JP7365319B2 - Axis deviation determination device for vehicles and on-vehicle sensors mounted on vehicles - Google Patents

Axis deviation determination device for vehicles and on-vehicle sensors mounted on vehicles Download PDF

Info

Publication number
JP7365319B2
JP7365319B2 JP2020184379A JP2020184379A JP7365319B2 JP 7365319 B2 JP7365319 B2 JP 7365319B2 JP 2020184379 A JP2020184379 A JP 2020184379A JP 2020184379 A JP2020184379 A JP 2020184379A JP 7365319 B2 JP7365319 B2 JP 7365319B2
Authority
JP
Japan
Prior art keywords
axis deviation
vehicle
amount
axis
deviation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020184379A
Other languages
Japanese (ja)
Other versions
JP2022074387A (en
Inventor
明達 張
浩行 川越
伸治 長岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2020184379A priority Critical patent/JP7365319B2/en
Priority to CN202111287305.1A priority patent/CN114523960B/en
Publication of JP2022074387A publication Critical patent/JP2022074387A/en
Application granted granted Critical
Publication of JP7365319B2 publication Critical patent/JP7365319B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/08Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/10Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
    • B60W40/105Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/10Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
    • B60W40/114Yaw movement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W60/00Drive control systems specially adapted for autonomous road vehicles

Description

本発明は、周辺の物体を検出するための車載センサを備えた車両であって、特に、車載センサの検出結果に基づいて自律走行や運転支援が行われる車両、及び、その車載センサの軸ずれを判定する軸ずれ判定装置に関する。 The present invention relates to a vehicle equipped with an on-vehicle sensor for detecting surrounding objects, and in particular, a vehicle in which autonomous driving or driving assistance is performed based on the detection results of the on-vehicle sensor, and an axis misalignment of the on-vehicle sensor. The present invention relates to an axis misalignment determining device for determining.

カメラとレーダを含み、車両周辺の物体(障害物)の検知等を行う車載センサが公知である(例えば、特許文献1)。特許文献1の車載センサでは、レーダを用いてカメラの軸ずれ量が取得され、カメラの軸ずれ量に基づいて、レーダによる物体の検知領域が設定される。 2. Description of the Related Art An on-vehicle sensor that includes a camera and a radar and detects objects (obstacles) around a vehicle is known (for example, Patent Document 1). In the vehicle-mounted sensor disclosed in Patent Document 1, the amount of axis deviation of the camera is obtained using a radar, and the detection area of the object by the radar is set based on the amount of axis deviation of the camera.

特開2016-80539号公報JP 2016-80539 Publication

カメラやレーダ等の車載センサは光軸の方向が予め設定された方向に一致するように車両に搭載され、車載センサの検出結果に基づいて、運転支援や車両の自律走行等の車両制御が行われる。そのため、車載センサの光軸の方向が予め設定された方向に十分に合致し、その光軸の方向と予め設定された方向との差、すなわち、軸ずれ量が十分小さいことが求められる。 On-vehicle sensors such as cameras and radars are mounted on vehicles so that the direction of their optical axes coincide with preset directions, and vehicle control such as driving support and autonomous driving of the vehicle is performed based on the detection results of the on-board sensors. be exposed. Therefore, it is required that the direction of the optical axis of the on-vehicle sensor sufficiently matches a preset direction, and that the difference between the direction of the optical axis and the preset direction, that is, the amount of axis deviation, is sufficiently small.

そこで、本願発明者らは、車載センサの軸ずれ量が所定の閾値よりも小さいときにのみ、運転支援や自律走行等の各種処理が実行されるように構成することを想到した。 Therefore, the inventors of the present invention conceived of a configuration in which various processes such as driving support and autonomous driving are executed only when the amount of axis deviation of the on-vehicle sensor is smaller than a predetermined threshold value.

しかし、車載センサの光軸は車両走行時の衝撃等によってずれることがある。そのため、本願発明者らは閾値を小さくしすぎると、車両制御が容易に停止されてしまい、却って、車両の利便性や安全性を低下させうることに気が付いた。そのため、車両制御の制限のための車載センサの軸ずれの有無判定を適切に行うことのできる車両や、車両制御を適切に制限するための軸ずれ判定を行う軸ずれ判定装置の開発が望まれている。 However, the optical axis of the on-vehicle sensor may shift due to shocks or the like when the vehicle is running. Therefore, the inventors of the present application have realized that if the threshold value is set too small, vehicle control will be easily stopped, which may actually reduce the convenience and safety of the vehicle. Therefore, it is desired to develop a vehicle that can appropriately determine the presence or absence of axis misalignment of an on-vehicle sensor to limit vehicle control, and an axis misalignment determination device that determines axis misalignment to appropriately limit vehicle control. ing.

本発明は、以上の背景を鑑み、車両制御の制限のための、車載センサの軸ずれの有無判定を適切に行うことのできる車両、及び、軸ずれ判定装置を提供することを課題とする。 In view of the above background, it is an object of the present invention to provide a vehicle and an axis deviation determination device that can appropriately determine the presence or absence of axis deviation of an on-vehicle sensor to limit vehicle control.

上記課題を解決するために本発明のある態様は、車速を検出する車速センサ(18)と、所定の光軸(A)を基準として物体の位置を検出する車載センサ(17)とを備えた車両(1、101)であって、前記光軸の車両搭載時に対する軸ずれ量及び前記車速に基づいて前記光軸の軸ずれの有無を判定し、判定結果に基づいて前記車両の走行を制御する制御装置(10)を有し、前記制御装置は、前記車速が第1閾値よりも大きいときは、前記光軸のヨー方向の軸ずれ量、及び、前記光軸のピッチ方向の軸ずれ量をそれぞれ取得して、前記ヨー方向の軸ずれ量、又は、前記ピッチ方向の軸ずれ量がそれぞれ対応する閾値より大きいときに軸ずれがあると判定し、前記車速が前記第1閾値以下、且つ、前記第1閾値より小さい第2閾値より大きいときには、前記ヨー方向の軸ずれ量を取得して、前記光軸の前記ヨー方向の軸ずれ量が対応する閾値よりも大きいときに軸ずれがあると判定し、前記車速が前記第2閾値以下であるときに、軸ずれの有無を判定しない。 In order to solve the above problems, an aspect of the present invention includes a vehicle speed sensor (18) that detects vehicle speed, and an on-vehicle sensor (17) that detects the position of an object with reference to a predetermined optical axis (A). In a vehicle (1, 101), the presence or absence of an axis deviation of the optical axis is determined based on the amount of axis deviation of the optical axis with respect to when the vehicle is mounted and the vehicle speed, and the traveling of the vehicle is controlled based on the determination result. a control device (10) configured to control the amount of axis deviation of the optical axis in the yaw direction and the amount of axis deviation of the optical axis in the pitch direction when the vehicle speed is higher than a first threshold value; are obtained, and it is determined that there is an axis deviation when the amount of axis deviation in the yaw direction or the amount of axis deviation in the pitch direction is larger than the corresponding threshold, and the vehicle speed is equal to or less than the first threshold, and , if it is larger than a second threshold that is smaller than the first threshold, obtain the amount of axis deviation in the yaw direction, and if the amount of axis deviation of the optical axis in the yaw direction is larger than the corresponding threshold, there is an axis deviation. When the vehicle speed is less than or equal to the second threshold value, the presence or absence of axis deviation is not determined.

本願発明者らは、高速領域(車速が第1閾値より大きい領域)では、ヨー方向、及びピッチ方向のいずれの方向の光軸の軸ずれも適切な車両の走行制御を困難にし、中速領域(車速が第2閾値より大きく、且つ、第1閾値以下の領域)では、ヨー方向の軸ずれが適切な車両の走行制御を困難にすることを見出した。 The inventors of the present application have discovered that in a high-speed region (region where the vehicle speed is higher than the first threshold value), misalignment of the optical axis in either the yaw direction or the pitch direction makes it difficult to properly control the running of the vehicle; It has been found that in a region where the vehicle speed is greater than the second threshold value and less than or equal to the first threshold value, the axis deviation in the yaw direction makes it difficult to properly control the running of the vehicle.

この態様によれば、車速が第1閾値よりも大きい高速領域において、ヨー方向及びピッチ方向のいずれの方向の軸ずれ量がそれぞれ対応する閾値よりも大きいときに軸ずれがあると判定される。また、車速が第2閾値よりも大きく、第1閾値以下の中速領域において、ヨー方向の軸ずれ量が対応する閾値よりも大きいときに軸ずれがあると判定される。このように、車両の走行制御が困難となる方向の光軸の軸ずれ量に基づいて、軸ずれの有無が判定されるため、車両制御を制限すべきかを判定するための車載センサの軸ずれが適切に評価され、判定結果に基づいた適切な車両の走行制御が可能となる。 According to this aspect, in a high-speed region where the vehicle speed is higher than the first threshold value, it is determined that there is an axis deviation when the amount of axis deviation in either the yaw direction or the pitch direction is larger than the corresponding threshold value. Further, in a medium speed region where the vehicle speed is higher than the second threshold value and lower than or equal to the first threshold value, it is determined that there is an axis deviation when the amount of axis deviation in the yaw direction is larger than the corresponding threshold value. In this way, the presence or absence of axis deviation is determined based on the amount of axis deviation of the optical axis in the direction that makes it difficult to control the vehicle. is appropriately evaluated, and appropriate vehicle driving control can be performed based on the determination result.

上記の態様において、好ましくは、前記制御装置は、前記車速が前記第1閾値よりも大きいときには、前記ヨー方向の軸ずれ量、前記ピッチ方向の軸ずれ量、及び、前記光軸のロール方向の軸ずれ量を取得し、前記光軸の前記ヨー方向の軸ずれ量、前記ピッチ方向の軸ずれ量、及び、前記ロール方向の軸ずれ量のいずれかがそれぞれ対応する閾値より大きいときに軸ずれがあると判定する。 In the above aspect, preferably, when the vehicle speed is higher than the first threshold, the control device adjusts the amount of axis deviation in the yaw direction, the amount of axis deviation in the pitch direction, and the amount of axis deviation of the optical axis in the roll direction. The amount of axis deviation is acquired, and the axis deviation is determined when any one of the amount of axis deviation in the yaw direction, the amount of axis deviation in the pitch direction, and the amount of axis deviation in the roll direction of the optical axis is each larger than the corresponding threshold value. It is determined that there is.

この態様によれば、車速が第1閾値よりも大きい高速領域において、ヨー方向及びピッチ方向、及びロール方向のいずれの方向の軸ずれ量がそれぞれ対応する閾値よりも大きいときに軸ずれがあると判定される。よって、位置検出精度が求められる高速領域において、車載センサの軸ずれの有無が適切に判定される。 According to this aspect, in a high-speed region where the vehicle speed is higher than the first threshold value, if the amount of axis displacement in any of the yaw, pitch, and roll directions is larger than the corresponding threshold, it is determined that there is an axis deviation. It will be judged. Therefore, in a high-speed region where position detection accuracy is required, the presence or absence of axis deviation of the vehicle-mounted sensor can be appropriately determined.

上記の態様において、好ましくは、前記制御装置は、前記車両の運転支援、又は、前記車両を自律走行させるための複数の処理を実行可能であり、軸ずれがあると判定したときに、実行可能な前記処理を制限する。 In the above aspect, preferably, the control device is capable of executing a plurality of processes for providing driving support for the vehicle or for causing the vehicle to travel autonomously, and is capable of executing a plurality of processes when determining that there is an axis misalignment. limit the above-mentioned processing.

この態様によれば、軸ずれがあると判定されたときには、車両の運転支援、又は自律走行に係る処理が制限される。これにより、軸ずれによって問題が生じ得る処理が制限でき、軸ずれによって問題が生じ難く、安全性などの観点から必要となる処理を制限しないように設定することができる。 According to this aspect, when it is determined that there is an axis misalignment, processing related to driving support or autonomous driving of the vehicle is restricted. As a result, it is possible to limit processes that may cause problems due to axis misalignment, and it is possible to set processes that are unlikely to cause problems due to axis misalignment and are not limited to processes that are necessary from the viewpoint of safety and the like.

上記の態様において、好ましくは、前記制御装置は、前記車両の走行時において前記車載センサによって検出された路側に存在する物標の位置の変化に基づいて、前記ヨー方向の軸ずれ量を取得する。 In the above aspect, preferably, the control device obtains the axis deviation amount in the yaw direction based on a change in the position of a target existing on the roadside detected by the on-vehicle sensor while the vehicle is traveling. .

この態様によれば、車載センサのヨー方向の軸ずれ量を取得することができる。 According to this aspect, the amount of axis deviation in the yaw direction of the vehicle-mounted sensor can be obtained.

上記課題を解決するために本発明のある態様は、車速を取得する車速センサ(18)と、所定の光軸を基準として物体の位置を検出する車載センサ(17)とを備えた車両(1、101)に搭載される前記車載センサの軸ずれ判定装置(10)であって、前記車速が第1閾値よりも大きいときは、前記光軸のヨー方向の軸ずれ量、及び、前記光軸のピッチ方向の軸ずれ量をそれぞれ取得して、前記ヨー方向の軸ずれ量、又は、前記ピッチ方向の軸ずれ量がそれぞれ対応する閾値より大きいときに軸ずれがあると判定し、前記車速が前記第1閾値以下、且つ、前記第1閾値より小さい第2閾値より大きいときには、前記ヨー方向の軸ずれ量を取得して、前記光軸の前記ヨー方向の軸ずれ量が対応する閾値よりも大きいときに軸ずれがあると判定し、前記車速が前記第2閾値以下であるときに、軸ずれの有無を判定しない。 In order to solve the above problems, an aspect of the present invention provides a vehicle (1 , 101), when the vehicle speed is greater than a first threshold, the amount of axis deviation of the optical axis in the yaw direction and the optical axis The amount of axis deviation in the pitch direction is obtained, and when the amount of axis deviation in the yaw direction or the amount of axis deviation in the pitch direction is larger than the corresponding threshold, it is determined that there is an axis deviation, and the vehicle speed is When the amount of axis deviation in the yaw direction is equal to or less than the first threshold value and larger than a second threshold value which is smaller than the first threshold value, the amount of axis deviation in the yaw direction is obtained, and the amount of axis deviation in the yaw direction of the optical axis is less than the corresponding threshold value. When the vehicle speed is greater than the second threshold value, it is determined that there is an axis deviation, and when the vehicle speed is less than or equal to the second threshold value, the presence or absence of an axis deviation is not determined.

この態様によれば、車速が第1閾値よりも大きい高速領域において、ヨー方向及びピッチ方向のいずれの方向の軸ずれ量がそれぞれ対応する閾値よりも大きいときに軸ずれがあると判定される。また、車速が第2閾値よりも大きく、第1閾値以下の中速領域において、ヨー方向の軸ずれ量が対応する閾値よりも大きいときに軸ずれがあると判定される。このように、車両の走行制御が困難となる方向の光軸の軸ずれ量に基づいて、軸ずれの有無が判定されるため、車両の走行制御に対して制限を加えるための適切な軸ずれ判定が可能となる。 According to this aspect, in a high-speed region where the vehicle speed is higher than the first threshold value, it is determined that there is an axis deviation when the amount of axis deviation in either the yaw direction or the pitch direction is larger than the corresponding threshold value. Further, in a medium speed region where the vehicle speed is higher than the second threshold value and lower than or equal to the first threshold value, it is determined that there is an axis deviation when the amount of axis deviation in the yaw direction is larger than the corresponding threshold value. In this way, the presence or absence of axis deviation is determined based on the amount of axis deviation of the optical axis in the direction that makes vehicle driving control difficult. Judgment becomes possible.

上記の態様において、好ましくは、前記軸ずれ判定装置は、前記車速が前記第1閾値よりも大きいときには、前記ヨー方向の軸ずれ量、前記ピッチ方向の軸ずれ量、及び、前記光軸のロール方向の軸ずれ量を取得し、前記光軸の前記ヨー方向の軸ずれ量、前記ピッチ方向の軸ずれ量、及び、前記ロール方向の軸ずれ量のいずれかがそれぞれ対応する閾値より大きいときに軸ずれがある。 In the above aspect, preferably, when the vehicle speed is higher than the first threshold, the axis deviation determination device determines the amount of axis deviation in the yaw direction, the amount of axis deviation in the pitch direction, and the roll of the optical axis. When any one of the axial deviation amount of the optical axis in the yaw direction, the axial deviation amount in the pitch direction, and the axial deviation amount in the roll direction is larger than the corresponding threshold value. There is an axis misalignment.

この態様によれば、車速が第1閾値よりも大きい高速領域において、ヨー方向及びピッチ方向、及びロール方向のいずれの方向の軸ずれ量がそれぞれ対応する閾値よりも大きいときに軸ずれがあると判定される。よって、位置検出精度が求められる高速領域において、車載センサの軸ずれの有無が適切に判定される。 According to this aspect, in a high-speed region where the vehicle speed is higher than the first threshold value, if the amount of axis displacement in any of the yaw, pitch, and roll directions is larger than the corresponding threshold, it is determined that there is an axis deviation. It will be judged. Therefore, in a high-speed region where position detection accuracy is required, the presence or absence of axis deviation of the vehicle-mounted sensor can be appropriately determined.

上記の態様において、好ましくは、前記軸ずれ判定装置は、前記車両の走行時において前記車載センサによって検出される路側に存在する物標の位置の変化に基づいて、前記ヨー方向の軸ずれ量を取得する。 In the above aspect, preferably, the axis deviation determining device determines the amount of axis deviation in the yaw direction based on a change in the position of a target existing on the roadside detected by the on-vehicle sensor while the vehicle is running. get.

この態様によれば、車載センサのヨー方向の軸ずれ量を取得することができる。 According to this aspect, the amount of axis deviation in the yaw direction of the vehicle-mounted sensor can be obtained.

以上の構成によれば、車両制御の制限のための、車載センサの軸ずれの有無判定を適切に行うことのできる車両、及び、軸ずれ判定装置を提供することが可能となる。 According to the above configuration, it is possible to provide a vehicle and an axis deviation determination device that can appropriately determine the presence or absence of axis deviation of an on-vehicle sensor to limit vehicle control.

第1実施形態に係る車両の機能構成図Functional configuration diagram of the vehicle according to the first embodiment ミリ波レーダの走査範囲を説明するための説明図Explanatory diagram to explain the scanning range of millimeter wave radar ヨー方向(Z軸方向、垂直軸方向)の軸ずれを説明するための説明図Explanatory diagram for explaining axis misalignment in the yaw direction (Z-axis direction, vertical axis direction) (A)ヨー方向の軸ずれ量が十分小さいときの路側に位置する物標と、車両との位置関係を示す説明図、及び(B)その場合において車載センサによって取得される物標の位置の変化(履歴)を示す説明図(A) An explanatory diagram showing the positional relationship between a target located on the roadside and the vehicle when the amount of axis deviation in the yaw direction is sufficiently small, and (B) An illustration of the position of the target acquired by the on-vehicle sensor in that case. Explanatory diagram showing changes (history) (A)ヨー方向の軸ずれ量が大きいときの路側に位置する物標と、車両との位置関係を示す説明図、及び(B)その場合において車載センサによって取得される物標の位置の変化(履歴)を示す説明図(A) An explanatory diagram showing the positional relationship between a target located on the roadside and the vehicle when the amount of axis deviation in the yaw direction is large, and (B) Changes in the position of the target acquired by the on-vehicle sensor in that case Explanatory diagram showing (history) (A)ロール方向(X軸方向)の軸ずれ、及び、(B)ピッチ方向(Y軸方向)の軸ずれを説明するための説明図Explanatory diagram for explaining (A) axis misalignment in the roll direction (X-axis direction) and (B) axis misalignment in the pitch direction (Y-axis direction) 第1実施形態に係る軸ずれ判定処理のフローチャートFlowchart of axis deviation determination processing according to the first embodiment 第2実施形態に係る軸ずれ判定処理のフローチャートFlowchart of axis deviation determination processing according to the second embodiment 光軸がピッチ方向に回転して検出範囲が(A)上側にずれた場合と、(B)下側にずれた場合の物体の検出範囲を説明するための説明図Explanatory diagram for explaining the detection range of an object when the optical axis rotates in the pitch direction and the detection range shifts (A) upward and (B) shifts downward.

以下、図面を参照して、本発明に係る車両の実施形態について説明する。以下では、説明の便宜上、車体の中心を原点とし、前後(車長)方向をX軸、左右(車幅)方向をY軸、上下方向をZ軸と定める。更に、X軸又はY軸方向を水平軸方向、Z軸方向を垂直軸方向と適宜記載する。 DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments of a vehicle according to the present invention will be described with reference to the drawings. In the following, for convenience of explanation, the center of the vehicle body is defined as the origin, the longitudinal (vehicle length) direction is defined as the X axis, the horizontal (vehicle width) direction is defined as the Y axis, and the vertical direction is defined as the Z axis. Furthermore, the X-axis or Y-axis direction will be appropriately described as a horizontal axis direction, and the Z-axis direction will be appropriately described as a vertical axis direction.

X軸を軸線とする回転方向がロール方向に、Y軸を軸線とする回転方向がピッチ方向に、Z軸を軸線とする回転方向がヨー方向にそれぞれ対応し、X軸がロール軸、Y軸がピッチ軸、及び、Z軸がヨー軸にそれぞれ対応する。 The direction of rotation about the X-axis corresponds to the roll direction, the direction of rotation about the Y-axis corresponds to the pitch direction, and the direction of rotation about the Z-axis corresponds to the yaw direction. corresponds to the pitch axis, and the Z axis corresponds to the yaw axis.

<<第1実施形態>>
図1に示すように、第1実施形態に係る車両1は、推進装置3、ブレーキ装置4、ステアリング装置5、外界センサ6、車両センサ7、ナビゲーション装置8、運転操作子9、及び制御装置10を含む車両制御システム14を備えている。車両制御システム14の各構成は、CAN(Controller Area Network)等の通信手段によって信号伝達可能に互いに接続されている。
<<First embodiment>>
As shown in FIG. 1, the vehicle 1 according to the first embodiment includes a propulsion device 3, a brake device 4, a steering device 5, an external sensor 6, a vehicle sensor 7, a navigation device 8, a driving operator 9, and a control device 10. The vehicle control system 14 includes: Each component of the vehicle control system 14 is connected to each other so that signals can be transmitted by communication means such as a CAN (Controller Area Network).

推進装置3は車両1に駆動力を付与する装置であり、例えば動力源及び変速機を含む。動力源はガソリンエンジンやディーゼルエンジン等の内燃機関及び電動機の少なくとも一方を有する。本実施形態では、推進装置3は自動変速機と、自動変速機のシフトポジション(シフト位置)を変更するシフトアクチュエータとを含む。ブレーキ装置4は車両1に制動力を付与する装置であり、例えばブレーキロータにパッドを押し付けるブレーキキャリパと、ブレーキキャリパに油圧を供給する電動シリンダとを含む。ブレーキ装置4はワイヤケーブルによって車輪の回転を規制する電動のパーキングブレーキ装置を含んでもよい。ステアリング装置5は車輪の舵角を変えるための装置であり、例えば車輪を転舵するラックアンドピニオン機構と、ラックアンドピニオン機構を駆動する電動モータとを有する。推進装置3、ブレーキ装置4、及びステアリング装置5は、制御装置10によって制御される。 The propulsion device 3 is a device that provides driving force to the vehicle 1, and includes, for example, a power source and a transmission. The power source includes at least one of an internal combustion engine such as a gasoline engine or a diesel engine, and an electric motor. In this embodiment, the propulsion device 3 includes an automatic transmission and a shift actuator that changes the shift position of the automatic transmission. The brake device 4 is a device that applies braking force to the vehicle 1, and includes, for example, a brake caliper that presses a pad against a brake rotor and an electric cylinder that supplies hydraulic pressure to the brake caliper. The brake device 4 may include an electric parking brake device that restricts wheel rotation using a wire cable. The steering device 5 is a device for changing the steering angle of the wheels, and includes, for example, a rack and pinion mechanism that steers the wheels and an electric motor that drives the rack and pinion mechanism. The propulsion device 3, the brake device 4, and the steering device 5 are controlled by a control device 10.

外界センサ6は車両1の周辺からの電磁波や音波等を捉えて、車外の物体等を検出し、車両1の周辺情報を取得する装置(外界取得装置)である。外界センサ6は車外カメラ16と、ライダ17(車載センサ)とを含んでいる。 The external world sensor 6 is a device (external world acquisition device) that captures electromagnetic waves, sound waves, etc. from the surroundings of the vehicle 1, detects objects outside the vehicle, and obtains information about the surroundings of the vehicle 1. The external sensor 6 includes an external camera 16 and a lidar 17 (vehicle-mounted sensor).

車外カメラ16は例えば、CCDやCMOS等の固体撮像素子を利用したデジタルカメラであって、車外カメラ16は光軸が車両1の正面方向、すなわち前方となるように車両1(より具体的には、ルームミラー)に取り付けられ、車両1の前方(X軸方向)を撮像する。 The vehicle exterior camera 16 is, for example, a digital camera using a solid-state image sensor such as a CCD or CMOS, and the vehicle exterior camera 16 is mounted on the vehicle 1 (more specifically, , rearview mirror), and images the front of the vehicle 1 (in the X-axis direction).

図2に示すように、ライダ17は光軸Aを中心として、車外に向かって電磁波(送信波)を送信しながら、周囲の物体からの反射波を受信し、車両1の周囲を走査(スキャン)する。これにより、ライダ17は測距データを取得し、車両1の周辺の物体の位置を検出する。測距データには、ライダ17から見た物体が存在する方向と、ライダ17とその物体との距離とが含まれる。ライダ17から送信される電磁波は、紫外線、可視光線、近赤外線等のいずれの波長の電磁波であってもよい。 As shown in FIG. 2, the lidar 17 scans the surroundings of the vehicle 1 by transmitting electromagnetic waves (transmitted waves) toward the outside of the vehicle with the optical axis A as the center, while receiving reflected waves from surrounding objects. )do. Thereby, the lidar 17 acquires ranging data and detects the position of objects around the vehicle 1. The distance measurement data includes the direction in which the object exists as seen from the lidar 17, and the distance between the lidar 17 and the object. The electromagnetic waves transmitted from the lidar 17 may be of any wavelength, such as ultraviolet rays, visible rays, or near-infrared rays.

ライダ17は車両1前部の所定の位置に取り付けられている。車両1への搭載時(工場出荷時)には、ライダ17の光軸Aは前方に設定され、その走査範囲(スキャン範囲)は、光軸Aを中心として、Z軸(ヨー軸)回りに所定の角度θ内であり、且つ、Y軸(ピッチ軸)回りに所定の角度θ内に設定されている。 The rider 17 is attached to a predetermined position at the front of the vehicle 1. When mounted on the vehicle 1 (at the time of shipment from the factory), the optical axis A of the lidar 17 is set to the front, and its scanning range is centered around the optical axis A and around the Z axis (yaw axis). It is set within a predetermined angle θ z and within a predetermined angle θ y around the Y axis (pitch axis).

車両センサ7は、車両1の速度を検出する車速センサ18を含む。車両センサ7は車速センサ18の他、車両1の加速度を検出する加速度センサ、車両1の垂直軸(Z軸)回りの角速度を検出するヨーレートセンサ、車両1の向きを検出する方位センサ等を含んでいてもよい。 Vehicle sensor 7 includes a vehicle speed sensor 18 that detects the speed of vehicle 1. In addition to the vehicle speed sensor 18, the vehicle sensor 7 includes an acceleration sensor that detects the acceleration of the vehicle 1, a yaw rate sensor that detects the angular velocity around the vertical axis (Z axis) of the vehicle 1, a direction sensor that detects the direction of the vehicle 1, etc. It's okay to stay.

ナビゲーション装置8は車両1の現在位置を取得し、目的地への経路案内等を行う装置であり、GPS受信部20、及び地図記憶部21を有する。GPS受信部20は人工衛星(測位衛星)から受信した信号に基づいて車両1の位置(緯度や経度)を特定する。地図記憶部21は、フラッシュメモリやハードディスク等の公知の記憶装置によって構成され、地図情報を記憶している。 The navigation device 8 is a device that obtains the current position of the vehicle 1 and provides route guidance to a destination, and includes a GPS receiving section 20 and a map storage section 21 . The GPS receiving unit 20 identifies the position (latitude and longitude) of the vehicle 1 based on signals received from artificial satellites (positioning satellites). The map storage unit 21 is constituted by a known storage device such as a flash memory or a hard disk, and stores map information.

運転操作子9は車室内に設けられ、車両1を制御するためにユーザが行う入力操作を受け付ける。運転操作子9は、ステアリングホイール22、アクセルペダル23、ブレーキペダル24(制動操作子)、及び、シフトレバー25を含む。 The driving operator 9 is provided in the vehicle interior and receives input operations performed by the user to control the vehicle 1. The driving operators 9 include a steering wheel 22, an accelerator pedal 23, a brake pedal 24 (braking operator), and a shift lever 25.

制御装置10は、CPU、不揮発性メモリ(ROM)、及び、揮発性メモリ(RAM)等を含む電子制御装置(ECU)である。制御装置10はCPUでプログラムに沿った演算処理を実行することで、各種の車両制御を実行する。制御装置10は1つのハードウェアとして構成されていてもよく、複数のハードウェアからなるユニットとして構成されていてもよい。また、制御装置10の各機能部の少なくとも一部は、LSIやASIC、FPGA等のハードウェアによって実現されてもよく、ソフトウェア及びハードウェアの組み合わせによって実現されてもよい。 The control device 10 is an electronic control unit (ECU) including a CPU, a nonvolatile memory (ROM), a volatile memory (RAM), and the like. The control device 10 executes various vehicle controls by using a CPU to execute arithmetic processing according to a program. The control device 10 may be configured as a single piece of hardware, or may be configured as a unit consisting of a plurality of pieces of hardware. Further, at least a portion of each functional unit of the control device 10 may be realized by hardware such as an LSI, an ASIC, or an FPGA, or may be realized by a combination of software and hardware.

制御装置10は、車外カメラ16によって取得された画像や、ライダ17によって取得された測距データに基づいて、少なくとも車両1の周辺に存在する物体を避けるように、推進装置3やブレーキ装置4、ステアリング装置5を制御する。例えば、制御装置10は、車両1の周辺に存在する物体を避けつつ、運転者の運転支援を行う支援処理や、車両1を自律走行させる自律走行処理を行い、車両1を制御することができる。 The control device 10 controls the propulsion device 3, the brake device 4, Controls the steering device 5. For example, the control device 10 can control the vehicle 1 by performing support processing for assisting the driver in driving while avoiding objects around the vehicle 1, and autonomous driving processing for causing the vehicle 1 to travel autonomously. .

このような車両1の制御を行うため、制御装置10は、外界認識部41、自車位置特定部42、行動計画部43、及び、走行制御部44を含む。 In order to control the vehicle 1 as described above, the control device 10 includes an external world recognition section 41, a vehicle position identification section 42, an action planning section 43, and a travel control section 44.

外界認識部41は、外界センサ6を適宜制御し、外界センサ6から検出結果を取得する。外界認識部41は外界センサ6の検出結果に基づいて、車両1の周辺に存在する例えば、歩行者や車両1などの物標を認識する。外界認識部41はライダ17によって取得された測距データに基づいて、車両1を基準とする物標の位置を取得する。また、外界認識部41は、車外カメラ16によって取得された画像やライダ17によって取得された測距データ等を含む外界センサ6の検出結果に基づいて物標の大きさを取得し、機械学習等の公知の方法を用いて、外界センサ6の検出結果から物標の種別(例えば、物標がパイロンや街灯である等)を判定する。 The external world recognition unit 41 controls the external world sensor 6 as appropriate and acquires a detection result from the external world sensor 6. The external world recognition unit 41 recognizes targets, such as pedestrians and the vehicle 1, existing around the vehicle 1 based on the detection results of the external world sensor 6. The external world recognition unit 41 acquires the position of the target with respect to the vehicle 1 based on the ranging data acquired by the lidar 17. In addition, the external world recognition unit 41 acquires the size of the target based on the detection results of the external world sensor 6, including images acquired by the vehicle exterior camera 16, distance measurement data acquired by the lidar 17, etc., and uses machine learning etc. The type of target (for example, whether the target is a pylon or a street light) is determined from the detection result of the external sensor 6 using a known method.

自車位置特定部42は、ナビゲーション装置8のGPS受信部20からの信号に基づいて、車両1自らの位置を検出する。また、自車位置特定部42はGPS受信部20からの信号に加えて、車両センサ7から車速やヨーレートを取得し、いわゆる慣性航法を用いて車両1自らの位置及び姿勢を特定してもよい。 The own vehicle position specifying section 42 detects the position of the vehicle 1 itself based on a signal from the GPS receiving section 20 of the navigation device 8 . Further, in addition to the signal from the GPS receiving unit 20, the own vehicle position specifying unit 42 may acquire the vehicle speed and yaw rate from the vehicle sensor 7, and may specify the position and attitude of the vehicle 1 itself using so-called inertial navigation. .

走行制御部44は、行動計画部43からの走行制御の指示に従って、推進装置3、ブレーキ装置4、及びステアリング装置5を制御し、車両1を走行させる。より具体的には、走行制御部44は、行動計画部43から車両1が走行すべき軌跡を指示された場合には、外界認識部41によって取得された車両1の周辺に位置する物標の位置や大きさに基づいて、それらを避けるように、推進装置3、ブレーキ装置4、及びステアリング装置5を制御しつつ、車両1を可能な限り軌跡に沿うように走行させる。 The travel control unit 44 controls the propulsion device 3, the brake device 4, and the steering device 5 to cause the vehicle 1 to travel according to a travel control instruction from the action planning unit 43. More specifically, when the travel control unit 44 is instructed by the action planning unit 43 to determine the trajectory on which the vehicle 1 should travel, the travel control unit 44 determines the target object located around the vehicle 1 acquired by the external world recognition unit 41. Based on the position and size, the propulsion device 3, brake device 4, and steering device 5 are controlled to avoid them, and the vehicle 1 is made to travel along the trajectory as much as possible.

行動計画部43は、前方を走行する車両1に追従する追従走行処理や、自動運転から手動運転への切替時に運転者が運転操作を引き継ぐことができない場合、車両1を安全に停止させる退避処理(いわゆる、ミニマム・リスク・マヌーバー(MRM)を行うための処理)を実行する。行動計画部43は各処理において車両1が走行すべき軌跡を算出して、その軌跡に沿って車両1を走行させるべく、走行制御部44に指示を出力する。 The action planning unit 43 performs follow-up processing to follow the vehicle 1 traveling in front, and evacuation processing to safely stop the vehicle 1 when the driver cannot take over the driving operation when switching from automatic driving to manual driving. (so-called minimum risk maneuver (MRM) processing). The action planning unit 43 calculates a trajectory that the vehicle 1 should travel in each process, and outputs an instruction to the travel control unit 44 to cause the vehicle 1 to travel along the trajectory.

但し、行動計画部43は、車両1の走行が開始された後、好ましくは追従走行処理や、退避処理等の処理を行っている場合を除き、適宜、外界認識部41にライダ17の軸ずれ判定処理を指示する。外界認識部41は軸ずれ判定処理において、ライダ17の軸ずれ量を取得し、行動計画部43が実行可能な処理を制限すべき軸ずれがあると判定したときには、制限信号を行動計画部43に出力する。 However, after the vehicle 1 starts running, the action planning unit 43 appropriately informs the external world recognition unit 41 of the axis deviation of the rider 17, except when processing such as follow-up processing or evacuation processing is being performed. Instruct judgment processing. In the axis deviation determination process, the external world recognition unit 41 acquires the amount of axis deviation of the rider 17, and when the action planning unit 43 determines that there is an axis deviation that should limit executable processing, it transmits a restriction signal to the action planning unit 43. Output to.

制限信号が入力されると、行動計画部43は、実行可能な処理を制限する。例えば、制限信号が入力されると、行動計画部43は、追従走行処理の実行を禁止するが、退避処理の実行を可能とする。一方、制限信号が入力されていないときは、行動計画部43は、追従走行処理、及び退避処理を実行可能とする。 When the restriction signal is input, the action planning unit 43 restricts executable processing. For example, when a restriction signal is input, the action planning unit 43 prohibits the execution of the follow-up process, but allows the execution of the evacuation process. On the other hand, when the restriction signal is not input, the action planning unit 43 enables execution of the follow-up process and the evacuation process.

外界認識部41は軸ずれ判定処理を行うための機能部として、垂直軸ずれ量取得部50、水平軸ずれ量取得部51、及び、軸ずれ判定部52を含む。 The external world recognition unit 41 includes a vertical axis deviation amount acquisition unit 50, a horizontal axis deviation amount acquisition unit 51, and an axis deviation determination unit 52 as functional units for performing axis deviation determination processing.

垂直軸ずれ量取得部50は垂直軸ずれ量検知処理を実行することによって、ライダ17の光軸Aの垂直軸回りの軸ずれ量、すなわち、ライダ17の光軸Aのヨー方向の軸ずれ量を検出する。 The vertical axis deviation amount acquisition unit 50 executes the vertical axis deviation amount detection process to obtain the amount of axis deviation of the optical axis A of the lidar 17 around the vertical axis, that is, the amount of axis deviation of the optical axis A of the lidar 17 in the yaw direction. Detect.

ヨー方向の軸ずれ量とは、光軸Aの車両搭載時(工場出荷時)に対するヨー方向(垂直軸、すなわちZ軸を中心とする回転方向)への回転角度(軸ずれ角度)を意味する。図3には、ヨー方向の軸ずれ量がδであるときの走査範囲が示されている。図3に示すようにヨー方向の軸ずれによって、走査範囲は概ね車体に対して水平方向にずれた範囲となる。 The amount of axis deviation in the yaw direction means the rotation angle (axis deviation angle) of the optical axis A in the yaw direction (rotation direction around the vertical axis, that is, the Z axis) with respect to when the optical axis A is mounted on the vehicle (at the time of shipment from the factory). . FIG. 3 shows the scanning range when the amount of axis deviation in the yaw direction is δZ . As shown in FIG. 3, due to the axis shift in the yaw direction, the scanning range is generally shifted in the horizontal direction with respect to the vehicle body.

垂直軸ずれ量取得部50は車両1の走行時において垂直軸ずれ量検知処理を実行する。垂直軸ずれ量検知処理では、垂直軸ずれ量取得部50は、ライダ17によって検出される路側に存在する物標を検出し、その物標の位置の変化に基づいて、ヨー方向の軸ずれ量を取得(評価)する。 The vertical axis deviation amount acquisition unit 50 executes vertical axis deviation amount detection processing when the vehicle 1 is traveling. In the vertical axis deviation amount detection process, the vertical axis deviation amount acquisition unit 50 detects a target existing on the roadside detected by the rider 17, and calculates the amount of axis deviation in the yaw direction based on a change in the position of the target. Obtain (evaluate).

本実施形態では、垂直軸ずれ量取得部50は、図4(A)及び図5(A)に示すように、車両1が直進しているときに垂直軸ずれ量検知処理を実行する。垂直軸ずれ量検知処理では、垂直軸ずれ量取得部50はまず、車外カメラ16の画像に基づいて、路側に存在し、且つ、固定された物標Pを取得する。垂直軸ずれ量取得部50は、例えば、車外カメラ16によって取得された画像等から路側に位置するパイロンや街灯等を抽出することによって、路側に存在し、且つ、固定された物標Pを取得するとよい。但し、この態様には限定されず、例えば、垂直軸ずれ量取得部50は、ライダ17の測距データに基づいて、路側に存在し、且つ、その移動速度が車速と等しい物体を抽出することによって、路側に存在し、且つ、固定された物標Pを取得してもよい。 In this embodiment, the vertical axis deviation amount acquisition unit 50 executes the vertical axis deviation amount detection process when the vehicle 1 is traveling straight, as shown in FIGS. 4(A) and 5(A). In the vertical axis deviation amount detection process, the vertical axis deviation amount acquisition unit 50 first acquires a fixed target P existing on the roadside based on the image of the camera 16 outside the vehicle. The vertical axis deviation amount acquisition unit 50 acquires a target P that is located on the roadside and is fixed, for example, by extracting a pylon, a street light, etc. located on the roadside from an image acquired by the camera 16 outside the vehicle. It's good to do that. However, the present invention is not limited to this embodiment. For example, the vertical axis deviation amount acquisition unit 50 may extract an object that exists on the roadside and whose moving speed is equal to the vehicle speed based on the distance measurement data of the lidar 17. A fixed target P that exists on the roadside may be obtained by using the following method.

その後、垂直軸ずれ量取得部50は、ライダ17によって取得した測距データに基づいて、車両1に対するその物標Pの位置を検出する。本実施形態では、垂直軸ずれ量取得部50は、車両1に対する物標Pの位置を、図4(A)及び図5(A)に示すように、車両前後方向における位置をx、車幅方向における位置をyとし、その位置(x,y)を取得する。垂直軸ずれ量取得部50はその車両1に対する物標Pの位置を所定時間に渡って検出し、位置の履歴(x(t),y(t))を取得する(但し、tは時刻。図4(B)、及び、図5(B)の白丸を参照)。 Thereafter, the vertical axis deviation amount acquisition unit 50 detects the position of the target P with respect to the vehicle 1 based on the ranging data acquired by the lidar 17. In this embodiment, the vertical axis deviation amount acquisition unit 50 determines the position of the target P with respect to the vehicle 1 by x and the vehicle width in the longitudinal direction of the vehicle, as shown in FIGS. 4(A) and 5(A). Let the position in the direction be y, and obtain the position (x, y). The vertical axis deviation amount acquisition unit 50 detects the position of the target P with respect to the vehicle 1 over a predetermined period of time, and acquires the position history (x(t), y(t)) (where t is time). (See white circles in FIG. 4(B) and FIG. 5(B)).

直進道路上において車両1が直進している場合において、図4(A)に示すように、ライダ17の光軸Aの方向が車両搭載時の方向(すなわち、予め設定された方向)と合致し、ライダ17のヨー方向の軸ずれが零のときは、図4(B)に示すように、車体に対する路側に存在する物標の位置の車幅方向の成分(y成分、換言すれば、直進方向に対する車幅方向の距離(Δ))は概ね変化しない。 When the vehicle 1 is traveling straight on a straight road, as shown in FIG. , when the axis deviation of the rider 17 in the yaw direction is zero, as shown in FIG. The distance (Δ A ) in the vehicle width direction with respect to the direction does not generally change.

図5(A)に示すように、ライダ17のヨー方向の軸ずれが所定量のときは、路側に存在する物標Pの直進方向に対する車幅方向の距離(Δ)、すなわち、物標Pの車幅方向における位置yが変化する。垂直軸ずれ量取得部50は、路側に存在する物標Pの位置の変化を検出し、その変化に基づいて、ヨー方向の軸ずれ量を取得する。 As shown in FIG. 5(A), when the axis deviation of the rider 17 in the yaw direction is a predetermined amount, the distance (Δ B ) in the vehicle width direction with respect to the straight-ahead direction of the target P existing on the roadside, that is, the target The position y of P in the vehicle width direction changes. The vertical axis deviation amount acquisition unit 50 detects a change in the position of a target object P existing on the roadside, and obtains an axis deviation amount in the yaw direction based on the change.

本実施形態では、垂直軸ずれ量取得部50は、物標Pの位置の履歴(x(t),y(t))を直線(図5の二点鎖線参照)によって近似する。その後、垂直軸ずれ量取得部50は、近似によって取得された直線のx軸に対する傾き(θ。図5(B)参照)を算出し、その傾きをヨー方向の軸ずれ量として取得する。但し、垂直軸ずれ量取得部50がヨー方向の軸ずれ量を取得する方法はこの方法には限定されない。 In this embodiment, the vertical axis deviation amount acquisition unit 50 approximates the position history (x(t), y(t)) of the target P by a straight line (see the two-dot chain line in FIG. 5). After that, the vertical axis deviation amount acquisition unit 50 calculates the slope (θ, see FIG. 5B) of the straight line obtained by the approximation with respect to the x-axis, and acquires the slope as the axis deviation amount in the yaw direction. However, the method by which the vertical axis deviation amount obtaining unit 50 obtains the axis deviation amount in the yaw direction is not limited to this method.

水平軸ずれ量取得部51は水平軸ずれ量検知処理を実行することによって、ライダ17の光軸Aの水平軸回りの軸ずれ量、すなわち、ロール方向、及びピッチ方向の軸ずれ量をそれぞれ取得する。 The horizontal axis deviation amount acquisition unit 51 acquires the axis deviation amount of the optical axis A of the lidar 17 around the horizontal axis, that is, the axis deviation amount in the roll direction and the pitch direction, by executing the horizontal axis deviation amount detection process. do.

ロール方向の軸ずれ量とは、光軸Aの車両搭載時(工場出荷時)に対するロール方向(ロール軸、すなわちX軸を中心とする回転方向)の回転角度(軸ずれ角度)を意味する。図6(A)には、ロール方向の軸ずれ量がδであるときの走査範囲が示されている。図6(A)に示すように、ロール方向の軸ずれによって、走査範囲は前後方向を中心として回転された範囲となる。 The amount of axis deviation in the roll direction means the rotation angle (axis deviation angle) of the optical axis A in the roll direction (rotation direction around the roll axis, that is, the X-axis) with respect to the time when the optical axis A is mounted on the vehicle (at the time of shipment from the factory). FIG. 6(A) shows the scanning range when the amount of axis deviation in the roll direction is δ x . As shown in FIG. 6(A), due to the axis shift in the roll direction, the scanning range becomes a range rotated around the front-rear direction.

ピッチ方向の軸ずれ量とは、光軸Aの車両搭載時(工場出荷時)に対するピッチ方向(ピッチ軸、すなわちY軸を中心とする回転方向)の回転角度(軸ずれ角度)を意味する。図6(B)には、ピッチ方向の軸ずれ量がδであるときの走査範囲が示されている。図6(B)に示すように、ピッチ方向の軸ずれによって、走査範囲は上下方向にずれた範囲となる。 The axis deviation amount in the pitch direction means the rotation angle (axis deviation angle) of the optical axis A in the pitch direction (rotation direction around the pitch axis, that is, the Y axis) with respect to the time when the optical axis A is mounted on the vehicle (at the time of shipment from the factory). FIG. 6(B) shows the scanning range when the amount of axis deviation in the pitch direction is δy . As shown in FIG. 6(B), due to the axis shift in the pitch direction, the scanning range becomes a range shifted in the vertical direction.

本実施形態では、水平軸ずれ量取得部51は、車外カメラ16によって取得された画像と、ライダ17によって得られた測距データとを照合し、比較することによってロール方向の軸ずれ量と、ピッチ方向の軸ずれ量とを取得する。但し、水平軸ずれ量取得部51がロール方向の軸ずれ量と、ピッチ方向の軸ずれ量とを取得する方法はこれには限定されない。 In this embodiment, the horizontal axis deviation amount acquisition unit 51 collates and compares the image acquired by the camera 16 outside the vehicle and the distance measurement data obtained by the lidar 17, thereby determining the amount of axis deviation in the roll direction. The amount of axis deviation in the pitch direction is obtained. However, the method by which the horizontal axis deviation amount acquisition unit 51 acquires the axis deviation amount in the roll direction and the axis deviation amount in the pitch direction is not limited to this.

より具体的には、例えば、水平軸ずれ量取得部51は、車外カメラ16によって取得された画像中の前走車の上縁の位置及び傾きと、ライダ17の測距データにより認識された前走車の上縁の位置及びその傾きとを照合し、比較する。その後、水平軸ずれ量取得部51は、車外カメラ16の画像を基準とする測距データにより認識された前走車の上縁の傾き(傾斜角度)を取得することによって、ライダ17のロール方向の軸ずれ量を取得し、両者の上下方向の位置の差を取得することによってライダ17のピッチ方向の軸ずれ量を取得するとよい。 More specifically, for example, the horizontal axis deviation amount acquisition unit 51 acquires the position and inclination of the upper edge of the vehicle in front in the image acquired by the camera 16 outside the vehicle, and the distance measured by the rider 17. Check and compare the position of the upper edge of the vehicle and its inclination. After that, the horizontal axis deviation amount acquisition unit 51 acquires the inclination (inclination angle) of the upper edge of the vehicle in front, which is recognized from the distance measurement data based on the image of the external camera 16, and determines the roll direction of the rider 17. It is preferable to obtain the amount of axis deviation of the rider 17 in the pitch direction by obtaining the amount of axis deviation of the rider 17 and the difference between the positions of the two in the vertical direction.

水平軸ずれ量取得部51は垂直軸ずれ量取得部50と同様に、直進道路の上方に位置する物標(例えば、道路標識等)の位置の変化に基づいて、ピッチ方向の軸ずれ量を取得してもよい。 Similar to the vertical axis deviation amount acquisition unit 50, the horizontal axis deviation amount acquisition unit 51 calculates the axis deviation amount in the pitch direction based on the change in the position of a target object (for example, a road sign, etc.) located above the straight road. You may obtain it.

軸ずれ判定部52は、軸ずれ判定処理を実行し、ライダ17の軸ずれ量を取得し、行動計画部43が実行可能な処理を制限すべき程度に軸ずれがあることを示す制限信号を行動計画部43に出力する。以下、図7を参照して、軸ずれ判定処理の詳細について説明する。 The axis deviation determination unit 52 executes an axis deviation determination process, obtains the amount of axis deviation of the rider 17, and generates a restriction signal indicating that there is an axis deviation to the extent that the action planning unit 43 should limit executable processing. It is output to the action planning section 43. The details of the axis deviation determination process will be described below with reference to FIG. 7.

軸ずれ判定部52は、軸ずれ判定処理の最初のステップST1において、車速センサ18から車速を取得し、車速が低速側閾値(第2閾値)よりも大きいかを判定する。本実施形態では、低速側閾値は時速18km(18kph)に設定されている。軸ずれ判定部52は車速が低速側閾値よりも大きい場合には、ステップST2を実行し、低速側閾値以下である場合には、軸ずれ判定処理を終了する。 In the first step ST1 of the axis deviation determination process, the axis deviation determination unit 52 acquires the vehicle speed from the vehicle speed sensor 18, and determines whether the vehicle speed is greater than a low speed threshold (second threshold). In this embodiment, the low speed threshold is set to 18 km/h (18 kph). If the vehicle speed is greater than the low-speed threshold, the axis deviation determining unit 52 executes step ST2, and if the vehicle speed is less than or equal to the low-speed threshold, it ends the axis deviation determination process.

軸ずれ判定部52はステップST2において、垂直軸ずれ量取得部50に垂直軸ずれ量検知処理の実行を指示し、垂直軸ずれ量取得部50からヨー方向の軸ずれ量を取得する。ヨー方向の軸ずれ量の取得が完了すると、軸ずれ判定部52は、ステップST3を実行する。 In step ST2, the axis deviation determination unit 52 instructs the vertical axis deviation amount acquisition unit 50 to execute a vertical axis deviation amount detection process, and acquires the axis deviation amount in the yaw direction from the vertical axis deviation amount acquisition unit 50. When the acquisition of the amount of axis deviation in the yaw direction is completed, the axis deviation determination unit 52 executes step ST3.

軸ずれ判定部52は、ステップST3において、ヨー方向の軸ずれ量が所定の閾値(以下、ヨー軸ずれ量閾値)よりも大きいときには、ステップST4を実行し、ヨー方向の軸ずれ量がヨー軸ずれ量閾値以下であるときには、ステップST5を実行する。 In step ST3, when the amount of axis deviation in the yaw direction is larger than a predetermined threshold (hereinafter referred to as yaw axis deviation amount threshold), the axis deviation determination unit 52 executes step ST4, and the axis deviation amount in the yaw direction is determined to be When the deviation amount is less than the threshold value, step ST5 is executed.

軸ずれ判定部52は、ステップST4において、実行可能な処理の制限を要する程度に軸ずれがあることを示す制限信号を行動計画部43に出力する。出力が完了すると、軸ずれ判定処理を完了する。 In step ST4, the axis deviation determining unit 52 outputs to the action planning unit 43 a restriction signal indicating that there is an axis deviation to the extent that executable processing needs to be restricted. When the output is completed, the axis deviation determination process is completed.

軸ずれ判定部52は、ステップST5において、ステップST1において取得した車速が高速側閾値(第1閾値)より大きいかを判定する。本実施形態では、高速側閾値は時速60km(60kph)に設定されている。軸ずれ判定部52は、車速が高速側閾値より大きいときにはステップST6を、高速側閾値以下のときには軸ずれ判定処理を終了する。 In step ST5, the axis deviation determination unit 52 determines whether the vehicle speed acquired in step ST1 is greater than a high-speed threshold (first threshold). In this embodiment, the high speed threshold is set to 60 km/h (60 kph). The axis deviation determination unit 52 executes step ST6 when the vehicle speed is higher than the high speed threshold, and ends the axis deviation determination process when the vehicle speed is less than or equal to the high speed threshold.

軸ずれ判定部52は、ステップST6において、水平軸ずれ量取得部51に水平軸ずれ量検知処理の実行を指示し、水平軸ずれ量取得部51からロール方向、及び、ピッチ方向の軸ずれ量をそれぞれ取得する。ロール方向、及びピッチ方向の軸ずれ量の取得が完了すると、軸ずれ判定部52はステップST7を実行する。 In step ST6, the axis deviation determination unit 52 instructs the horizontal axis deviation amount acquisition unit 51 to execute a horizontal axis deviation amount detection process, and the horizontal axis deviation amount acquisition unit 51 detects the amount of axis deviation in the roll direction and the pitch direction. Get each. When the acquisition of the amount of axis deviation in the roll direction and the pitch direction is completed, the axis deviation determination unit 52 executes step ST7.

軸ずれ判定部52は、ロール方向の軸ずれ量が所定の閾値(以下、ロール軸ずれ量閾値)よりも大きいか、又は、ピッチ方向の軸ずれ量が所定の閾値(以下、ピッチ軸ずれ量閾値)よりも大きいかを判定する。軸ずれ判定部52は、ロール方向の軸ずれ量がロール軸ずれ量閾値より大きいか、又は、ピッチ方向の軸ずれ量がピッチ軸ずれ量閾値より大きいときに、ステップST4を実行し、それ以外のとき(すなわち、ロール方向の軸ずれ量がロール軸ずれ量閾値以下、且つ、ピッチ方向の軸ずれ量がピッチ軸ずれ量閾値以下のとき)には、軸ずれ判定処理を終了する。 The axis deviation determining unit 52 determines whether the amount of axis deviation in the roll direction is larger than a predetermined threshold (hereinafter referred to as a roll axis deviation amount threshold) or the amount of axis deviation in the pitch direction is greater than a predetermined threshold (hereinafter referred to as a pitch axis deviation amount). (threshold). The axis deviation determining unit 52 executes step ST4 when the amount of axis deviation in the roll direction is larger than the roll axis deviation amount threshold, or when the amount of axis deviation in the pitch direction is larger than the pitch axis deviation amount threshold, and otherwise When (that is, when the amount of axis deviation in the roll direction is less than or equal to the roll axis deviation amount threshold and the amount of axis deviation in the pitch direction is less than or equal to the pitch axis deviation amount threshold), the axis deviation determination process is ended.

次に、このように構成した車両1の動作、及び効果について説明する。車両1の走行開始時や走行中に適宜、行動計画部43は外界認識部41にライダ17の軸ずれ判定処理の開始を指示する出力を行う。外界認識部41の軸ずれ判定部52はその出力を受けて、軸ずれ判定処理を実行し、軸ずれがあると判定した場合には、制限信号を行動計画部43に出力する。換言すれば、制御装置10は軸ずれ判定部52、垂直軸ずれ量取得部50、及び、水平軸ずれ量取得部51を含み、ライダ17(車載センサ)の軸ずれ判定を行う軸ずれ判定装置として機能するとともに、その判定結果に基づいて自ら車両制御を行う。 Next, the operation and effects of the vehicle 1 configured as described above will be explained. When the vehicle 1 starts traveling or while the vehicle 1 is traveling, the action planning section 43 outputs an instruction to the external world recognition section 41 to start the axis deviation determination process of the rider 17 . Upon receiving the output, the axis deviation determination unit 52 of the external world recognition unit 41 executes an axis deviation determination process, and outputs a restriction signal to the action planning unit 43 if it is determined that there is an axis deviation. In other words, the control device 10 includes an axis deviation determination section 52, a vertical axis deviation amount acquisition section 50, and a horizontal axis deviation amount acquisition section 51, and is an axis deviation determination device that determines the axis deviation of the rider 17 (vehicle-mounted sensor). It also functions as a controller and controls the vehicle itself based on the determination results.

車速が低速側閾値以下の低速領域では、車両1の制御処理が各方向の軸ずれ量に影響されにくい。図7に示すように、車速が低速側閾値以下であるとき(ST1においてNO)には、ヨー方向、ロール方向、及び、ピッチ方向のいずれの方向においても軸ずれ量が評価されることなく、制限信号が出力されない。よって、車両1の制御処理が各方向の軸ずれ量に影響されにくい低速領域で車両1の制御処理が制限されず、車両1の利便性が高められる。 In a low speed region where the vehicle speed is below the low speed threshold, the control processing of the vehicle 1 is not easily affected by the amount of axis deviation in each direction. As shown in FIG. 7, when the vehicle speed is below the low-speed threshold (NO in ST1), the amount of axis deviation is not evaluated in any of the yaw, roll, and pitch directions. Limit signal is not output. Therefore, the control processing of the vehicle 1 is not limited in the low speed range where the control processing of the vehicle 1 is not easily affected by the amount of axis deviation in each direction, and the convenience of the vehicle 1 is improved.

車両1の運転支援や、自律走行などの車両1の走行制御を制御装置10によって行う場合には、車両1の周辺に位置する物体の位置や大きさを精度よく検出して、それらの物体を避けるように、車両1を走行させる必要がある。本願発明者らは鋭意、研究開発を行い、車両1の周辺に位置する物体は主として路面に対して平行に移動するため、車両1の周辺に存在する物体の水平方向の位置の検出精度を確保することが、車両1の安全な走行制御に特に重要であることを見出した。 When the control device 10 performs driving support for the vehicle 1 and driving control of the vehicle 1 such as autonomous driving, the position and size of objects located around the vehicle 1 are detected with high accuracy, and the objects are detected. It is necessary to drive the vehicle 1 to avoid this. The inventors of the present application have diligently conducted research and development to ensure accuracy in detecting the horizontal position of objects located around the vehicle 1, since objects located around the vehicle 1 mainly move parallel to the road surface. It has been found that this is particularly important for safe driving control of the vehicle 1.

図3に示すように、ヨー方向の軸ずれは、車両1の周辺に位置する物体の水平方向の位置の検出精度を低下させるために、適切な車両制御を困難にする。一方、ロール方向やピッチ方向の軸ずれは、図6(A)及び図6(B)に示すように、車両1の周辺に位置する物体の水平方向の位置の検出精度を低下させ難く、車両制御に影響を及ぼし難い。 As shown in FIG. 3, the axis deviation in the yaw direction reduces the accuracy of detecting the horizontal position of objects located around the vehicle 1, making it difficult to properly control the vehicle. On the other hand, as shown in FIGS. 6(A) and 6(B), axis misalignment in the roll direction or pitch direction does not easily reduce the accuracy of detecting the horizontal position of objects located around the vehicle 1. Hard to affect control.

図7に示すように、車速が低速側閾値より大きく(ST1においてYes)、且つ、高速側閾値以下の中速領域(ST5においてNo)では、ロール方向及びピッチ方向の軸ずれ量が評価されることなく、ヨー方向の軸ずれ量がヨー軸ずれ量閾値より大きいとき(ST3においてYes)に制限信号が出力される。このように、車速が中速領域にあるときには、車両制御に影響を及ぼすヨー方向の軸ずれ量に基づいて制限信号を出力すべきかが判定されるため、車両制御を適切に制限することができる。また、車両制御に影響が生じ難いロール方向及びピッチ方向の軸ずれ量を取得する必要がないため、軸ずれ判定処理が簡素になる。 As shown in FIG. 7, in the medium speed region where the vehicle speed is higher than the low speed threshold (Yes in ST1) and below the high speed threshold (No in ST5), the amount of axis deviation in the roll direction and pitch direction is evaluated. When the amount of axis deviation in the yaw direction is larger than the yaw axis deviation amount threshold (Yes in ST3), a restriction signal is output. In this way, when the vehicle speed is in the medium speed range, it is determined whether a restriction signal should be output based on the amount of axis deviation in the yaw direction that affects vehicle control, so vehicle control can be appropriately restricted. . Further, since it is not necessary to obtain the amount of axis deviation in the roll direction and the pitch direction, which are unlikely to affect vehicle control, the axis deviation determination process is simplified.

車速が高速側閾値より大きい高速領域では、ヨー方向の軸ずれ量が十分小さい場合であっても、ロール方向、及びピッチ方向のいずれかの軸ずれ量が対応する閾値より大きくなると、車両1の位置の厳密な制御が困難となる、 In a high-speed region where the vehicle speed is higher than the high-speed threshold, even if the amount of axis deviation in the yaw direction is sufficiently small, if the amount of axis deviation in either the roll direction or the pitch direction becomes larger than the corresponding threshold, the vehicle 1 Strict control of position becomes difficult,

そこで、図7に示すように、車速が高速側閾値より大きな高速領域(ST5においてYes)では、ヨー方向、ロール方向、及びピッチ方向のいずれかの軸ずれ量が対応する軸ずれ量閾値よりも大きいとき(ST3においてYes、又は、ST7においてYes)に、制限信号が出力される。このように、車速が高速領域にあるときには、ヨー方向、ロール方向、及び、ピッチ方向の全ての方向の軸ずれ量が対応する軸ずれ量閾値以下であるときに車両制御が制限されず、ヨー方向、ロール方向、及び、ピッチ方向のいずれかの方向の軸ずれ量が対応する軸ずれ量閾値より大きくなると、行動計画部43による車両制御に係る処理の実行が制限される。よって、車速が高速側閾値より大きい高速領域では、全ての軸方向の軸ずれ量が大きく、車両1の周辺に位置する物体の検出精度が確保できないときに車両制御が制限されるため、車両1の安全性が高められる。 Therefore, as shown in FIG. 7, in a high-speed region where the vehicle speed is higher than the high-speed threshold (Yes in ST5), the amount of axis deviation in the yaw direction, roll direction, or pitch direction is greater than the corresponding axis deviation amount threshold. When it is large (Yes in ST3 or Yes in ST7), a limit signal is output. In this way, when the vehicle speed is in a high speed region, vehicle control is not restricted when the amount of axis deviation in all directions, yaw direction, roll direction, and pitch direction, is less than the corresponding axis deviation amount threshold, and the yaw When the amount of axis deviation in any one of the direction, roll direction, and pitch direction becomes larger than the corresponding axis deviation amount threshold, execution of processing related to vehicle control by the action planning unit 43 is restricted. Therefore, in a high-speed region where the vehicle speed is higher than the high-speed threshold, the amount of axis deviation in all axis directions is large and vehicle control is restricted when the detection accuracy of objects located around the vehicle 1 cannot be ensured. safety is enhanced.

<<第2実施形態>>
第2実施形態に係る車両101は、第1実施形態に係る車両1に比べて、図8に示すように、軸ずれ判定処理のステップST6の代わりにステップST16を、ステップST7の代わりにステップST17を実行する点が異なる。その他の構成については第1実施形態と同様であるため、その他の構成については説明を省略する。
<<Second embodiment>>
As shown in FIG. 8, the vehicle 101 according to the second embodiment performs step ST16 instead of step ST6 and step ST17 instead of step ST7 in the axis deviation determination process, compared to the vehicle 1 according to the first embodiment. The difference is that it executes Since the other configurations are the same as those in the first embodiment, explanations of the other configurations will be omitted.

第2実施形態に係る車両101の軸ずれ判定部52は、軸ずれ判定処理のステップST16において、水平軸ずれ量取得部51に対して、ピッチ方向の軸ずれ量の取得を指示する。水平軸ずれ量取得部51がピッチ方向の軸ずれ量を取得すると、軸ずれ判定部52はステップST17を実行する。 The axis deviation determination unit 52 of the vehicle 101 according to the second embodiment instructs the horizontal axis deviation amount acquisition unit 51 to acquire the axis deviation amount in the pitch direction in step ST16 of the axis deviation determination process. When the horizontal axis deviation amount acquisition unit 51 acquires the axis deviation amount in the pitch direction, the axis deviation determination unit 52 executes step ST17.

軸ずれ判定部52はステップST17において、ピッチ方向の軸ずれ量がピッチ軸ずれ量閾値よりも大きいか否かを判定し、ピッチ方向の軸ずれ量がピッチ軸ずれ量閾値より大きいときにステップST4を実行し、ピッチ方向の軸ずれ量がピッチ軸ずれ量閾値以下のときに、軸ずれ判定部52は、軸ずれ判定処理を終了する。 In step ST17, the axis deviation determining unit 52 determines whether the axis deviation amount in the pitch direction is larger than the pitch axis deviation amount threshold, and when the axis deviation amount in the pitch direction is larger than the pitch axis deviation amount threshold, the axis deviation determination unit 52 executes step ST4. is executed, and when the amount of axis deviation in the pitch direction is equal to or less than the pitch axis deviation amount threshold, the axis deviation determination unit 52 ends the axis deviation determination process.

次に、このように構成した車両101の動作、及び効果について説明する。本実施形態では、低速領域では、第1実施形態と同様に、ヨー方向、ロール方向、及び、ピッチ方向のいずれの方向においても軸ずれ量が評価されることなく、制限信号が出力されない。また、中速領域においても、第1実施形態と同様に、ヨー方向の軸ずれ量がヨー軸ずれ量閾値より大きいときに制限信号が出力される。 Next, the operation and effects of the vehicle 101 configured as described above will be explained. In the present embodiment, in the low speed region, as in the first embodiment, the amount of axis deviation is not evaluated in any of the yaw, roll, and pitch directions, and no restriction signal is output. Also in the medium speed range, similarly to the first embodiment, a restriction signal is output when the amount of axis deviation in the yaw direction is larger than the yaw axis deviation amount threshold.

高速領域では、第1実施形態とは異なり、ヨー方向又はピッチ方向の軸ずれ量が対応する軸ずれ閾値より大きい、すなわち、ヨー方向の軸ずれ量がヨー軸ずれ量閾値より大きい(ST3においてYes)か、又は、ピッチ方向の軸ずれ量がピッチ軸ずれ量閾値よりも大きい(ST17においてYes)ときに、軸ずれ判定部52は制限信号を出力する(ST4)。 In the high-speed region, unlike the first embodiment, the amount of axis deviation in the yaw direction or the pitch direction is larger than the corresponding axis deviation threshold, that is, the amount of axis deviation in the yaw direction is larger than the yaw axis deviation amount threshold (Yes in ST3). ), or when the axis deviation amount in the pitch direction is larger than the pitch axis deviation amount threshold (Yes in ST17), the axis deviation determination unit 52 outputs a restriction signal (ST4).

本願発明者らは、高速領域では、ヨー方向の軸ずれ量が十分小さい場合であっても、ピッチ方向の軸ずれ量がピッチ軸ずれ量閾値より大きくなると、例えば山谷のある坂道において、車両101の前方の物体の検出に問題が生じ、走行制御が困難となりえることを見出した。 The inventors of the present application discovered that in a high-speed region, even if the amount of axis deviation in the yaw direction is sufficiently small, when the amount of axis deviation in the pitch direction becomes larger than the pitch axis deviation amount threshold, the vehicle 101 It has been found that problems can arise in detecting objects in front of the vehicle, making it difficult to control the vehicle.

図9(A)及び(B)はそれぞれ、光軸Aがピッチ方向にずれている場合に、車両101の前方の物体の検出に問題が生じる例を示している。図9(A)及び(B)では、軸ずれが生じていない場合の(すなわち、車両搭載時の)光軸Aと検出範囲の境界とを二点鎖線で示した。また、光軸Aがピッチ方向にずれている場合の光軸Aと検出範囲の境界とを実線で示し、検出範囲をドットで着色した領域として示した。 FIGS. 9A and 9B each show an example in which a problem occurs in detecting an object in front of the vehicle 101 when the optical axis A is deviated in the pitch direction. In FIGS. 9A and 9B, the optical axis A and the boundary of the detection range when no axis deviation occurs (that is, when mounted on a vehicle) are shown by two-dot chain lines. Further, the optical axis A and the boundary of the detection range when the optical axis A is shifted in the pitch direction are shown as solid lines, and the detection range is shown as a colored area with dots.

図9(A)に示すように、光軸Aがピッチ方向に回転して検出範囲が車両搭載時に比べて上側にずれているときには、山付近において、軸ずれがない場合には検出範囲(二点鎖線参照)内に位置し、検出可能であるはずの物体(図9(A)では前走車)が、軸ずれによって検出範囲(着色された領域参照)外になることが考えられる。一方、図9(B)に示すように、光軸Aがピッチ方向に回転して検出範囲が車両搭載時に比べて下側にずれているときには、谷付近において、軸ずれがない場合には検出範囲(二点鎖線参照)内に位置し、検出可能であるはずの物体(図9(B)では前走車)が検出範囲(着色された領域参照)外になることが考えられる。これらから理解できるように、ピッチ方向の軸ずれは車両前方の物体の検出に影響を与える場合がある。車両101の速度が高くなるほど車両101の前方の物体をより確実に検出できる必要があるため、特に高速領域においてピッチ方向の軸ずれが十分小さいことが求められる。 As shown in Fig. 9(A), when the optical axis A rotates in the pitch direction and the detection range shifts upward compared to when it is mounted on the vehicle, when there is no axis shift near the mountain, the detection range (second It is conceivable that an object located within the detection range (see the dotted chain line) and which should be detectable (the vehicle in front in FIG. 9A) falls outside the detection range (see the colored area) due to axis deviation. On the other hand, as shown in Fig. 9(B), when the optical axis A rotates in the pitch direction and the detection range shifts downward compared to when it is mounted on the vehicle, it is detected near the valley when there is no axis shift. It is conceivable that an object that is located within the range (see the two-dot chain line) and should be detectable (the vehicle in front in FIG. 9B) is outside the detection range (see the colored area). As can be understood from these, the axis deviation in the pitch direction may affect the detection of objects in front of the vehicle. As the speed of the vehicle 101 increases, objects in front of the vehicle 101 need to be detected more reliably, so it is required that the axis deviation in the pitch direction be sufficiently small, especially in the high speed range.

本実施形態では、車速が高速領域にあるときには、ヨー方向、及び、ピッチ方向の全ての方向の軸ずれ量が対応する軸ずれ量閾値以下であるときに車両制御が制限されず、ヨー方向、又は、ピッチ方向の軸ずれ量が対応する軸ずれ量閾値より大きくなると、行動計画部43による車両制御に係る処理の実行が制限される。よって、車速が高速側閾値より大きい高速領域では、ヨー方向及びピッチ方向の軸ずれ量が大きく、車両101の周辺の物体の位置の十分な検出精度が確保できないに車両制御が制限されるため、車両101の安全性が高められる。また、第1実施形態に比べて、ロール方向の軸ずれ量の検出が不要となるため、軸ずれ判定処理が簡素になる。 In this embodiment, when the vehicle speed is in a high speed region, vehicle control is not restricted when the amount of axis deviation in all directions, yaw direction and pitch direction, is equal to or less than the corresponding axis deviation amount threshold; Alternatively, when the axis deviation amount in the pitch direction becomes larger than the corresponding axis deviation amount threshold, execution of the process related to vehicle control by the action planning unit 43 is restricted. Therefore, in a high-speed region where the vehicle speed is higher than the high-speed threshold, the amount of axis deviation in the yaw direction and the pitch direction is large, and vehicle control is restricted such that sufficient detection accuracy of the position of objects around the vehicle 101 cannot be ensured. The safety of vehicle 101 is enhanced. Furthermore, compared to the first embodiment, since it is not necessary to detect the amount of axis deviation in the roll direction, the axis deviation determination process is simplified.

以上で具体的実施形態の説明を終えるが、本発明は上記実施形態に限定されることなく幅広く変形実施することができる。 Although the description of the specific embodiments has been completed above, the present invention is not limited to the above-mentioned embodiments and can be widely modified and implemented.

上記実施形態では、車両1,101はライダ17の軸ずれの有無に基づいて、車両制御が制限される例を記載したが、この態様には限定されない。車両1,101は所定の光軸を基準として車両1,101の周辺の物体の位置を検出する車載センサの軸ずれ量に基づいて、その軸ずれを判定し、車両制御を制限するものであればいかなるものであってよく、車載センサはライダ17に限定されない。車載センサは例えば、車外カメラ、ミリ波レーダや、ソナー等であってもよい。 In the embodiments described above, an example has been described in which the vehicle control of the vehicle 1, 101 is limited based on the presence or absence of axis deviation of the rider 17, but the present invention is not limited to this aspect. The vehicle 1, 101 determines the axis deviation based on the amount of axis deviation of an on-vehicle sensor that detects the position of objects around the vehicle 1, 101 with a predetermined optical axis as a reference, and limits vehicle control. The on-vehicle sensor is not limited to the lidar 17. The on-vehicle sensor may be, for example, an external camera, a millimeter wave radar, a sonar, or the like.

上記実施形態において、制御装置10は軸ずれ判定部52、垂直軸ずれ量取得部50、及び、水平軸ずれ量取得部51を含み、ライダ17(車載センサ)の軸ずれ判定を行う軸ずれ判定装置として機能するとともに、車両1の走行制御も行っていたが、この態様には限定されない。例えば、軸ずれ判定部52、垂直軸ずれ量取得部50、及び、水平軸ずれ量取得部51を含む軸ずれ判定装置が、車両1の走行制御を行う装置とは別体をなすように構成されていてもよい。 In the embodiment described above, the control device 10 includes an axis deviation determination section 52, a vertical axis deviation amount acquisition section 50, and a horizontal axis deviation amount acquisition section 51, and includes an axis deviation determination section for determining an axis deviation of the rider 17 (vehicle-mounted sensor). Although it functions as a device and also controls the running of the vehicle 1, it is not limited to this mode. For example, the axis deviation determination device including the axis deviation determination unit 52, the vertical axis deviation amount acquisition unit 50, and the horizontal axis deviation amount acquisition unit 51 is configured to be separate from the device that controls the traveling of the vehicle 1. may have been done.

上記第2実施形態では、ロール方向の軸ずれ量に基づいて軸ずれ判定が行われていなかったが、例えば、軸ずれ判定部52は、車速が、高速側閾値よりも大きな閾値(補助閾値)よりも大きいときには、ヨー方向、ピッチ方向、及び、ロール方向の軸ずれ量のいずれかがそれぞれ対応する閾値よりも大きいときに軸ずれがあると判定し、車速が高速側閾値より大きく、且つ補助閾値以下であるときには、ヨー方向又はピッチ方向の軸ずれ量がそれぞれ対応する閾値よりも大きいときに軸ずれがあると判定するように構成されていてもよい。 In the second embodiment, the axis misalignment determination is not performed based on the amount of axis misalignment in the roll direction, but for example, the axis misalignment determination unit 52 uses If the amount of axis deviation in the yaw direction, pitch direction, or roll direction is larger than the corresponding threshold value, it is determined that there is an axis deviation, and the vehicle speed is greater than the high-speed side threshold value, and the auxiliary The configuration may be configured such that when the amount of axis deviation in the yaw direction or the pitch direction is larger than the corresponding threshold value, it is determined that there is an axis deviation.

上記実施形態において、各軸方向の軸ずれ量は車両搭載時(工場出荷時)を基準として定められていたが、この態様には限定されず、例えば、各軸方向の軸ずれ量は、設計時のライダ17(車載センサ)の光軸Aの方向を基準として定められていてもよい。 In the above embodiment, the amount of misalignment in each axis direction is determined based on the time when the vehicle is installed (at the time of factory shipment), but it is not limited to this aspect. For example, the amount of misalignment in each axis direction is determined based on the design It may be determined based on the direction of the optical axis A of the rider 17 (vehicle-mounted sensor) at the time.

1 :第1実施形態に係る車両
10 :制御装置
17 :ライダ(車載センサ)
18 :車速センサ
101 :第2実施形態に係る車両
A :光軸
1: Vehicle 10 according to the first embodiment: Control device 17: Lidar (vehicle sensor)
18: Vehicle speed sensor 101: Vehicle A according to the second embodiment: Optical axis

Claims (7)

車速を検出する車速センサと、所定の光軸を基準として物体の位置を検出する車載センサとを備えた車両であって、
前記光軸の車両搭載時に対する軸ずれ量及び前記車速に基づいて前記光軸の軸ずれの有無を判定し、判定結果に基づいて前記車両の走行を制御する制御装置を有し、
前記制御装置は、
前記車速が第1閾値よりも大きいときは、前記光軸のヨー方向の軸ずれ量、及び、前記光軸のピッチ方向の軸ずれ量をそれぞれ取得して、前記ヨー方向の軸ずれ量、又は、前記ピッチ方向の軸ずれ量がそれぞれ対応する閾値より大きいときに軸ずれがあると判定し、
前記車速が前記第1閾値以下、且つ、前記第1閾値より小さい第2閾値より大きいときには、前記ヨー方向の軸ずれ量を取得して、前記光軸の前記ヨー方向の軸ずれ量が対応する閾値よりも大きいときに軸ずれがあると判定し、
前記車速が前記第2閾値以下であるときに、軸ずれの有無を判定しない車両。
A vehicle equipped with a vehicle speed sensor that detects vehicle speed and an on-vehicle sensor that detects the position of an object with reference to a predetermined optical axis,
A control device that determines whether or not there is an axis deviation of the optical axis based on the amount of axis deviation of the optical axis when the optical axis is mounted on the vehicle and the vehicle speed, and controls the running of the vehicle based on the determination result,
The control device includes:
When the vehicle speed is greater than a first threshold value, obtain the amount of axis deviation of the optical axis in the yaw direction and the amount of axis deviation of the optical axis in the pitch direction, and calculate the amount of axis deviation in the yaw direction, or , determining that there is an axis deviation when the amount of axis deviation in the pitch direction is larger than the corresponding threshold value,
When the vehicle speed is less than or equal to the first threshold value and greater than a second threshold value that is smaller than the first threshold value, the amount of axis deviation in the yaw direction is obtained, and the amount of axis deviation in the yaw direction of the optical axis corresponds to the amount of axis deviation in the yaw direction. It is determined that there is an axis misalignment when it is larger than the threshold,
A vehicle in which the presence or absence of axis deviation is not determined when the vehicle speed is less than or equal to the second threshold value.
前記制御装置は、前記車速が前記第1閾値よりも大きいときには、前記ヨー方向の軸ずれ量、前記ピッチ方向の軸ずれ量、及び、前記光軸のロール方向の軸ずれ量を取得し、前記光軸の前記ヨー方向の軸ずれ量、前記ピッチ方向の軸ずれ量、及び、前記ロール方向の軸ずれ量のいずれかがそれぞれ対応する閾値より大きいときに軸ずれがあると判定する請求項1に記載の車両。 When the vehicle speed is higher than the first threshold, the control device acquires the amount of axis deviation in the yaw direction, the amount of axis deviation in the pitch direction, and the amount of axis deviation of the optical axis in the roll direction, and Claim 1: It is determined that there is an axis deviation when any one of the axial deviation amount in the yaw direction, the pitch direction axis deviation amount, and the roll direction axis deviation amount of the optical axis is each larger than a corresponding threshold value. Vehicles listed in. 前記制御装置は、前記車両の運転支援、又は、前記車両を自律走行させるための複数の処理を実行可能であり、軸ずれがあると判定したときに、実行可能な前記処理を制限する請求項1又は請求項2に記載の車両。 The control device is capable of executing a plurality of processes for providing driving support for the vehicle or for causing the vehicle to travel autonomously, and restricts the executable processes when determining that there is an axis misalignment. The vehicle according to claim 1 or claim 2. 前記制御装置は、前記車両の走行時において前記車載センサによって検出された路側に存在する物標の位置の変化に基づいて、前記ヨー方向の軸ずれ量を取得する請求項1~請求項3のいずれか1つの項に記載の車両。 The control device acquires the amount of axis deviation in the yaw direction based on a change in the position of a target existing on the roadside detected by the on-vehicle sensor while the vehicle is running. Vehicles described in any one of the sections. 車速を取得する車速センサと、所定の光軸を基準として物体の位置を検出する車載センサとを備えた車両に搭載される前記車載センサの軸ずれ判定装置であって、
前記車速が第1閾値よりも大きいときは、前記光軸のヨー方向の軸ずれ量、及び、前記光軸のピッチ方向の軸ずれ量をそれぞれ取得して、前記ヨー方向の軸ずれ量、又は、前記ピッチ方向の軸ずれ量がそれぞれ対応する閾値より大きいときに軸ずれがあると判定し、
前記車速が前記第1閾値以下、且つ、前記第1閾値より小さい第2閾値より大きいときには、前記ヨー方向の軸ずれ量を取得して、前記光軸の前記ヨー方向の軸ずれ量が対応する閾値よりも大きいときに軸ずれがあると判定し、
前記車速が前記第2閾値以下であるときに、軸ずれの有無を判定しない軸ずれ判定装置。
An axis deviation determination device for the vehicle-mounted sensor mounted on a vehicle, comprising a vehicle speed sensor that acquires vehicle speed and a vehicle-mounted sensor that detects the position of an object with reference to a predetermined optical axis,
When the vehicle speed is greater than a first threshold value, obtain the amount of axis deviation of the optical axis in the yaw direction and the amount of axis deviation of the optical axis in the pitch direction, and calculate the amount of axis deviation in the yaw direction, or , determining that there is an axis deviation when the amount of axis deviation in the pitch direction is larger than the corresponding threshold value,
When the vehicle speed is less than or equal to the first threshold value and greater than a second threshold value that is smaller than the first threshold value, the amount of axis deviation in the yaw direction is obtained, and the amount of axis deviation in the yaw direction of the optical axis corresponds to the amount of axis deviation in the yaw direction. It is determined that there is an axis misalignment when it is larger than the threshold,
An axis deviation determination device that does not determine the presence or absence of an axis deviation when the vehicle speed is less than or equal to the second threshold value.
前記軸ずれ判定装置は、前記車速が前記第1閾値よりも大きいときには、前記ヨー方向の軸ずれ量、前記ピッチ方向の軸ずれ量、及び、前記光軸のロール方向の軸ずれ量を取得し、前記光軸の前記ヨー方向の軸ずれ量、前記ピッチ方向の軸ずれ量、及び、前記ロール方向の軸ずれ量のいずれかがそれぞれ対応する閾値より大きいときに軸ずれがあると判定する請求項5に記載の軸ずれ判定装置。 When the vehicle speed is higher than the first threshold, the axis deviation determining device obtains the amount of axis deviation in the yaw direction, the amount of axis deviation in the pitch direction, and the amount of axis deviation of the optical axis in the roll direction. , a claim in which it is determined that there is an axial deviation when any one of the axial deviation amount of the optical axis in the yaw direction, the axial deviation amount in the pitch direction, and the axial deviation amount in the roll direction is each larger than a corresponding threshold value. The axis misalignment determination device according to item 5. 前記軸ずれ判定装置は、前記車両の走行時において前記車載センサによって検出される路側に存在する物標の位置の変化に基づいて、前記ヨー方向の軸ずれ量を取得する請求項5又は請求項6に記載の軸ずれ判定装置。 The axis deviation determination device obtains the axis deviation amount in the yaw direction based on a change in the position of a target existing on the roadside detected by the on-vehicle sensor while the vehicle is running. 6. The axis deviation determination device according to 6.
JP2020184379A 2020-11-04 2020-11-04 Axis deviation determination device for vehicles and on-vehicle sensors mounted on vehicles Active JP7365319B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020184379A JP7365319B2 (en) 2020-11-04 2020-11-04 Axis deviation determination device for vehicles and on-vehicle sensors mounted on vehicles
CN202111287305.1A CN114523960B (en) 2020-11-04 2021-11-02 Vehicle and shaft misalignment determination device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020184379A JP7365319B2 (en) 2020-11-04 2020-11-04 Axis deviation determination device for vehicles and on-vehicle sensors mounted on vehicles

Publications (2)

Publication Number Publication Date
JP2022074387A JP2022074387A (en) 2022-05-18
JP7365319B2 true JP7365319B2 (en) 2023-10-19

Family

ID=81605487

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020184379A Active JP7365319B2 (en) 2020-11-04 2020-11-04 Axis deviation determination device for vehicles and on-vehicle sensors mounted on vehicles

Country Status (2)

Country Link
JP (1) JP7365319B2 (en)
CN (1) CN114523960B (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012068216A (en) 2010-09-27 2012-04-05 Mazda Motor Corp Sensor orientation deviation detecting device
JP2016191686A (en) 2015-03-31 2016-11-10 株式会社デンソー Vehicle control apparatus and vehicle control method
WO2019026438A1 (en) 2017-08-03 2019-02-07 株式会社小糸製作所 Vehicular lighting system, vehicle system, and vehicle
JP2019158485A (en) 2018-03-12 2019-09-19 トヨタ自動車株式会社 Object detector

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0996534A (en) * 1995-09-29 1997-04-08 Matsushita Electric Ind Co Ltd Navigation device
WO2015119298A1 (en) * 2014-02-10 2015-08-13 株式会社デンソー Axis deviation detection device for beam sensor
JP6475543B2 (en) * 2015-03-31 2019-02-27 株式会社デンソー Vehicle control apparatus and vehicle control method
CN111108031B (en) * 2017-08-30 2023-09-22 本田技研工业株式会社 Travel control device, vehicle, and travel control method
JP6904208B2 (en) * 2017-10-10 2021-07-14 トヨタ自動車株式会社 Axis misalignment judgment device
JP7099354B2 (en) * 2019-02-15 2022-07-12 トヨタ自動車株式会社 Driving support device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012068216A (en) 2010-09-27 2012-04-05 Mazda Motor Corp Sensor orientation deviation detecting device
JP2016191686A (en) 2015-03-31 2016-11-10 株式会社デンソー Vehicle control apparatus and vehicle control method
WO2019026438A1 (en) 2017-08-03 2019-02-07 株式会社小糸製作所 Vehicular lighting system, vehicle system, and vehicle
JP2019158485A (en) 2018-03-12 2019-09-19 トヨタ自動車株式会社 Object detector

Also Published As

Publication number Publication date
JP2022074387A (en) 2022-05-18
CN114523960B (en) 2023-07-25
CN114523960A (en) 2022-05-24

Similar Documents

Publication Publication Date Title
CN109435945B (en) Vehicle control system, vehicle control method, and storage medium
US9796416B2 (en) Automated driving apparatus and automated driving system
CN108622091B (en) Collision avoidance device
US10513267B2 (en) Vehicle safety system
CN108688664B (en) Vehicle driving assistance device
US11260859B2 (en) Vehicle control system, vehicle control method, and storage medium
JP2007190977A (en) Vehicle control device
US20200290624A1 (en) Vehicle control device, vehicle control method, and storage medium
RU2745936C1 (en) Stop line positioning device and vehicle control system
US11423777B2 (en) Traffic sign displaying device
US20230274644A1 (en) Action planning device and control arithmetic device
CN111918803B (en) Driving support control device, driving support system, and driving support control method
JP6558261B2 (en) Automatic driving device
JP7365319B2 (en) Axis deviation determination device for vehicles and on-vehicle sensors mounted on vehicles
JP7105267B2 (en) cruise control system
US20220308225A1 (en) Axial deviation estimation apparatus
WO2022044634A1 (en) Object recognition device, moving body collision prevention device, and object recognition method
US20230099932A1 (en) Traveling control apparatus
US20230096882A1 (en) Traveling control apparatus
JP7304378B2 (en) Driving support device, driving support method, and program
US20230294674A1 (en) Driving assistance device, driving assistance method, and storage medium
JP7397609B2 (en) Driving environment recognition device
US20230415810A1 (en) Driving support device, driving support method, and storage medium
US20230294673A1 (en) Driving assistance device, driving assistance method, and storage medium
JP2017114196A (en) Vehicle control apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230921

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231006

R150 Certificate of patent or registration of utility model

Ref document number: 7365319

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150