a first elbow 7A is connected to the end thereof, a first connection pipe 9A is connected to the first elbow 7A, and a first connection pipe 9A is connected to the first elbow 7A. A second connection pipe 9B is connected via the second elbow 7B. The elbow 107A of the comparative example is made of the same material (for example, PVC) as the first pipe 4 and the first and second connection pipes 9A, 9B, and has the same center line C as the first elbow 7A of the present embodiment. They have the same wall thickness t (see FIG. 2). A first connecting pipe 109A is connected to the elbow 107A of the comparative example, and a second connecting pipe 109B is connected to the first connecting pipe 109A via a second elbow 107B. The first elbow 7A of this embodiment is made of polyethylene having a smaller Young's modulus than the elbow 107A of the comparative example. The broken line indicates the first elbow 7A and the first connection pipe 9A during construction (the same applies to the comparative example). Here, a case will be described in which the first pipe 4 contracts significantly in the -X direction (the amount of thermal contraction in the -X direction is assumed to be ΔX). Since the amount of thermal expansion and contraction of the first connection pipe 9A and the second connection pipe 9B is small, the position of the second elbow 7B is left unchanged. As a result, the first elbow 7A is deformed to expand in the X direction. This deformation occurs when the first pipe 4 of the first elbow 7A does not expand or contract (that is, the position of the end of the first elbow 7A on the first pipe 4 side remains unchanged). It is thought that the deformation is similar to that when a tensile force in the radial direction (+X direction) is applied to the end connected to the connecting pipe 9A.

図4は90度エルボを示しており、一方の端部は固定されており、他方の端部に径方向の力Wが掛かっている。これは、図3において、第1のエルボ7Aの第1の配管4側の端部を図4における固定端とし、第1のエルボ7Aの第1の接続配管9Aと接続される端部を図4における自由端としたときに、第1の配管4が伸縮しないで、第1のエルボ7Aの第1の接続配管9Aと接続している端部に径方向(+X方向)の引張力Wが掛かっている状態と同様の状態を模擬していると考えられる。この時の荷重方向の変位δは(π+1)WR3/4EIとなる。ここで、Rはエルボの曲率半径、Eはエルボのヤング率、Iはエルボの断面2次モーメントである。変位δはEに反比例しており、Eが小さいほど大きくなる。また、変位δが大きくなるに従い端部の開き角θも大きくなる。変位δと開き角θが大きいため、熱変形による第1の接続配管9AのZ軸まわりの回転角が大きくなり、-X方向の熱収縮量ΔXを吸収しやすくなる。この結果、第1の接続配管9Aを比較例の第1の接続配管109Aより短くして、第2の接続配管9Bを比較例の第2の接続配管109Bよりも第1の配管4に近づけることができる。すなわち、屈曲部6をコンパクトに構成することができる。以上の効果は、本実施形態の第1のエルボ7Aの曲げ剛性(EI)を比較例のエルボ107Aの曲げ剛性(EI)より小さくしたことの効果ということもできる。 Figure 4 shows a 90 degree elbow with one end fixed and the other end subjected to a radial force W. This means that in FIG. 3, the end of the first elbow 7A on the first pipe 4 side is the fixed end in FIG. 4, and the end of the first elbow 7A connected to the first connection pipe 9A is the fixed end in FIG. 4, the first pipe 4 does not expand or contract, and a tensile force W in the radial direction (+X direction) is applied to the end of the first elbow 7A that is connected to the first connection pipe 9A. It is thought that this is simulating a situation similar to the one in question. The displacement δ in the load direction at this time is (π+1)WR 3 /4EI. Here, R is the radius of curvature of the elbow, E is the Young's modulus of the elbow, and I is the second moment of area of the elbow. The displacement δ is inversely proportional to E, and becomes larger as E becomes smaller. Furthermore, as the displacement δ increases, the opening angle θ of the end portion also increases. Since the displacement δ and the opening angle θ are large, the rotation angle of the first connecting pipe 9A around the Z axis due to thermal deformation becomes large, and the amount of thermal contraction ΔX in the -X direction is easily absorbed. As a result, the first connection pipe 9A can be made shorter than the first connection pipe 109A of the comparative example, and the second connection pipe 9B can be brought closer to the first pipe 4 than the second connection pipe 109B of the comparative example. I can do it. That is, the bent portion 6 can be configured compactly. The above effect can also be said to be the effect of making the bending stiffness (EI) of the first elbow 7A of the present embodiment smaller than the bending stiffness (EI) of the elbow 107A of the comparative example.

図5は屈曲部6を3次元的に構成した例を示している。本実施形態では第1の配管4と第2の配管5は互いに平行である。第2の配管5は第1の配管4に対し+Y方向にずれている。第1の配管4の内部を流通する流体の流れ方向と第2の配管5の内部を流通する流体の流れ方向とは同一方向(+X方向)である。本実施形態では第2の配管5と、Z軸方向において第1の配管4と同一の高さに配置された他の配管10との干渉を防止するために屈曲部6にZ軸方向に延びる接続配管99を設けている。ここで、屈曲部6の接続配管99のうち、第2の配管5側に設けられた接続配管99のZ軸方向の長さは、第1の配管4側に設けられた接続配管99のZ軸方向の長さよりも長くなっている。これにより、他の配管10との干渉を回避するとともに、さらに熱伸縮の吸収能力を高めることができる。 FIG. 5 shows an example in which the bent portion 6 is configured three-dimensionally. In this embodiment, the first pipe 4 and the second pipe 5 are parallel to each other. The second pipe 5 is offset from the first pipe 4 in the +Y direction. The flow direction of the fluid flowing inside the first pipe 4 and the flow direction of the fluid flowing inside the second pipe 5 are the same direction (+X direction). In this embodiment, in order to prevent interference between the second pipe 5 and another pipe 10 disposed at the same height as the first pipe 4 in the Z-axis direction, a pipe is provided at the bent portion 6 extending in the Z-axis direction. A connecting pipe 99 is provided. Here, among the connection pipes 99 of the bent portion 6, the length in the Z-axis direction of the connection pipe 99 provided on the second pipe 5 side is the Z-axis direction length of the connection pipe 99 provided on the first pipe 4 side. It is longer than the axial length. Thereby, interference with other pipes 10 can be avoided, and the ability to absorb thermal expansion and contraction can be further increased.

以上説明したように、本実施形態は、継手7に変形しやすい材料を用いて継手7自体の曲げ変形性能を高めている(具体的には継手7のヤング率を配管のヤング率より小さくしている)ことを特徴とする。 As explained above, in this embodiment, the bending deformation performance of the joint 7 itself is improved by using a material that easily deforms for the joint 7 (specifically, the Young's modulus of the joint 7 is made smaller than the Young's modulus of the piping). It is characterized by:

また、本実施形態は、施工時の環境温度と配管1を流れる流体の温度との差が所定の温度を上回るときに配管1に屈曲部6を設けることを特徴とする。本発明は新設の配管に適用することが好ましいが、既設の配管において熱変形の問題が生じた場合にも既設の配管の改造として適用できる。本発明においては、配管1を流れる流体の絶対温度が重要でないことに留意すべきである。従って、冬季や寒冷地などの低温環境下で施工が行われ、常温の流体が配管1を流れる場合も配管1に屈曲部6を設けることが好ましい。逆に言えば、施工時の温度が常温であって、配管1を流れる流体の温度も常温である場合は屈曲部6を設けるメリットは得られない。所定の温度は特に限定されないが、例えば20度程度に設定することができる。 Further, this embodiment is characterized in that the bent portion 6 is provided in the pipe 1 when the difference between the environmental temperature at the time of construction and the temperature of the fluid flowing through the pipe 1 exceeds a predetermined temperature. Although the present invention is preferably applied to newly installed piping, it can also be applied as a modification of existing piping when a problem of thermal deformation occurs in existing piping. It should be noted that for the present invention the absolute temperature of the fluid flowing through the pipe 1 is not critical. Therefore, it is preferable to provide the bent portion 6 in the pipe 1 even when construction is performed in a low-temperature environment such as in winter or in a cold region, and a fluid at room temperature flows through the pipe 1. Conversely, if the temperature at the time of construction is room temperature and the temperature of the fluid flowing through the pipe 1 is also room temperature, the advantage of providing the bent portion 6 cannot be obtained. Although the predetermined temperature is not particularly limited, it can be set to about 20 degrees, for example.

本発明は線膨張係数の高いプラスチック材料に好適に適用できる(上述の通り、塩ビの線膨張係数は6~8×10-5/K程度であり、鉄の線膨張係数は1.2×10-5/K程度である)が、鉄などの金属配管にも適用できる。 The present invention can be suitably applied to plastic materials with a high linear expansion coefficient (as mentioned above, the linear expansion coefficient of PVC is about 6 to 8 x 10 -5 /K, and the linear expansion coefficient of iron is about 1.2 x 10 -5 /K), but can also be applied to metal piping such as iron.

本実施形態では、配管1を屋外に設置した場合について説明したが、配管1を地中に設置した場合についても同様である。 In this embodiment, the case where the pipe 1 is installed outdoors has been described, but the same applies to the case where the pipe 1 is installed underground.

1 配管
4 第1の配管
5 第2の配管
6 屈曲部
7 継手(エルボ、ベンド)
8 短管
9 接続配管
1 Piping 4 First piping 5 Second piping 6 Bent part 7 Joint (elbow, bend)
8 Short pipe 9 Connection pipe

Claims (9)

2つの配管部材を屈曲部を介して接続する配管の施工方法であって、
前記配管は超純水または純水が流れるようにされた屋外配管であり、
前記配管の施工時の環境温度と前記配管を流れる前記超純水または前記純水の温度との差が所定の温度を上回り、
前記屈曲部は曲げ部を構成する継手を有し、前記継手の弾性係数は前記配管部材の弾性係数より小さい、配管の施工方法。
A piping construction method for connecting two piping members via a bent part , the method comprising:
The piping is an outdoor piping through which ultrapure water or pure water flows,
The difference between the environmental temperature at the time of construction of the piping and the temperature of the ultrapure water or the pure water flowing through the piping exceeds a predetermined temperature,
The method for constructing piping, wherein the bent portion has a joint that constitutes the bent portion, and the elastic modulus of the joint is smaller than the elastic modulus of the piping member.
前記継手のヤング率は前記配管部材のヤング率より小さい、請求項1に記載の配管の施工方法。 The piping construction method according to claim 1, wherein the Young's modulus of the joint is smaller than the Young's modulus of the piping member. 前記継手の曲げ剛性は、前記配管部材と同一の材料からなり、前記継手と同一の中心線と同一の肉厚を有する継手の曲げ剛性より小さい、請求項1または2に記載の配管の施工方法。 The method for constructing piping according to claim 1 or 2, wherein the bending rigidity of the joint is smaller than the bending rigidity of a joint made of the same material as the piping member and having the same center line and the same wall thickness as the joint. . 前記配管部材は塩ビからなり、前記継手はポリエチレンからなる、請求項1から3のいずれか1項に記載の配管の施工方法。 The piping construction method according to any one of claims 1 to 3, wherein the piping member is made of vinyl chloride and the joint is made of polyethylene. 前記配管の一端側を第1の配管部材に接続し、前記配管の他端側を、前記第1の配管部材と同一直線上に設置され、または前記第1の配管部材と平行に設置された第2の配管部材に接続して、前記第1の配管部材と前記第2の配管部材とを連結する、請求項1から4のいずれか1項に記載の配管の施工方法。 One end of the piping is connected to a first piping member, and the other end of the piping is installed on the same straight line as the first piping member or parallel to the first piping member. The piping construction method according to any one of claims 1 to 4, further comprising connecting to a second piping member to connect the first piping member and the second piping member. 前記配管部材の外部と内部の少なくとも一方の温度が変化する、請求項1から5のいずれか1項に記載の配管の施工方法。 The piping construction method according to any one of claims 1 to 5, wherein at least one of the outside and inside temperatures of the piping member changes. 2つの配管部材と、前記2つの配管部材を接続する屈曲部とを有する配管であって、
前記配管は超純水または純水が流れるようにされた屋外配管であり、
前記配管の施工時の環境温度と前記配管を流れる前記超純水または前記純水の温度との差が所定の温度を上回り、
前記屈曲部は曲げ部を構成する継手を有し、前記継手の弾性係数は前記配管部材の弾性係数より小さい、配管。
A pipe having two piping members and a bent part connecting the two piping members,
The piping is an outdoor piping through which ultrapure water or pure water flows,
The difference between the environmental temperature at the time of construction of the piping and the temperature of the ultrapure water or the pure water flowing through the piping exceeds a predetermined temperature,
The bent portion has a joint that constitutes the bent portion, and the elastic modulus of the joint is smaller than the elastic modulus of the piping member.
前記継手のヤング率は前記配管部材のヤング率より小さい、請求項に記載の配管。 The piping according to claim 7 , wherein the Young's modulus of the joint is smaller than the Young's modulus of the piping member. 前記継手の曲げ剛性は、前記配管部材と同一の材料からなり、前記継手と同一の中心線と同一の肉厚を有する継手の曲げ剛性より小さい、請求項またはに記載の配管。 The piping according to claim 7 or 8 , wherein the bending rigidity of the joint is smaller than that of a joint made of the same material as the piping member and having the same center line and the same wall thickness as the joint.
JP2019212358A 2019-11-25 2019-11-25 Piping and its construction method Active JP7370827B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019212358A JP7370827B2 (en) 2019-11-25 2019-11-25 Piping and its construction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019212358A JP7370827B2 (en) 2019-11-25 2019-11-25 Piping and its construction method

Publications (2)

Publication Number Publication Date
JP2021085413A JP2021085413A (en) 2021-06-03
JP7370827B2 true JP7370827B2 (en) 2023-10-30

Family

ID=76087174

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019212358A Active JP7370827B2 (en) 2019-11-25 2019-11-25 Piping and its construction method

Country Status (1)

Country Link
JP (1) JP7370827B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003287244A (en) 2002-03-28 2003-10-10 Matsushita Ecology Systems Co Ltd Air-conditioning system
JP2006132822A (en) 2004-11-04 2006-05-25 Sanken Setsubi Kogyo Co Ltd Indoor air-conditioning system of building
JP2009128382A (en) 2007-11-19 2009-06-11 Nippon Telegr & Teleph Corp <Ntt> Optical fiber cable and information wiring system
JP2012127391A (en) 2010-12-14 2012-07-05 Showa Denko Kenzai Kk Molding joint for piping, method for manufacturing the same and method for constructing the same
JP2013226680A (en) 2012-04-25 2013-11-07 Akita Prefectural Univ Wood-based laminate molding
JP2018003875A (en) 2016-06-28 2018-01-11 積水化学工業株式会社 Piping system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4037861A (en) * 1976-03-01 1977-07-26 Jonas Medney Expansion joint
JPH0650481A (en) * 1992-03-16 1994-02-22 Shinku Kiko Kk Vacuum pipe fitting

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003287244A (en) 2002-03-28 2003-10-10 Matsushita Ecology Systems Co Ltd Air-conditioning system
JP2006132822A (en) 2004-11-04 2006-05-25 Sanken Setsubi Kogyo Co Ltd Indoor air-conditioning system of building
JP2009128382A (en) 2007-11-19 2009-06-11 Nippon Telegr & Teleph Corp <Ntt> Optical fiber cable and information wiring system
JP2012127391A (en) 2010-12-14 2012-07-05 Showa Denko Kenzai Kk Molding joint for piping, method for manufacturing the same and method for constructing the same
JP2013226680A (en) 2012-04-25 2013-11-07 Akita Prefectural Univ Wood-based laminate molding
JP2018003875A (en) 2016-06-28 2018-01-11 積水化学工業株式会社 Piping system

Also Published As

Publication number Publication date
JP2021085413A (en) 2021-06-03

Similar Documents

Publication Publication Date Title
JP6454024B2 (en) Compensator
CN102563257B (en) Tubing
US5715587A (en) Method of assembling double-containment piping assemblies
JP6529557B2 (en) Earthquake resistant flexible slip joint device
CN105829790A (en) Fluid transfer device and apparatus including such a device
KR101860264B1 (en) Slip joint for piping
JP7370827B2 (en) Piping and its construction method
US7562908B2 (en) Flexible fluid conduit joint and method
CA2970107C (en) Flexible pipe loop
JP7300313B2 (en) Piping connection structure, piping connection method
RU2396480C1 (en) Bellows compensating facility
JP6809807B2 (en) Piping structure and boiler system
JP2023003409A (en) Expansion loop for copper piping system
KR101256888B1 (en) Expansion Joint of Construction Plumbing
US20110181041A1 (en) Expansion Joint Arrangement
KR20120040460A (en) Expansion joint
JP7203384B2 (en) Double pipe joint structure
KR20180124406A (en) Extension joint for seismic and anti-vibration
US20090184515A1 (en) Expansion joint arrangement
EP3736479B1 (en) Expansion-compensating element
KR200344488Y1 (en) Bellows type copper pipe connect structure
CN220396877U (en) Expansion joint with compensation and noise reduction functions
Williams Catastrophic Failure of Flex Hose Bellows Due to Lateral Offset and Internal Pressure
CN108591663A (en) High life tetrafluoro compensator
RU144410U1 (en) UNLOADED BELLOW COMPENSATOR

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220707

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230530

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230731

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230926

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231018

R150 Certificate of patent or registration of utility model

Ref document number: 7370827

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150