JP7364274B2 - Fiber woven composite material structural member, automobile frame manufactured therefrom, and manufacturing method - Google Patents
Fiber woven composite material structural member, automobile frame manufactured therefrom, and manufacturing method Download PDFInfo
- Publication number
- JP7364274B2 JP7364274B2 JP2022089970A JP2022089970A JP7364274B2 JP 7364274 B2 JP7364274 B2 JP 7364274B2 JP 2022089970 A JP2022089970 A JP 2022089970A JP 2022089970 A JP2022089970 A JP 2022089970A JP 7364274 B2 JP7364274 B2 JP 7364274B2
- Authority
- JP
- Japan
- Prior art keywords
- carbon fiber
- composite material
- structural member
- support
- frame
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000002131 composite material Substances 0.000 title claims description 338
- 239000000835 fiber Substances 0.000 title description 135
- 238000004519 manufacturing process Methods 0.000 title description 28
- 229920000049 Carbon (fiber) Polymers 0.000 claims description 228
- 239000004917 carbon fiber Substances 0.000 claims description 228
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 224
- 238000003780 insertion Methods 0.000 claims description 17
- 230000037431 insertion Effects 0.000 claims description 17
- 238000009434 installation Methods 0.000 claims description 3
- 230000002093 peripheral effect Effects 0.000 claims 1
- 239000004744 fabric Substances 0.000 description 137
- 239000011162 core material Substances 0.000 description 92
- 125000003367 polycyclic group Chemical group 0.000 description 87
- 241000264877 Hippospongia communis Species 0.000 description 73
- 125000002950 monocyclic group Chemical group 0.000 description 71
- 239000000463 material Substances 0.000 description 44
- 239000006260 foam Substances 0.000 description 30
- 239000007787 solid Substances 0.000 description 28
- 238000004804 winding Methods 0.000 description 28
- 238000010586 diagram Methods 0.000 description 27
- 239000004753 textile Substances 0.000 description 17
- 238000000034 method Methods 0.000 description 13
- 239000006261 foam material Substances 0.000 description 12
- 239000004033 plastic Substances 0.000 description 11
- 229920003023 plastic Polymers 0.000 description 11
- 238000010438 heat treatment Methods 0.000 description 9
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 7
- 229910000831 Steel Inorganic materials 0.000 description 7
- 230000005540 biological transmission Effects 0.000 description 7
- 229910052799 carbon Inorganic materials 0.000 description 7
- 230000008878 coupling Effects 0.000 description 7
- 238000010168 coupling process Methods 0.000 description 7
- 238000005859 coupling reaction Methods 0.000 description 7
- 238000005520 cutting process Methods 0.000 description 7
- 239000010959 steel Substances 0.000 description 7
- 230000008901 benefit Effects 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 238000009958 sewing Methods 0.000 description 5
- 238000003466 welding Methods 0.000 description 5
- 229910052782 aluminium Inorganic materials 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 238000005452 bending Methods 0.000 description 4
- 238000005304 joining Methods 0.000 description 4
- 238000010030 laminating Methods 0.000 description 4
- 238000003475 lamination Methods 0.000 description 4
- 239000007769 metal material Substances 0.000 description 4
- 229920006328 Styrofoam Polymers 0.000 description 3
- 125000004122 cyclic group Chemical group 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 229920006248 expandable polystyrene Polymers 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 239000008261 styrofoam Substances 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 239000004035 construction material Substances 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000004134 energy conservation Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 238000010097 foam moulding Methods 0.000 description 2
- 229910001338 liquidmetal Inorganic materials 0.000 description 2
- DMKSVUSAATWOCU-HROMYWEYSA-N loteprednol etabonate Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@@](C(=O)OCCl)(OC(=O)OCC)[C@@]1(C)C[C@@H]2O DMKSVUSAATWOCU-HROMYWEYSA-N 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000013585 weight reducing agent Substances 0.000 description 2
- 239000002759 woven fabric Substances 0.000 description 2
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 238000003915 air pollution Methods 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 238000010000 carbonizing Methods 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000005056 compaction Methods 0.000 description 1
- 239000004567 concrete Substances 0.000 description 1
- 125000006841 cyclic skeleton Chemical class 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000002657 fibrous material Substances 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 239000003063 flame retardant Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 229920006253 high performance fiber Polymers 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 229910001234 light alloy Inorganic materials 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000011343 solid material Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- 238000009732 tufting Methods 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Landscapes
- Moulding By Coating Moulds (AREA)
- Woven Fabrics (AREA)
- Body Structure For Vehicles (AREA)
Description
本発明は、繊維織物複合材料の応用技術分野に関し、特に、繊維織物複合材料構造部材及びそれで製造された自動車骨格と製造方法に関する。 TECHNICAL FIELD The present invention relates to the technical field of application of fiber fabric composite materials, and more particularly to a fiber fabric composite material structural member, an automobile frame manufactured using the same, and a manufacturing method.
現代における技術の急速な発展に伴い、材料に対し高い要求が求められ、炭素繊維は高強度、耐熱性、耐食性、耐疲労性、軽量、非常に大きな引張力に十分耐えられ、鋼、アルミニウムよりも著しく高い特性を持ち、典型的な高性能繊維に属し、従来の金属材料に対比して圧倒的なメリットを持っている。炭素繊維は、単独で断熱保温材料として使用する以外に、一般的に補給材料として樹脂、金属、セラミック、コンクリート等の材料内に添加されることで、炭素繊維複合材料を構成し、炭素繊維複合材料が非常に多くの分野で使用され始めている。 With the rapid development of technology in modern times, high demands are placed on materials, and carbon fiber has high strength, heat resistance, corrosion resistance, fatigue resistance, light weight, and can withstand very large tensile forces, making it better than steel and aluminum. It also has extremely high properties, belongs to a typical high-performance fiber, and has overwhelming advantages compared to conventional metal materials. In addition to being used alone as a heat insulating material, carbon fiber is generally added as a supplementary material into materials such as resin, metal, ceramic, and concrete to form carbon fiber composite materials. Materials are beginning to be used in numerous fields.
世界の省エネ・二酸化炭素排出量削減の環境において、自動車の軽量化は、徐々に進んでおり、プラスチック、複合材料等の自動車における活用が益々幅広くなり、繊維複合材料で既存の金属構造を代替するのは、自動車排出ガスによる大気汚染を減らすと共に省エネを実現する有効な手段である。炭素繊維は、炭素含有量が90%以上の繊維状炭素材料であり、高強度及び高弾性を持ち、炭素繊維複合材料がマトリックス、繊維の選択、炭素繊維の含有量と分布の最適化設計を通じて、様々な分野の要求を満たすことができる各種高性能の構造部材として製造できる。 In an environment of energy conservation and carbon dioxide emission reduction around the world, the weight of automobiles is gradually becoming lighter, and the use of plastics, composite materials, etc. in automobiles is becoming more widespread, and fiber composite materials are replacing existing metal structures. is an effective means of reducing air pollution caused by vehicle exhaust gas and realizing energy savings. Carbon fiber is a fibrous carbon material with a carbon content of more than 90%, which has high strength and high elasticity, and carbon fiber composite materials are manufactured through the optimization design of matrix, fiber selection, carbon fiber content and distribution. It can be manufactured into various high-performance structural members that can meet the demands of various fields.
従来の自動車では、乗客を輸送するためのガソリンが僅か1%で、残りは自動車自体の運動のために用いられ、繊維複合材料で鉄鋼を代替することで、自動車の重量を半分以上軽減させることができ、減重効果が金属材料より50%軽くなり、アルミ材より30%軽く、また繊維複合材料は自動車部品として軽量で高強度、部品一体化、意匠性・耐衝撃性・耐腐食性に優れ、成形が容易という利点がある。現在繊維複合材料は、自動車のブレーキパッド、ホイール等の部品において、実際に応用され、自動車骨格上ヘの応用がまだ比較的少ない。自動車、バスのフレームは、立体フレームで、フレームの役目は車自体部品の重量及び走行時に受ける衝突、歪曲、慣性力を含む荷重に耐えられることである。従来技術において、自動車のフレーム構造は、セパレートフレーム、アンセパレートフレームに大別され、セパレートフレームが太い鋼管を溶接又はリベット接合してスチール製フレームとなり、このスチール製フレームにエンジン、サスペンション、ボディ等の部品が取り付けられるため、セパレートフレームの鋼管が重く、フレーム重量が全車総重量の大部分を占め;アンセパレートフレームは、鋼(先進的なものはアルミニウムである)がプレス、溶接を経てから成り、設計及び製造技術に対する要求が非常に高く、製品の品質も管理し難く、製造工程も煩雑で、かつフレーム構造全体の剛性強度が不足している。 In a conventional car, only 1% of the gasoline is used to transport passengers, the rest is used for the movement of the car itself, and by replacing steel with fiber composite materials, the weight of the car can be reduced by more than half. The weight reduction effect is 50% lighter than metal materials and 30% lighter than aluminum materials, and fiber composite materials are lightweight and have high strength as automobile parts, are integrated into parts, and have good design, impact resistance, and corrosion resistance. It has the advantage of being excellent and easy to mold. Currently, fiber composite materials are actually applied to parts such as automobile brake pads and wheels, and their application to automobile frames is still relatively rare. The frames of automobiles and buses are three-dimensional frames, and the role of the frame is to withstand loads including the weight of the vehicle's own parts as well as collisions, distortions, and inertial forces received during driving. In the prior art, the frame structure of an automobile is roughly divided into a separate frame and an unseparated frame.The separate frame is made of steel by welding or riveting thick steel pipes, and the engine, suspension, body, etc. are mounted on this steel frame. Because the parts are attached, the steel tubes of the separate frame are heavy, and the frame weight accounts for most of the total vehicle weight; the separate frame is made of pressed and welded steel (the advanced version is aluminum). The requirements for design and manufacturing technology are very high, the quality of the product is difficult to control, the manufacturing process is complicated, and the overall frame structure lacks rigidity and strength.
省エネ、環境保全は、徐々に自動車業界が関心を寄せる重要課題となり、人々は自動車の軽量化への発展を検討し始めた。自動車の軽量化は、自動車の空車重量を軽減でき、原材料を節約できるだけでなく、自動車の生産コストを削減でき、かつ燃費も削減できるため、省エネ・環境保全である。これにより、人々は、より軽量で、強度がより高い複合材料で従来のフレーム構造材の材料を代替しようと試み始めた。 Energy saving and environmental protection have gradually become important issues that the automobile industry is concerned about, and people have begun to consider ways to make automobiles lighter. Reducing the weight of automobiles not only reduces the empty weight of automobiles and saves raw materials, but also reduces automobile production costs and fuel consumption, which contributes to energy conservation and environmental conservation. This has led people to try to replace traditional frame construction materials with lighter weight, stronger composite materials.
炭素繊維複合材料において、炭素繊維の最大特徴は非常に大きい引張力に耐えられることであり、樹脂が圧力に耐えられ、従来材料で製造された管状内部に支持体がなく、板状として製造した場合、板厚が小すぎるため、生じるトルクが小さく、炭素繊維が非常に大きい引張力に耐えられる利点を十分利用していない。よって、炭素繊維が引張力に耐えられるという利点を十分発揮する方法を研究する必要がある。このため、炭素繊維複合材料の密度が軽い構造部材として製造して非常に大きい引張力に耐えられるのは、極めて大きい課題となっている。次に、炭素繊維複合材料は、迅速な生産に適していないということも炭素繊維複合材料の発展を阻害する重要な原因となっている。 In carbon fiber composite materials, the greatest feature of carbon fibers is that they can withstand extremely large tensile forces, and the resin can withstand pressure. In this case, because the plate thickness is too small, the generated torque is small and the advantage that carbon fiber can withstand very large tensile forces is not fully utilized. Therefore, it is necessary to research ways to fully utilize the advantage that carbon fibers can withstand tensile forces. For this reason, it has become an extremely important issue to manufacture carbon fiber composite materials as structural members with light density so that they can withstand extremely large tensile forces. Next, the fact that carbon fiber composite materials are not suitable for rapid production is also an important cause of inhibiting the development of carbon fiber composite materials.
本発明は、上記課題を解決するため、炭素繊維織物複合材料構造部材及びそれで製造された自動車骨格と製造方法を提供する。 In order to solve the above problems, the present invention provides a carbon fiber woven composite material structural member, an automobile frame manufactured using the same, and a manufacturing method.
本発明は、以下の技術的解決手段からなる。
繊維織物複合材料構造部材であって、前記構造部材の外側に管状が形成され、前記管状構造部材は繊維織物複合材料で支持された繊維織物複合材料ハニカムパイプであり、その中の繊維織物複合材料には平織及び綾織がある。
The present invention consists of the following technical solutions.
A textile composite material structural member, wherein a tubular shape is formed on the outside of the structural member, the tubular structural member is a textile textile composite material honeycomb pipe supported by a textile textile composite material, and the textile textile composite material therein is a textile composite material structural member. There are plain weave and twill weave.
前記複合材料ハニカムパイプのハニカム孔内にサンドイッチ構造材料又は繊維複合材料パイプ或いは中空支持体が充填される。複合材料ハニカムパイプのハニカム孔内に充填されたサンドイッチ構造材料は、複合材料ハニカムパイプのハニカム孔内にサンドイッチ構造材料を充填したコア材である。 The honeycomb holes of the composite honeycomb pipe are filled with a sandwich structure material or a fiber composite pipe or a hollow support. The sandwich structure material filled in the honeycomb holes of the composite honeycomb pipe is a core material in which the honeycomb holes of the composite honeycomb pipe are filled with the sandwich structure material.
前記繊維織物複合材料ハニカムパイプは、少なくとも2個のシングルヘリカル巻き組立部材を密着してヘリカル巻き組立部材束を構成し、シングルヘリカル巻き組立部材はサンドイッチ構造材料のコア材表面を繊維織物複合材料テープで螺旋状に巻回され、後に巻回された繊維織物複合材料テープで前に巻回された一部繊維織物複合材料テープをきつく締め付けることで、ヘリカル巻き繊維織物複合材料テープがヘリカル巻き繊維織物複合材料ハニカムパイプを構成する。 The fiber fabric composite material honeycomb pipe includes at least two single helical winding assembly members closely attached to form a helical winding assembly member bundle, and the single helical winding assembly members cover the surface of the core material of the sandwich structure material with the fiber fabric composite material tape. The helically wound fiber woven composite tape is helically wound by tightening the previously wrapped part of the fiber woven composite tape with the later wrapped fiber woven composite tape. Construct a composite material honeycomb pipe.
前記繊維織物複合材料で支持された繊維織物複合材料ハニカムパイプとは、縫合糸で縫合された積層繊維織物複合材料が縫合糸を支持部材として放射状に支持するように形成された星形支持構造である。星形支持体の繊維織物複合材料間に繊維織物複合材料ハニカムパイプが形成される。 The fiber fabric composite material honeycomb pipe supported by the fiber fabric composite material is a star-shaped support structure in which the laminated fiber fabric composite material sewn with suture threads is formed so as to radially support the suture threads as supporting members. be. A fiber fabric composite honeycomb pipe is formed between the fiber fabric composites of the star-shaped supports.
前記繊維織物複合材料支持体とは、縫合糸で縫合された積層繊維織物複合材料の一部を巻管部として巻き付けられ、縫合糸を支持部材として放射状に連結された巻管部支持体を構成し、他部分は縫合糸で縫合された積層繊維織物複合材料が縫合糸を支持部材として放射状に支持するように放射部と巻管部の複合支持体を構成するものである。 The fiber fabric composite material support constitutes a tube part support in which a part of the laminated fiber fabric composite material sewn with a suture thread is wound around as a tube part, and connected radially using the suture thread as a support member. However, the other part constitutes a composite support body of the radial part and the winding tube part so that the laminated fiber fabric composite material sewn with the suture thread supports the suture thread radially as a support member.
前記繊維織物複合材料で支持された繊維織物複合材料ハニカムパイプとは、縫合糸で縫合された積層繊維織物複合材料が各々巻管部として巻き付けられることで、縫合糸を支持部材として放射状に連結された巻管部支持体を構成するものである。 The fiber fabric composite material honeycomb pipe supported by the fiber fabric composite material is a pipe in which laminated fiber fabric composite materials sewn together with suture threads are each wound as a winding tube section, and are radially connected using the suture threads as supporting members. This constitutes a winding tube support body.
前記繊維織物複合材料で支持された繊維織物複合材料ハニカムパイプとは、縫合糸で縫合された積層繊維織物複合材料のN層ごとに一組の積層とし、ここでN≧2であり、各組の積層が放射状に一部を延出した後、各組の積層が分岐されてN個の方向に向かって延出してN個の分岐部を形成し、各分岐部は各々他組の積層の分岐部と対ごとに重ね合わせると共に延出され、エッジが放射状のハニカム支持体を構成するものであり;或いは前記繊維織物複合材料で支持された繊維織物複合材料ハニカムパイプとは、縫合糸で縫合された積層繊維織物複合材料のN層ごとに一組の積層とし、ここでN≧2であり、各組の積層中央層が巻管部として巻き付けられ、その他の層が放射状に一部を延出した後で分岐されて複数の分岐部を形成し、各分岐部は各々他組の積層の分岐部と対ごとに重ね合わせると共に延出され、エッジが放射状のハニカム支持体を構成するものである。 The fiber fabric composite material honeycomb pipe supported by the fiber fabric composite material is defined as one set of laminations for every N layers of the laminated fiber fabric composite material stitched with sutures, where N≧2, and each set of After the laminates in each set are partially extended radially, each set of laminates is branched and extended in N directions to form N branches, each branching part being a part of the laminates in the other set. The branched portions are overlapped and extended in pairs to form a honeycomb support with radial edges; or the fiber fabric composite honeycomb pipe supported by the fiber fabric composite material is sutured with a suture thread. A set of laminations is formed for every N layers of the laminated fiber fabric composite material, where N≧2, the center layer of each set of laminations is wound as a winding tube, and the other layers are partially extended radially. After being taken out, it is branched to form a plurality of branch parts, and each branch part is overlapped and extended in pairs with the branch parts of other sets of laminated layers, and the edges constitute a honeycomb support body. be.
前記ヘリカル巻き繊維織物複合材料ハニカムパイプの外表面を繊維織物複合材料テープで再度螺旋状に巻回され、後に巻回された繊維織物複合材料テープで前に巻回された一部繊維織物複合材料テープをきつく締め付ける。 The outer surface of the helically wound fiber fabric composite material honeycomb pipe is again helically wound with a fiber fabric composite material tape, and a part of the fiber fabric composite material previously wrapped with a later wrapped fiber fabric composite material tape. Tighten the tape.
前記ハニカムパイプの断面は、軸心を中心として外方へ向かって多層ハニカム孔を構成し、最外層が管壁である。 The cross section of the honeycomb pipe forms a multilayer honeycomb hole outwardly about the axis, and the outermost layer is the pipe wall.
前記繊維織物複合材料は、支持軸から管壁外へ延伸し、管壁に沿って曲げられ、管壁と結合して管壁の一部を構成し、管壁全体とその内部の支持材料を管壁に沿って曲げられた繊維織物複合材料を通じて一体的に連接させる。 The fiber fabric composite material extends from the support shaft to the outside of the pipe wall, is bent along the pipe wall, and is combined with the pipe wall to form a part of the pipe wall, and covers the entire pipe wall and the supporting material inside thereof. It is integrally connected through the fiber fabric composite material bent along the pipe wall.
前記繊維織物複合材料は、支持軸から管壁外へ延伸し、管壁に沿って曲げられ、管壁と結合し、管壁がヘリカル巻き繊維織物複合材料テープであり、管壁に沿って曲げられた繊維織物複合材料とヘリカル巻き繊維織物複合材料テープを接着する。 The fiber fabric composite material extends from the support shaft to the outside of the tube wall, is bent along the tube wall, and is combined with the tube wall, and the tube wall is a helically wound fiber fabric composite material tape, and the fiber fabric composite material is bent along the tube wall. The helically wound fiber woven composite material and the helically wound fiber woven composite tape are bonded together.
前記繊維織物複合材料は、支持軸から管壁箇所に延伸した後、引き続き管壁から延出されて構造部材の外部結合部材とし、外部結合部材が受けた力を支持材料に伝達させることができる。 After the fiber fabric composite material is stretched from the support shaft to the pipe wall location, it can be subsequently extended from the pipe wall to serve as an external bonding member of the structural member, and to transmit the force experienced by the external bonding member to the support material. .
前記繊維織物複合材料は、支持軸から管壁外へ延伸し、管壁に沿って曲げられ、管壁の一部を構成し、管壁から延出された支持材料まで曲げられた後、さらに前記支持材料と一緒に管壁から延出し、外部結合部材が受けた力を管壁及びその中の支持材料まで伝達させることができる。 The fiber fabric composite material extends from the support shaft out of the pipe wall, is bent along the pipe wall, forms part of the pipe wall, and after being bent to the support material extending from the pipe wall, further It can extend from the tube wall together with the support material to transmit forces experienced by the external coupling member to the tube wall and the support material therein.
前記管壁内の支持軸の個数は、少なくとも2個であり、支持軸間が繊維織物複合材料で連結して支持する。 The number of support shafts in the pipe wall is at least two, and the support shafts are connected and supported by a fiber fabric composite material.
管の軸線に沿った前記構造部材の異なる部位の横断面外輪郭形状は異なり、又は外輪郭形状が同一であるが大きさが異なる。 The cross-sectional contours of different parts of the structural member along the axis of the tube are different, or the contours are the same but different in size.
前記管状構造部材は、分岐状(例:「Y」字の分岐状、「T」字の分岐状又は「十」字の分岐状)であり、前記管状構造部材の主管と枝管は管壁が接合するだけでなく、管内の支持軸も接合する。 The tubular structural member has a branched shape (e.g., a “Y” branched shape, a “T” branched shape, or a “cross” branched shape), and the main pipe and branch pipes of the tubular structural member are connected to the pipe wall. Not only are they joined, but the support shaft inside the pipe is also joined.
前記構造部材は、一体型立体枠体構造である。 The structural member is an integral three-dimensional frame structure.
前記一体型立体枠体構造は、ハニカムパイプ内の星形支持体的ハニカム孔内為シングルヘリカル巻き組立部材或いは環状サンドイッチ構造材料或いは環状繊維複合材料パイプ或いは環状中空支持体,前記繊維織物が炭素繊維織物であり、炭素繊維織物複合材料一体型骨格を構成する。 The integral three-dimensional frame structure is a star-shaped support in a honeycomb hole, a single helical winding assembly member or a ring sandwich structure material or a ring fiber composite material pipe or a ring hollow support, and the fiber fabric is made of carbon fiber. It is a woven fabric and constitutes an integrated carbon fiber woven composite material skeleton.
前記炭素繊維織物複合材料一体型骨格の同一の横断面内の支持軸の個数は、少なくとも2個であり、支持軸間が繊維織物複合材料で連結して支持する。 The number of support shafts in the same cross section of the carbon fiber fabric composite material integrated frame is at least two, and the support shafts are connected and supported by the fiber fabric composite material.
前記炭素繊維織物複合材料枠体は、自動車の骨格、航空機の骨格、電車の骨格及びコンテナの骨格とする。 The carbon fiber woven composite material frame is used as a frame of an automobile, a frame of an aircraft, a frame of a train, and a frame of a container.
前記繊維織物複合材料構造部材で製造された伝動軸或いは支柱である。 A power transmission shaft or strut made of the fiber fabric composite material structural member.
繊維織物複合材料構造部材の製造方法であって、
所要の構造部材の3次元図面を作成するステップ1)と、
3次元図面に基づいて構造部材中子の金型図面を作成すると共に構造部材中子を作る(前記中子にハニカム孔に対応してコアピンが設けられ、前記中子はサンドイッチ構造材料又は繊維複合材料パイプ或いは中空支持体とする)ステップ2)と、
3次元図面に基づいて構造部材主型の金型図面を作成すると共に構造部材主型を作るステップ3)と、
3次元図面構造部材内の支持に用いられた各繊維織物複合材料の空間形状に基づいて、別々にその平面形状を決定するステップ4)と、
ステップ4)の平面形状に基づいて、繊維織物複合材料プリプレグを裁断するステップ5)(同様にステップ4)及びステップ5)により管壁プリプレグを決定すると共に裁断する)と、
3次元図面に基づいてプリプレグの縫合糸を決定するステップ6)と、
各プリプレグを決定した縫合糸の位置通り、各積層を必要とするプリプレグを積層するステップ7)と、
積層されたプリプレグを縫合糸の位置通り縫合(手縫合或いはミシン縫合を用いることができる)させるステップ8)と、
縫合した積層プリプレグシートを広げ、3次元図面に基づいてプリプレグシートに形成されたハニカム孔を中子のコアピンに合わせ、コアピンを合わせるハニカム孔内に挿入し、外側プリプレグがコアピン外側を被覆するステップ9)と、
管壁プリプレグで中子を被覆することで管壁を形成するステップ10)と、
管壁プリプレグで被覆された中子を主型に挿入するステップ11)と、
中子を加熱硬化させ、又は主型を加熱硬化させ、或いは同時に中子及び主型を加熱硬化させ、その後中子、主型を取り出すと、所要の構造部材が得られるステップ12)と、
を含む。
A method for manufacturing a fiber woven composite material structural member, comprising:
Step 1) of creating three-dimensional drawings of the required structural members;
A mold drawing for the structural member core is created based on the three-dimensional drawing, and the structural member core is manufactured (the core is provided with core pins corresponding to the honeycomb holes, and the core is made of sandwich structural material or fiber composite material). (Material pipe or hollow support) Step 2);
step 3) of creating a mold drawing of the structural member main mold based on the three-dimensional drawing and also creating the structural member main mold;
Step 4) of separately determining the planar shape of each fiber-woven composite material used for support within the three-dimensional drawing structural member, based on its spatial shape;
Step 5) of cutting the fiber fabric composite material prepreg based on the planar shape of Step 4) (Similarly determining and cutting the pipe wall prepreg by Step 4) and Step 5);
step 6) of determining sutures of the prepreg based on the three-dimensional drawing;
Step 7) of laminating the prepregs that require each layer according to the determined suture position;
Step 8) suturing the laminated prepregs according to the position of the suture thread (hand suturing or sewing machine suturing can be used);
Step 9: Spread the sewn laminated prepreg sheet, align the honeycomb holes formed in the prepreg sheet with the core pins of the core based on the three-dimensional drawing, insert the core pins into the matching honeycomb holes, and cover the outside of the core pins with the outer prepreg. )and,
Step 10) of forming a tube wall by covering the core with tube wall prepreg;
Step 11) of inserting the core covered with tube wall prepreg into the main mold;
step 12) in which the core is heated and hardened, the main mold is heated and hardened, or the core and the main mold are simultaneously heated and hardened, and then the core and the main mold are taken out to obtain the required structural member;
including.
前記ステップ9)の外側プリプレグシートのうちの管壁から延出されて連結部材とするプリプレグシートはコアピン外側を被覆せずに留保し、残りがコアピン外側を被覆する。 Among the outer prepreg sheets in step 9), the prepreg sheet extending from the pipe wall and serving as a connecting member is reserved without covering the outside of the core pin, and the remaining prepreg sheet covers the outside of the core pin.
前記連結部材とする管壁プリプレグシートと管壁から延出される支持プリプレグシートを重ね合わせて一緒に管壁から延出される。 The pipe wall prepreg sheet serving as the connection member and the supporting prepreg sheet extending from the pipe wall are overlapped and extended together from the pipe wall.
一緒に管壁から延出され、重ね合わせたプリプレグシートを縫い付けて互いに合わせる主型内に入れてその他のステップへ進む。 The superimposed prepreg sheets, which extend together from the tube wall, are sewn into a master mold to be fitted together and proceed to other steps.
前記ステップ2)内の中子は、発泡体を型内で発泡成形して製造される。 The core in step 2) is manufactured by foam-molding the foam in a mold.
炭素繊維織物複合材料構造部材で一体型立体枠体構造を製造する方法であって、
一体型立体枠体構造の3次元図面を作成するステップ(1)と、
3次元図面の枠体に基づいて環状枠体を分解するステップ(2)(単環式枠体を含み、必要に応じて引き続き中実多環式枠体に含まれる単環式枠体、中空多環式枠体に含まれる単環式枠体、部分的に中空の多環式枠体に含まれる単環式枠体を総称した「単環式枠体」を分解する)と、
各単環式枠体の形状に基づいて単環式硬質発泡材芯枠を製作するステップ(3)(必要に応じて単環式硬質発泡材芯枠を含み、必要に応じて中実多環式硬質発泡材芯枠に含まれる単環式硬質発泡材芯枠、中空多環式硬質発泡材芯枠に含まれる単環式硬質発泡材芯枠、部分的に中空の多環式硬質発泡材芯枠に含まれる単環式硬質発泡材芯枠を更に製作する)と、
各環状硬質発泡材芯枠の外表面を連続炭素繊維織物プリプレグで巻回して単環式炭素繊維織物プリプレグの複合材料構造部材を構成するステップ(4)(必要に応じて中実多環式炭素繊維織物複合材料構造部材に含まれる単環式炭素繊維織物プリプレグの複合材料構造部材、中空多環式炭素繊維織物複合材料構造部材に含まれる単環式炭素繊維織物プリプレグの複合材料構造部材及び部分的に中空の多環式炭素繊維織物複合材料構造部材に含まれる単環式炭素繊維織物プリプレグの複合材料構造部材を包括する)と、
3次元図面に基づいて一体型立体枠体構造主型の金型図面を作成すると共に主型を作るステップ(5)と、
3次元図面構造部材内の支持に用いられた各繊維織物複合材料の空間形状に基づいて、別々にその平面形状を決定するステップ(6)と、
ステップ(4)の平面形状に基づいて、繊維織物複合材料プリプレグを裁断するステップ7)(同様にステップ(4)及びステップ(5)により管壁プリプレグを決定すると共に裁断する)と、
3次元図面に基づいてプリプレグの縫合糸を決定するステップ(8)と、
各プリプレグを決定した縫合糸の位置通り、各積層を必要とするプリプレグを積層するステップ(9)と、
積層されたプリプレグを縫合糸の位置通り縫合(手縫合或いはミシン縫合を用いることができる)させるステップ(10)と、
縫合した積層プリプレグシートを広げ、3次元図面に基づいてプリプレグシートに形成されたハニカム孔を中子の単環式枠体に合わせ、単環式枠体を合わせるハニカム孔内に挿入し、外側プリプレグがコアピン外側を被覆するステップ(11)と、
管壁プリプレグで中子を被覆することで管壁を形成するステップ(12)と、
管壁プリプレグで被覆された中子を主型に挿入するステップ(13)と、
中子を加熱硬化させ、又は主型を加熱硬化させ、或いは同時に中子及び主型を加熱硬化させ、その後中子、主型を取り出すと、所要の構造部材が得られるステップ(14)と、
を含む。
A method for manufacturing an integrated three-dimensional frame structure using a carbon fiber woven composite material structural member, the method comprising:
Step (1) of creating a three-dimensional drawing of the integrated three-dimensional frame structure;
Step (2) of disassembling the annular framework based on the framework in the three-dimensional drawing (including the monocyclic framework, and optionally the monocyclic framework subsequently included in the solid polycyclic framework, the hollow The monocyclic frame contained in the polycyclic frame, the monocyclic frame contained in the partially hollow polycyclic frame are collectively referred to as the "monocyclic frame," and
Step (3) of manufacturing a monocyclic rigid foam core frame based on the shape of each monocyclic frame (including a monocyclic rigid foam core frame if necessary, a solid polycyclic core frame if necessary) Monocyclic rigid foam core included in a hollow polycyclic rigid foam core, monocyclic rigid foam core included in a hollow polycyclic rigid foam core, partially hollow polycyclic rigid foam core further manufacturing a monocyclic rigid foam core frame included in the core frame);
Step (4) of wrapping the outer surface of each annular rigid foam core with continuous carbon fiber woven prepreg to form a composite structural member of monocyclic carbon fiber woven prepreg (if necessary, solid polycyclic carbon Composite material structural members of monocyclic carbon fiber fabric prepreg included in fiber fabric composite material structural members, composite material structural members and parts of monocyclic carbon fiber fabric prepreg included in hollow polycyclic carbon fiber fabric composite material structural members. a monocyclic carbon fiber woven prepreg composite structural member included in a hollow polycyclic carbon fiber woven composite structural member);
step (5) of creating a mold drawing of the main mold of the integrated three-dimensional frame structure based on the three-dimensional drawing and also creating the main mold;
a step (6) of separately determining the planar shape of each fiber fabric composite material used for support within the three-dimensional drawing structural member, based on the spatial shape thereof;
Step 7) of cutting the fiber woven composite material prepreg based on the planar shape of step (4) (similarly determining and cutting the pipe wall prepreg according to step (4) and step (5));
(8) determining sutures of the prepreg based on the three-dimensional drawing;
a step (9) of laminating prepregs requiring each layer according to the determined suture position;
a step (10) of suturing the laminated prepregs according to the position of the suture thread (hand suturing or sewing machine suturing can be used);
Spread the sewn laminated prepreg sheets, align the honeycomb holes formed in the prepreg sheet based on the three-dimensional drawing with the monocyclic frame of the core, insert the monocyclic frame into the matching honeycomb holes, and then remove the outer prepreg. (11) covering the outside of the core pin;
forming a tube wall by covering the core with tube wall prepreg (12);
a step (13) of inserting a core coated with tube wall prepreg into the main mold;
A step (14) of heating and hardening the core, heating and hardening the main mold, or heating and hardening the core and the main mold at the same time, and then taking out the core and the main mold to obtain the required structural member;
including.
炭素繊維織物複合材料構造部材であって、前記炭素繊維織物複合材料構造部材の形状は、環状とし、芯が環状硬質発泡材であり、環状硬質発泡材の外表面を炭素繊維織物複合材料で巻回して単環式炭素繊維織物複合材料構造部材を構成する。 The carbon fiber woven composite material structural member is annular in shape, the core is an annular rigid foam material, and the outer surface of the annular rigid foam material is wrapped with the carbon fiber woven composite material. Rotate to form a monocyclic carbon fiber woven composite structural member.
前記炭素繊維織物複合材料構造部材において、前記単環式炭素繊維織物複合材料構造部材は、束状とし、束内の単環式炭素繊維織物複合材料構造部材の個数が少なくとも2個で、1束の単環式炭素繊維織物複合材料構造部材の外表面を炭素繊維織物複合材料で巻回して多環式炭素繊維織物複合材料構造部材を構成する。 In the carbon fiber woven composite material structural member, the monocyclic carbon fiber woven composite material structural member is in the form of a bundle, and the number of monocyclic carbon fiber woven composite material structural members in the bundle is at least two, and one bundle The outer surface of the monocyclic carbon fiber woven composite material structural member is wound with a carbon fiber woven composite material to form a polycyclic carbon fiber woven composite material structural member.
前記炭素繊維織物複合材料構造部材において、前記多環式炭素繊維織物複合材料構造部材の外表を巻回する炭素繊維織物複合材料の内部に単環式炭素繊維織物複合材料構造部材を充填締固めて中実多環式炭素繊維織物複合材料構造部材を構成する。 In the carbon fiber woven composite material structural member, a monocyclic carbon fiber woven composite material structural member is filled and compacted inside the carbon fiber woven composite material that is wound around the outer surface of the polycyclic carbon fiber woven composite material structural member. A solid polycyclic carbon fiber woven composite structural member is constructed.
前記炭素繊維織物複合材料構造部材において、前記多環式炭素繊維織物複合材料構造部材の外側から内側に向け外表を巻回する炭素繊維織物複合材料、単環式炭素繊維織物複合材料構造部材、空洞部で中空多環式炭素繊維織物複合材料構造部材を構成する。 In the carbon fiber woven composite material structural member, a carbon fiber woven composite material is wound around the outer surface of the polycyclic carbon fiber woven composite material structural member from the outside to the inside, a monocyclic carbon fiber woven composite material structural member, and a cavity. The hollow polycyclic carbon fiber woven composite material structural member is constructed by the section.
前記炭素繊維織物複合材料構造部材において、前記多環式炭素繊維織物複合材料構造部材の軸線に沿う部分は、空洞部であるため、部分的に中空の多環式炭素繊維織物複合材料構造部材を構成する。 In the carbon fiber woven composite material structural member, since the portion along the axis of the polycyclic carbon fiber woven composite material structural member is a hollow portion, the polycyclic carbon fiber woven composite material structural member is partially hollow. Configure.
前記炭素繊維織物複合材料構造部材で製造された炭素繊維織物複合材料枠体において、前記単環式炭素繊維織物複合材料構造部材、中実多環式炭素繊維織物複合材料構造部材、中空多環式炭素繊維織物複合材料構造部材及び部分的な中空の多環式炭素繊維織物複合材料構造部材を総称して炭素繊維織物複合材料構造部材環といい、前記炭素繊維織物複合材料構造部材環を枠体として組み立て、枠体内において隣接して束状部分を構成する炭素繊維織物複合材料構造部材環の外表面を炭素繊維織物複合材料で巻回する。 In the carbon fiber woven composite material frame manufactured by the carbon fiber woven composite material structural member, the monocyclic carbon fiber woven composite material structural member, the solid polycyclic carbon fiber woven composite material structural member, the hollow polycyclic carbon fiber woven composite material structural member The carbon fiber woven composite structural member and the partially hollow polycyclic carbon fiber woven composite structural member are collectively referred to as a carbon fiber woven composite structural member ring, and the carbon fiber woven composite structural member ring is used as a frame. The outer surface of the carbon fiber woven composite structural member ring constituting the bundle portion adjacently within the frame is wound with the carbon fiber woven composite material.
前記炭素繊維織物複合材料枠体は、非閉鎖形構造である。 The carbon fiber woven composite material frame is a non-closed structure.
炭素繊維織物複合材料構造部材で枠体を製造する方法であって、
枠体の3次元図面を作成するステップ(1)と、
3次元図面の枠体に基づいて環状枠体を分解するステップ(2)(単環式枠体を含み、必要に応じて引き続き中実多環式枠体に含まれる単環式枠体、中空多環式枠体に含まれる単環式枠体、部分的に中空の多環式枠体に含まれる単環式枠体を総称した「単環式枠体」を分解する)と、
各単環式枠体の形状に基づいて単環式硬質発泡材芯枠を製作するステップ(3)(必要に応じて単環式硬質発泡材芯枠を含み、必要に応じて中実多環式硬質発泡材芯枠に含まれる単環式硬質発泡材芯枠、中空多環式硬質発泡材芯枠に含まれる単環式硬質発泡材芯枠、部分的に中空の多環式硬質発泡材芯枠に含まれる単環式硬質発泡材芯枠を更に製作する)と、
各環状硬質発泡材芯枠の外表面を連続炭素繊維織物プリプレグで巻回して単環式炭素繊維織物プリプレグの複合材料構造部材を構成するステップ(4)(必要に応じて中実多環式炭素繊維織物複合材料構造部材に含まれる単環式炭素繊維織物プリプレグの複合材料構造部材、中空多環式炭素繊維織物複合材料構造部材に含まれる単環式炭素繊維織物プリプレグの複合材料構造部材及び部分的に中空の多環式炭素繊維織物複合材料構造部材に含まれる単環式炭素繊維織物プリプレグの複合材料構造部材を包括する)と、
必要に応じて、中実多環式炭素繊維織物複合材料構造部材に含まれる単環式炭素繊維織物プリプレグの複合材料構造部材を裸中実多環式炭素繊維織物プリプレグの複合材料構造部材束として組み立て、また裸中実多環式炭素繊維織物プリプレグの複合材料構造部材束の外表面を連続炭素繊維織物プリプレグで巻回して中実多環式炭素繊維織物プリプレグの複合材料構造部材を構成し;
中空多環式炭素繊維織物複合材料構造部材に含まれる単環式炭素繊維織物プリプレグの複合材料構造部材を裸中実多環式炭素繊維織物プリプレグの複合材料構造部材束として組み立て、また裸中空多環式炭素繊維織物プリプレグの複合材料構造部材束の外表面を連続炭素繊維織物プリプレグで巻回して中空多環式炭素繊維織物プリプレグの複合材料構造部材を構成し;
部分的に中空の多環式炭素繊維織物複合材料構造部材に含まれる単環式炭素繊維織物プリプレグの複合材料構造部材を裸部分的に中空の多環式炭素繊維織物プリプレグの複合材料構造部材束として組み立て、また裸部分的に中空の多環式炭素繊維織物プリプレグの複合材料構造部材束の外表面を連続炭素繊維織物プリプレグで巻回して部分的に中空の中空多環式炭素繊維織物プリプレグの複合材料構造部材を構成するステップ(5)と、
単環式炭素繊維織物プリプレグの複合材料構造部材、中実多環式炭素繊維織物プリプレグの複合材料構造部材、中空多環式炭素繊維織物プリプレグの複合材料構造部材、部分的に中空の多環式炭素繊維織物プリプレグの複合材料構造部材のうちの1種又は2種以上を枠体として組み立て、枠体において隣接して束状部分を構成した外表面を巻回した炭素繊維織物プリプレグは、炭素繊維織物プリプレグの複合材料枠体を構成するステップ(6)と、
炭素繊維織物プリプレグの複合材料枠体を金型に入れて加熱硬化させ、離型すると炭素繊維織物複合材料枠体となるステップ(7)と、
を含む。
A method of manufacturing a frame using a carbon fiber woven composite material structural member, the method comprising:
Step (1) of creating a three-dimensional drawing of the frame;
Step (2) of disassembling the annular framework based on the framework in the three-dimensional drawing (including the monocyclic framework, and optionally the monocyclic framework subsequently included in the solid polycyclic framework, the hollow The monocyclic frame contained in the polycyclic frame, the monocyclic frame contained in the partially hollow polycyclic frame are collectively referred to as the "monocyclic frame," and
Step (3) of manufacturing a monocyclic rigid foam core frame based on the shape of each monocyclic frame (including a monocyclic rigid foam core frame if necessary, a solid polycyclic core frame if necessary) Monocyclic rigid foam core included in a hollow polycyclic rigid foam core, monocyclic rigid foam core included in a hollow polycyclic rigid foam core, partially hollow polycyclic rigid foam core further manufacturing a monocyclic rigid foam core frame included in the core frame);
Step (4) of wrapping the outer surface of each annular rigid foam core with continuous carbon fiber woven prepreg to form a composite structural member of monocyclic carbon fiber woven prepreg (if necessary, solid polycyclic carbon Composite material structural members of monocyclic carbon fiber fabric prepreg included in fiber fabric composite material structural members, composite material structural members and parts of monocyclic carbon fiber fabric prepreg included in hollow polycyclic carbon fiber fabric composite material structural members. a monocyclic carbon fiber woven prepreg composite structural member included in a hollow polycyclic carbon fiber woven composite structural member);
If necessary, the monocyclic carbon fiber woven prepreg composite structural member included in the solid polycyclic carbon fiber woven composite material structural member may be converted into a composite material structural member bundle of bare solid polycyclic carbon fiber woven prepreg. assembling and winding the outer surface of the bare solid polycyclic carbon fiber fabric prepreg composite material structural member bundle with continuous carbon fiber fabric prepreg to constitute a solid polycyclic carbon fiber fabric prepreg composite material structural member;
The composite material structural member of the monocyclic carbon fiber fabric prepreg included in the hollow polycyclic carbon fiber fabric composite structural member is assembled as a composite material structural member bundle of the bare solid polycyclic carbon fiber fabric prepreg, and the Wrapping the outer surface of the composite material structural member bundle of cyclic carbon fiber woven prepreg with continuous carbon fiber woven prepreg to constitute a composite material structural member of hollow polycyclic carbon fiber woven prepreg;
Bare composite structural member of monocyclic carbon fiber woven prepreg included in partially hollow polycyclic carbon fiber woven composite structural member Bundle of partially hollow polycyclic carbon fiber woven prepreg composite material structural member The outer surface of a composite structural member bundle of bare partially hollow polycyclic carbon fiber fabric prepreg is wrapped with continuous carbon fiber fabric prepreg to form a partially hollow hollow polycyclic carbon fiber fabric prepreg. Step (5) of configuring a composite material structural member;
Composite structural members of monocyclic carbon fiber woven prepreg, composite structural members of solid polycyclic carbon fiber woven prepreg, composite structural members of hollow polycyclic carbon fiber woven prepreg, partially hollow polycyclic The carbon fiber fabric prepreg is produced by assembling one or more of the composite material structural members of the carbon fiber fabric prepreg as a frame, and winding the outer surface of the frame adjacent to each other to form a bundled part. a step (6) of configuring a composite material frame of woven prepreg;
A step (7) in which a carbon fiber woven prepreg composite material frame is placed in a mold, heated and cured, and when released from the mold, becomes a carbon fiber woven composite material frame;
including.
前記炭素繊維織物複合材料構造部材で枠体を製造する方法において、前記炭素繊維織物複合材料枠体は、自動車の骨格、航空機の骨格、電車の骨格及びコンテナの骨格とする。 In the method for manufacturing a frame using a carbon fiber woven composite material structural member, the carbon fiber woven composite material frame is a frame of an automobile, an aircraft, a train, and a container.
炭素繊維織物複合材料の自動車骨格であって、前記自動車骨格のシャーシは、縫合糸で縫合された積層繊維織物複合材料が縫合糸を支持部材として放射状に支持するように形成された星形支持構造であり、星形支持体の繊維織物複合材料間に繊維織物複合材料ハニカムパイプが形成され;炭素維織物複合材料ハニカムパイプをシングルヘリカル巻き組立部材で被覆し、シングルヘリカル巻き組立部材は、サンドイッチ構造材料のコア材表面を繊維織物複合材料テープで螺旋状に巻回され、後に巻回された繊維織物複合材料テープで前に巻回された一部繊維織物複合材料テープをきつく締め付け;車体骨格は、維織物複合材料ハニカムパイプが少なくとも2個のシングルヘリカル巻き組立部材を密着してヘリカル巻き組立部材束を構成し、ヘリカル巻き組立部材束内のヘリカル巻き繊維織物複合材料テープがヘリカル巻き繊維織物複合材料ハニカムパイプを構成し;前記シャーシは、シャーシフレームであり、車体骨格をシャーシフレームに乗せ、弾性部材で繋ぎ合わせて炭素繊維織物複合材料のセパレートフレームを構成し;前記シャーシ・車体骨格は、一つの単体構造の炭素繊維織物複合材料アンセパレートフレームとなる。前記技術的解決手段内の技術的特徴は、必要に応じて本技術的解決手段にも応用できる。 An automobile frame made of carbon fiber fabric composite material, wherein the chassis of the automobile frame includes a star-shaped support structure formed such that the laminated fiber fabric composite material sewn with suture threads supports the suture threads radially as supporting members. and a fiber fabric composite honeycomb pipe is formed between the fiber fabric composite materials of the star-shaped support; the carbon fiber fabric composite honeycomb pipe is covered with a single helical winding assembly member, and the single helical winding assembly member has a sandwich structure. The surface of the core material of the material is spirally wrapped with a fiber fabric composite tape, and the previously wrapped fiber fabric composite tape is tightly tightened with the later wrapped fiber fabric composite tape; , the textile composite material honeycomb pipe has at least two single helical wound assembly members in close contact with each other to form a helical wound assembly member bundle, and the helically wound textile composite material tape in the helical wound assembly member bundle is a helically wound textile composite material tape. The chassis is a chassis frame, and the vehicle body frame is placed on the chassis frame and connected by elastic members to constitute a separate frame made of a carbon fiber woven composite material; Two unitary carbon fiber woven composite frames with separate frames. The technical features in the above technical solution can also be applied to the present technical solution if necessary.
本発明は、繊維織物複合材料をハニカム状支持体の管状構造部材として製造し、製造された構造部材が力を受けた時、受けた力をハニカム状の各分岐部に分散させて構造部材に均一に分布させ、構造部材全体の力を受ける程度を増強し、一般的な炭素繊維複合材料は非常に強い引張力に耐えられるが、圧力に耐えられる能力が比較的劣り、構造部材の管内支持体をハニカム状の炭素繊維織物複合材料支持体と用いることで、構造部材が一定程度において圧力に耐えられ、構造部材の力を受ける範囲及び方向を拡大できる。本発明は、構造部材支持体をハニカム状にし、中実構造部材に対比すると材料及び重量を減らし、コストを節約し、同時に中空構造部材に対比してより強い力に耐えられる強さを有する。炭素繊維は、非常に大きな引張力に耐えられ、かつ変形しないが、中実として製造した場合材料の無駄にし、重量を増加するだけではなく、性能の向上も大きくない。よって、本発明は、ハニカムパイプ内に硬質発泡材を充填することで、炭素繊維の非常に大きい引張拉力に耐えられるという性能の最大限の発揮を実現し;炭素繊維織物で巻回された構造部材を用いて製造された自動車等の骨格は、軽量、高強度であり、次に上包み機で成形できるため、機械化生産に適している。 The present invention manufactures a fiber fabric composite material as a tubular structural member of a honeycomb-like support, and when the manufactured structural member receives force, the applied force is distributed to each branch part of the honeycomb-like structure and the structural member is Common carbon fiber composite materials can withstand very strong tensile forces, but their ability to withstand pressure is relatively poor, and the in-tube support of structural members By using the body with a honeycomb-shaped carbon fiber woven composite material support, the structural member can withstand pressure to a certain extent, and the range and direction in which the structural member is subjected to forces can be expanded. The present invention honeycombs the structural member support, reducing material and weight and cost savings compared to solid structural members, while having the strength to withstand higher forces compared to hollow structural members. Although carbon fiber can withstand very high tensile forces and does not deform, manufacturing it as a solid material not only wastes material and increases weight, but also does not significantly improve performance. Therefore, the present invention realizes the maximum performance of carbon fiber, which can withstand extremely large tensile forces, by filling the honeycomb pipe with a hard foam material; the structure is wound with carbon fiber fabric. The frames of automobiles and the like manufactured using these parts are lightweight and strong, and can be molded using an overwrapping machine, making them suitable for mechanized production.
当業者に本発明をより一層理解してもらうため、以下に具体的実施形態を組み合わせて本発明を更に説明する。 In order to enable those skilled in the art to better understand the present invention, the present invention will be further described in conjunction with specific embodiments below.
図1乃至図7を参照すると、繊維織物複合材料構造部材であって、前記構造部材の外側に管状が形成され、前記管状構造部材は繊維織物複合材料で支持された繊維織物複合材料ハニカムパイプであり;その中の繊維織物複合材料は、平織及び綾織を含み、前記繊維織物複合材料が炭素繊維或いはガラス繊維である。 Referring to FIGS. 1 to 7, there is provided a fiber fabric composite structural member, wherein a tubular shape is formed on the outside of the structural member, and the tubular structural member is a fiber fabric composite honeycomb pipe supported by the fiber fabric composite material. Yes; the fiber fabric composite material therein includes plain weave and twill weave, and the fiber fabric composite material is carbon fiber or glass fiber.
前記複合材料ハニカムパイプのハニカム孔内にサンドイッチ構造材料又は繊維複合材料パイプ或いは中空支持体が充填される。前記サンドイッチ構造材料は、主に硬質発泡材であり、硬質発泡スチロールとすることができ、硬質発泡材は主にPVC、PEI、PU、PET、PMI、AIREX、DIAB、3A、STRUCELL、ROHACELL、硬質発泡金属材料が挙げられ;前記繊維複合材料パイプは、炭素繊維を編み込んだ複合材料パイプ或いは炭素繊維を巻回した複合材料パイプであり;前記中空支持体は、薄肉中空プラスチック支持体又は薄肉中空金属支持体とすることができ、薄肉中空プラスチック支持体がブロー成形品とすることができる。 The honeycomb holes of the composite honeycomb pipe are filled with a sandwich structure material or a fiber composite pipe or a hollow support. The sandwich structure material is mainly a rigid foam material, which can be rigid foamed polystyrene, and the rigid foam material is mainly PVC, PEI, PU, PET, PMI, AIREX, DIAB, 3A, STRUCELL, ROHACELL, rigid foamed material. Examples include metal materials; the fiber composite material pipe is a carbon fiber woven composite material pipe or a carbon fiber wound composite material pipe; the hollow support is a thin hollow plastic support or a thin hollow metal support; The thin walled hollow plastic support can be a blow molded article.
図1乃至図4に示すように、前記繊維織物複合材料で支持された繊維織物複合材料ハニカムパイプとは、縫合糸で縫合された積層繊維織物複合材料が縫合糸を支持部材として放射状に支持するように星形支持構造を形成し、そして管壁として星形支持構造の外層を一層の繊維織物複合材料で被覆して構成したハニカムパイプであり、星形支持構造で形成された孔がハニカム孔であり、当然星形支持構造と管壁でハニカム孔を形成できる。 As shown in FIGS. 1 to 4, the fiber fabric composite material honeycomb pipe supported by the fiber fabric composite material means that the laminated fiber fabric composite material sewn with suture threads supports the suture threads radially as supporting members. It is a honeycomb pipe constructed by forming a star-shaped support structure, and covering the outer layer of the star-shaped support structure with one layer of fiber woven composite material as the tube wall, and the holes formed in the star-shaped support structure are honeycomb holes. Naturally, a honeycomb hole can be formed using the star-shaped support structure and the tube wall.
図5乃至図6に示すように、前記繊維織物複合材料支持体とは、縫合糸で縫合された積層繊維織物複合材料の一部を巻管部として巻き付けられ、縫合糸を支持部材として放射状に連結された巻管部支持体を構成し、他部分は縫合糸で縫合された積層繊維織物複合材料が縫合糸を支持部材として放射状に支持するように放射部と巻管部の複合支持体を構成するものである。放射状支持体又は放射部と巻管部の複合支持体は、構造部材が力を受けた時、受けた力を管壁と連結された放射状の積層分岐部によって支持体全体に伝達し、受けた力を構造部材に均一に分布させ、構造部材が受けた力のアンバランスによる変形或いは折損を防止でき;支持体を放射状して製作し、中空管材に対比してより強い耐力強度を有し、同時に中実管材に対比して材料及びコストを節約する。 As shown in FIGS. 5 and 6, the fiber fabric composite material support is a part of the laminated fiber fabric composite material sewn with a suture thread, which is wound as a winding tube part, and is radially wound with the suture thread as a supporting member. The composite supports of the radial part and the winding tube part are connected so that the other part constitutes the connected winding tube part support body, and the other part is a laminated fiber fabric composite material sewn with suture threads to support the suture threads radially as supporting members. It consists of A radial support or a composite support consisting of a radial part and a winding pipe part, when a structural member receives a force, transmits the received force to the entire support body through the radial laminated branch part connected to the pipe wall, and receives the force. It can evenly distribute the force to the structural members and prevent deformation or breakage due to unbalanced forces applied to the structural members; the supports are made in a radial shape and have higher load-bearing strength than hollow tubes; At the same time it saves material and cost compared to solid tubing.
図7に示すように、前記繊維織物複合材料で支持された繊維織物複合材料ハニカムパイプとは、縫合糸で縫合された積層繊維織物複合材料が各々巻管部として巻き付けられることで、縫合糸を支持部材として放射状に連結された巻管部支持体107を構成し、そして管壁207として星形支持構造の外層を一層の繊維織物複合材料で被覆して構成したハニカムパイプであり;巻管部で支持された管材を伝動軸或いは支柱として使用すると、伝動軸或いは支柱の力に耐える強さを大幅に増大することで、曲がり・変形、若しくは折損にくい。
As shown in FIG. 7, the fiber fabric composite material honeycomb pipe supported by the fiber fabric composite material is a structure in which the laminated fiber fabric composite materials sewn with suture threads are each wound as a winding tube part, so that the suture threads are It is a honeycomb pipe, which has a radially connected
図21に示すように、前記繊維織物複合材料で支持された繊維織物複合材料ハニカムパイプとは、縫合糸で縫合された積層繊維織物複合材料のN層ごとに一組の積層とし、ここでN≧2であり、各組の積層が放射状に一部を延出した後、各組の積層が分岐されてN個の方向に向かって延出してN個の分岐部を形成し、各分岐部は各々他組の積層の分岐部と対ごとに重ね合わせると共に延出され、エッジが放射状のハニカム支持体を構成するものであり;或いは前記繊維織物複合材料で支持された繊維織物複合材料ハニカムパイプとは、縫合糸で縫合された積層繊維織物複合材料のN層ごとに一組の積層とし、ここでN≧2であり、各組の積層中央層が巻管部として巻き付けられ、その他の層が放射状に一部を延出した後で分岐されて複数の分岐部を形成し、各分岐部は各々他組の積層の分岐部と対ごとに重ね合わせると共に延出され、エッジが放射状のハニカム支持体を構成するものである。図21に示すように、前記ハニカムパイプの断面は、軸心を中心として外方へ向かって多層ハニカム孔16を構成し、最外層が管壁15である。多層ハニカム孔16を含むハニカムパイプは、伝動軸或いは支柱として応用でき、軽量の利点を持つだけではなく、かつ管壁15が力を受けた時、受けた力をエッジの放射状分岐部によって伝達し、受けた力を支持体全体に均一に分布でき、このようなハニカム状の支持体が相対的に管壁の受ける力を減らすことができ、従来構造の伝動軸或いは支柱に対比すると、同一の力を受ける状態において、エッジが放射状の炭素繊維織物複合材料ハニカム支持体の管壁は、曲がり・変形しにくく、伝動軸或いは支柱の寿命を延ばすことができる。
As shown in FIG. 21, the fiber fabric composite material honeycomb pipe supported by the fiber fabric composite material is a set of laminations for every N layers of the laminated fiber fabric composite material sewn with suture threads, where N ≧2, and after each set of laminated layers partially extends radially, each set of laminated layers is branched and extends in N directions to form N branched parts, and each set of laminated layers are stacked and extended in pairs with branch parts of other sets of laminates to constitute a honeycomb support with radial edges; or a fiber fabric composite honeycomb pipe supported by the fiber fabric composite material; means one set of laminates every N layers of a laminated fiber fabric composite material sewn with sutures, where N≧2, the center layer of each set of laminates is wound as a winding tube, and the other layers are A part of the laminate is extended radially and then branched to form a plurality of branch parts, and each branch part is overlapped with the branch parts of other sets of laminated layers in pairs and extended, and the edge is a radial honeycomb. It constitutes a support body. As shown in FIG. 21, the cross section of the honeycomb pipe constitutes a
図1に示すように、前記繊維織物複合材料は、支持軸から管壁201外へ延伸し、管壁に沿って曲げられ、管壁と結合して管壁の一部を構成し、管壁全体とその内部の支持材料101を管壁に沿って曲げられた繊維織物複合材料を通じて一体的に連接させる。繊維織物複合材料を管壁まで延出すると共に管壁に沿って曲げられると、管壁が受けた力を管内の繊維織物複合材料支持体に伝達できることで、管材の力に耐えられる強さを増大する。
As shown in FIG. 1, the fiber fabric composite material extends from the support shaft to the outside of the
前記繊維織物複合材料は、支持軸から管壁箇所に延伸した後、引き続き管壁から延出されて構造部材の外部結合部材とし、外部結合部材が受けた力を支持材料に伝達させることで、支持材料全体に力を受けて構造部材の機械強度を高める。図2に示すように、管内支持軸102は、放射状支持体であり、管内支持軸102のうちの両端が管壁202から延出され、2個の外部結合部材302を構成する。図6に示すように、管内支持軸106は、放射-巻管部の複合支持体であり、管内支持軸106のうちの両端が管壁206から延出され、2個の外部結合部材306を構成する。図3に示すように、管内支持軸103の一端が管壁203から延出されて構成された構造部材は、1個の外部結合部材303を含み;図5に示すように、管内支持軸105は、放射-巻管部の複合支持体であり、管内支持軸105の一端が管壁205から延出されて1個の外部結合部材305を構成する。
After the fiber fabric composite material is stretched from the support shaft to the pipe wall location, it is subsequently extended from the pipe wall to serve as an external coupling member of the structural member, and the force received by the external coupling member is transmitted to the support material, Increases the mechanical strength of the structural member by receiving forces across the support material. As shown in FIG. 2, the
図4に示すように、前記繊維織物複合材料は、支持軸104から管壁204へ延伸し、管壁204に沿って曲げられ、管壁の一部を構成し、管壁204から延出された支持材料まで曲げられた後、さらに前記支持材料と一緒に管壁から延出し、構造部材の外部結合部材304を構成し、外部結合部材が受けた力を管壁及びその中の支持材料まで伝達させて、全体的に受けた力を均一にさせることで、管材の力に耐えられる強さを増大する。
As shown in FIG. 4, the fiber fabric composite material extends from the
前記管壁内の支持軸の個数は、少なくとも2個であり、支持軸間が繊維織物複合材料で連結して支持し、複数の支持軸はより一層受けた力の均一性を保証して構造部材の力に耐えられる強さを増す。 The number of support shafts in the pipe wall is at least two, and the support shafts are connected and supported by a fiber woven composite material, and the plurality of support shafts are structured to further ensure uniformity of received force. Increases the strength of a member to withstand force.
図22に示すように、前記繊維織物複合材料構造部材の星形支持体は、2個でハニカムパイプを構成してもよく;図23に示すように、前記繊維織物複合材料構造部材の星形支持体は3個でハニカムパイプを構成してもよい。図22内の2個の星形支持体17で構成されたハニカムパイプの管壁18は、星形支持体17が延伸して曲げられてから成るものである。図23内の3個の星形支持体19で構成されたハニカムパイプ構造部材の管壁20は、3個の星形支持体19が曲げられて成るものである。
As shown in FIG. 22, two star-shaped supports of the fiber fabric composite structural member may constitute a honeycomb pipe; as shown in FIG. 23, the star-shaped supports of the fiber fabric composite structural member Three supports may constitute a honeycomb pipe. The
必要に応じて、前記構造部材は、管の軸線に沿った前記構造部材の異なる部位の横断面外輪郭形状が異なり、又は外輪郭形状が同一であるが大きさが異なるよう設計できる。 If desired, the structural element can be designed with different cross-sectional contours at different locations of the structural element along the axis of the tube, or with the same contour but different sizes.
図15に示すように、前記繊維織物複合材料ハニカムパイプ801のハニカム孔内の支持軸方向に沿って仕分けて横断面に支持部材802が設けられ、横断面上の支持部材は軸方向における力に耐えられる強さを増強することで、構造部材が軸方向に沿って変形又は曲がりにくい。
As shown in FIG. 15,
接合部材の必要に応じて、前記管状構造部材は、分岐状(例:「Y」字の分岐状、「T」字の分岐状又は「十」字の分岐状)であり、前記管状構造部材の主管と枝管の管壁が接合するだけでなく、管内の支持軸も接合するのは、支持軸又は管壁の繊維織物が一体化或いは繊維織物を一緒に縫合したことであり;サンドイッチ構造材料若しくは繊維複合材料パイプを設けた場合、サンドイッチ構造材料は一体成形したもの或いは繊維複合材料パイプの繊維織物が連続繊維である。主管及び枝管の管壁が星形支持体と各々連結することで、主管及び枝管の管壁と星形支持体が一体構造とし、内外部から受けた力を一致させ、構造部材に内外部から受けた力の不一致によりずれて変形又は損傷を防止できる。 Depending on the needs of the joining member, the tubular structural member has a branched shape (for example, a “Y” branched shape, a “T” branched shape, or a “cross” branched shape), and the tubular structural member The reason why not only the pipe walls of the main pipe and the branch pipe are joined, but also the support shaft inside the pipe is joined is that the fiber fabrics of the support shaft or the pipe wall are integrated or the fiber fabrics are sewn together; sandwich structure If a material or fiber composite pipe is provided, the sandwich construction material is integrally molded or the fiber fabric of the fiber composite pipe is a continuous fiber. By connecting the pipe walls of the main pipe and branch pipes to the star-shaped supports, the pipe walls of the main pipe and branch pipes and the star-shaped supports form an integral structure, which matches the forces received from the inside and outside, allowing the structural members to It is possible to prevent deformation or damage caused by misalignment of external forces.
前記構造部材が一体型立体枠体構造を構成するのは、構造部材が「Y」字の分岐状、「T」字の分岐状又は「十」字の分岐状を通じて接合し、一体型立体枠体構造を構成することを意味し、例えばオフロード車の骨格、乗用車の骨格、バスの骨格、ヘリコプターの骨格或いは航空機の骨格である。 The structure of the integral three-dimensional frame is formed by connecting the structural members through a "Y" branch, a "T" branch, or a cross-shaped branch, and forming an integrated three-dimensional frame. It means to constitute a body structure, for example, the skeleton of an off-road vehicle, the skeleton of a passenger car, the skeleton of a bus, the skeleton of a helicopter, or the skeleton of an aircraft.
特に、前記一体型立体枠体構造部材を環接することで、所要の完成車骨格を組み立てる。図12に示すように、前記環接された完全車骨格7の環接過程中に使用された環状支持体内の星形支持体は合体でき、合体後の星形支持体の支持軸が炭素繊維織物複合材料を通じて連結され、合体後の星形支持体の管壁も一体型管壁となり;前記環接された完全車骨格7の環接過程中に使用された環状支持体内の星形支持体は分離でき、例えば図12内の環接された完全車骨格のコーナーB部分であり、すなわち、図24に示すように、環状支持体内の星形支持体の支持軸間が分離状態となり、従って「Y」字の分岐状、「T」字の分岐状又は「十」字の分岐状が形成される。
In particular, by circularly connecting the integral three-dimensional frame structural members, a required completed vehicle frame is assembled. As shown in FIG. 12, the star-shaped supports in the ring-shaped supports used during the ring-joint process of the ring-welded
環状支持体内の星形支持体の支持軸間が分離状態となり、従って「Y」字の分岐状、「T」字の分岐状又は「十」字の分岐状が形成されるのも一体型立体枠体構造に適し;よって前記「Y」字の分岐状、「T」字の分岐状又は「十」字の分岐状(図24に示す分岐又は合流の部位)は、平面形状の「Y」字の分岐状、「T」字の分岐状又は「十」字の分岐状だけではなく、平面形状を曲げられて立体を形成するそれら形状とすることもできる。 The support axes of the star-shaped support within the annular support are separated, thus forming a "Y"-shaped branch, a "T"-shaped branch, or a "cross" branch. Suitable for the frame structure; therefore, the “Y” branch, “T” branch, or cross-shaped branch (the branching or merging portion shown in FIG. 24) is a planar “Y”. In addition to the branched shape of a character, the branched shape of a "T" character, or the branched shape of a "cross" shape, it is also possible to form a three-dimensional shape by bending the planar shape.
前記構造部材を差込接合或いは環接によって一体型立体枠体構造を構成することで、所要の一体型骨格を組み立てることができる。図12及び図13に示すのは、炭素繊維織物複合材料で組み立てた完全車骨格である。図12は、環接で製造された完全車骨格7であり、環接過程中に使用された環状支持体9は、図14に示す通りであり、前記環状支持体9が繊維織物複合材料を加熱硬化させた後製造したコイルパイプ或いは編組チューブであり;図13は、差込接合で製造された完全車骨格8であり、図15に示すように、完全車骨格8上に使用する構造部材801上の軸方向に支持部材802が設けられ、構造部材に支持体が設けられると、さらに完全車の機械的強度を増大できる。
By configuring the integral three-dimensional frame structure by inserting or circumferentially joining the structural members, a desired integral skeleton can be assembled. Shown in FIGS. 12 and 13 is a complete vehicle frame constructed from carbon fiber woven composite material. FIG. 12 shows a
前記繊維織物複合材料構造部材で製造された伝動軸或いは支柱である。 A power transmission shaft or strut made of the fiber fabric composite material structural member.
繊維織物複合材料構造部材の製造方法であって、
所要の構造部材の3次元図面を作成するステップ1)と、
3次元図面に基づいて構造部材中子の金型図面を作成すると共に構造部材中子を作る(前記中子にハニカム孔に対応してコアピンが設けられ、前記中子はサンドイッチ構造材料又は繊維複合材料パイプ或いは中空支持体とする)ステップ2)と、
3次元図面に基づいて構造部材主型の金型図面を作成すると共に構造部材主型を作るステップ3)と、
3次元図面構造部材内の支持に用いられた各繊維織物複合材料の空間形状に基づいて、別々にその平面形状を決定するステップ4)と、
ステップ4)の平面形状に基づいて、繊維織物複合材料プリプレグを裁断するステップ5)(同様にステップ4)及びステップ5)により管壁プリプレグを決定すると共に裁断する)と、
3次元図面に基づいてプリプレグの縫合糸を決定するステップ6)と、
各プリプレグを決定した縫合糸の位置通り、各積層を必要とするプリプレグを積層するステップ7)と、
積層されたプリプレグを縫合糸の位置通り縫合(手縫合或いはミシン縫合を用いることができる)させるステップ8)と、
縫合した積層プリプレグシートを広げ、3次元図面に基づいてプリプレグシートに形成されたハニカム孔を中子のコアピンに合わせ、コアピンを合わせるハニカム孔内に挿入し、外側プリプレグがコアピン外側を被覆するステップ9)と、
管壁プリプレグで中子を被覆することで管壁を形成するステップ10)と、
管壁プリプレグで被覆された中子を主型に挿入するステップ11)と、
中子を加熱硬化させ、又は主型を加熱硬化させ、或いは同時に中子及び主型を加熱硬化させるステップ12)と、
を含む。
A method for manufacturing a fiber woven composite material structural member, comprising:
Step 1) of creating three-dimensional drawings of the required structural members;
A mold drawing for the structural member core is created based on the three-dimensional drawing, and the structural member core is manufactured (the core is provided with core pins corresponding to the honeycomb holes, and the core is made of sandwich structural material or fiber composite material). (Material pipe or hollow support) Step 2);
step 3) of creating a mold drawing of the structural member main mold based on the three-dimensional drawing and also creating the structural member main mold;
Step 4) of separately determining the planar shape of each fiber-woven composite material used for support within the three-dimensional drawing structural member, based on its spatial shape;
Step 5) of cutting the fiber fabric composite material prepreg based on the planar shape of Step 4) (Similarly determining and cutting the pipe wall prepreg by Step 4) and Step 5);
step 6) of determining sutures of the prepreg based on the three-dimensional drawing;
Step 7) of laminating the prepregs that require each layer according to the determined suture position;
Step 8) suturing the laminated prepregs according to the position of the suture thread (hand suturing or sewing machine suturing can be used);
Step 9: Spread the sewn laminated prepreg sheet, align the honeycomb holes formed in the prepreg sheet with the core pins of the core based on the three-dimensional drawing, insert the core pins into the matching honeycomb holes, and cover the outside of the core pins with the outer prepreg. )and,
Step 10) of forming a tube wall by covering the core with tube wall prepreg;
Step 11) of inserting the core covered with tube wall prepreg into the main mold;
step 12) of heating and hardening the core, heating and hardening the main mold, or heating and hardening the core and the main mold at the same time;
including.
前記ステップ9)の外側プリプレグシートのうちの管壁から延出されて連結部材とするプリプレグシートはコアピン外側を被覆せずに留保し、残りがコアピン外側を被覆する。 Among the outer prepreg sheets in step 9), the prepreg sheet extending from the pipe wall and serving as a connecting member is reserved without covering the outside of the core pin, and the remaining prepreg sheet covers the outside of the core pin.
前記連結部材とする管壁プリプレグシートと管壁から延出される支持プリプレグシートを重ね合わせて一緒に管壁から延出される。 The pipe wall prepreg sheet serving as the connection member and the supporting prepreg sheet extending from the pipe wall are overlapped and extended together from the pipe wall.
一緒に管壁から延出され、重ね合わせたプリプレグシートを縫い付けて互いに合わせる主型内に入れてその他のステップへ進む。 The superimposed prepreg sheets, which extend together from the tube wall, are sewn into a master mold to be fitted together and proceed to other steps.
前記ステップ2)内の中子は、発泡体を型内で発泡成形して製造される。 The core in step 2) is manufactured by foam-molding the foam in a mold.
図8乃至図11を参照すると、本発明に係る管壁支持構造部材の製造過程中、一部は中子と主型を含む構造部材を示す模式図である。図8に示すように、支持体となる積層プリプレグシート101を中子501に挿入させ、そして中子から突出する積層を曲げ、外層を繊維織物複合材料で被覆して管壁201となり、その後中子を被覆した繊維織物複合材料を主型601に嵌め込まれた後加熱硬化させ;図9に示すように、支持体となる積層プリプレグシート102を中子502に挿入させ、そして中子から突出する積層部分を曲げ、管壁202から突出する積層部分が管壁と一緒に延出して連結部材302となり、外層を繊維織物複合材料で被覆して管壁202となり、その後中子を被覆した繊維織物複合材料を主型602に嵌め込まれた後加熱硬化させ;図10に示すように、支持体となる積層プリプレグシート105を中子505に挿入させ、そして中子505から突出する積層部分を巻管部として巻き付け、管壁205から突出する積層部分が管壁と一緒に延出して連結部材305となり、外層を繊維織物複合材料で被覆して管壁205となり、その後中子を被覆した繊維織物複合材料を主型605に嵌め込まれた後加熱硬化させ;図11に示すように、支持体となる積層プリプレグシート107を中子507に挿入させ、そして中子507から突出する積層部分を巻管部として巻き付け、外層を繊維織物複合材料で被覆して管壁207となり、その後中子507を被覆した繊維織物複合材料を合わせる構造の主型607に嵌め込まれた後加熱硬化させる。
Referring to FIGS. 8 to 11, there are schematic diagrams partially showing a structural member including a core and a main mold during the manufacturing process of a tube wall supporting structural member according to the present invention. As shown in FIG. 8, the
図18に示すように、前記完全車骨格は、繊維織物複合材料構造部材と繊維織物複合材料の継手を差込接合して組み立てから成り;図16及び図17に示すように、前記炭素繊維複合材料継手10にパイプ状の差込頭部11が設けられ、差込頭部11は、そのパイプ状に対応する差込ソケットに挿入するものである。図示のように差込頭部11のパイプ状側面全面に炭素繊維面ファスナーのフックである炭素繊維面ファスナーフック12が植設され、前記炭素繊維面ファスナーフック12の植設方向が、前記差込頭部11を差込ソケットに挿入する方向に対して後方かつパイプ状の中心から放射方向に傾斜し;図16に示す差込頭部は、外径が同一の複数円形管であり、図17に示す差込頭部が内部に複数の放射状支持体を設けたハニカム状パイプである。差込頭部のパイプ状側面全面に炭素繊維面ファスナーのフックである炭素繊維面ファスナーフックが植設され、前記炭素繊維面ファスナーフック12の植設方向が、前記差込頭部11を差込ソケットに挿入する方向に対して後方かつパイプ状の中心から放射方向に傾斜させることで、内周面全面に炭素繊維面ファスナーのループである面ファスナーループを設けた差込ソケットにスムーズに差し込まれることができ、逆方向に抜き出した時、炭素繊維面ファスナーフックは面ファスナーループに掛止できることで、差込ソケットが差込頭部から脱落することを防止できて、堅牢に接合でき、差込頭部及び差込ソケットに損傷を与えることはない。
As shown in FIG. 18, the complete vehicle frame is assembled by inserting and joining fiber fabric composite structural members and fiber fabric composite joints; as shown in FIGS. 16 and 17, the carbon fiber composite The material joint 10 is provided with a pipe-shaped
図19及び図20に示すように、前記差込接合で完全車骨格を組み立てた差込頭部間の支持体は、中空スティック状支持体であり、図19の炭素繊維中空スティック状支持体が直線部分の支持に用いられ、図20の炭素繊維中空スティック状支持体が湾曲部分の支持に用いられ、炭素繊維中空スティック状支持体の両端が密閉構造であり、中心が中空構造であり;前記中空スティック状支持体は、炭素繊維織物複合材料で製造される。構造強度を保証する前提において、材料の節約及び重量減少、かつコストも節約する。 As shown in FIGS. 19 and 20, the support between the insertion heads on which the complete car frame is assembled by the insertion joint is a hollow stick-like support, and the carbon fiber hollow stick-like support shown in FIG. The carbon fiber hollow stick-shaped support shown in FIG. 20 is used to support the straight part, and the carbon fiber hollow stick-shaped support is used to support the curved part, and both ends of the carbon fiber hollow stick-shaped support have a closed structure and the center has a hollow structure; The hollow stick support is made of carbon fiber woven composite material. On the premise of guaranteeing structural strength, there is also material savings and weight reduction, as well as cost savings.
前記完全車骨格は、繊維織物複合材料で製造された環状骨格支持体を環接してから成り、前記環状骨格支持体の構造部材は管内支持体が星形支持構造となる繊維織物複合材料構造部材である。前記環状支持体を環接してから成る完全車骨格の各環は、均しく内部に複数の支持構造を設けたハニカム構造部材で構成され、完全車骨格の機械的強度を保証する。 The complete vehicle frame is made up of an annular frame support made of a fiber fabric composite material, and the structural member of the annular frame support is a fiber fabric composite material structural member in which the inner support has a star-shaped support structure. It is. Each ring of the complete vehicle frame formed by surrounding the annular support body is constituted by a honeycomb structural member having a plurality of uniform support structures therein, thereby ensuring the mechanical strength of the complete vehicle frame.
環接により製造された完全車骨格の製造方法は、
所要の構造部材の3次元図面を作成するステップ1)と、
3次元図面に基づいて完全車骨格の支持構造図を作成すると共に骨格支持体を製作するステップ2)(前記支持体は、繊維織物プリプレグの支持に用いられ、コイルパイプ或いは編組チューブとする)と、
3次元図面構造部材内の支持に用いられた各繊維織物複合材料の空間形状に基づいて、別々にその平面形状を決定するステップ3)と、
ステップ3)の平面形状に基づいて、繊維織物複合材料プリプレグを裁断するステップ4)と、
3次元図面に基づいてプリプレグの縫合糸を決定するステップ5)と、
各プリプレグを決定した縫合糸の位置通り、各積層を必要とするプリプレグを積層するステップ6)と、
積層されたプリプレグを縫合糸の位置通り縫合(手縫合或いはミシン縫合を用いることができる)させるステップ7)と、
縫合した積層プリプレグシートを広げ、3次元図面に基づいてプリプレグシートに形成されたハニカム孔を骨格支持体に合わせ、プリプレグシートで合わせるハニカム孔内を被覆し、外側プリプレグが骨格支持体外側を被覆するステップ8)と、
管壁プリプレグで骨格支持体を被覆して管壁を形成するステップ9)と、
管壁が被覆された前記骨格支持体を縫い付けて完全車骨格を製造するステップ10)と。
前記完全車骨格を加熱硬化させるステップ11)と、
を含む。
The manufacturing method of a complete car frame manufactured by circular welding is as follows:
Step 1) of creating three-dimensional drawings of the required structural members;
step 2) of creating a support structure diagram of the complete vehicle frame based on the three-dimensional drawing and manufacturing the frame support (the support is used to support the fiber fabric prepreg and is a coil pipe or a braided tube); ,
Step 3) of separately determining the planar shape of each fiber-woven composite material used for support within the three-dimensional drawing structural member, based on its spatial shape;
Step 4) of cutting the fiber fabric composite material prepreg based on the planar shape of Step 3);
step 5) of determining sutures of the prepreg based on the three-dimensional drawing;
Step 6) of laminating the prepregs that require each layer according to the determined suture position;
Step 7) suturing the laminated prepregs according to the position of the suture thread (hand suturing or sewing machine suturing can be used);
Spread the sewn laminated prepreg sheets, align the honeycomb holes formed in the prepreg sheet with the skeleton support based on the three-dimensional drawing, cover the inside of the honeycomb holes with the prepreg sheet, and cover the outside of the skeleton support with the outer prepreg. Step 8) and
step 9) of coating the skeletal support with a tube wall prepreg to form a tube wall;
Step 10) of manufacturing a complete vehicle skeleton by sewing the skeleton support coated with the tube wall.
step 11) of heating and hardening the complete vehicle frame;
including.
前記ステップ8)において、ハニカム孔を骨格支持体に合わせるのは、広げた積層プリプレグシートを3次元図面構造内の空洞部位置通り骨格支持体を入れることを意味し、そして被覆する積層プリプレグシートを接合部に縫合させ、骨格支持体を空洞部内に被覆させ、積層プリプレグの支持役目を果たす。 In step 8), aligning the honeycomb holes with the skeletal support means inserting the skeletal support into the expanded laminated prepreg sheet according to the cavity position in the three-dimensional drawing structure, and then inserting the skeletal support into the layered prepreg sheet to cover the cavity. The joint is sutured and the skeletal support is covered within the cavity and serves to support the laminated prepreg.
炭素繊維面ファスナーフックを設けた炭素繊維複合材料継手の製造方法であって、
有機繊維を熱酸化安定性処理により難燃性繊維になり、繊維が高温で炭化した状態下で、不融化・不燃をさせ、引き続き繊維状態を保持し、そして不活性ガス雰囲気中、高温下で焼成・炭化し、有機繊維に一部の炭素及びその他の非炭素原子を失うことで、炭素を主要成分とする繊維状物、すなわち炭素繊維を形成させるステップ(1)と、
1本の水溶性プラスチックチューブを取り、水溶性プラスチックチューブの外周に斜孔を開設するステップ(2)と、
タフティング機で炭素繊維を水溶性プラスチックチューブの斜孔内に植え込むステップ(3)と、
水溶性プラスチックチューブに主型を外嵌するステップ(4)と、
主型と水溶性プラスチックチューブとの間に発泡スチロール型を加えるステップ(5)と、
水溶性プラスチックチューブを水に溶かしてから中子を挿入するステップ(6)と、
中子と発泡スチロール型との間に円筒状空洞部が形成され、円筒状空洞部内に軽合金を注入し、液体金属の熱作用下で発泡スチロール型に熱分解・気化が発生するステップ(7)と、
液体金属を冷却硬化させた後、中子を取り出し、炭素繊維面ファスナーフック付きの差込頭部を形成するステップ(8)と、
を含む。
A method for manufacturing a carbon fiber composite material joint provided with a carbon fiber hook-and-loop fastener hook , the method comprising:
Organic fibers are made into flame-retardant fibers through thermal oxidation stability treatment, and the fibers are carbonized at high temperatures, rendered infusible and non-combustible, and continue to maintain their fiber state, and then heated under high temperatures in an inert gas atmosphere. A step (1) of firing and carbonizing the organic fiber to lose some carbon and other non-carbon atoms to form a fibrous material containing carbon as a main component, that is, carbon fiber;
Step (2) of taking one water-soluble plastic tube and opening an oblique hole on the outer periphery of the water-soluble plastic tube;
a step (3) of implanting carbon fibers into the diagonal holes of the water-soluble plastic tube using a tufting machine;
a step (4) of fitting the main mold onto the water-soluble plastic tube;
adding a styrofoam mold between the main mold and the water-soluble plastic tube (5);
a step (6) of dissolving the water-soluble plastic tube in water and inserting the core;
A step (7) in which a cylindrical cavity is formed between the core and the Styrofoam mold, a light alloy is injected into the cylindrical cavity, and thermal decomposition and vaporization occur in the Styrofoam mold under the thermal action of the liquid metal. ,
After the liquid metal is cooled and hardened, the core is removed and a plug head with a carbon fiber hook and loop hook is formed (8);
including.
全ての前記複合材料ハニカムパイプのハニカム孔内にサンドイッチ構造材料又は繊維複合材料パイプ或いは中空支持体が充填される。前記サンドイッチ構造材料は、主に硬質発泡材であり、硬質発泡スチロールとすることができ、硬質発泡材は主にPVC、PEI、PU、PET、PMI、AIREX、DIAB、3A、STRUCELL、ROHACELL、硬質発泡金属材料が挙げられ;前記繊維複合材料パイプは、炭素繊維を編み込んだ複合材料パイプ或いは炭素繊維を巻回した複合材料パイプであり;前記中空支持体は、薄肉中空プラスチック支持体又は薄肉中空金属支持体とすることができ、薄肉中空プラスチック支持体がブロー成形品とすることができる。 The honeycomb holes of all the composite honeycomb pipes are filled with sandwich structural material or fiber composite pipes or hollow supports. The sandwich structure material is mainly a rigid foam material, which can be rigid foamed polystyrene, and the rigid foam material is mainly PVC, PEI, PU, PET, PMI, AIREX, DIAB, 3A, STRUCELL, ROHACELL, rigid foamed material. Examples include metal materials; the fiber composite material pipe is a carbon fiber woven composite material pipe or a carbon fiber wound composite material pipe; the hollow support is a thin hollow plastic support or a thin hollow metal support; The thin walled hollow plastic support can be a blow molded article.
上記硬質発泡材は、ハニカム孔内に射出して発泡膨張することでハニカム孔壁を支持することができる。 The hard foam material can support the walls of the honeycomb holes by being injected into the honeycomb holes and expanding.
図25乃至図28を参照すると、炭素繊維織物複合材料構造部材であって、図25に示す枠体100の自動車骨格は、炭素繊維織物複合材料構造部材環110で組み立てから成り、炭素繊維織物複合材料構造部材環110が図26に示すような単環式炭素繊維織物複合材料構造部材111とすることができ、単環式炭素繊維織物複合材料構造部材111の芯が環状硬質発泡材112であり、環状硬質発泡材112の外表面を炭素繊維織物複合材料113で巻回する。巻回は、上包み機のように炭素繊維織物複合材料113で硬質発泡材112の外表面を巻き付け;炭素繊維織物複合材料113は、炭素繊維織物と樹脂、金属等のマトリックスを複合して構造材料を製造し;環状硬質発泡材112は、一体成形構造であり、つなぎ合わせる構造としてもよく;硬質発泡材112は、硬質発泡スチロール(例:ポリメタクリルイミド(PMI))、硬質発泡金属(例:発泡アルミニウム或いはその他)とすることができる。
Referring to FIGS. 25 to 28, the
前記炭素繊維織物複合材料構造部材において、図3のように前記単環式炭素繊維織物複合材料構造部材は、束状とし、束内の単環式炭素繊維織物複合材料構造部材111の個数が少なくとも2個で、1束の単環式炭素繊維織物複合材料27構造部材の外表面を炭素繊維織物複合材料113(束状構造を示すため、図示せず)で巻回して多環式炭素繊維織物複合材料構造部材を構成する。図27に示すように、前記多環式炭素繊維織物複合材料構造部材の外表を巻回する炭素繊維織物複合材料の内部に単環式炭素繊維織物複合材料構造部材111を充填締固めて中実多環式炭素繊維織物複合材料構造部材120を構成する。充填締固めは、内部の単環式炭素繊維織物複合材料構造部材の間にほぼ隙間が残らない。図28に示すように、前記多環式炭素繊維織物複合材料構造部材の外側から内側に向け外表を巻回する炭素繊維織物複合材料113(束状構造を示すため、図示せず)、単環式炭素繊維織物複合材料構造部材113、空洞部131で中空多環式炭素繊維織物複合材料構造部材130を構成する。空洞部の位置は、中空多環式炭素繊維織物複合材料構造部材130の軸心に位置することができ、中空多環式炭素繊維織物複合材料構造部材130の軸心からずれることもできる。
In the carbon fiber woven composite structural member, as shown in FIG. 3, the monocyclic carbon fiber woven composite structural member is in the form of a bundle, and the number of monocyclic carbon fiber woven composite
前記炭素繊維織物複合材料構造部材において、前記多環式炭素繊維織物複合材料構造部材の軸線に沿う部分は、空洞部であるため、部分的に中空の多環式炭素繊維織物複合材料構造部材を構成する。幾つかの部品を収容するため、部分的に中空の多環式炭素繊維織物複合材料構造部材に空洞部位置を留保する。 In the carbon fiber woven composite material structural member, since the portion along the axis of the polycyclic carbon fiber woven composite material structural member is a hollow portion, the polycyclic carbon fiber woven composite material structural member is partially hollow. Configure. Cavity locations are reserved in the partially hollow polycyclic carbon fiber woven composite structural member to accommodate several components.
前記炭素繊維織物複合材料構造部材で製造された炭素繊維織物複合材料枠体において、前記単環式炭素繊維織物複合材料構造部材111、中実多環式炭素繊維織物複合材料構造部材120、中空多環式炭素繊維織物複合材料構造部材130及び部分的な中空の多環式炭素繊維織物複合材料構造部材を総称して炭素繊維織物複合材料構造部材環110といい、前記炭素繊維織物複合材料構造部材環110を枠体として組み立て、枠体内において隣接して束状部分を構成する炭素繊維織物複合材料構造部材環の外表面を炭素繊維織物複合材料(束状構造を示すため、図示せず)で巻回する。炭素繊維織物複合材料枠体を構成する前記単環式炭素繊維織物複合材料構造部材、中実多環式炭素繊維織物複合材料構造部材、中空多環式炭素繊維織物複合材料構造部材及び部分的に中空の多環式炭素繊維織物複合材料構造部材は、少なくとも1種であり、異種組み合わせとしてもよい。
In the carbon fiber woven composite material frame manufactured by the carbon fiber woven composite material structural member, the monocyclic carbon fiber woven composite material
前記炭素繊維織物複合材料枠体は、非閉鎖形構造140である。この場合において、カンチレバー構造が生じる可能性がある。 The carbon fiber woven composite frame is a non-closed structure 140. In this case, cantilever structures may occur.
炭素繊維織物複合材料構造部材で枠体を製造する方法であって、
枠体の3次元図面を作成するステップ(1)と、
3次元図面の枠体に基づいて環状枠体を分解するステップ(2)(単環式枠体を含み、必要に応じて引き続き中実多環式枠体に含まれる単環式枠体、中空多環式枠体に含まれる単環式枠体、部分的に中空の多環式枠体に含まれる単環式枠体を総称した「単環式枠体」を分解する)と、
各単環式枠体の形状に基づいて単環式硬質発泡材芯枠を製作するステップ(3)(必要に応じて単環式硬質発泡材芯枠を含み、必要に応じて中実多環式硬質発泡材芯枠に含まれる単環式硬質発泡材芯枠、中空多環式硬質発泡材芯枠に含まれる単環式硬質発泡材芯枠、部分的に中空の多環式硬質発泡材芯枠に含まれる単環式硬質発泡材芯枠を更に製作する)と、
各環状硬質発泡材芯枠の外表面を連続炭素繊維織物プリプレグで巻回して単環式炭素繊維織物プリプレグの複合材料構造部材を構成するステップ(4)(必要に応じて中実多環式炭素繊維織物複合材料構造部材に含まれる単環式炭素繊維織物プリプレグの複合材料構造部材、中空多環式炭素繊維織物複合材料構造部材に含まれる単環式炭素繊維織物プリプレグの複合材料構造部材及び部分的に中空の多環式炭素繊維織物複合材料構造部材に含まれる単環式炭素繊維織物プリプレグの複合材料構造部材を包括する)と、
必要に応じて、中実多環式炭素繊維織物複合材料構造部材に含まれる単環式炭素繊維織物プリプレグの複合材料構造部材を裸中実多環式炭素繊維織物プリプレグの複合材料構造部材束として組み立て、また裸中実多環式炭素繊維織物プリプレグの複合材料構造部材束の外表面を連続炭素繊維織物プリプレグで巻回して中実多環式炭素繊維織物プリプレグの複合材料構造部材を構成し;
中空多環式炭素繊維織物複合材料構造部材に含まれる単環式炭素繊維織物プリプレグの複合材料構造部材を裸中実多環式炭素繊維織物プリプレグの複合材料構造部材束として組み立て、また裸中空多環式炭素繊維織物プリプレグの複合材料構造部材束の外表面を連続炭素繊維織物プリプレグで巻回して中空多環式炭素繊維織物プリプレグの複合材料構造部材を構成し;
部分的に中空の多環式炭素繊維織物複合材料構造部材に含まれる単環式炭素繊維織物プリプレグの複合材料構造部材を裸部分的に中空の多環式炭素繊維織物プリプレグの複合材料構造部材束として組み立て、また裸部分的に中空の多環式炭素繊維織物プリプレグの複合材料構造部材束の外表面を連続炭素繊維織物プリプレグで巻回して部分的に中空の中空多環式炭素繊維織物プリプレグの複合材料構造部材を構成するステップ(5)と、
単環式炭素繊維織物プリプレグの複合材料構造部材、中実多環式炭素繊維織物プリプレグの複合材料構造部材、中空多環式炭素繊維織物プリプレグの複合材料構造部材、部分的に中空の多環式炭素繊維織物プリプレグの複合材料構造部材のうちの1種又は2種以上を枠体として組み立て、枠体において隣接して束状部分を構成した外表面を巻回した炭素繊維織物プリプレグは、炭素繊維織物プリプレグの複合材料枠体を構成するステップ(6)と、
炭素繊維織物プリプレグの複合材料枠体を金型に入れて加熱硬化させ、離型すると炭素繊維織物複合材料枠体となるステップ(7)と、
を含む。
A method of manufacturing a frame using a carbon fiber woven composite material structural member, the method comprising:
Step (1) of creating a three-dimensional drawing of the frame;
Step (2) of disassembling the annular framework based on the framework in the three-dimensional drawing (including the monocyclic framework, and optionally the monocyclic framework subsequently included in the solid polycyclic framework, the hollow The monocyclic frame contained in the polycyclic frame, the monocyclic frame contained in the partially hollow polycyclic frame are collectively referred to as the "monocyclic frame," and
Step (3) of manufacturing a monocyclic rigid foam core frame based on the shape of each monocyclic frame (including a monocyclic rigid foam core frame if necessary, a solid polycyclic core frame if necessary) Monocyclic rigid foam core included in a hollow polycyclic rigid foam core, monocyclic rigid foam core included in a hollow polycyclic rigid foam core, partially hollow polycyclic rigid foam core further manufacturing a monocyclic rigid foam core frame included in the core frame);
Step (4) of wrapping the outer surface of each annular rigid foam core with continuous carbon fiber woven prepreg to form a composite structural member of monocyclic carbon fiber woven prepreg (if necessary, solid polycyclic carbon Composite material structural members of monocyclic carbon fiber fabric prepreg included in fiber fabric composite material structural members, composite material structural members and parts of monocyclic carbon fiber fabric prepreg included in hollow polycyclic carbon fiber fabric composite material structural members. a monocyclic carbon fiber woven prepreg composite structural member included in a hollow polycyclic carbon fiber woven composite structural member);
If necessary, the monocyclic carbon fiber woven prepreg composite structural member included in the solid polycyclic carbon fiber woven composite material structural member may be converted into a composite material structural member bundle of bare solid polycyclic carbon fiber woven prepreg. assembling and winding the outer surface of the bare solid polycyclic carbon fiber fabric prepreg composite material structural member bundle with continuous carbon fiber fabric prepreg to constitute a solid polycyclic carbon fiber fabric prepreg composite material structural member;
The composite material structural member of the monocyclic carbon fiber fabric prepreg included in the hollow polycyclic carbon fiber fabric composite structural member is assembled as a composite material structural member bundle of the bare solid polycyclic carbon fiber fabric prepreg, and the Wrapping the outer surface of the composite material structural member bundle of cyclic carbon fiber woven prepreg with continuous carbon fiber woven prepreg to constitute a composite material structural member of hollow polycyclic carbon fiber woven prepreg;
Bare composite structural member of monocyclic carbon fiber woven prepreg included in partially hollow polycyclic carbon fiber woven composite structural member Bundle of partially hollow polycyclic carbon fiber woven prepreg composite material structural member The outer surface of a composite structural member bundle of bare partially hollow polycyclic carbon fiber fabric prepreg is wrapped with continuous carbon fiber fabric prepreg to form a partially hollow hollow polycyclic carbon fiber fabric prepreg. Step (5) of configuring a composite material structural member;
Composite structural members of monocyclic carbon fiber woven prepreg, composite structural members of solid polycyclic carbon fiber woven prepreg, composite structural members of hollow polycyclic carbon fiber woven prepreg, partially hollow polycyclic The carbon fiber fabric prepreg is produced by assembling one or more of the composite material structural members of the carbon fiber fabric prepreg as a frame, and winding the outer surface of the frame adjacent to each other to form a bundled part. a step (6) of configuring a composite material frame of woven prepreg;
A step (7) in which a carbon fiber woven prepreg composite material frame is placed in a mold, heated and cured, and when released from the mold, becomes a carbon fiber woven composite material frame;
including.
前記炭素繊維織物複合材料構造部材で枠体を製造する方法において、前記炭素繊維織物複合材料枠体は、自動車の骨格、航空機の骨格、電車の骨格及びコンテナの骨格とする。 In the method for manufacturing a frame using a carbon fiber woven composite material structural member, the carbon fiber woven composite material frame is a frame of an automobile, an aircraft, a train, and a container.
炭素繊維織物複合材料の自動車骨格であって、図29、図30に示すように、前記自動車骨格のシャーシ1001は、縫合糸で縫合された積層繊維織物複合材料が縫合糸を支持部材として放射状に支持するように形成された星形支持構造であり、星形支持体の繊維織物複合材料間に繊維織物複合材料ハニカムパイプが形成され;炭素維織物複合材料ハニカムパイプをシングルヘリカル巻き組立部材で被覆し、シングルヘリカル巻き組立部材は、サンドイッチ構造材料のコア材表面を繊維織物複合材料テープで螺旋状に巻回され、後に巻回された繊維織物複合材料テープで前に巻回された一部繊維織物複合材料テープをきつく締め付け;車体骨格1002は、維織物複合材料ハニカムパイプが少なくとも2個のシングルヘリカル巻き組立部材を密着してヘリカル巻き組立部材束を構成し、ヘリカル巻き組立部材束内のヘリカル巻き繊維織物複合材料テープがヘリカル巻き繊維織物複合材料ハニカムパイプを構成し;前記シャーシは、シャーシフレーム(図内の形状がシャーシフレーム形状ではなく、模式図の意味はシャーシフレームの形状を表わす)であり、車体骨格をシャーシフレームに乗せ弾性部材で連結して炭素繊維織物複合材料のセパレートフレームを構成し;前記シャーシ・車体骨格は、一つの単体構造の炭素繊維織物複合材料アンセパレートフレームとなる。前記技術的解決手段内の技術的特徴は、必要に応じて本技術的解決手段にも応用できる。
An automobile frame made of a carbon fiber woven composite material, as shown in FIGS. 29 and 30, the
Claims (2)
前記差込頭部11のパイプ状側面に炭素繊維面ファスナーのフックである炭素繊維面ファスナーフック12が植設され、前記炭素繊維面ファスナーフック12の植設方向が、前記差込頭部11を差込ソケットに挿入する方向に対して後方かつパイプ状の中心から放射方向に傾斜することを特徴とする炭素繊維複合材料差込頭部。 The carbon fiber composite material plug head includes a carbon fiber composite material joint 10 and a pipe-shaped plug head 11 provided on the joint 10 , and the plug head 11 has a corresponding pipe-shaped plug head. The structure is configured to be inserted into a socket containing a
A carbon fiber hook 12, which is a hook of a carbon fiber hook, is planted on the pipe-shaped side surface of the insertion head 11, and the installation direction of the carbon fiber hook 12 is such that the insertion head 11 is A carbon fiber composite material plug-in head that is inclined rearward and radially from the pipe-shaped center with respect to the direction of insertion into the plug-in socket .
A carbon fiber surface fastener hook 12, which is a hook of a carbon fiber surface fastener, is planted on the entire pipe-shaped side surface of the insertion head 11, and the installation direction of the carbon fiber surface fastener hook 12 is set in the same direction as that of the insertion head 11. By tilting radially from the pipe-shaped center backward with respect to the direction of insertion into the plug socket, the plug socket has a hook-and-loop fastener loop , which is a loop of carbon fiber hook-and-loop fastener, on the entire inner peripheral surface. When inserting the insertion head 11, the carbon fiber hook and loop fastener does not catch, but when pulling out in the opposite direction, the carbon fiber hook and loop hook hooks on the hook and loop fastener , and the insertion socket is inserted. The carbon fiber composite material plug head according to claim 1, characterized in that it can be firmly joined by preventing it from falling off from the head, and prevents damage to the plug head and the plug socket.
Applications Claiming Priority (14)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201611268638.9 | 2016-12-31 | ||
CN201611268669.4 | 2016-12-31 | ||
CN201611268669.4A CN108263497A (en) | 2016-12-31 | 2016-12-31 | Carbon fabric composite material vehicle skeleton and preparation method thereof |
CN201611268639.3A CN108263496A (en) | 2016-12-31 | 2016-12-31 | Carbon fabric composite material vehicle skeleton and preparation method thereof |
CN201611268638.9A CN108262983A (en) | 2016-12-31 | 2016-12-31 | Carbon fabric composite material vehicle skeleton and preparation method thereof |
CN201611268709 | 2016-12-31 | ||
CN201611268639.3 | 2016-12-31 | ||
CN201611268709.5 | 2016-12-31 | ||
CN201710104737.1A CN108262984A (en) | 2016-12-31 | 2017-02-24 | A kind of fabric composite material structural member and preparation method thereof |
CN201710104737.1 | 2017-02-24 | ||
CN201710332513.6 | 2017-05-12 | ||
CN201710332513.6A CN108860333A (en) | 2017-05-12 | 2017-05-12 | Carbon fabric composite material structural member and its automobile skeleton and method of preparation |
JP2019536154A JP7378782B2 (en) | 2016-12-31 | 2017-12-31 | Fiber woven composite material structural member, automobile frame manufactured therefrom, and manufacturing method |
PCT/CN2017/120419 WO2018121789A1 (en) | 2016-12-31 | 2017-12-31 | Fibre fabric composite structural component, automobile framework prepared using same, and method |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019536154A Division JP7378782B2 (en) | 2016-12-31 | 2017-12-31 | Fiber woven composite material structural member, automobile frame manufactured therefrom, and manufacturing method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2022116274A JP2022116274A (en) | 2022-08-09 |
JP7364274B2 true JP7364274B2 (en) | 2023-10-18 |
Family
ID=70725222
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019536154A Active JP7378782B2 (en) | 2016-12-31 | 2017-12-31 | Fiber woven composite material structural member, automobile frame manufactured therefrom, and manufacturing method |
JP2022089970A Active JP7364274B2 (en) | 2016-12-31 | 2022-06-01 | Fiber woven composite material structural member, automobile frame manufactured therefrom, and manufacturing method |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019536154A Active JP7378782B2 (en) | 2016-12-31 | 2017-12-31 | Fiber woven composite material structural member, automobile frame manufactured therefrom, and manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (2) | JP7378782B2 (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4197740B2 (en) | 1996-05-29 | 2008-12-17 | エクソンモービル・ケミカル・パテンツ・インク | Zeolite catalysts and uses for hydrocarbon conversion |
JP3196776U (en) | 2015-01-21 | 2015-04-02 | 有限会社針谷製作所 | Hot air dryer |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0669733B2 (en) * | 1990-11-29 | 1994-09-07 | 株式会社袋谷製作所 | Shaft-shaped member combining heat-foamable resin and carbon fiber and method for manufacturing the same |
DE102008001826B3 (en) * | 2008-05-16 | 2009-09-17 | Airbus Deutschland Gmbh | Method for manufacturing reinforcement of recess for circularly fabric sandwich, involves braiding annular fabric core with fabric traces, and feed through is generated in fabric core before or after braiding |
DE102008027429B4 (en) * | 2008-06-09 | 2016-01-28 | Daimler Ag | Method for producing a bodyshell structure for a motor vehicle |
-
2017
- 2017-12-31 JP JP2019536154A patent/JP7378782B2/en active Active
-
2022
- 2022-06-01 JP JP2022089970A patent/JP7364274B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4197740B2 (en) | 1996-05-29 | 2008-12-17 | エクソンモービル・ケミカル・パテンツ・インク | Zeolite catalysts and uses for hydrocarbon conversion |
JP3196776U (en) | 2015-01-21 | 2015-04-02 | 有限会社針谷製作所 | Hot air dryer |
Also Published As
Publication number | Publication date |
---|---|
JP2022116274A (en) | 2022-08-09 |
JP7378782B2 (en) | 2023-11-14 |
JP2020514117A (en) | 2020-05-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5548624B2 (en) | Multi-directional reinforced shape woven preform for composite structures | |
US20210190110A1 (en) | Attachment of composite lug to composite structural tube | |
US20110192528A1 (en) | Process for producing tube member made of fiber-reinforced resin | |
JP5872471B2 (en) | Woven preform, composite and method for producing the same | |
CN102648080B (en) | Woven preform, composite, and method of making thereof | |
JP5420647B2 (en) | Method for manufacturing structural parts made from organic matrix composites and the resulting parts | |
EP2384906B1 (en) | Composite rim for a bicycle wheel | |
TW201430224A (en) | Circumferential stiffeners for composite fancases | |
CN108262984A (en) | A kind of fabric composite material structural member and preparation method thereof | |
US20080157418A1 (en) | Methods for fabricating composite structures with flanges having tethered corners | |
US7749927B2 (en) | Tethered corners and flanges and articles comprising the same | |
JP7364274B2 (en) | Fiber woven composite material structural member, automobile frame manufactured therefrom, and manufacturing method | |
WO2018121789A1 (en) | Fibre fabric composite structural component, automobile framework prepared using same, and method | |
CN116788371A (en) | Whole car skeleton made of carbon fiber fabric composite material and preparation method thereof | |
CN116788370A (en) | Whole car skeleton made of carbon fiber fabric composite material and preparation method thereof | |
CN116968829A (en) | Whole car skeleton made of carbon fiber fabric composite material and preparation method thereof | |
JP7545522B2 (en) | Vehicle rim having flange portion formed by at least one sub-preform, and method for manufacturing rim body | |
TWI653161B (en) | Vehicle wheel rim and method of manufacturing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20220624 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20230221 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230222 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20230509 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230809 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20230905 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20230928 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7364274 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |