JP7368916B1 - 学習による花粉の識別装置 - Google Patents
学習による花粉の識別装置 Download PDFInfo
- Publication number
- JP7368916B1 JP7368916B1 JP2023104151A JP2023104151A JP7368916B1 JP 7368916 B1 JP7368916 B1 JP 7368916B1 JP 2023104151 A JP2023104151 A JP 2023104151A JP 2023104151 A JP2023104151 A JP 2023104151A JP 7368916 B1 JP7368916 B1 JP 7368916B1
- Authority
- JP
- Japan
- Prior art keywords
- pollen
- box
- color
- bee
- learning
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 241000257303 Hymenoptera Species 0.000 claims abstract description 60
- 238000000034 method Methods 0.000 claims abstract description 25
- 238000013136 deep learning model Methods 0.000 claims abstract description 8
- 238000012545 processing Methods 0.000 claims description 11
- 230000008569 process Effects 0.000 claims description 7
- 230000010354 integration Effects 0.000 claims description 3
- 230000000877 morphologic effect Effects 0.000 claims description 2
- 238000010586 diagram Methods 0.000 abstract description 7
- 241000256837 Apidae Species 0.000 description 23
- 230000000694 effects Effects 0.000 description 15
- 230000010152 pollination Effects 0.000 description 11
- 239000003086 colorant Substances 0.000 description 9
- 230000010138 bee pollination Effects 0.000 description 8
- 238000007726 management method Methods 0.000 description 5
- 241000196324 Embryophyta Species 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 4
- 238000001514 detection method Methods 0.000 description 4
- 238000004891 communication Methods 0.000 description 3
- 241000227653 Lycopersicon Species 0.000 description 2
- 235000007688 Lycopersicon esculentum Nutrition 0.000 description 2
- 244000061458 Solanum melongena Species 0.000 description 2
- 235000002597 Solanum melongena Nutrition 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 230000000295 complement effect Effects 0.000 description 2
- 235000013399 edible fruits Nutrition 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000036541 health Effects 0.000 description 2
- 235000012907 honey Nutrition 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000007781 pre-processing Methods 0.000 description 2
- 238000004445 quantitative analysis Methods 0.000 description 2
- 238000012549 training Methods 0.000 description 2
- 238000009423 ventilation Methods 0.000 description 2
- 235000004936 Bromus mango Nutrition 0.000 description 1
- 235000008534 Capsicum annuum var annuum Nutrition 0.000 description 1
- 235000002568 Capsicum frutescens Nutrition 0.000 description 1
- 241000238631 Hexapoda Species 0.000 description 1
- 240000007228 Mangifera indica Species 0.000 description 1
- 235000014826 Mangifera indica Nutrition 0.000 description 1
- 241001247145 Sebastes goodei Species 0.000 description 1
- 235000009184 Spondias indica Nutrition 0.000 description 1
- 208000024780 Urticaria Diseases 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000013135 deep learning Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000004720 fertilization Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 210000002976 pectoralis muscle Anatomy 0.000 description 1
- 230000005849 recognition of pollen Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000004083 survival effect Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01K—ANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
- A01K29/00—Other apparatus for animal husbandry
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/40—Extraction of image or video features
- G06V10/42—Global feature extraction by analysis of the whole pattern, e.g. using frequency domain transformations or autocorrelation
- G06V10/422—Global feature extraction by analysis of the whole pattern, e.g. using frequency domain transformations or autocorrelation for representing the structure of the pattern or shape of an object therefor
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/60—Type of objects
- G06V20/69—Microscopic objects, e.g. biological cells or cellular parts
- G06V20/698—Matching; Classification
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01K—ANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
- A01K47/00—Beehives
- A01K47/06—Other details of beehives, e.g. ventilating devices, entrances to hives, guards, partitions or bee escapes
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/60—Analysis of geometric attributes
- G06T7/62—Analysis of geometric attributes of area, perimeter, diameter or volume
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/70—Determining position or orientation of objects or cameras
- G06T7/73—Determining position or orientation of objects or cameras using feature-based methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/90—Determination of colour characteristics
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/10—Image acquisition
- G06V10/12—Details of acquisition arrangements; Constructional details thereof
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/40—Extraction of image or video features
- G06V10/44—Local feature extraction by analysis of parts of the pattern, e.g. by detecting edges, contours, loops, corners, strokes or intersections; Connectivity analysis, e.g. of connected components
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/40—Extraction of image or video features
- G06V10/46—Descriptors for shape, contour or point-related descriptors, e.g. scale invariant feature transform [SIFT] or bags of words [BoW]; Salient regional features
- G06V10/467—Encoded features or binary features, e.g. local binary patterns [LBP]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/40—Extraction of image or video features
- G06V10/56—Extraction of image or video features relating to colour
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/77—Processing image or video features in feature spaces; using data integration or data reduction, e.g. principal component analysis [PCA] or independent component analysis [ICA] or self-organising maps [SOM]; Blind source separation
- G06V10/774—Generating sets of training patterns; Bootstrap methods, e.g. bagging or boosting
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/82—Arrangements for image or video recognition or understanding using pattern recognition or machine learning using neural networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/50—Context or environment of the image
- G06V20/52—Surveillance or monitoring of activities, e.g. for recognising suspicious objects
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/60—Type of objects
- G06V20/69—Microscopic objects, e.g. biological cells or cellular parts
- G06V20/695—Preprocessing, e.g. image segmentation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10024—Color image
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20081—Training; Learning
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20084—Artificial neural networks [ANN]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2210/00—Indexing scheme for image generation or computer graphics
- G06T2210/12—Bounding box
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Multimedia (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Health & Medical Sciences (AREA)
- Evolutionary Computation (AREA)
- Environmental Sciences (AREA)
- Software Systems (AREA)
- Biomedical Technology (AREA)
- Artificial Intelligence (AREA)
- Molecular Biology (AREA)
- Computing Systems (AREA)
- Medical Informatics (AREA)
- Databases & Information Systems (AREA)
- Biodiversity & Conservation Biology (AREA)
- Animal Husbandry (AREA)
- Data Mining & Analysis (AREA)
- General Engineering & Computer Science (AREA)
- Geometry (AREA)
- Computational Linguistics (AREA)
- Biophysics (AREA)
- Mathematical Physics (AREA)
- Image Analysis (AREA)
- Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
- Image Processing (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
Description
計算された積集合の値は図2の画面に表示される。右上端にある「pIoU1」、「pIoU2」、「cIoU1」、「cIoU2」がそれで、プレフィックスpは前の値(Past)を意味し、プレフィックスcは現在(Current)の値を意味する。
Claims (11)
- 蜂と花粉の形態学的な特徴をディープラーニングモデルを介して学習して得られた学習データを保存する保存部と、
撮影された映像と、前記保存部に保存された学習データを用いて、前記撮影された映像から蜂と花粉を識別する制御部と、を含み、
前記学習データは、蜂に対する学習データと、花粉に対する学習データとを含み、
前記制御部は、前記学習データを用いて蜂と推定される領域にハチボックスを設定し、前記ハチボックスの内側における花粉と推定される領域に花粉ボックスを設定して蜂と花粉をそれぞれ識別する、
学習による花粉識別装置。 - 前記制御部は、前記ハチボックスと前記花粉ボックスとの積集合の大きさに対応するIoU値を用いて花粉の有無を識別する、
請求項1に記載の学習による花粉識別装置。 - 前記制御部は、前記撮影された映像の映像処理を行い、当該映像において境界線を検出し、花粉と推定される境界線を花粉の輪郭線として識別し、前記花粉ボックス内に存在する前記輪郭線のみを花粉とみなす、
請求項1に記載の学習による花粉識別装置。 - 前記制御部は、前記輪郭線を花粉の色または濃度を把握する基準線として設定する、
請求項3に記載の学習による花粉識別装置。 - 前記制御部は、前記輪郭線に内接する四角形を設定し、前記四角形の内部を前記花粉の色または濃度を把握する対象領域として設定する、
請求項3に記載の学習による花粉識別装置。 - 前記制御部は、前記ハチボックスと花粉ボックスの面積比率(R)、前記輪郭線の曲率(E)、前記花粉の色と背景色との差(D)、前記輪郭線内の色の割合(P)のうち少なくとも一つの情報に基づいて花粉の有無を判断する、
請求項3に記載の学習による花粉識別装置。 - 前記制御部は、前記ハチボックスと花粉ボックスの面積比率(R)、前記輪郭線の曲率(E)、前記花粉の色と背景色との差(D)、前記輪郭線に内接する四角形内の色の割合(P)のうち少なくとも一つの情報に基づいて花粉の有無を判断する、
請求項3に記載の学習による花粉識別装置。 - 前記制御部は、前記花粉ボックスに対応する領域の映像に対して二値化処理を経てカラー色の値を標準化し、数値積分法で前記値を分析し、前記花粉の濃度や量を定量的に判定する、
請求項3に記載の学習による花粉識別装置。 - 前記制御部は、前記二値化処理の際、前記花粉ボックス内で、前記輪郭線の外領域は色の値を0に設定する、
請求項8に記載の学習による花粉識別装置。 - 前記制御部は、前記花粉ボックスに対応する領域の映像に対して、カラー色の値をZ軸として設定して、花粉の分布を立体的に表示する、
請求項1に記載の学習による花粉識別装置。 - 前記映像を撮影するカメラ部と、
前記映像を表示するための表示部をさらに含み、
前記制御部は、前記ハチボックス、花粉ボックス及び輪郭線を前記表示部に表示する、
請求項1に記載の学習による花粉識別装置。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2023-0019250 | 2023-02-14 | ||
KR1020230019250A KR102711047B1 (ko) | 2023-02-14 | 2023-02-14 | 학습을 통한 화분 식별 장치 및 방법 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP7368916B1 true JP7368916B1 (ja) | 2023-10-25 |
JP2024115496A JP2024115496A (ja) | 2024-08-26 |
Family
ID=86942854
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2023104151A Active JP7368916B1 (ja) | 2023-02-14 | 2023-06-26 | 学習による花粉の識別装置 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20240273928A1 (ja) |
EP (1) | EP4417045A1 (ja) |
JP (1) | JP7368916B1 (ja) |
KR (1) | KR102711047B1 (ja) |
CN (1) | CN118489624A (ja) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20220211013A1 (en) * | 2015-06-03 | 2022-07-07 | Keltronix, Inc. | Agricultural monitoring system using image analysis |
CN115220132A (zh) * | 2022-07-04 | 2022-10-21 | 山东浪潮智慧医疗科技有限公司 | 一种预报大气中花粉浓度的方法 |
US20220361471A1 (en) * | 2021-05-11 | 2022-11-17 | The Penn State Research Foundation | Intelligent insect trap and monitoring system |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20160141224A (ko) | 2015-05-29 | 2016-12-08 | 주식회사 성광 | 수정벌 관리장치 및 관리 시스템 |
KR101963648B1 (ko) | 2017-09-22 | 2019-04-01 | 한국과학기술연구원 | 온실 수정벌 관리 시스템 및 방법, 수정벌 상자 |
SE545381C2 (en) * | 2019-09-05 | 2023-07-25 | Beescanning Global Ab | Method for calculating the deviation relation of a population registered on image for calculating pest infestation on a bee population |
-
2023
- 2023-02-14 KR KR1020230019250A patent/KR102711047B1/ko active IP Right Grant
- 2023-06-21 EP EP23180647.2A patent/EP4417045A1/en active Pending
- 2023-06-26 JP JP2023104151A patent/JP7368916B1/ja active Active
- 2023-06-27 US US18/342,037 patent/US20240273928A1/en active Pending
- 2023-06-27 CN CN202310767476.7A patent/CN118489624A/zh active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20220211013A1 (en) * | 2015-06-03 | 2022-07-07 | Keltronix, Inc. | Agricultural monitoring system using image analysis |
US20220361471A1 (en) * | 2021-05-11 | 2022-11-17 | The Penn State Research Foundation | Intelligent insect trap and monitoring system |
CN115220132A (zh) * | 2022-07-04 | 2022-10-21 | 山东浪潮智慧医疗科技有限公司 | 一种预报大气中花粉浓度的方法 |
Also Published As
Publication number | Publication date |
---|---|
KR102711047B1 (ko) | 2024-09-27 |
EP4417045A1 (en) | 2024-08-21 |
US20240273928A1 (en) | 2024-08-15 |
JP2024115496A (ja) | 2024-08-26 |
CN118489624A (zh) | 2024-08-16 |
KR20240126595A (ko) | 2024-08-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Chen et al. | An AIoT based smart agricultural system for pests detection | |
Millan et al. | On‐the‐Go Grapevine Yield Estimation Using Image Analysis and Boolean Model | |
Parham et al. | Animal population censusing at scale with citizen science and photographic identification | |
CN102915446A (zh) | 基于svm机器学习的植物病虫害检测方法 | |
US20240037724A1 (en) | Plant detection and display system | |
Dewangan et al. | CNN-LSTM framework to automatically detect anomalies in farmland using aerial images from UAVs | |
JP7368916B1 (ja) | 学習による花粉の識別装置 | |
Fang et al. | Classification system study of soybean leaf disease based on deep learning | |
JP7384506B1 (ja) | 学習による昆虫個体の識別装置 | |
Mahenthiran et al. | Smart pest management: an augmented reality-based approach for an organic cultivation | |
Chen et al. | Instance Segmentation of Grape Berry Images Based on Improved Mask R-Cnn | |
JP7368915B1 (ja) | 学習による蜂の軌跡追跡及び分析装置及び方法 | |
Putra et al. | Vision-Based Object Detection for Efficient Monitoring in Smart Hydroponic Systems | |
Surige et al. | IOT-based monitoring system for oyster Mushroom Farms in Sri Lanka | |
US20190096045A1 (en) | System and Method for Realizing Increased Granularity in Images of a Dataset | |
Malloci | Predictive Analytics Models and Tools for Decision Support of Stakeholders in Digital Agriculture | |
Wang et al. | Deep Learning Technique and UAV Imagery Dataset for Paddy Rice Panicle Detection at Early Stage | |
Bastidas-Rodriguez et al. | Estimating wingbeat frequency on hummingbirds by using a no-labeling learning computer vision approach | |
KR20240066873A (ko) | 군집 사육 가축의 운동 활력도 측정 장치 및 방법 | |
Matsuo et al. | Development of a growth state estimation system using a moving camera in strawberry cultivation | |
Yadav et al. | A Novel Approach: Pests Detection Using Artificial Neural Network and Image Processing. | |
Dembski et al. | Towards bees detection on images: study of different color models for neural networks | |
Ariza-Sentís et al. | Grape counting in RGB videos–comparing two instance segmentation models | |
Sheema et al. | FAW Detection using IoT on Amended Faster R-CNN algorithm based on Odor cues in Maize crop | |
Janota et al. | Towards Robotic Mapping of a Honeybee Comb |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20230626 |
|
A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20230626 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20230718 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20230831 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230911 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20230919 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20231005 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7368916 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |