JP7369428B2 - Sugar compounds and their uses - Google Patents

Sugar compounds and their uses Download PDF

Info

Publication number
JP7369428B2
JP7369428B2 JP2019147849A JP2019147849A JP7369428B2 JP 7369428 B2 JP7369428 B2 JP 7369428B2 JP 2019147849 A JP2019147849 A JP 2019147849A JP 2019147849 A JP2019147849 A JP 2019147849A JP 7369428 B2 JP7369428 B2 JP 7369428B2
Authority
JP
Japan
Prior art keywords
group
pngase
following formula
formula
activity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019147849A
Other languages
Japanese (ja)
Other versions
JP2021028307A (en
Inventor
一郎 松尾
剛 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gunma University NUC
Original Assignee
Gunma University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gunma University NUC filed Critical Gunma University NUC
Priority to JP2019147849A priority Critical patent/JP7369428B2/en
Publication of JP2021028307A publication Critical patent/JP2021028307A/en
Application granted granted Critical
Publication of JP7369428B2 publication Critical patent/JP7369428B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Description

本発明は、糖化合物に関し、より詳しくは、ペプチド-N-グリコシダーゼ(PNGase)活性の検出に利用することができる糖化合物に関する。 The present invention relates to sugar compounds, and more particularly to sugar compounds that can be used to detect peptide-N-glycosidase (PNGase) activity.

「ペプチドN-グリカナーゼ(PNGase)」や「エンド-β-N-アセチルグルコサミニダーゼ(ENGase)」は、真核細胞の細胞質に広く存在する糖鎖脱離酵素であり、小胞体における糖タンパク質の品質管理機構において重要な役割を担っていることが知られている。近年、PNGase遺伝子(Ngly1)の変異に基づいた遺伝子疾患「Ngly1欠損症」の存在も明らかになり(非特許文献1参照)、生育遅延、四肢の筋力低下、不随意運動、肝機能異常、脳波異常等の重篤な症状を呈することも明らかになっている。 "Peptide N-glycanase (PNGase)" and "endo-β-N-acetylglucosaminidase (ENGase)" are sugar chain release enzymes that are widely present in the cytoplasm of eukaryotic cells, and are used for quality control of glycoproteins in the endoplasmic reticulum. It is known that it plays an important role in the mechanism. In recent years, the existence of a genetic disease "Ngly1 deficiency" based on mutations in the PNGase gene (Ngly1) has been revealed (see Non-Patent Document 1), which causes growth retardation, muscle weakness in the limbs, involuntary movements, liver function abnormalities, and electroencephalograms. It has also been revealed that patients exhibit serious symptoms such as abnormalities.

これまでNgly1(PNGase)の活性測定は、糖鎖の切断をSDS-PAGEによる分子量の変化として検出する方法、HPLCによるリテンションタイムの変化やTLCによるサイズの変化として検出する方法などにより行われてきた。
しかしながら、何れの方法も検出操作が煩雑でスループット性が低く、多サンプルを処理するには向いておらず、化合物ライブラリーにおける阻害剤スクリーニングの実施は困難な状況であった。また、最大の問題として、これまでの活性検出法は細胞内での活性測定に利用できないことであった。
Until now, the activity of Ngly1 (PNGase) has been measured by methods such as detecting the cleavage of sugar chains as a change in molecular weight by SDS-PAGE, a change in retention time by HPLC, and a change in size by TLC. .
However, both methods require complicated detection operations, have low throughput, and are not suitable for processing a large number of samples, making it difficult to perform inhibitor screening on compound libraries. Furthermore, the biggest problem is that the conventional activity detection methods cannot be used to measure intracellular activity.

Need, A. C., et al., J. Med. Genet. 2012, 49, 353-361.Need, A. C., et al., J. Med. Genet. 2012, 49, 353-361.

本発明は、PNGase活性の検出に利用することができる新規な化合物や、新規のPNGaseをスクリーニングする方法、PNGase活性阻害剤のスクリーニング方法を提供することを目的とする。 An object of the present invention is to provide a novel compound that can be used for detecting PNGase activity, a method for screening a novel PNGase, and a method for screening a PNGase activity inhibitor.

本発明者らは、前記の課題を解決すべく鋭意検討を重ねた結果、蛍光共鳴エネルギー移動(FRET)が生じる蛍光基と消光基を特定の多糖構造に導入した糖化合物が、PNGase活性の検出に有効であることを見出し、本発明を完成させた。
本発明は、以下の通りである。
As a result of intensive studies aimed at solving the above-mentioned problems, the present inventors have discovered that a sugar compound in which a fluorescent group and a quenching group that cause fluorescence resonance energy transfer (FRET) are introduced into a specific polysaccharide structure can be used to detect PNGase activity. The present invention has been completed based on the discovery that the method is effective in the following.
The present invention is as follows.

〔1〕下記式(I)で表される糖化合物。
Z2-X2 1-5-(GlcNAc2-Z1)Asn-X1 0-5 ・・・(I)
(式(I)中、X1 0-5は0~5個の同一の又は異なるアミノ酸を表し、X2 1-5は1~5個の同一の又は異なるアミノ酸を表し、Z1は蛍光共鳴エネルギー移動(FRET)が生じる蛍光基を表し、Z2は前記蛍光基に対応する消光基を表す。)
〔2〕前記X1 0-5がGly-B1-Glyであり、前記B1はSer又はThrである、〔1〕に記載の糖化
合物。
〔3〕前記X2 1-5が(β-Ala)-Leu1-4である、〔1〕又は〔2〕に記載の糖化合物。
〔4〕前記Leu1-4がLeu3である、〔3〕に記載の糖化合物。
〔5〕前記蛍光基と前記消光基の組合せが、下記(i)~(iv)の何れかである、〔1
〕~〔4〕のいずれかに記載の糖化合物。
(i)下記式(d-1)で表される蛍光基と下記式(a-1)で表される消光基の組合せ

Figure 0007369428000001

(式(d-1)中、R’は水素原子、炭素原子数1~6の炭化水素基、又はアミノ基の保護基を表す。)
(ii)下記式(d-2)で表される蛍光基と下記式(a-1)で表される消光基の組合せ
Figure 0007369428000002

(式(d-2)中、Rは水素原子又はヒドロキシル基の保護基を表す。)
(iii)下記式(d-3)で表される蛍光基と下記式(a-1)で表される消光基の組合せ
Figure 0007369428000003

(式(d-3)中、Rは水素原子又はヒドロキシル基の保護基を、R’は水素原子、炭素原子数1~6の炭化水素基、又はアミノ基の保護基を表す。)
(iv)下記式(d-4)で表される蛍光基と下記式(a-2)で表される消光基の組合せ
Figure 0007369428000004

(式(d-4)及び(a-2)中、R’はそれぞれ独立して水素原子、炭素原子数1~6の炭化水素基、又はアミノ基の保護基を表す。)
(v)TAMRA(登録商標)である蛍光基とBHQ(登録商標)である消光基の組合せ
〔6〕〔1〕~〔5〕のいずれかに記載の糖化合物を含む、ペプチド-N-グリコシダーゼ(PNGase)活性検出用組成物。
〔7〕ペプチド-N-グリコシダーゼ(PNGase)の候補タンパク質またはそれを含む画分に下記式(I)で表される糖化合物を接触させて、前記糖化合物の分解活性を確認
する活性確認工程
を含む、ペプチド-N-グリコシダーゼ(PNGase)のスクリーニング方法。
Z2-X2 1-5-(GlcNAc2-Z1)Asn-X1 0-5 ・・・(I)
(式(I)中、X1 0-5は0~5個の同一の又は異なるアミノ酸を表し、X2 1-5は1~5個の同一の又は異なるアミノ酸を表し、Z1は蛍光共鳴エネルギー移動(FRET)が生じる蛍光基を表し、Z2は前記蛍光基に対応する消光基を表す。)
〔8〕ペプチド-N-グリコシダーゼ(PNGase)の候補タンパク質またはそれを含む画分に下記式(I)で表される糖化合物を接触させて、前記糖化合物の分解活性を確認する活性確認工程
を含む、ペプチド-N-グリコシダーゼ(PNGase)活性の評価方法。
Z2-X2 1-5-(GlcNAc2-Z1)Asn-X1 0-5 ・・・(I)
(式(I)中、X1 0-5は0~5個の同一の又は異なるアミノ酸を表し、X2 1-5は1~5個の同一の又は異なるアミノ酸を表し、Z1は蛍光共鳴エネルギー移動(FRET)が生じる蛍光基を表し、Z2は前記蛍光基に対応する消光基を表す。)
〔9〕被検化合物をペプチド-N-グリコシダーゼ(PNGase)に接触させる接触工程、及び
前記被検化合物を接触させたペプチド-N-グリコシダーゼ(PNGase)に下記式(I)で表される糖化合物を接触させて、前記糖化合物の分解活性を確認する活性確認工程
を含む、ペプチド-N-グリコシダーゼ(PNGase)活性阻害剤のスクリーニング方法。
Z2-X2 1-5-(GlcNAc2-Z1)Asn-X1 0-5 ・・・(I)
(式(I)中、X1 0-5は0~5個の同一の又は異なるアミノ酸を表し、X2 1-5は1~5個の同一の又は異なるアミノ酸を表し、Z1は蛍光共鳴エネルギー移動(FRET)が生じる蛍光基を表し、Z2は前記蛍光基に対応する消光基を表す。) [1] A sugar compound represented by the following formula (I).
Z 2 -X 2 1-5 -(GlcNAc 2 -Z 1 )Asn-X 1 0-5 ...(I)
(In formula (I), X 1 0-5 represents 0 to 5 same or different amino acids, X 2 1-5 represents 1 to 5 same or different amino acids, and Z 1 represents fluorescence resonance It represents a fluorescent group where energy transfer (FRET) occurs, and Z2 represents a quenching group corresponding to the fluorescent group.)
[2] The sugar compound according to [1], wherein the X 1 0-5 is Gly-B 1 -Gly, and the B 1 is Ser or Thr.
[3] The sugar compound according to [1] or [2], wherein the X 2 1-5 is (β-Ala)-Leu 1-4 .
[4] The sugar compound according to [3], wherein the Leu 1-4 is Leu 3 .
[5] The combination of the fluorescent group and the quenching group is any of the following (i) to (iv), [1
] - [4] The sugar compound according to any one of [4].
(i) A combination of a fluorescent group represented by the following formula (d-1) and a quenching group represented by the following formula (a-1)
Figure 0007369428000001

(In formula (d-1), R' represents a hydrogen atom, a hydrocarbon group having 1 to 6 carbon atoms, or a protecting group for an amino group.)
(ii) A combination of a fluorescent group represented by the following formula (d-2) and a quenching group represented by the following formula (a-1)
Figure 0007369428000002

(In formula (d-2), R represents a hydrogen atom or a hydroxyl group protecting group.)
(iii) A combination of a fluorescent group represented by the following formula (d-3) and a quenching group represented by the following formula (a-1)
Figure 0007369428000003

(In formula (d-3), R represents a hydrogen atom or a protecting group for a hydroxyl group, and R' represents a hydrogen atom, a hydrocarbon group having 1 to 6 carbon atoms, or a protecting group for an amino group.)
(iv) A combination of a fluorescent group represented by the following formula (d-4) and a quenching group represented by the following formula (a-2)
Figure 0007369428000004

(In formulas (d-4) and (a-2), R' each independently represents a hydrogen atom, a hydrocarbon group having 1 to 6 carbon atoms, or a protecting group for an amino group.)
(v) A combination of a fluorescent group that is TAMRA (registered trademark) and a quenching group that is BHQ (registered trademark) [6] A peptide-N-glycosidase containing the sugar compound according to any one of [1] to [5] (PNGase) Activity detection composition.
[7] An activity confirmation step of contacting a candidate protein of peptide-N-glycosidase (PNGase) or a fraction containing it with a sugar compound represented by the following formula (I) and confirming the decomposition activity of the sugar compound. A screening method for peptide-N-glycosidase (PNGase), comprising:
Z 2 -X 2 1-5 -(GlcNAc 2 -Z 1 )Asn-X 1 0-5 ...(I)
(In formula (I), X 1 0-5 represents 0 to 5 same or different amino acids, X 2 1-5 represents 1 to 5 same or different amino acids, and Z 1 represents fluorescence resonance It represents a fluorescent group where energy transfer (FRET) occurs, and Z2 represents a quenching group corresponding to the fluorescent group.)
[8] An activity confirmation step of contacting a candidate protein of peptide-N-glycosidase (PNGase) or a fraction containing it with a sugar compound represented by the following formula (I) and confirming the decomposition activity of the sugar compound. A method for evaluating peptide-N-glycosidase (PNGase) activity.
Z 2 -X 2 1-5 -(GlcNAc 2 -Z 1 )Asn-X 1 0-5 ...(I)
(In formula (I), X 1 0-5 represents 0 to 5 same or different amino acids, X 2 1-5 represents 1 to 5 same or different amino acids, and Z 1 represents fluorescence resonance It represents a fluorescent group where energy transfer (FRET) occurs, and Z2 represents a quenching group corresponding to the fluorescent group.)
[9] A contacting step of bringing the test compound into contact with peptide-N-glycosidase (PNGase), and adding a sugar compound represented by the following formula (I) to the peptide-N-glycosidase (PNGase) that has been contacted with the test compound. A method for screening a peptide-N-glycosidase (PNGase) activity inhibitor, comprising an activity confirmation step of contacting with the sugar compound to confirm the decomposition activity of the sugar compound.
Z 2 -X 2 1-5 -(GlcNAc 2 -Z 1 )Asn-X 1 0-5 ...(I)
(In formula (I), X 1 0-5 represents 0 to 5 same or different amino acids, X 2 1-5 represents 1 to 5 same or different amino acids, and Z 1 represents fluorescence resonance It represents a fluorescent group where energy transfer (FRET) occurs, and Z2 represents a quenching group corresponding to the fluorescent group.)

本発明によれば、PNGase活性を簡易的に検出することができ、新規のPNGaseやPNGase活性阻害剤等を効率的にスクリーニングすることができる。 According to the present invention, PNGase activity can be detected easily, and new PNGases, PNGase activity inhibitors, etc. can be efficiently screened.

実施例2で行った酵素反応をマイクロプレートリーダーにより追跡した結果である。These are the results of tracking the enzyme reaction performed in Example 2 using a microplate reader.

本発明の詳細を説明するに当たり、具体例を挙げて説明するが、本発明の趣旨を逸脱しない限り以下の内容に限定されるものではなく、適宜変更して実施することができる。 In explaining the details of the present invention, specific examples will be given. However, the present invention is not limited to the following content as long as it does not depart from the spirit of the present invention, and the present invention can be implemented with appropriate changes.

<糖化合物>
本発明の一態様である糖化合物(以下、「本発明の糖化合物」と略す場合がある。)は、下記式(I)で表される化合物である。
Z2-X2 1-5-(GlcNAc2-Z1)Asn-X1 0-5 ・・・(I)
(式(I)中、X1 0-5は0~5個の同一の又は異なるアミノ酸配列を表し、X2 1-5は1~5個の同一の又は異なるアミノ酸配列を表し、Z1は蛍光共鳴エネルギー移動(FRET)が生じる蛍光基を表し、Z2は前記蛍光基に対応する消光基を表す。)
<Sugar compounds>
A sugar compound that is one embodiment of the present invention (hereinafter sometimes abbreviated as "sugar compound of the present invention") is a compound represented by the following formula (I).
Z 2 -X 2 1-5 -(GlcNAc 2 -Z 1 )Asn-X 1 0-5 ...(I)
(In formula (I), X 1 0-5 represents 0 to 5 identical or different amino acid sequences, X 2 1-5 represents 1 to 5 identical or different amino acid sequences, and Z 1 It represents a fluorescent group in which fluorescence resonance energy transfer (FRET) occurs, and Z2 represents a quenching group corresponding to the fluorescent group.)

式(I)中のX1 0-5は、0~5個の同一の又は異なるアミノ酸配列を表す。その個数は
、好ましくは1~4個であり、より好ましくは2~3個であり、さらに好ましくは3個である。また、具体的には、Gly-B1-Glyであることが好ましく、前記B1はSer又はThrであることが好ましい。
また、式(I)中のX2 1-5は、1~5個の同一の又は異なるアミノ酸配列を表す。その
個数は、好ましくは2~4個である。また、具体的には、(β-Ala)- Leu1-4であることが好ましく、前記Leu1-4はLeu3であることが好ましい。
また、GlcNAcは式(I)の糖化合物中に2分子以上含まれ、N-結合型糖鎖コア構造(Man3GlcNAc2)構造を認識し切断するエンド-β-N-アセチルグルコサミニダーゼ(E
NGase)によって、式(I)で表される化合物は認識されず、切断されることはない。
また、式(I)中のGlcNAc2-Z1において、GlcNAc2とZ1との間にはスペーサーを設けて
もよい。具体的には、N-結合型糖鎖のうちの高マンノース型(High mannose type, Man9)スペーサーが好ましく、Z1は、その枝分かれしたマンノースのいずれの先端に含まれ
てもよい。
X 1 0-5 in formula (I) represents 0 to 5 identical or different amino acid sequences. The number is preferably 1 to 4, more preferably 2 to 3, and still more preferably 3. Further, specifically, it is preferably Gly-B 1 -Gly, and B 1 is preferably Ser or Thr.
Furthermore, X 2 1-5 in formula (I) represents 1 to 5 identical or different amino acid sequences. The number is preferably 2 to 4. Further, specifically, it is preferably (β-Ala)-Leu 1-4 , and the Leu 1-4 is preferably Leu 3 .
In addition, GlcNAc is contained in two or more molecules in the sugar compound of formula (I), and is endo-β-N- acetylglucosaminidase (E
The compound represented by formula (I) is not recognized by NGase) and is not cleaved.
Furthermore, in GlcNAc 2 -Z 1 in formula (I), a spacer may be provided between GlcNAc 2 and Z 1 . Specifically, a high mannose type (Man 9 ) spacer among N-linked sugar chains is preferred, and Z 1 may be included at any tip of the branched mannose.

本発明者らは、PNGaseが式(I)中の特定の位置を選択的に切断する特異性があることを見出しており、切断によって分離される位置に蛍光共鳴エネルギー移動(FRET)が生じる蛍光基(ドナー)と消光基(アクセプター)を配置した糖化合物を合成して、これがFRETプローブとして実際に利用できることを確認した。例えば、下記式で表される反応中の糖化合物は、式(I)のZの位置に蛍光基としてN-メチルアントラニル基を、式(I)のZの位置に消光基として2,4-ジニトロフェニル基を有しており、PNGaseによって糖鎖が切断されると、蛍光基と消光基の距離が離れて蛍光基の蛍光発光の強度変化等が生じるため、PNGase活性が検出できる。
Z2-X2 1-5-(GlcNAc2-Z1)Asn-X1 0-5 → Z2-X2 1-5-Asp-X1 0-5 + GlcNAc2-Z1
なお、「蛍光共鳴エネルギー移動(FRET)が生じる蛍光基」と「蛍光基に対応する消光基」とは、蛍光基と消光基とが蛍光共鳴エネルギー移動(FRET)を生じる任意の組合せであることを意味する。
The present inventors have discovered that PNGase has the specificity of selectively cleaving a specific position in formula (I), and the fluorescence resonance energy transfer (FRET) occurs at the position separated by the cleavage. We synthesized a sugar compound with a group (donor) and a quenching group (acceptor) and confirmed that it can actually be used as a FRET probe. For example, the sugar compound in the reaction represented by the following formula has an N-methylanthranyl group as a fluorescent group at the Z 1 position of formula (I) and a 2, quenching group at the Z 2 position of the formula (I). It has a 4-dinitrophenyl group, and when the sugar chain is cleaved by PNGase, the distance between the fluorescent group and the quenching group increases, causing a change in the intensity of fluorescence from the fluorescent group, so PNGase activity can be detected.
Z 2 -X 2 1-5 -(GlcNAc 2 -Z 1 )Asn-X 1 0-5 → Z 2 -X 2 1-5 -Asp-X 1 0-5 + GlcNAc 2 -Z 1
Note that "fluorescent group that causes fluorescence resonance energy transfer (FRET)" and "quenching group corresponding to the fluorescent group" are any combination of a fluorescent group and a quenching group that causes fluorescence resonance energy transfer (FRET). means.

本発明の糖化合物は、上記式(I)で表される化合物であるが、式(I)に該当するものであれば具体的種類は特に限定されず、使用目的等にあわせて適宜選択することができる。 The sugar compound of the present invention is a compound represented by the above formula (I), but the specific type is not particularly limited as long as it corresponds to formula (I), and can be selected as appropriate depending on the purpose of use etc. be able to.

及びZは「何れか一方が蛍光共鳴エネルギー移動(FRET)が生じる蛍光基」を、「もう一方が前記蛍光基に対応する消光基」を表しているが、蛍光基と消光基の組合せは、Bachem社等の「FRET SUBSTRATES」やAngew. Chem. Int. Ed. 2006,45,4562-4588.に記載されている構造等が挙げられる。この中でも、蛍光基と消光基の組合せとしては、下記(i)~(iv)のものが好ましい。
(i)下記式(d-1)で表される蛍光基と下記式(a-1)で表される消光基の組合せ

Figure 0007369428000005

(式(d-1)中、R’は水素原子、炭素原子数1~6の炭化水素基、又はアミノ基の保護基を表す。) Z 1 and Z 2 represent ``one of which is a fluorescent group that causes fluorescence resonance energy transfer (FRET)'' and ``the other is a quenching group that corresponds to the fluorescent group,'' but the difference between the fluorescent group and the quenching group is Examples of the combination include structures described in "FRET SUBSTRATES" by Bachem et al. and Angew. Chem. Int. Ed. 2006, 45, 4562-4588. Among these, the following (i) to (iv) are preferred as combinations of fluorescent groups and quenching groups.
(i) A combination of a fluorescent group represented by the following formula (d-1) and a quenching group represented by the following formula (a-1)
Figure 0007369428000005

(In formula (d-1), R' represents a hydrogen atom, a hydrocarbon group having 1 to 6 carbon atoms, or a protecting group for an amino group.)

(ii)下記式(d-2)で表される蛍光基と下記式(a-1)で表される消光基の組合せ

Figure 0007369428000006

(式(d-2)中、Rは水素原子又はヒドロキシル基の保護基を表す。) (ii) A combination of a fluorescent group represented by the following formula (d-2) and a quenching group represented by the following formula (a-1)
Figure 0007369428000006

(In formula (d-2), R represents a hydrogen atom or a hydroxyl group protecting group.)

(iii)下記式(d-3)で表される蛍光基と下記式(a-1)で表される消光基の組合せ

Figure 0007369428000007

(式(d-3)中、Rは水素原子又はヒドロキシル基の保護基を、R’は水素原子、炭素原子数1~6の炭化水素基、又はアミノ基の保護基を表す。) (iii) A combination of a fluorescent group represented by the following formula (d-3) and a quenching group represented by the following formula (a-1)
Figure 0007369428000007

(In formula (d-3), R represents a hydrogen atom or a protecting group for a hydroxyl group, and R' represents a hydrogen atom, a hydrocarbon group having 1 to 6 carbon atoms, or a protecting group for an amino group.)

(iv)下記式(d-4)で表される蛍光基と下記式(a-2)で表される消光基の組合せ

Figure 0007369428000008

(式(d-4)及び(a-2)中、R’はそれぞれ独立して水素原子、炭素原子数1~6の炭化水素基、又はアミノ基の保護基を表す。) (iv) A combination of a fluorescent group represented by the following formula (d-4) and a quenching group represented by the following formula (a-2)
Figure 0007369428000008

(In formulas (d-4) and (a-2), R' each independently represents a hydrogen atom, a hydrocarbon group having 1 to 6 carbon atoms, or a protecting group for an amino group.)

(v)carboxytetramethyl-rhodamine (TAMRA、登録商標)である蛍光基とBlackHole Quenchers(BHQ、登録商標)である消光基の組合せ
なお、TAMRAは、BHQである消光基との組合せにおいて、蛍光基として機能する限り、その誘導体であってもよい。
また、BHQとしては、BHQ1(登録商標)、BHQ2(登録商標)、BHQ3(登録商標)が挙げ
られ、また、TAMRAである蛍光基との組合せにおいて、消光基として機能する限りそれら
の誘導体であってもよい。
(v) Combination of a fluorescent group that is carboxytetramethyl-rhodamine (TAMRA, registered trademark) and a quenching group that is BlackHole Quenchers (BHQ, registered trademark) In addition, TAMRA functions as a fluorescent group in combination with a quenching group that is BHQ. It may be a derivative thereof as long as it does so.
Examples of BHQ include BHQ1 (registered trademark), BHQ2 (registered trademark), and BHQ3 (registered trademark), and derivatives thereof may be used as long as they function as a quenching group in combination with the fluorescent group that is TAMRA. It's okay.

なお、式(d-1)~(d-4)及び式(a-1)及び(a-2)中のRとR’としては、下記のものが挙げられる。 Note that R and R' in formulas (d-1) to (d-4) and formulas (a-1) and (a-2) include the following.

Rは、それぞれ独立して「水素原子」又は「ヒドロキシル基の保護基」である。ヒドロキシル基の保護基としては、メチル基、ベンジル基、p-メトキシベンジル基、tert-ブチル基等のエーテル系保護基;アセチル基、ピバロイル基、ベンゾイル基等のアシル系保護基;トリメチルシリル基、トリエチルシリル基、tert-ブチルジメチルシリル
基、トリイソプロピルシリル基、tert-ブチルジフェニルシリル基等のシリルエーテル系保護基等が挙げられる。
Each R is independently a "hydrogen atom" or a "hydroxyl group protecting group." As protecting groups for hydroxyl groups, ether protecting groups such as methyl group, benzyl group, p-methoxybenzyl group, tert-butyl group; acyl protecting groups such as acetyl group, pivaloyl group, benzoyl group; trimethylsilyl group, triethyl group, etc. Examples include silyl ether protecting groups such as a silyl group, a tert-butyldimethylsilyl group, a triisopropylsilyl group, and a tert-butyldiphenylsilyl group.

R’は、それぞれ独立して「水素原子」、「炭素原子数1~6の炭化水素基」、又は「アミノ基の保護基」である。
「炭化水素基」とは直鎖状の飽和炭化水素基に限られず、炭素-炭素不飽和結合、分岐構造、環状構造のそれぞれを有していてもよい炭素原子及び水素原子のみからなる基を意味するものとする。
炭化水素基としては、メチル基(-CH、-Me)、エチル基(-C、-Et)、n-プロピル基(-、-Pr)、i-プロピル基(-、-Pr)、n-ブチル基(-、-Bu)、t-ブチル基(-、-Bu)、n-ペンチル基(-11)、n-ヘキシル基(-13,-Hex)、シクロヘキシル基(-11,-Cy)、フェニル基(-C,-Ph)等が挙げられる。
アミノ基の保護基としては、t-ブトキシカルボニル基(Boc)、ベンジルオキシカルボニル基(Cbz)、9-フルオレニルメチルオキシカルボニル基(Fmoc)、2,2,2-トリクロロエトキシカルボニル基(Troc)、アリルオキシカルボニル基(Alloc)等のアルコキシカルボニル系保護基;アセチル基、トリフルオロアセチル基(Tfa)等のアシル系保護基;p-トルエンスルホニル基(Ts)、2-ニトロベンゼンスルホニル基(Ns)等のアルキル(アリール)スルホニル基等が挙げられる。
R' is each independently a "hydrogen atom," a "hydrocarbon group having 1 to 6 carbon atoms," or a "protecting group for an amino group."
"Hydrocarbon group" is not limited to a linear saturated hydrocarbon group, but also a group consisting only of carbon atoms and hydrogen atoms, which may have a carbon-carbon unsaturated bond, a branched structure, or a cyclic structure. shall mean.
Hydrocarbon groups include methyl group (-CH 3 , -Me), ethyl group (-C 2 H 5 , -Et), n-propyl group (- n C 3 H 7 , - n Pr), i-propyl Group ( -i C 3 H 7 , - i Pr), n-butyl group (- n C 4 H 9 , - n Bu), t-butyl group (- t C 4 H 9 , - t Bu), n- Pentyl group (- n C 5 H 11 ), n-hexyl group (- n C 6 H 13 , - n Hex), cyclohexyl group (- c C 6 H 11 , -Cy), phenyl group (- C 6 H 5 , -Ph), etc.
Protecting groups for amino groups include t-butoxycarbonyl group (Boc), benzyloxycarbonyl group (Cbz), 9-fluorenylmethyloxycarbonyl group (Fmoc), 2,2,2-trichloroethoxycarbonyl group (Troc). ), alkoxycarbonyl protecting groups such as allyloxycarbonyl group (Alloc); acyl protecting groups such as acetyl group and trifluoroacetyl group (Tfa); p-toluenesulfonyl group (Ts), 2-nitrobenzenesulfonyl group (Ns) ) and other alkyl(aryl)sulfonyl groups.

上記式(I)で表される本発明の糖化合物の製造方法は特に制限されず、例えば、実施例のようにして製造することができる。 The method for producing the sugar compound of the present invention represented by the above formula (I) is not particularly limited, and can be produced, for example, as shown in Examples.

<ペプチド-N-グリコシダーゼ(PNGase)活性阻害剤のスクリーニング方法>
PNGase活性阻害剤は、NGLY1疾患の原因究明に利用できるため有用である。本発
明の糖化合物は、PNGase活性を簡易的に検出することができるため、被検化合物に接触させたPNGaseを本発明の糖化合物と接触させて、本発明の糖化合物の分解活性を確認することで、PNGase活性阻害剤を効率的にスクリーニングすることができる。なお、被検化合物をPNGaseに接触させる接触工程(以下、「接触工程」と略す場合がある。)、及び被検化合物を接触させたPNGaseに式(I)で表される糖化合物を接触させて、糖化合物の分解活性を確認する活性確認工程(以下、「活性確認工程」と略す場合がある。)を含むPNGase活性阻害剤のスクリーニング方法も本発明の一態様である。
<Screening method for peptide-N-glycosidase (PNGase) activity inhibitor>
PNGase activity inhibitors are useful because they can be used to investigate the cause of NGLY1 disease. Since the sugar compound of the present invention allows PNGase activity to be easily detected, PNGase that has been brought into contact with a test compound is brought into contact with the sugar compound of the present invention to confirm the decomposition activity of the sugar compound of the present invention. By doing so, PNGase activity inhibitors can be efficiently screened. Note that there is a contact step in which the test compound is brought into contact with PNGase (hereinafter sometimes abbreviated as "contact step"), and a sugar compound represented by formula (I) is brought into contact with the PNGase that has been brought into contact with the test compound. Accordingly, a screening method for a PNGase activity inhibitor that includes an activity confirmation step (hereinafter sometimes abbreviated as "activity confirmation step") of confirming the decomposition activity of a sugar compound is also one aspect of the present invention.

接触工程は、被検化合物をPNGaseに接触させる工程である。接触させる被検化合物の質量は、PNGaseの1ngに対して、通常7.5μg以上、好ましくは15μg以上であり、通常150μg以下、好ましくは75μg以下である。 The contact step is a step of bringing the test compound into contact with PNGase. The mass of the test compound to be contacted is usually 7.5 μg or more, preferably 15 μg or more, and usually 150 μg or less, preferably 75 μg or less, per 1 ng of PNGase.

活性確認工程は、被検化合物を接触させたPNGaseに式(I)で表される糖化合物を接触させて、糖化合物の分解活性を確認する工程である。接触させる式(I)で表される糖化合物の質量は、PNGaseの1ngに対して、通常3μg以上、好ましくは30μg以上であり、通常500μg以下、好ましくは300μg以下である。 The activity confirmation step is a step in which the sugar compound represented by formula (I) is brought into contact with PNGase that has been brought into contact with the test compound, and the decomposition activity of the sugar compound is confirmed. The mass of the sugar compound represented by formula (I) to be contacted is usually 3 μg or more, preferably 30 μg or more, and usually 500 μg or less, preferably 300 μg or less, per 1 ng of PNGase.

活性確認工程における式(I)で表される糖化合物の分解活性の確認方法は、特に限定されないが、式(I)で表される糖化合物の蛍光基に基づいた蛍光発光の強度変化を観測する方法、式(I)で表される糖化合物の消光基に基づいた紫外線(UV)の吸収波長等を観測する方法が挙げられる。例えば、被検化合物を接触させていないPNGaseの糖化合物の分解活性と、被検化合物を接触させたPNGaseの糖化合物の分解活性を比較し、被検化合物を接触させたPNGaseの方が糖化合物の分解活性が劣っていた場合に
、被検化合物はPNGase活性の阻害作用がある(PNGase活性阻害剤である。)と判断することができる。
The method for confirming the decomposition activity of the sugar compound represented by formula (I) in the activity confirmation step is not particularly limited, but includes observing changes in the intensity of fluorescence emission based on the fluorescent groups of the sugar compound represented by formula (I). A method of observing the absorption wavelength of ultraviolet rays (UV) based on the quenching group of the sugar compound represented by formula (I) can be mentioned. For example, comparing the sugar compound decomposition activity of PNGase that is not in contact with the test compound and the sugar compound decomposition activity of PNGase that is in contact with the test compound, PNGase that is in contact with the test compound has a higher sugar compound decomposition activity. If the degrading activity of the test compound is inferior, it can be determined that the test compound has an inhibitory effect on PNGase activity (it is a PNGase activity inhibitor).

本発明のスクリーニング方法が対象とするPNGaseとしては具体的にはヒト細胞質PNGaseや、フラボバクテリウム由来のPNGase-Fなどの糖タンパク質糖鎖に作用するPNGaseが挙げられる。 Specific examples of PNGase targeted by the screening method of the present invention include human cytoplasmic PNGase and PNGase that acts on glycoprotein sugar chains, such as PNGase-F derived from Flavobacterium.

<ペプチド-N-グリコシダーゼ(PNGase)のスクリーニング方法>
本発明の一態様は、ペプチド-N-グリコシダーゼ(PNGase)の候補タンパク質またはそれを含む画分に式(I)で表される糖化合物を接触させて、前記糖化合物の分解活性を確認する活性確認工程を含む、ペプチド-N-グリコシダーゼ(PNGase)のスクリーニング方法である。
<Screening method for peptide-N-glycosidase (PNGase)>
One aspect of the present invention provides an activity of contacting a candidate protein of peptide-N-glycosidase (PNGase) or a fraction containing the same with a sugar compound represented by formula (I) to confirm the degrading activity of the sugar compound. This is a screening method for peptide-N-glycosidase (PNGase), including a confirmation step.

本発明の糖化合物は、PNGase活性を簡易的に検出することができるため、PNGaseの候補タンパク質またはそれを含む画分を本発明の糖化合物と接触させて、本発明の糖化合物の分解活性を確認することで、新規のPNGaseを効率的にスクリーニングすることができるし、PNGase活性の評価をすることもできる。
その他、本態様における接触工程及び活性確認工程の態様については、前記<ペプチド-N-グリコシダーゼ(PNGase)活性阻害剤のスクリーニング方法>における接触工程及び活性確認工程の態様を援用する。ただし、活性確認工程における式(I)で表される糖化合物の分解活性の確認方法としては、例えば、被検化合物を接触させたPNGaseの候補の糖化合物の分解活性を測定し、対照に対して有意な活性を示した場合には、PNGaseとして有用である、新規のPNGaseであるなどと判断することができる。
Since the sugar compound of the present invention allows PNGase activity to be detected easily, the decomposition activity of the sugar compound of the present invention can be detected by contacting a PNGase candidate protein or a fraction containing it with the sugar compound of the present invention. By confirming this, new PNGases can be efficiently screened and PNGase activity can be evaluated.
In addition, for the aspects of the contact step and activity confirmation step in this embodiment, the aspects of the contact step and activity confirmation step in the above-mentioned <Screening method for peptide-N-glycosidase (PNGase) activity inhibitor> are used. However, as a method for confirming the decomposition activity of the sugar compound represented by formula (I) in the activity confirmation step, for example, the decomposition activity of the sugar compound of the PNGase candidate in contact with the test compound is measured, and compared to the control. If the PNGase exhibits significant activity, it can be determined that the PNGase is useful as a PNGase or is a new PNGase.

以下に実施例を挙げて本発明をさらに具体的に説明するが、本発明の趣旨を逸脱しない限り適宜変更することができる。従って、本発明の範囲は以下に示す具体例により限定的に解釈されるべきものではない。 The present invention will be described in more detail with reference to Examples below, but changes can be made as appropriate without departing from the spirit of the present invention. Therefore, the scope of the present invention should not be interpreted as being limited by the specific examples shown below.

<実施例1:式(I)で表される糖化合物の製造>
(Phenyl-3,6-di-O-benzyl-2-deoxy-2-phtalimide-1-thio-β-D-glucopyranoside (化合
物10)の合成)

Figure 0007369428000009
化合物9 (10.17 g, 17.5 mmol)をジクロロメタン(30 mL)に溶解し、トリエチルシ
ラン(8.4 mL, 52.6 mmol)、ボロントリフルオリドエチルエーテルコンプレックス(2.22 mL, 17.5 mmol)を加えて-78℃で1時間撹拌し、0℃に昇温した。42時間撹拌したのち-40℃にてトリエチルアミン(3.6 mL, 26 mmol)を加えて反応を終了させた。酢酸エチルで希釈し、1M塩酸、飽和食塩水、飽和炭酸水素ナトリウム水溶液、飽和食塩水の順に洗浄した。有機層を硫酸マグネシウムで乾燥させ、溶媒を減圧留去した。得られた残渣をシリカゲルクロマトグラフィー(ヘキサン : 酢酸エチル= 100 : 1 ~ 4 : 1, v : v)を用いて精製し、化合物10 (8.98 g, 88%)を得た。
Rf =0.43(n-hexane : AcOEt = 1 : 1, v : v)
1H-NMR (400 MHz, CHLOROFORM-D) δ 7.83-6.86 (m, 20H), 5.58-5.50 (m, 1H), 5.00-4.68 (m, 1H), 4.63-4.42 (m, 3H), 4.28-4.20 (m, 2H), 3.87-3.77 (m, 3H
), 3.71-3.66 (m, 1H), 2.89 (d, J = 2.5 Hz, 1H), 1.69-1.60 (m, 1H) <Example 1: Production of sugar compound represented by formula (I)>
(Synthesis of Phenyl-3,6-di-O-benzyl-2-deoxy-2-phtalimide-1-thio-β-D-glucopyranoside (Compound 10))
Figure 0007369428000009
Compound 9 (10.17 g, 17.5 mmol) was dissolved in dichloromethane (30 mL), triethylsilane (8.4 mL, 52.6 mmol) and boron trifluoride ethyl ether complex (2.22 mL, 17.5 mmol) were added, and the mixture was incubated at -78°C. The mixture was stirred for an hour and the temperature was raised to 0°C. After stirring for 42 hours, triethylamine (3.6 mL, 26 mmol) was added at -40°C to terminate the reaction. The mixture was diluted with ethyl acetate and washed successively with 1M hydrochloric acid, saturated brine, saturated aqueous sodium bicarbonate solution, and saturated brine. The organic layer was dried over magnesium sulfate, and the solvent was distilled off under reduced pressure. The obtained residue was purified using silica gel chromatography (hexane:ethyl acetate = 100:1 to 4:1, v:v) to obtain compound 10 (8.98 g, 88%).
R f =0.43 (n-hexane: AcOEt = 1: 1, v: v)
1 H-NMR (400 MHz, CHLOROFORM-D) δ 7.83-6.86 (m, 20H), 5.58-5.50 (m, 1H), 5.00-4.68 (m, 1H), 4.63-4.42 (m, 3H), 4.28 -4.20 (m, 2H), 3.87-3.77 (m, 3H)
), 3.71-3.66 (m, 1H), 2.89 (d, J = 2.5 Hz, 1H), 1.69-1.60 (m, 1H)

(Phenyl-3,6-di-O-benzyl-2-deoxy-2-phtalimide-1-thio-β-D-galactopyranoside (化
合物12)の合成)

Figure 0007369428000010
化合物10 (1.05 g, 1.81 mmol)をジクロロメタン(20 mL)に溶解し、ピリジン(620
μL, 7.7 mmol)、トリフルオロメタンスルホン酸無水物(600 μL, 3.55 mmol)を加え、室温で60分撹拌した。飽和重曹水、クロロホルムで希釈し、飽和重曹水、飽和食塩水で順次洗浄した。硫酸マグネシウムで乾燥後、溶媒を減圧留去した。ジメチルホルムアミド(17 mL)に溶かし、硝酸ナトリウム(1.19 g, 17.2 mmol)を加え、室温で60分撹拌した。クロロホルムで希釈し、1 M塩酸、飽和重曹水、飽和食塩水の順で洗浄した。溶媒を減圧
留去した。得られた残渣をシリカゲルクロマトグラフィー(トルエン : 酢酸エチル=400 : 1 ~ 5 / 1 v : v)により精製し、化合物12 (701 mg, 2段階収率67%)を得た。
Rf =0.39(toluene : AcOEt = 5 : 1, v : v)
1H-NMR (400 MHz, CHLOROFORM-D) δ 7.86-6.92 (m, 23H), 5.51 (d, J = 10.5 Hz,
1H), 4.63-4.52 (m, 4H), 4.32-4.25 (m, 2H), 4.20 (t, J = 2.4 Hz, 1H), 3.86-3.80 (m, 3H), 2.58 (d, J = 1.1 Hz, 1H), 1.55 (s, 2H) (Synthesis of Phenyl-3,6-di-O-benzyl-2-deoxy-2-phtalimide-1-thio-β-D-galactopyranoside (Compound 12))
Figure 0007369428000010
Compound 10 (1.05 g, 1.81 mmol) was dissolved in dichloromethane (20 mL) and pyridine (620
μL, 7.7 mmol) and trifluoromethanesulfonic anhydride (600 μL, 3.55 mmol) were added, and the mixture was stirred at room temperature for 60 minutes. The mixture was diluted with saturated aqueous sodium bicarbonate and chloroform, and washed successively with saturated aqueous sodium bicarbonate and saturated brine. After drying over magnesium sulfate, the solvent was distilled off under reduced pressure. It was dissolved in dimethylformamide (17 mL), added with sodium nitrate (1.19 g, 17.2 mmol), and stirred at room temperature for 60 minutes. The mixture was diluted with chloroform and washed with 1 M hydrochloric acid, saturated aqueous sodium bicarbonate, and saturated saline in this order. The solvent was removed under reduced pressure. The obtained residue was purified by silica gel chromatography (toluene:ethyl acetate=400:1 to 5/1 v:v) to obtain compound 12 (701 mg, 2-step yield: 67%).
R f =0.39 (toluene : AcOEt = 5 : 1, v : v)
1 H-NMR (400 MHz, CHLOROFORM-D) δ 7.86-6.92 (m, 23H), 5.51 (d, J = 10.5 Hz,
1H), 4.63-4.52 (m, 4H), 4.32-4.25 (m, 2H), 4.20 (t, J = 2.4 Hz, 1H), 3.86-3.80 (m, 3H), 2.58 (d, J = 1.1 Hz) , 1H), 1.55 (s, 2H)

(Phenyl-4-azide-3,6-di-O-benzyl-2,4-di-deoxy-2-phtalimide-1-thio-β-D-glucopyranoside (化合物5)の合成)

Figure 0007369428000011

化合物12 (4.90 g, 8.42 mmol)をジクロロメタン(50 mL)に溶かし、ピリジン(3.1
mL, 37.9 mmol)、トリフルオロメタンスルホン酸無水物(2.20 mL, 13 mmol)を加えた。室温で60分撹拌したのち、飽和重曹水で希釈し反応を止めた。飽和重曹水、飽和食塩水の順で洗浄し、溶媒を減圧留去した。得られた残渣をトルエン(50 mL)に溶かし、テト
ラブチルアンモニウムアジド(3.59 g, 12.6 mmol)を加え、室温で2日間撹拌した。酢酸エチルで希釈し、飽和重曹水、飽和食塩水の順で洗浄した。得られた残渣をシリカゲルクロマトグラフィー(ヘキサン : 酢酸エチル=5 : 1, v : v)にて精製し、化合物5 (4.32 g, 84%)を得た。
Rf =0.55(toluene : AcOEt = 10 : 1, v : v)
1H-NMR (400 MHz, CHLOROFORM-D) δ7.80-7.15 (m, 15H), 7.01-6.83 (m, 5H), 5.49-5.43 (m, 1H), 4.81 (dd, J = 11.8, 4.7 Hz, 1H), 4.65 (dd, J = 12.0, 4.7 Hz, 1H), 4.57 (dd, J = 11.8, 4.7 Hz, 1H), 4.39 (dd, J = 11.9, 4.6 Hz, 1H), 4
.27-4.23 (m, 2H), 3.84-3.75 (m, 3H), 3.53 (ddd, J = 10.2, 4.1, 1.7 Hz, 1H), 1.59-1.54 (m, 2H) (Synthesis of Phenyl-4-azide-3,6-di-O-benzyl-2,4-di-deoxy-2-phtalimide-1-thio-β-D-glucopyranoside (Compound 5))
Figure 0007369428000011

Compound 12 (4.90 g, 8.42 mmol) was dissolved in dichloromethane (50 mL) and pyridine (3.1
mL, 37.9 mmol) and trifluoromethanesulfonic anhydride (2.20 mL, 13 mmol) were added. After stirring at room temperature for 60 minutes, the reaction was stopped by diluting with saturated aqueous sodium bicarbonate solution. The mixture was washed with saturated sodium bicarbonate solution and saturated brine in that order, and the solvent was distilled off under reduced pressure. The obtained residue was dissolved in toluene (50 mL), tetrabutylammonium azide (3.59 g, 12.6 mmol) was added, and the mixture was stirred at room temperature for 2 days. The mixture was diluted with ethyl acetate and washed with saturated aqueous sodium bicarbonate and saturated brine in that order. The obtained residue was purified by silica gel chromatography (hexane:ethyl acetate=5:1, v:v) to obtain Compound 5 (4.32 g, 84%).
R f =0.55 (toluene : AcOEt = 10 : 1, v : v)
1 H-NMR (400 MHz, CHLOROFORM-D) δ7.80-7.15 (m, 15H), 7.01-6.83 (m, 5H), 5.49-5.43 (m, 1H), 4.81 (dd, J = 11.8, 4.7 Hz, 1H), 4.65 (dd, J = 12.0, 4.7 Hz, 1H), 4.57 (dd, J = 11.8, 4.7 Hz, 1H), 4.39 (dd, J = 11.9, 4.6 Hz, 1H), 4
.27-4.23 (m, 2H), 3.84-3.75 (m, 3H), 3.53 (ddd, J = 10.2, 4.1, 1.7 Hz, 1H), 1.59-1.54 (m, 2H)

(Benzyl-4-azide-3,6-di-O-benzyl-2,4-di-deoxy-2-phtalimide-β-D-glucopyranoside-(1-4)-3,6-di-O-benzyl-2-deoxy-2-phtalimide-β-D-glucopyranoside (化合物4)の合成

Figure 0007369428000012

化合物5 (720 mg, 1.24 mmol)、化合物6 (836 mg, 1.38 mmol)、N-ヨードスクシンイミド(461 mg, 2.05 mmol)を乾燥モレキュラーシーブズ4Å雰囲気下、ジクロロメタン(12.4 mL)に溶かした。-78℃にて、トリフルオロメタンスルホン酸(60.7 μL, 683 μL)を加え、2時間撹拌した。TLCにて反応の終了を確認し、トリエチルアミンを加えて反
応を停止した。反応液を酢酸エチルで希釈し、チオ硫酸ナトリウム、飽和炭酸水素ナトリウム水溶液、飽和食塩水にて順次洗浄した。有機層を硫酸マグネシウムによって乾燥後、溶媒を減圧留去した。得られた残渣をシリカゲルクロマトグラフィー(ヘキサン : 酢酸
エチル=20 : 1 ~ 1 : 1)および再結晶(熱イソプロパノール)にて精製し、化合物4 (993 mg, 74%)を得た。
Rf =0.43(toluene : EcOEt = 8 : 1, v : v)
1H NMR (600 MHz, CDCl3):δ8.25-6.73 (m, 48H; aromatic H), 5.22 (d, J = 7.9 Hz, 1H, H-1b), 4.91 (d, J = 8.6 Hz, 1H, H-1b), 4.81(dd, J = 23.0 Hz, 2H, CH2-Ph), 4.67 (d, J = 12.4 Hz, 1H, CH2-Ph), 4.54 (s, 2H, CH2-Ph), 4.48 (s, 2H, CH2-Ph), 4.45 (d, J = 12.7 Hz, 1H, CH2-Ph), 4.40 (d, J = 12.0 Hz, 1H, CH2-Ph), 4.34 (d, J = 12.4 Hz, 1H, CH2-Ph), 4.23-4.08 (m, 5H, H-2a, H-3a, H-4a, H-2b, H-3b), 3.83-3.80 (t, 1H, H-4b) 3.68 (d, J = 11.0 Hz, 1H, H-6b), 3.59 (dd, J = 11.3, 3.4 Hz, 1H,H-6’b), 3.54 (d, J = 10.3 Hz, 1H, H-6a), 3.41 (dd, J = 11.0, 3.8 Hz, 1H,H-6’a),3.28 (dd, J = 9.8, 2.6 Hz, 1H, H-5a),3.13 (dd, J = 10.3, 1.7 Hz, 1H, H-5b)ppm,
13C NMR (150 MHz, CDCl3) δ 128.27-127.26(aromatic C), 97.15 (C-1b), 96.92
(C-1a), 78.15 (C-3b), 77.32 (CH2-Ph), 77.11 (CH2-Ph), 76.89 (CH2-Ph),
76.65 (C-3a), 75.72 (C-4a), 74.83 (CH2-Ph), 74.52(C-5a), 74.39(C-5b),
74.24 (CH2-Ph), 73.35 (CH2-Ph), 72.79 (CH2-Ph), 70.57 (CH2-Ph), 68.37
(C-6b), 68.22 (C-6a), 63.52 (C-4b), 56.54 (C-2b), 55.77(C-2a)ppm. (Benzyl-4-azide-3,6-di-O-benzyl-2,4-di-deoxy-2-phtalimide-β-D-glucopyranoside-(1-4)-3,6-di-O-benzyl -2-deoxy-2-phtalimide-β-D-glucopyranoside (compound 4) synthesis)
Figure 0007369428000012

Compound 5 (720 mg, 1.24 mmol), compound 6 (836 mg, 1.38 mmol), and N-iodosuccinimide (461 mg, 2.05 mmol) were dissolved in dichloromethane (12.4 mL) under an atmosphere of 4 Å dry molecular sieves. At -78°C, trifluoromethanesulfonic acid (60.7 μL, 683 μL) was added and stirred for 2 hours. Completion of the reaction was confirmed by TLC, and triethylamine was added to stop the reaction. The reaction solution was diluted with ethyl acetate and washed successively with sodium thiosulfate, saturated aqueous sodium bicarbonate solution, and saturated brine. After drying the organic layer with magnesium sulfate, the solvent was distilled off under reduced pressure. The obtained residue was purified by silica gel chromatography (hexane:ethyl acetate=20:1 to 1:1) and recrystallization (hot isopropanol) to obtain Compound 4 (993 mg, 74%).
R f =0.43 (toluene : EcOEt = 8 : 1, v : v)
1 H NMR (600 MHz, CDCl 3 ): δ8.25-6.73 (m, 48H; aromatic H), 5.22 (d, J = 7.9 Hz, 1H, H-1b), 4.91 (d, J = 8.6 Hz, 1H, H-1b), 4.81 (dd, J = 23.0 Hz, 2H, CH 2 -Ph), 4.67 (d, J = 12.4 Hz, 1H, CH 2 -Ph), 4.54 (s, 2H, CH 2 - Ph), 4.48 (s, 2H, CH 2 -Ph), 4.45 (d, J = 12.7 Hz, 1H, CH 2 -Ph), 4.40 (d, J = 12.0 Hz, 1H, CH 2 -Ph), 4.34 (d, J = 12.4 Hz, 1H, CH 2 -Ph), 4.23-4.08 (m, 5H, H-2a, H-3a, H-4a, H-2b, H-3b), 3.83-3.80 (t , 1H, H-4b) 3.68 (d, J = 11.0 Hz, 1H, H-6b), 3.59 (dd, J = 11.3, 3.4 Hz, 1H,H-6'b), 3.54 (d, J = 10.3 Hz, 1H, H-6a), 3.41 (dd, J = 11.0, 3.8 Hz, 1H,H-6'a),3.28 (dd, J = 9.8, 2.6 Hz, 1H, H-5a),3.13 (dd , J = 10.3, 1.7 Hz, 1H, H-5b) ppm,
13 C NMR (150 MHz, CDCl 3 ) δ 128.27-127.26 (aromatic C), 97.15 (C-1b), 96.92
(C-1a), 78.15 (C-3b), 77.32 (CH 2 -Ph), 77.11 (CH 2 -Ph), 76.89 (CH 2 -Ph),
76.65 (C-3a), 75.72 (C-4a), 74.83 (CH 2 -Ph), 74.52 (C-5a), 74.39 (C-5b),
74.24 (CH 2 -Ph), 73.35 (CH 2 -Ph), 72.79 (CH 2 -Ph), 70.57 (CH 2 -Ph), 68.37
(C-6b), 68.22 (C-6a), 63.52 (C-4b), 56.54 (C-2b), 55.77 (C-2a) ppm.

(Benzyl-2-acetamide-4-azide-3,6-di-O-benzyl-2,4-di-deoxy-β-D-glucopyranosyl-(1-4)-2-acetamide-3.6-di-O-benzyl-2-deoxy-β-D-glucopyranoside (化合物13)の合成)

Figure 0007369428000013
化合物4(246 mg, 229 μmol)をn-ブタノール(5 mL)に溶解し、エチレンジアミン(1.5 mL)を加え、90℃にて45時間撹拌したのち、溶媒を減圧留去した。得られた残渣の水分をトルエンと共沸させた後、ピリジン(10 mL)に溶解し、無水酢酸(5 mL)を加えた
。40℃にて18時間撹拌したのち、メタノール(10 mL)を加えて反応を終了させた。クロ
ロホルムで希釈し、1M塩酸、飽和食塩水、飽和炭酸水素ナトリウム水溶液、飽和食塩水の順に洗浄した。有機層を硫酸マグネシウムで乾燥させ、溶媒を減圧留去した。得られた残渣をシリカゲルクロマトグラフィー(クロロホルム : メタノール=30 : 1, v : v)を用いて精製し、化合物13 (157 mg, 2段階収率76%)を得た。
Rf=0.51(chloroform : methanol = 15 : 1, v : v)
1H-NMR (400 MHz, CHLOROFORM-D) δ 7.39-7.20 (m, 30H), 6.19 (d, J = 8.7 Hz, 1H), 4.94 (d, J = 8.5 Hz, 1H), 4.82 (d, J = 11.9 Hz, 2H), 4.70-4.36 (m, 10H), 4.08-4.04 (m, 1H), 3.95 (t, J = 5.3 Hz, 1H), 3.81-3.58 (m, 8H), 3.47 (t, J = 9.8 Hz, 1H), 3.13-3.09 (m, 1H), 1.92 (d, J = 12.6 Hz, 3H), 1.76-1.69 (m, 3H), 1.64 (d, J = 2.7 Hz, 2H) (Benzyl-2-acetamide-4-azide-3,6-di-O-benzyl-2,4-di-deoxy-β-D-glucopyranosyl-(1-4)-2-acetamide-3.6-di-O -Synthesis of benzyl-2-deoxy-β-D-glucopyranoside (compound 13))
Figure 0007369428000013
Compound 4 (246 mg, 229 μmol) was dissolved in n-butanol (5 mL), ethylenediamine (1.5 mL) was added, and the mixture was stirred at 90°C for 45 hours, and then the solvent was distilled off under reduced pressure. After the water in the obtained residue was azeotroped with toluene, it was dissolved in pyridine (10 mL), and acetic anhydride (5 mL) was added. After stirring at 40°C for 18 hours, methanol (10 mL) was added to terminate the reaction. It was diluted with chloroform and washed successively with 1M hydrochloric acid, saturated brine, saturated aqueous sodium bicarbonate solution, and saturated brine. The organic layer was dried over magnesium sulfate, and the solvent was distilled off under reduced pressure. The obtained residue was purified using silica gel chromatography (chloroform:methanol=30:1, v:v) to obtain compound 13 (157 mg, 2-step yield: 76%).
R f =0.51 (chloroform : methanol = 15 : 1, v : v)
1 H-NMR (400 MHz, CHLOROFORM-D) δ 7.39-7.20 (m, 30H), 6.19 (d, J = 8.7 Hz, 1H), 4.94 (d, J = 8.5 Hz, 1H), 4.82 (d, J = 11.9 Hz, 2H), 4.70-4.36 (m, 10H), 4.08-4.04 (m, 1H), 3.95 (t, J = 5.3 Hz, 1H), 3.81-3.58 (m, 8H), 3.47 (t , J = 9.8 Hz, 1H), 3.13-3.09 (m, 1H), 1.92 (d, J = 12.6 Hz, 3H), 1.76-1.69 (m, 3H), 1.64 (d, J = 2.7 Hz, 2H)

(4-acetamide-2-amino-2,4-di-deoxy-β-D-glucopyranosyl-(1-4)-2-acetamide-2-deoxy-D-glucopyranose (化合物14)の合成)

Figure 0007369428000014
化合物13 (98.1 mg, 109 μmol)を水(18 mL)、tert-ブタノール(18 mL)に溶解し、水酸化パラジウム炭素を加え、水素雰囲気下で40℃にて2日間撹拌した。セライトろ過
後、溶媒を減圧留去した。得られた残渣を逆相カラムクロマトグラフィー(milliQ水)によって精製し、化合物14 (31.04 mg, 64%)を得た。
1H-NMR (400 MHz, D2O) δ 5.00 (d, J = 2.2 Hz, 1H), 4.39-4.36 (m, 1H), 3.73-3.16 (m, 15H), 2.56 (t, J = 9.5 Hz, 1H), 1.90-1.85 (m, 6H) (Synthesis of 4-acetamide-2-amino-2,4-di-deoxy-β-D-glucopyranosyl-(1-4)-2-acetamide-2-deoxy-D-glucopyranose (compound 14))
Figure 0007369428000014
Compound 13 (98.1 mg, 109 μmol) was dissolved in water (18 mL) and tert-butanol (18 mL), palladium hydroxide on carbon was added, and the mixture was stirred at 40° C. for 2 days under a hydrogen atmosphere. After filtering through Celite, the solvent was distilled off under reduced pressure. The obtained residue was purified by reverse phase column chromatography (milliQ water) to obtain Compound 14 (31.04 mg, 64%).
1 H-NMR (400 MHz, D 2 O) δ 5.00 (d, J = 2.2 Hz, 1H), 4.39-4.36 (m, 1H), 3.73-3.16 (m, 15H), 2.56 (t, J = 9.5 Hz, 1H), 1.90-1.85 (m, 6H)

(perfluorophenyl hex-5-ynoate (化合物17)の合成)

Figure 0007369428000015

化合物16(20.0 μL, 181 μmol)を1,4-ジオキサン(500 μL)に溶解させ、ペンタフルオロフェノール(56.6 mg, 308 μmol)を加えたのち、0℃でジシクロヘキシルカルボ
ジイミド(56.4 mg, 273 μmol)を加え、室温で2時間反応させた。析出した副生成物を
ろ別したのち、精製せずに次の反応に用いた。 (Synthesis of perfluorophenyl hex-5-ynoate (compound 17))
Figure 0007369428000015

Compound 16 (20.0 μL, 181 μmol) was dissolved in 1,4-dioxane (500 μL), pentafluorophenol (56.6 mg, 308 μmol) was added, and dicyclohexylcarbodiimide (56.4 mg, 273 μmol) was added at 0°C. was added and allowed to react at room temperature for 2 hours. After filtering out the precipitated by-product, it was used in the next reaction without purification.

(2-acetamide-2,4-di-deoxy-4-hexiolylamino-β-D-glucopyranosyl-(1-4)-2-acetamide-2-deoxy-D-glucopyranose (化合物15)の合成)

Figure 0007369428000016
化合物14(10.0 mg, 23.6 μmol)をジメチルスルホキシドに溶解し、活性エステル(19.7 mg, 70.9 μmol)、飽和重曹水(50 μL)を加え、4℃に2日間静置し、凍結反応させたのち、酢酸エチルで3回洗浄した。逆相カラムクロマトグラフィー(milliQ水/メタノール)によって精製し、化合物15(8.80 mg, 72%)を得た。
1H-NMR (400 MHz, D2O) δ 5.01 (d, J = 3.1 Hz, 1H), 4.53-4.51 (m, 0H), 4.42
(dd, J = 8.4, 3.6 Hz, 1H), 3.75-3.32 (m, 13H), 2.56 (s, 4H), 2.24 (t, J = 7.4 Hz, 2H), 2.06 (td, J = 7.0, 5.0 Hz, 2H), 1.87 (d, J = 12.6 Hz, 7H), 1.67-1.56 (m, 2H) (Synthesis of 2-acetamide-2,4-di-deoxy-4-hexiolylamino-β-D-glucopyranosyl-(1-4)-2-acetamide-2-deoxy-D-glucopyranose (compound 15))
Figure 0007369428000016
Compound 14 (10.0 mg, 23.6 μmol) was dissolved in dimethyl sulfoxide, active ester (19.7 mg, 70.9 μmol) and saturated sodium bicarbonate solution (50 μL) were added, and the mixture was allowed to stand at 4°C for 2 days to undergo a freezing reaction. , and washed three times with ethyl acetate. Purification was performed by reverse phase column chromatography (milliQ water/methanol) to obtain Compound 15 (8.80 mg, 72%).
1 H-NMR (400 MHz, D 2 O) δ 5.01 (d, J = 3.1 Hz, 1H), 4.53-4.51 (m, 0H), 4.42
(dd, J = 8.4, 3.6 Hz, 1H), 3.75-3.32 (m, 13H), 2.56 (s, 4H), 2.24 (t, J = 7.4 Hz, 2H), 2.06 (td, J = 7.0, 5.0 Hz, 2H), 1.87 (d, J = 12.6 Hz, 7H), 1.67-1.56 (m, 2H)

(1-(tert-butyl) 4-(perfluorophenyl) (((9H-fluoren-9-yl)methoxy)carbonyl)aspartate (化合物19)の合成)

Figure 0007369428000017

化合物18(5.01 g, 12.2 mmol)を1,4-ジオキサン(50 mL)、ジメチルホルムアミド(2 mL)に溶解させ、ペンタフルオロフェノール(2.70 g, 14.7 mmol)を加え、0℃でジシクロヘキシルカルボジイミド(3.02 g, 14.6 mmol)を加え、室温で2時間反応させた。析出した副生成物をろ別したのち、再結晶(ヘキサン / 酢酸エチル = 3 / 1)で精製し、
化合物19(4.42 g, 63 %)を得た。 (Synthesis of 1-(tert-butyl) 4-(perfluorophenyl) (((9H-fluoren-9-yl)methoxy)carbonyl)aspartate (compound 19))
Figure 0007369428000017

Compound 18 (5.01 g, 12.2 mmol) was dissolved in 1,4-dioxane (50 mL) and dimethylformamide (2 mL), pentafluorophenol (2.70 g, 14.7 mmol) was added, and dicyclohexylcarbodiimide (3.02 mmol) was dissolved at 0 °C. g, 14.6 mmol) and allowed to react at room temperature for 2 hours. After filtering out the precipitated by-products, it was purified by recrystallization (hexane/ethyl acetate = 3/1).
Compound 19 (4.42 g, 63%) was obtained.

(2-acetamide-2,4-di-deoxy-4-hexiolylamino-β-D-glucopyranosyl-(1-4)-2-acetamide-2-deoxy-D-glucopyranosyl-L-asparagine (化合物2)の合成)

Figure 0007369428000018
化合物15 (7.11 mg, 13.7 μmol)を飽和炭酸水素アンモニウム水溶液 (2 mL)に溶
解させ、45℃で24時間撹拌した。溶液を水で希釈し、溶媒が半分になるまで減圧蒸留することを5回繰り返し、炭酸水素アンモニウムを除き、凍結乾燥した。残渣をジメチルスル
ホキシド(250 μL)に溶解させ、ジイソプロピルエチルアミン(3.2 μL, 18.3 μmol)、Fmoc-Asp(PFP)-OtBu(17.6 mg, 30.4 μmol)を加えて-70℃にて2時間静置して凍結反応させた。酢酸エチルで洗浄し、凍結乾燥したのち、得られた残渣を逆相カラムクロマ
トグラフィー(milliQ水 / アセトニトリル=100 / 0~50 / 50)にて精製し、化合物2
(6.35 mg, 6.98 μmol, 46%)を得た。
1H-NMR (400 MHz, DMSO-D6) δ7.89-7.80 (m, 5H), 7.66 (d, J = 7.3 Hz, 2H), 7.45-7.26 (m, 6H), 4.81-4.74 (m, 1H), 4.37 (d, J = 8.2 Hz, 1H), 4.29-4.14
(m, 5H), 3.25-3.20 (m, 1H), 2.74 (t, J = 2.5 Hz, 1H), 2.63-2.37 (m, 16H), 2.16-2.09 (m, 3H), 1.83-1.71 (m, 7H), 1.65-1.58 (m, 2H), 1.34-1.31 (m, 11H), 1.18-1.10 (m, 2H) (Synthesis of 2-acetamide-2,4-di-deoxy-4-hexiolylamino-β-D-glucopyranosyl-(1-4)-2-acetamide-2-deoxy-D-glucopyranosyl-L-asparagine (compound 2) )
Figure 0007369428000018
Compound 15 (7.11 mg, 13.7 μmol) was dissolved in a saturated aqueous ammonium bicarbonate solution (2 mL) and stirred at 45°C for 24 hours. The solution was diluted with water and distilled under reduced pressure until the solvent was reduced to half, which was repeated 5 times to remove ammonium bicarbonate and freeze-dry. The residue was dissolved in dimethyl sulfoxide (250 μL), diisopropylethylamine (3.2 μL, 18.3 μmol) and Fmoc-Asp(PFP)-OtBu (17.6 mg, 30.4 μmol) were added, and the mixture was left standing at -70°C for 2 hours. The cells were frozen and reacted. After washing with ethyl acetate and freeze-drying, the resulting residue was purified by reverse phase column chromatography (milliQ water/acetonitrile = 100/0 to 50/50) to obtain compound 2.
(6.35 mg, 6.98 μmol, 46%) was obtained.
1 H-NMR (400 MHz, DMSO-D6) δ7.89-7.80 (m, 5H), 7.66 (d, J = 7.3 Hz, 2H), 7.45-7.26 (m, 6H), 4.81-4.74 (m, 1H), 4.37 (d, J = 8.2 Hz, 1H), 4.29-4.14
(m, 5H), 3.25-3.20 (m, 1H), 2.74 (t, J = 2.5 Hz, 1H), 2.63-2.37 (m, 16H), 2.16-2.09 (m, 3H), 1.83-1.71 (m , 7H), 1.65-1.58 (m, 2H), 1.34-1.31 (m, 11H), 1.18-1.10 (m, 2H)

(糖化合物1の合成)
ペプチドの合成
ペプチド((β-Ala)-Leu-Leu-Leu-(GlcNAc2-Z1)Asn-Gly-Thr-Gly)の合成は、一般的なFmoc固相合成法に従い合成した。Fmocアミノ酸、O-(1H-benzoriazol-1-yl)-N,N,N’,N’-tetramethyluronium hexafluorophosphate (HBTU)、1-hydroxybenzotriazole monohydrate (HOBt・H2O)、N,N-diisopropylethylamine (DIEA)、 1-methyl-2-pyrrolidone (NMP)、piperidineは、渡辺化学から購入した。(7-azabenzotriazol-1-yloxy)tripyrrolidinoophosphonium hexafluorophosphoate (PyAOP)は、Carboshynth社から購入した。1-hydroxy-7-azabenzotriazole (HOAt) は、Arc Pharm社から購入した。
H-Rink amide ChemMatrix Resin (Sigma Aldrich; 0.5 mmol/g) 40 mg (20 μmol)を秤量し、合成カラム中、NMPを適量加え膨潤させた。NMPを濾過により除去した。Fmoc-Gly-OH (3 eq.)、HBTU (3 eq.)、HOBt・H2O (3 eq.)、DIEA (6 eq.) をNMP (0.4 mL) に溶解し、これを合成カラムに添加した。適時ボルテックスにより撹拌し,約40分反応させた。反応の進行具合は、Kaiserテストにより判断し、陽性の場合は、もう一度カップリング反応を行った。Kaiserテストが陰性となった場合、Fmoc基の脱保護を行った。20% piperidine/NMP溶液を適量加え、適時ボルテックスにより撹拌し、1分後濾去した。20% piperidine/NMP溶液を適量加え、適時ボルテックスにより撹拌した。15分反応させた後、NMPで5回洗
浄した。Fmoc-Thr(tBu)-OHは、上記と同様の操作でカップリングした。同様に、Fmoc-Gly-OHを導入した後、樹脂を半分用に分けた。この半分量にした樹脂(10 μmol)に対し、
化合物2 (1.4 eq)、PyAOP (4 eq.)、HOAt (4 eq.)、2,4,6-trimethylpyridine (5.4 eq.)
をNMP (0.1 mL) に溶解し、合成カラムに添加した。40℃のインキュベータ内で適時撹拌し、1時間20分反応させた。Kaiserテストで若干陽性であったが、そのまま次の残基に進
行した。Fmoc-Leu-OHは、上記のFmoc-Gly-OHのカップリングと同様に行った。これを3回
繰り返し、ロイシン残基を3つ伸長した。Fmoc-(β-Ala)-OHを同様にカップリングした後
、Fmoc基を脱保護した。
(Synthesis of sugar compound 1)
Synthesis of Peptide The peptide ((β-Ala)-Leu-Leu-Leu-(GlcNAc 2 -Z 1 )Asn-Gly-Thr-Gly) was synthesized according to the general Fmoc solid phase synthesis method. Fmoc amino acid, O-(1H-benzoriazol-1-yl)-N,N,N',N'-tetramethyluronium hexafluorophosphate (HBTU), 1-hydroxybenzotriazole monohydrate (HOBt・H 2 O), N,N-diisopropylethylamine (DIEA) ), 1-methyl-2-pyrrolidone (NMP), and piperidine were purchased from Watanabe Chemical. (7-Azabenzotriazol-1-yloxy)tripyrrolidinoophosphonium hexafluorophosphonate (PyAOP) was purchased from Carboshynth. 1-hydroxy-7-azabenzotriazole (HOAt) was purchased from Arc Pharm.
40 mg (20 μmol) of H-Rink amide ChemMatrix Resin (Sigma Aldrich; 0.5 mmol/g) was weighed, and an appropriate amount of NMP was added to the synthesis column to swell it. NMP was removed by filtration. Fmoc-Gly-OH (3 eq.), HBTU (3 eq.), HOBt・H 2 O (3 eq.), and DIEA (6 eq.) were dissolved in NMP (0.4 mL) and applied to the synthesis column. Added. The mixture was stirred by vortexing at appropriate times and allowed to react for about 40 minutes. The progress of the reaction was determined by the Kaiser test, and if positive, the coupling reaction was performed again. If the Kaiser test was negative, the Fmoc group was deprotected. An appropriate amount of 20% piperidine/NMP solution was added, stirred by vortexing at appropriate times, and filtered off after 1 minute. An appropriate amount of 20% piperidine/NMP solution was added, and the mixture was stirred by vortexing at appropriate times. After reacting for 15 minutes, it was washed 5 times with NMP. Fmoc-Thr(tBu)-OH was coupled in the same manner as above. Similarly, after introducing Fmoc-Gly-OH, the resin was divided into halves. For this half amount of resin (10 μmol),
Compound 2 (1.4 eq.), PyAOP (4 eq.), HOAt (4 eq.), 2,4,6-trimethylpyridine (5.4 eq.)
was dissolved in NMP (0.1 mL) and added to the synthesis column. The mixture was stirred at appropriate times in an incubator at 40°C and allowed to react for 1 hour and 20 minutes. Although the Kaiser test was slightly positive, we proceeded to the next residue. Fmoc-Leu-OH was performed similarly to the Fmoc-Gly-OH coupling described above. This was repeated three times to extend three leucine residues. Following similar coupling of Fmoc-(β-Ala)-OH, the Fmoc group was deprotected.

BHQの導入
ここに、BHQ-2 Carboxylic Acid (1 eq.)、PyAOP (3 eq.)、HOAt (3 eq.)、DIEA (4 eq.) をNMP (0.1 mL) で溶解した溶液を添加し、40℃で1時間反応させた。NMPで洗浄後、ジクロロメタンで洗浄し、デシケーター中で乾燥させた。乾燥させた樹脂に、95% (v/v) trifluoroacetic acid(TFA)、2.5% (v/v) triisopropyl silane、2.5% (v/v) 水の混合溶液を約0.5 mL加え、室温で撹拌した。2時間後ろ液を回収し、diethyl ether 約20 mLに加え析出させた。沈殿を遠心分離により回収し、diethyl etherで3回洗浄と遠心を繰り返した。こうして得られたBHQ-2が導入された粗ペプチドをデシケーター中で乾燥した。
Introduction of BHQ Add a solution of BHQ-2 Carboxylic Acid (1 eq.), PyAOP (3 eq.), HOAt (3 eq.), and DIEA (4 eq.) in NMP (0.1 mL). , and reacted at 40°C for 1 hour. After washing with NMP, it was washed with dichloromethane and dried in a desiccator. Approximately 0.5 mL of a mixed solution of 95% (v/v) trifluoroacetic acid (TFA), 2.5% (v/v) triisopropyl silane, and 2.5% (v/v) water was added to the dried resin and stirred at room temperature. . After 2 hours, the solution was collected and added to about 20 mL of diethyl ether to cause precipitation. The precipitate was collected by centrifugation, washed three times with diethyl ether, and centrifuged repeatedly. The thus obtained crude peptide into which BHQ-2 had been introduced was dried in a desiccator.

TAMRAの導入
TAMRA基の導入は以下の通りに行った。Tetramethylrhodamine 5-carboxyamido-(6-azidohexanyl))、5-isomer (約0.9 μmol) をtrifluoroethanol (TFE; 400 μL) に溶解し、BHQ-2が導入された粗ペプチド (約0.4 mg, 0.23 μmol) に加えて溶解させた。ここに、50
mM 硫酸銅 (II) 水溶液20 μL、200 mM sodium ascorbate 水溶液100 μLを順次添加し
た。約2時間後、高速液体クロマトグラフィー (HPLC; 島津LC-10Avpシステム)、Cosmosil
C18 AR-II (ナカライテスク, 4.6 mm×150 mm) カラムを用いて分析を行い、反応の終了
を確認した。Cosmosil C18 AR-II (10 mm×250 mm) カラムで精製を行った。こうして得
られたTAMRAが導入された糖化合物1を凍結乾燥した。
Introduction of TAMRA
The TAMRA group was introduced as follows. Tetramethylrhodamine 5-carboxyamido-(6-azidohexanyl)), 5-isomer (approximately 0.9 μmol) was dissolved in trifluoroethanol (TFE; 400 μL), and BHQ-2-introduced crude peptide (approximately 0.4 mg, 0.23 μmol) was added. and dissolved. Here, 50
20 μL of an mM copper (II) sulfate aqueous solution and 100 μL of a 200 mM sodium ascorbate aqueous solution were sequentially added. After about 2 hours, high performance liquid chromatography (HPLC; Shimadzu LC-10Avp system), Cosmosil
Analysis was performed using a C18 AR-II (Nacalai Tesque, 4.6 mm x 150 mm) column to confirm completion of the reaction. Purification was performed using a Cosmosil C18 AR-II (10 mm x 250 mm) column. The TAMRA-introduced sugar compound 1 thus obtained was freeze-dried.

<実施例2:ペプチドN-グリカナーゼ(PNGase)の活性検出>
プローブである糖化合物1の溶液30 μL(1.0 μM, 2.5 μM, 1.0 μM)、フラボバクテリウム由来PNGase-F(BioLabs社製)2 μL (1.25 U/μL)、4 μL GlycoBuffer, 4 μL Np-40、及び水を用いて最終的に50 μLの反応混合液を調製し、マイクロプレートリーダー
(モレキュラーデバイス社)により反応混合液の蛍光強度変化((ex)546 nm, (em)579 nm)を追跡した結果を図1に示す。酵素反応の進行に伴い、蛍光強度が上昇していること
から、基質の切断を確認することができた。
尚、この加水分解反応は、下記に示される反応である。ただし、下記式中、Z1はTAMRA
を表し、Z2はBHQ-2を表す。)
Z2-(β-Ala)-Leu-Leu-Leu-(GlcNAc2-Z1)Asn-Gly-Thr-Gly
→ GlcNAc2-Z1 + Z2-(β-Ala)-Leu-Leu-Leu-Asn-Gly-Thr-Gly
<Example 2: Detection of peptide N-glycanase (PNGase) activity>
30 μL of probe sugar compound 1 solution (1.0 μM, 2.5 μM, 1.0 μM), Flavobacterium-derived PNGase-F (manufactured by BioLabs) 2 μL (1.25 U/μL), 4 μL GlycoBuffer, 4 μL Np- A final 50 μL of reaction mixture was prepared using 40 and water, and changes in fluorescence intensity ((ex)546 nm, (em)579 nm) of the reaction mixture were measured using a microplate reader (Molecular Devices). The tracking results are shown in Figure 1. As the enzymatic reaction progressed, the fluorescence intensity increased, confirming the cleavage of the substrate.
Note that this hydrolysis reaction is the reaction shown below. However, in the formula below, Z 1 is TAMRA
and Z 2 represents BHQ-2. )
Z 2 -(β-Ala)-Leu-Leu-Leu-(GlcNAc 2 -Z 1 )Asn-Gly-Thr-Gly
→ GlcNAc 2 -Z 1 + Z 2 -(β-Ala)-Leu-Leu-Leu-Asn-Gly-Thr-Gly

本発明の糖化合物は、新規のPNGaseの探索やPNGase活性阻害剤等の効率的なスクリーニングに利用することができる。 The sugar compound of the present invention can be used for searching for novel PNGases and efficiently screening for PNGase activity inhibitors.

Claims (6)

下記式(I)で表される糖化合物。
Z2-X2 1-5-(GlcNAc2-Z1)Asn-X1 0-5 ・・・(I)
(式(I)中、X1 0-5Gly-Thr-Glyを表し、X2 1-5(β-Ala)-Leu 3 を表し、Z1は蛍光共鳴エネルギー移動(FRET)が生じる蛍光基を表し、Z2は前記蛍光基に対応する消光基を表す。)
A sugar compound represented by the following formula (I).
Z 2 -X 2 1-5 -(GlcNAc 2 -Z 1 )Asn-X 1 0-5 ...(I)
(In the formula (I), X 1 0-5 represents Gly-Thr-Gly , X 2 1-5 represents (β-Ala)-Leu 3 , and Z 1 represents fluorescence resonance energy transfer (FRET). represents a fluorescent group, and Z2 represents a quenching group corresponding to the fluorescent group.)
前記蛍光基と前記消光基の組合せが、下記(i)~(iv)の何れかである、請求項1に記載の糖化合物。
(i)下記式(d-1)で表される蛍光基と下記式(a-1)で表される消光基の組合せ
Figure 0007369428000019

(式(d-1)中、R’は水素原子、炭素原子数1~6の炭化水素基、又はアミノ基の保護基を表す。)
(ii)下記式(d-2)で表される蛍光基と下記式(a-1)で表される消光基の組合せ
Figure 0007369428000020

(式(d-2)中、Rは水素原子又はヒドロキシル基の保護基を表す。)
(iii)下記式(d-3)で表される蛍光基と下記式(a-1)で表される消光基の組合せ
Figure 0007369428000021

(式(d-3)中、Rは水素原子又はヒドロキシル基の保護基を、R’は水素原子、炭素原子数1~6の炭化水素基、又はアミノ基の保護基を表す。)
(iv)下記式(d-4)で表される蛍光基と下記式(a-2)で表される消光基の組合せ
Figure 0007369428000022

(式(d-4)及び(a-2)中、R’はそれぞれ独立して水素原子、炭素原子数1~6の炭化水素基、又はアミノ基の保護基を表す。)
(v)TAMRA(登録商標)である蛍光基とBHQ(登録商標)である消光基の組合せ
The sugar compound according to claim 1 , wherein the combination of the fluorescent group and the quenching group is any of the following (i) to (iv).
(i) A combination of a fluorescent group represented by the following formula (d-1) and a quenching group represented by the following formula (a-1)
Figure 0007369428000019

(In formula (d-1), R' represents a hydrogen atom, a hydrocarbon group having 1 to 6 carbon atoms, or a protecting group for an amino group.)
(ii) A combination of a fluorescent group represented by the following formula (d-2) and a quenching group represented by the following formula (a-1)
Figure 0007369428000020

(In formula (d-2), R represents a hydrogen atom or a hydroxyl group protecting group.)
(iii) A combination of a fluorescent group represented by the following formula (d-3) and a quenching group represented by the following formula (a-1)
Figure 0007369428000021

(In formula (d-3), R represents a hydrogen atom or a protecting group for a hydroxyl group, and R' represents a hydrogen atom, a hydrocarbon group having 1 to 6 carbon atoms, or a protecting group for an amino group.)
(iv) A combination of a fluorescent group represented by the following formula (d-4) and a quenching group represented by the following formula (a-2)
Figure 0007369428000022

(In formulas (d-4) and (a-2), R' each independently represents a hydrogen atom, a hydrocarbon group having 1 to 6 carbon atoms, or a protecting group for an amino group.)
(v) Combination of a fluorescent group that is TAMRA (registered trademark) and a quenching group that is BHQ (registered trademark)
請求項1又は2に記載の糖化合物を含む、ペプチド-N-グリコシダーゼ(PNGase)活性検出用組成物。 A composition for detecting peptide-N-glycosidase (PNGase) activity, comprising the sugar compound according to claim 1 or 2 . ペプチド-N-グリコシダーゼ(PNGase)の候補タンパク質またはそれを含む画分に下記式(I)で表される糖化合物を接触させて、前記糖化合物の分解活性を確認する活性確認工程
を含む、ペプチド-N-グリコシダーゼ(PNGase)のスクリーニング方法。
Z2-X2 1-5-(GlcNAc2-Z1)Asn-X1 0-5 ・・・(I)
(式(I)中、X1 0-5Gly-Thr-Glyを表し、X2 1-5(β-Ala)-Leu 3 を表し、Z1は蛍光共鳴エネルギー移動(FRET)が生じる蛍光基を表し、Z2は前記蛍光基に対応する消光基を表す。)
A peptide comprising an activity confirmation step of contacting a candidate protein of peptide-N-glycosidase (PNGase) or a fraction containing the same with a sugar compound represented by the following formula (I) and confirming the degrading activity of the sugar compound. -N-glycosidase (PNGase) screening method.
Z 2 -X 2 1-5 -(GlcNAc 2 -Z 1 )Asn-X 1 0-5 ...(I)
(In the formula (I), X 1 0-5 represents Gly-Thr-Gly , X 2 1-5 represents (β-Ala)-Leu 3 , and Z 1 represents fluorescence resonance energy transfer (FRET). represents a fluorescent group, and Z2 represents a quenching group corresponding to the fluorescent group.)
ペプチド-N-グリコシダーゼ(PNGase)の候補タンパク質またはそれを含む画分に下記式(I)で表される糖化合物を接触させて、前記糖化合物の分解活性を確認する活性確認工程
を含む、ペプチド-N-グリコシダーゼ(PNGase)活性の評価方法。
Z2-X2 1-5-(GlcNAc2-Z1)Asn-X1 0-5 ・・・(I)
(式(I)中、X1 0-5Gly-Thr-Glyを表し、X2 1-5(β-Ala)-Leu 3 を表し、Z1は蛍光共鳴エネルギー移動(FRET)が生じる蛍光基を表し、Z2は前記蛍光基に対応する消光基を表す。)
A peptide comprising an activity confirmation step of contacting a candidate protein of peptide-N-glycosidase (PNGase) or a fraction containing the same with a sugar compound represented by the following formula (I) and confirming the degrading activity of the sugar compound. -A method for evaluating N-glycosidase (PNGase) activity.
Z 2 -X 2 1-5 -(GlcNAc 2 -Z 1 )Asn-X 1 0-5 ...(I)
(In the formula (I), X 1 0-5 represents Gly-Thr-Gly , X 2 1-5 represents (β-Ala)-Leu 3 , and Z 1 represents fluorescence resonance energy transfer (FRET). represents a fluorescent group, and Z2 represents a quenching group corresponding to the fluorescent group.)
被検化合物をペプチド-N-グリコシダーゼ(PNGase)に接触させる接触工程、及び
前記被検化合物を接触させたペプチド-N-グリコシダーゼ(PNGase)に下記式(I)で表される糖化合物を接触させて、前記糖化合物の分解活性を確認する活性確認工

を含む、ペプチド-N-グリコシダーゼ(PNGase)活性阻害剤のスクリーニング方法。
Z2-X2 1-5-(GlcNAc2-Z1)Asn-X1 0-5 ・・・(I)
(式(I)中、X1 0-5Gly-Thr-Glyを表し、X2 1-5(β-Ala)-Leu 3 を表し、Z1は蛍光共鳴エネルギー移動(FRET)が生じる蛍光基を表し、Z2は前記蛍光基に対応する消光基を表す。)
a contacting step of bringing the test compound into contact with peptide-N-glycosidase (PNGase); and contacting the peptide-N-glycosidase (PNGase) with which the test compound has been contacted with a sugar compound represented by the following formula (I). A screening method for a peptide-N-glycosidase (PNGase) activity inhibitor, comprising an activity confirmation step of confirming the decomposition activity of the sugar compound.
Z 2 -X 2 1-5 -(GlcNAc 2 -Z 1 )Asn-X 1 0-5 ...(I)
(In the formula (I), X 1 0-5 represents Gly-Thr-Gly , X 2 1-5 represents (β-Ala)-Leu 3 , and Z 1 represents fluorescence resonance energy transfer (FRET). represents a fluorescent group, and Z2 represents a quenching group corresponding to the fluorescent group.)
JP2019147849A 2019-08-09 2019-08-09 Sugar compounds and their uses Active JP7369428B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019147849A JP7369428B2 (en) 2019-08-09 2019-08-09 Sugar compounds and their uses

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019147849A JP7369428B2 (en) 2019-08-09 2019-08-09 Sugar compounds and their uses

Publications (2)

Publication Number Publication Date
JP2021028307A JP2021028307A (en) 2021-02-25
JP7369428B2 true JP7369428B2 (en) 2023-10-26

Family

ID=74667200

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019147849A Active JP7369428B2 (en) 2019-08-09 2019-08-09 Sugar compounds and their uses

Country Status (1)

Country Link
JP (1) JP7369428B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003062263A3 (en) 2002-01-16 2004-01-15 Ortho Mc Neil Pharmaceutical I Aggrecanase-1 and -2 peptide substrates and methods
JP2005534312A (en) 2002-08-01 2005-11-17 シ ビオ アンテルナショナル Method for measuring endoglycosidase activity

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003062263A3 (en) 2002-01-16 2004-01-15 Ortho Mc Neil Pharmaceutical I Aggrecanase-1 and -2 peptide substrates and methods
JP2005534312A (en) 2002-08-01 2005-11-17 シ ビオ アンテルナショナル Method for measuring endoglycosidase activity

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Glycoconjugate Journal, 2013, Vol.30, No.4, p.303
日本農芸化学会2019年度大会講演要旨集,2019年03月,1E4a02
日本農芸化学会2019年度大会講演要旨集,2019年03月,1E4a03

Also Published As

Publication number Publication date
JP2021028307A (en) 2021-02-25

Similar Documents

Publication Publication Date Title
EP2873677B1 (en) Method of producing self-assembling peptide derivative
JP4119428B2 (en) Process for producing glycopeptide having sugar chain asparagine and the glycopeptide
EP1996609B1 (en) Method of preparing glycopeptides
EP0468339A2 (en) Alpha-keto-amide derivatives having protease inhibiting activity
JPS61189298A (en) Novel oligopeptidylargininol derivative
KR100731875B1 (en) Aminated complex-type sugar chain derivatives and process for the production thereof
Reimer et al. Small-scale solid-phase O-glycopeptide synthesis of linear and cyclized hexapeptides from blood-clotting factor IX containing O-(α-D-Xyl-1→ 3-α-D-Xyl-1→ 3-β-D-Glc)-L-ser
Roviello et al. Evidences for supramolecular organization of nucleopeptides: synthesis, spectroscopic and biological studies of a novel dithymine L-serine tetrapeptide
US20240051996A1 (en) Non-chromatographic purification of macrocyclic peptides by a resin catch and release
Nguyen et al. A general solid phase method for the synthesis of depsipeptides
US20220002348A1 (en) Tailored cyclodepsipeptides as potent non-covalent serine protease inhibitors
JP7369428B2 (en) Sugar compounds and their uses
Esteves et al. Synthesis and characterization of novel fluorescent N-glycoconjugates
Kuyl-Yeheskiely et al. Synthesis of the nucleopeptides H-Phe-Tyr (pGC)-NH 2 and H-Phe-Ser (pGC)-Ala-OH via a phosphotriester approach
Zhang et al. Synthesis of mimetic peptides containing glucosamine
Schweizer et al. Synthesis of a galacto-configured C-ketoside-based γ-sugar-amino acid and its use in peptide coupling reactions
JP6798085B2 (en) Sugar compounds, methods for producing sugar compounds, compositions for detecting ENGase activity, and methods for screening ENGase activity inhibitors.
Kojima et al. Total synthesis of malformin C, an inhibitor of bleomycin-induced G2 arrest
Biron et al. Synthesis of cationic porphyrin modified amino acids
Mezzato et al. Synthesis of an Fmoc-Asn-heptasaccharide building block and its application to chemoenzymatic glycopeptide synthesis
Neumann et al. A stereocontrolled synthetic approach to glycopeptides corresponding to the carbohydrate-protein linkage region of cell-surface proteoglycans
Abrahamsson et al. Xylosylated naphthoic acid–amino acid conjugates for investigation of glycosaminoglycan priming
RU2250906C2 (en) Method for production of geminipeptides as nucleotic agents
Kundu et al. Identification of novel α-glucosidase inhibitors by screening libraries based on N-[4-(benzyloxy) benzoyl] alanine derivatives
Norgren et al. Glycosylated foldamers: synthesis of carbohydrate‐modified β3hSer and incorporation into β‐peptides

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220805

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230711

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230926

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231006

R150 Certificate of patent or registration of utility model

Ref document number: 7369428

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150