JP7359538B2 - Fibrinogen measurement reagent - Google Patents

Fibrinogen measurement reagent Download PDF

Info

Publication number
JP7359538B2
JP7359538B2 JP2018229919A JP2018229919A JP7359538B2 JP 7359538 B2 JP7359538 B2 JP 7359538B2 JP 2018229919 A JP2018229919 A JP 2018229919A JP 2018229919 A JP2018229919 A JP 2018229919A JP 7359538 B2 JP7359538 B2 JP 7359538B2
Authority
JP
Japan
Prior art keywords
fibrinogen
reagent
dry
quantitative
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018229919A
Other languages
Japanese (ja)
Other versions
JP2020091251A (en
Inventor
隆司 西山
和哉 中本
匡芳 菊池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
A&T Corp
Original Assignee
A&T Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by A&T Corp filed Critical A&T Corp
Priority to JP2018229919A priority Critical patent/JP7359538B2/en
Priority to PCT/JP2019/047592 priority patent/WO2020116556A1/en
Priority to US17/311,131 priority patent/US20220120768A1/en
Publication of JP2020091251A publication Critical patent/JP2020091251A/en
Application granted granted Critical
Publication of JP7359538B2 publication Critical patent/JP7359538B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Description

本発明は、フィブリノゲン測定試薬およびこれを用いたフィブリノゲン定量方法に関する。 The present invention relates to a fibrinogen measurement reagent and a method for quantifying fibrinogen using the same.

フィブリノゲンは血液凝固カスケード及び止血において重要な役割を果たす。フィブリノゲンの定量は、プロトロンビン時間(PTともいう)、活性化部分トロンボプラスチン時間(APTTともいう)とともに、血液凝固能の異常・正常を調べる検査であり、臨床現場、特に臨床検査室で広く実施されている。 Fibrinogen plays an important role in the blood coagulation cascade and hemostasis. Quantification of fibrinogen, along with prothrombin time (also called PT) and activated partial thromboplastin time (APTT), is a test to check abnormality or normality of blood coagulation ability, and is widely performed in clinical settings, especially in clinical laboratories. There is.

ドライ試薬カードにサンプルを滴下し、簡便にフィブリノゲンを定量しうる技術としては、特許文献1に記載のフィブリノゲン定量乾燥試薬及び特許文献2に記載のフィブリノゲンの定量方法が挙げられる。特許文献1に記載のフィブリノゲン定量乾燥試薬は、血漿を希釈して使用するものである。特許文献2に記載の方法は、サンプルの調製が必要であり、全血検体であれば7.5~10倍希釈、血漿検体であれば15倍希釈してから、サンプルが試薬カードに滴下される。ところが、分娩室、手術室、ベッドサイド等で緊急でフィブリノゲンを分析する際には、希釈操作が必須となるシステムは使いにくい、という問題点があった。 Techniques for easily quantifying fibrinogen by dropping a sample onto a dry reagent card include the fibrinogen quantitative dry reagent described in Patent Document 1 and the method for quantifying fibrinogen described in Patent Document 2. The fibrinogen quantitative dry reagent described in Patent Document 1 is used after diluting plasma. The method described in Patent Document 2 requires sample preparation, and the sample is dropped onto a reagent card after being diluted 7.5 to 10 times for a whole blood sample and 15 times for a plasma sample. However, a system that requires a dilution operation is difficult to use when performing emergency fibrinogen analysis in the delivery room, operating room, bedside, etc.

他方、無希釈検体を用いてフィブリノゲンを定量することのできる技術としては、特許文献3に記載の方法が挙げられる。特許文献3に記載の方法では、無希釈検体を用いることと関連して、すべてのフィブリノゲンをフィブリンモノマーに変換できるよう、大過剰のトロンビンが使用される。また、生じたフィブリンモノマーが会合する反応を抑制し、凝固時間を延長するために、フィブリンモノマー会合阻害剤(G-P-R-P-A-アミド)が使用されている。特許文献3に記載の方法は、液状試薬として、試薬類を精製水で予め溶解し、測定直前まで保温する必要がある。また、測定前にキャリブレーションが必要である。すなわち、特許文献3に記載の方法は、溶解試薬の保温やキャリブレーションが必要であり、緊急を要するフィブリノゲン定量に対応することは難しかった。なお、特許文献3に記載の技術はドライ試薬カード方式ではない。また、一般に、液状で反応させる試薬に適した組成と、ドライ試薬カードに適した組成とは異なる。 On the other hand, as a technique capable of quantifying fibrinogen using an undiluted specimen, there is a method described in Patent Document 3. In conjunction with the use of undiluted specimens, the method described in US Pat. No. 5,001,307 uses a large excess of thrombin so that all fibrinogen can be converted to fibrin monomer. Furthermore, a fibrin monomer association inhibitor (G-P-R-P-A-amide) is used to suppress the reaction in which the generated fibrin monomers associate and prolong the coagulation time. The method described in Patent Document 3 requires reagents to be dissolved in purified water in advance as liquid reagents and kept warm until immediately before measurement. Also, calibration is required before measurement. That is, the method described in Patent Document 3 requires warming of the lysis reagent and calibration, and it is difficult to cope with urgent fibrinogen quantification. Note that the technique described in Patent Document 3 is not a dry reagent card method. Further, in general, a composition suitable for a reagent to be reacted in a liquid state is different from a composition suitable for a dry reagent card.

近年、周術期医療及び周産期医療において、フィブリノゲン定量の重要性があらためて指摘されている。危機的大量出血では、血液中のフィブリノゲン濃度が大幅に低減する。そのため、患者の血液中フィブリノゲン濃度を調べ、濃度が150 mg/dL未満であれば、患者の生命維持のために、新鮮凍結血漿或いはフィブリノゲン濃縮製剤が投与される。また、新鮮凍結血漿或いはフィブリノゲン濃縮製剤を投与した後に、血液中フィブリノゲン濃度が正常範囲に戻ったか否か、を確認する必要がある。処置後に血液中のフィブリノゲン濃度が正常範囲に達していない場合には、患者の生命維持のためにさらなる処置が必要となるため、この測定には特に迅速性が求められる。 In recent years, the importance of fibrinogen quantification has been once again pointed out in perioperative medicine and perinatal medicine. In critical massive bleeding, the concentration of fibrinogen in the blood decreases significantly. Therefore, the fibrinogen concentration in the patient's blood is checked, and if the concentration is less than 150 mg/dL, fresh frozen plasma or fibrinogen concentrates are administered to maintain the patient's life. It is also necessary to confirm whether the blood fibrinogen concentration has returned to the normal range after administering fresh frozen plasma or fibrinogen concentrate. This measurement must be particularly rapid, since if the fibrinogen concentration in the blood does not reach the normal range after the procedure, further treatment will be required to keep the patient alive.

すなわち、周術期医療及び周産期医療においては、フィブリノゲン定量がこのような目的に使用されるため、より迅速に、確度高く、血液中フィブリノゲン濃度を測定することのできるシステムが望まれていた。 In other words, fibrinogen quantification is used for such purposes in perioperative medicine and perinatal medicine, so a system that can more quickly and accurately measure blood fibrinogen concentration has been desired. .

特開平06-094725号公報(特許第2776488号)JP-A-06-094725 (Patent No. 2776488) 特開平06-141895号公報(特許第2980468号)JP 06-141895 (Patent No. 2980468) 特開平05-219993号公報(特許第3469909号)JP-A-05-219993 (Patent No. 3469909)

本発明は、無希釈検体中のフィブリノゲン濃度を、簡便な操作で、再現性よく、正確に定量しうるフィブリノゲン測定試薬を提供することを目的とする。 An object of the present invention is to provide a fibrinogen measurement reagent that can accurately quantify the fibrinogen concentration in an undiluted specimen with simple operations and with good reproducibility.

本発明者らは、前記課題解決のために鋭意研究を重ねた結果、本発明に係るフィブリノゲン定量乾燥試薬により、上記課題を解決し得ることを見出し、本発明を完成した。 As a result of intensive research aimed at solving the above-mentioned problems, the present inventors have discovered that the above-mentioned problems can be solved by the fibrinogen quantitative drying reagent according to the present invention, and have completed the present invention.

本発明は、以下の実施形態を包含する。
[1] (i)トロンビン又はトロンビン活性を有するタンパク質、
(ii) 磁性粒子、
(iii) フィブリンモノマー会合阻害剤、
(iv) カルシウム塩、
(v) 乾燥試薬層溶解性向上剤、
(vi) 乾燥試薬層補強材、及び
(vii) pH緩衝剤
を含む、無希釈の全血又は血漿検体を測定するための、フィブリノゲン定量用のフィブリノゲン定量乾燥試薬。
[2] トロンビン又はトロンビン活性を有するタンパク質がウシトロンビンである、実施形態1に記載のフィブリノゲン定量乾燥試薬。
[3] 磁性粒子が四三酸化鉄である、実施形態1又は2に記載のフィブリノゲン定量乾燥試薬。
[4] フィブリンモノマー会合阻害剤がGPRP-アミド、又はGHRP-アミドである、実施形態1~3のいずれかに記載のフィブリノゲン定量乾燥試薬。
[5] カルシウム塩が塩化カルシウム二水和物である、実施形態1~4のいずれかに記載のフィブリノゲン定量乾燥試薬。
[6] 乾燥試薬層溶解性向上剤がグリシンである、実施形態1~5のいずれかに記載のフィブリノゲン定量乾燥試薬。
[7] グリシンを、1.5~4.0重量%最終溶液にて含む、実施形態6に記載のフィブリノゲン定量乾燥試薬。
[8] 乾燥試薬層補強材がウシ血清アルブミンである、実施形態1~7のいずれかに記載のフィブリノゲン定量乾燥試薬。
[9] pH緩衝剤がHEPES-水酸化ナトリウムである、実施形態1~8のいずれかに記載のフィブリノゲン定量乾燥試薬。
[10] さらにヘパリン中和剤、及び/又は消泡剤を含む、実施形態1~9のいずれかに記載のフィブリノゲン定量乾燥試薬。
[11] ヘパリン中和剤がポリブレンである、及び/又は消泡剤がソルビタンモノラウレートである、実施形態10に記載のフィブリノゲン定量乾燥試薬。
The present invention includes the following embodiments.
[1] (i) Thrombin or a protein with thrombin activity,
(ii) magnetic particles;
(iii) a fibrin monomer association inhibitor;
(iv) calcium salts;
(v) a dry reagent layer solubility improver;
(vi) dry reagent layer reinforcing material, and
(vii) Fibrinogen quantification dry reagent for fibrinogen quantification for the determination of undiluted whole blood or plasma samples containing a pH buffer.
[2] The fibrinogen quantitative dry reagent according to Embodiment 1, wherein the thrombin or the protein having thrombin activity is bovine thrombin.
[3] The fibrinogen quantitative drying reagent according to Embodiment 1 or 2, wherein the magnetic particles are triiron tetroxide.
[4] The fibrinogen quantitative drying reagent according to any one of Embodiments 1 to 3, wherein the fibrin monomer association inhibitor is GPRP-amide or GHRP-amide.
[5] The fibrinogen quantitative drying reagent according to any one of Embodiments 1 to 4, wherein the calcium salt is calcium chloride dihydrate.
[6] The fibrinogen quantitative dry reagent according to any one of Embodiments 1 to 5, wherein the dry reagent layer solubility enhancer is glycine.
[7] The fibrinogen quantitative drying reagent according to embodiment 6, comprising glycine in a final solution of 1.5 to 4.0% by weight.
[8] The fibrinogen quantitative dry reagent according to any one of Embodiments 1 to 7, wherein the dry reagent layer reinforcing material is bovine serum albumin.
[9] The fibrinogen quantitative drying reagent according to any one of Embodiments 1 to 8, wherein the pH buffer is HEPES-sodium hydroxide.
[10] The fibrinogen quantitative drying reagent according to any one of Embodiments 1 to 9, further comprising a heparin neutralizing agent and/or an antifoaming agent.
[11] The fibrinogen quantitative drying reagent according to Embodiment 10, wherein the heparin neutralizing agent is polybrene and/or the antifoaming agent is sorbitan monolaurate.

本発明により、試薬の調製や検体の希釈操作を必要とせず、且つ、正確なフィブリノゲン定量を可能ならしめる。 The present invention enables accurate fibrinogen quantification without requiring reagent preparation or specimen dilution operations.

フィブリノゲン定量乾燥試薬に使用する代表的な反応スライドの例である。This is an example of a typical reaction slide used for the dry fibrinogen quantitative reagent. 図1の反応スライドの部分分解図である。Figure 2 is a partially exploded view of the reaction slide of Figure 1; 実施例1における血漿中フィブリノゲン濃度と凝固時間の相関性試験の結果である。These are the results of a correlation test between plasma fibrinogen concentration and clotting time in Example 1. 実施例3におけるClauss法(Clauss VAによって見出されたトロンビン時間法、出典:Gerinnungsphysiologische schnellmethode zur bestimmung des fibrinogens, Acta Haematologica,17,237-246,1957)で測定した結果と本発明の試薬で測定した結果との相関性試験の結果である。The results measured by the Clauss method (thrombin time method discovered by Clauss VA, source: Gerinnungsphysiologische schnellmethode zur bestimmung des fibrinogens, Acta Haematologica, 17, 237-246, 1957) in Example 3 and the results measured using the reagent of the present invention These are the results of a correlation test. 実施例4における本発明の試薬で血漿を測定した結果と全血を測定した結果との相関性試験の結果である。These are the results of a correlation test between the results of measuring plasma using the reagent of the present invention and the results of measuring whole blood in Example 4. 本発明の試薬で測定した時の磁性粒子運動シグナルの経時変化を示す。Figure 2 shows the time course of magnetic particle motion signals measured with the reagent of the present invention. 従来技術の試薬組成に準じて作製した凍結乾燥試薬で測定した時の磁性粒子運動シグナルの経時変化を示す。Figure 2 shows changes over time in magnetic particle motion signals measured with a freeze-dried reagent prepared according to the reagent composition of the prior art. 血漿測定前、及び血漿測定後の、ドライ試薬カードの外観の写真である。These are photographs of the appearance of a dry reagent card before and after plasma measurement.

以下、図面を参照しつつ本発明を説明する。 The present invention will be described below with reference to the drawings.

本発明のフィブリノゲン定量乾燥試薬の調製方法を例示すれば、まず、フィブリンモノマー会合阻害剤、およびアミノ酸またはその塩もしくは糖類を含有した緩衝液を作製後、高活性のトロンビンまたは高活性のトロンビン様タンパクを該緩衝液に溶解し、次いで、該溶解液に磁性粒子を添加して最終溶液とした後、該最終溶液を任意の反応スライドに一定量分注し、凍結後、凍結乾燥する方法が採用できる。緩衝液はヘパリン中和剤及び/又は消泡剤をさらに含みうる。 To illustrate the method for preparing the dry fibrinogen quantitative reagent of the present invention, first, a buffer containing a fibrin monomer association inhibitor and an amino acid or a salt thereof or a saccharide is prepared, and then highly active thrombin or a highly active thrombin-like protein is prepared. is dissolved in the buffer solution, then magnetic particles are added to the solution to make a final solution, and a fixed amount of the final solution is dispensed onto any reaction slide, frozen, and then lyophilized. can. The buffer may further include a heparin neutralizing agent and/or an antifoaming agent.

上記調製方法において使用する反応スライドは、フィブリノゲン測定時、フィブリノゲン定量乾燥試薬内の粘度上昇を磁性粒子の運動シグナルの減衰として光学的にモニターできる反応スライドであれば、特に限られるものではない。例示すると、図1および図2に示すような反応スライドが挙げられる。図1は、反応スライドを上方から見た図である。図1の点線で囲んだ部分が、フィブリノゲン定量乾燥試薬を調製するための最終溶液の分注口と試料添加口とからなる反応セル部である。反応セル部の構造の詳細の図2に示す。まず、白色のポリエステル板Cにまず、透明色のポリエステル板Bを貼合わせ、次に、貼り合わせた透明色のポリエステル板Bの上にさらに透明色のポリエステル板Aを貼り合わせて反応セル部を構成する。まず、界面活性剤水溶液を図1に示す分注口から充填し、吸引除去することにより、Dの部分を親水化する。その後、フィブリノゲン定量乾燥試薬用最終溶液を該分注口から注入することで、Dの部分に該最終溶液が充填される。この種の反応スライドを使用した場合、通常上記のフィブリノゲン定量乾燥試薬用最終溶液を20~30μL分注することができる。このような磁性粒子を用いたフィブリノゲンの定量方法については、例えば特許文献2を参照のこと。参照によりその全内容を本明細書に組み入れる。 The reaction slide used in the above preparation method is not particularly limited as long as it can optically monitor the viscosity increase in the dry reagent for fibrinogen quantitative determination as attenuation of the motion signal of the magnetic particles during fibrinogen measurement. An example is a reaction slide as shown in FIGS. 1 and 2. FIG. 1 is a top view of the reaction slide. The part surrounded by the dotted line in FIG. 1 is a reaction cell part consisting of a final solution dispensing port and a sample addition port for preparing a fibrinogen quantitative dry reagent. FIG. 2 shows details of the structure of the reaction cell section. First, a transparent polyester plate B is laminated to a white polyester plate C, and then a transparent polyester plate A is laminated on top of the laminated transparent polyester plate B to form a reaction cell part. Configure. First, a surfactant aqueous solution is filled through the dispensing port shown in FIG. 1 and removed by suction to make the portion D hydrophilic. Thereafter, by injecting the final solution for fibrinogen quantitative dry reagent through the dispensing port, the portion D is filled with the final solution. When using this type of reaction slide, it is usually possible to dispense 20 to 30 μL of the final solution for the fibrinogen quantitative dry reagent described above. For a method for quantifying fibrinogen using such magnetic particles, see, for example, Patent Document 2. The entire contents of which are incorporated herein by reference.

図1に示すような反応スライドのことを、本明細書においてドライ試薬カードということがある。すなわち、ある実施形態において、本発明に係るフィブリノゲン定量乾燥試薬は、ドライ試薬カードに適用することができる。 A reaction slide as shown in FIG. 1 is sometimes referred to herein as a dry reagent card. That is, in one embodiment, the fibrinogen quantitative dry reagent according to the present invention can be applied to a dry reagent card.

ある実施形態において、本発明に係るフィブリノゲン定量乾燥試薬の乾燥試薬層は、好ましくは、(i)検体滴下後すみやかに溶解する。ある実施形態において、本発明に係るフィブリノゲン定量乾燥試薬の乾燥試薬層は、好ましくは、(ii)試薬間で、溶解速度に差がないか、又は実質的に差が無い。ある実施形態において、本発明に係るフィブリノゲン定量乾燥試薬の乾燥試薬層は、好ましくは、(iii)耐衝撃性(衝撃耐性ともいう)を有する。ある実施形態において、本発明に係るフィブリノゲン定量乾燥試薬は、好ましくは、(iv)乾燥試薬層が均一である。ある実施形態において、本発明に係るフィブリノゲン定量乾燥試薬は、好ましくは、(v)前記(i)~(iv)を満たすために添加する物質が反応に影響を及ぼさないか、又は実質的に反応に影響を及ぼさない。ある実施形態において、本発明に係るフィブリノゲン定量乾燥試薬は、(i)~(v)の全てを満たす。 In one embodiment, the dry reagent layer of the dry reagent for fibrinogen quantitative determination according to the present invention preferably (i) dissolves immediately after dropping the sample; In one embodiment, the dry reagent layer of the dry reagent for fibrinogen quantitative determination according to the present invention preferably has (ii) no or substantially no difference in dissolution rate between the reagents. In one embodiment, the dry reagent layer of the dry quantitative fibrinogen reagent according to the present invention preferably has (iii) impact resistance (also referred to as impact resistance). In one embodiment, the dried quantitative fibrinogen reagent according to the present invention preferably has (iv) a uniform dry reagent layer. In one embodiment, the fibrinogen quantitative dry reagent according to the present invention is preferably such that (v) the substance added to satisfy (i) to (iv) above does not affect the reaction or substantially does not affect the reaction. does not affect. In one embodiment, the fibrinogen quantitative drying reagent according to the present invention satisfies all of (i) to (v).

以下に述べるフィブリノゲン定量乾燥試薬中の各構成成分の含量は、特に断りがない限り、図1および図2に示した反応スライドに分注する最終溶液1mL当たりの重量および活性を示す。 The content of each component in the fibrinogen quantitative dry reagent described below indicates the weight and activity per mL of the final solution dispensed onto the reaction slides shown in Figures 1 and 2, unless otherwise specified.

ある実施形態において、本発明に係るフィブリノゲン定量乾燥試薬は、
(i)トロンビン又はトロンビン活性を有するタンパク質、
(ii) 磁性粒子、
(iii) フィブリンモノマー会合阻害剤、
(iv) カルシウム塩、
(v) 乾燥試薬層溶解性向上剤、
(vi) 乾燥試薬層補強材、及び
(vii) pH調整剤(pH緩衝剤)
を必須成分として含む。別の実施形態において、本発明に係るフィブリノゲン定量乾燥試薬は、さらに任意成分として、ヘパリン中和剤及び/又は消泡剤を含み得る。ある実施形態において、本発明に係るフィブリノゲン定量乾燥試薬は、無希釈の血漿又は全血検体を測定するためのものである。
In one embodiment, the dry fibrinogen quantitative reagent according to the present invention comprises:
(i) thrombin or a protein with thrombin activity;
(ii) magnetic particles;
(iii) a fibrin monomer association inhibitor;
(iv) calcium salts;
(v) a dry reagent layer solubility improver;
(vi) dry reagent layer reinforcing material, and
(vii) pH adjuster (pH buffer)
Contains as an essential ingredient. In another embodiment, the fibrinogen quantitative drying reagent according to the present invention may further include a heparin neutralizing agent and/or an antifoaming agent as an optional component. In one embodiment, the dry quantitative fibrinogen reagent of the present invention is for measuring undiluted plasma or whole blood specimens.

本明細書において「無希釈の全血」とは、採血された後の全血サンプルに、さらに希釈緩衝液を添加するなどの希釈操作を行っていない、全血をいう。したがって採血時に、採血管に含まれるクエン酸などにより血液が希釈されたとしても(このような血液を一般的にクエン酸加全血という)、採血後の全血に対して特段の希釈操作が行われていなければ、それは本明細書にいう無希釈の全血に該当するものとする。したがって無希釈の全血には、希釈操作の行われていないクエン酸加全血や、ヘパリン加全血が包含される。また本明細書において「無希釈の血漿」とは、無希釈の全血を遠心して得られる上清であって、さらに希釈緩衝液を添加するなどの希釈操作を行っていない、血漿をいう。したがって無希釈の血漿には、希釈操作の行われていないクエン酸加血漿や、ヘパリン加血漿が包含される。なお本明細書において、無希釈と未希釈は同義とする。 As used herein, "undiluted whole blood" refers to whole blood that has not been diluted, such as by adding a dilution buffer to the whole blood sample after it has been collected. Therefore, even if blood is diluted with citric acid contained in the blood collection tube during blood collection (such blood is generally referred to as citrated whole blood), special dilution procedures are not required for whole blood after blood collection. If not, it shall correspond to undiluted whole blood as referred to herein. Therefore, undiluted whole blood includes citrated whole blood that has not been diluted and heparinized whole blood. Furthermore, as used herein, "undiluted plasma" refers to plasma that is a supernatant obtained by centrifuging undiluted whole blood, without further dilution operations such as adding a dilution buffer. Therefore, undiluted plasma includes citrated plasma and heparinized plasma that have not been diluted. Note that in this specification, undiluted and undiluted have the same meaning.

ある実施形態において、本発明に係るフィブリノゲン定量乾燥試薬は、トロンビン又はトロンビン活性を有するタンパク質を含む。本明細書において、トロンビン活性を有するタンパク質をトロンビン様タンパク質ということがある。本明細書において、トロンビン活性とは、(i)フィブリノゲンのフィブリンモノマーへの変換、及び(ii)カルシウムイオンの存在下での、第XIII因子の、XIIIaへの活性化、の両方の反応を進めることができる活性をいう。また、このような活性を有するタンパク質をトロンビン活性を有するタンパク質という。ただし、これはある単一のタンパク質が前記の(i)及び(ii)の反応の両方を進めなければならないことを意味するものではない。すなわち、特定の実施形態では、トロンビン活性として、(i)フィブリノゲンのフィブリンモノマーへの変換反応を進める第1タンパク質と、(ii)第XIII因子のXIIIaへの活性化反応を進める第2タンパク質との混合物を使用することができる。第1タンパク質の例としては、ヘビトロンビン(ヘビ由来トロンビン様酵素)が挙げられる。第2タンパク質は、第XIII因子のAサブユニットのN末端から数えて37番目のアルギニンと38番目のグリシンの間を特異的に切断する作用を持つタンパク質が考えられる。トロンビン又はトロンビン活性を有するタンパク質としては、ウシトロンビン、ヒトトロンビン並びにそれらの組換え体が挙げられるが、これに限らない。ある実施形態において、トロンビン又はトロンビン活性を有するタンパク質は、ウシトロンビンであり得る。ウシトロンビンは凍結乾燥品として一般に市販され容易に入手できるものを使用しうる。また、トロンビン又はトロンビン活性を有するタンパク質としては、ヘビトロンビン(ヘビ由来トロンビン様酵素)と第XIII因子のAサブユニットのN末端から数えて37番目のアルギニンと38番目のグリシンの間を特異的に切断する作用を持つタンパク質との組み合わせが挙げられるが、これに限らない。本発明に係るフィブリノゲン定量乾燥試薬に含有させるトロンビン又はトロンビン活性を有するタンパク質の活性は特に限定されないが、ウシトロンビン活性量としては、例えば100~500NIHU/1mL最終溶液の範囲で選べば良いが、150~400NIHU/1mL最終溶液の範囲が好適である。 In one embodiment, the dry quantitative fibrinogen reagent of the present invention comprises thrombin or a protein with thrombin activity. In this specification, a protein having thrombin activity is sometimes referred to as a thrombin-like protein. As used herein, thrombin activity promotes both (i) the conversion of fibrinogen to fibrin monomer, and (ii) the activation of factor XIII to XIIIa in the presence of calcium ions. It refers to the activity that can be performed. Furthermore, a protein having such activity is referred to as a protein having thrombin activity. However, this does not mean that a single protein must proceed with both reactions (i) and (ii) above. That is, in a specific embodiment, the thrombin activity involves (i) a first protein that promotes the conversion reaction of fibrinogen to fibrin monomer, and (ii) a second protein that promotes the activation reaction of factor XIII to XIIIa. Mixtures can be used. An example of the first protein is snake thrombin (snake-derived thrombin-like enzyme). The second protein is thought to be a protein that specifically cleaves between arginine at position 37 and glycine at position 38 counting from the N-terminus of the A subunit of factor XIII. Thrombin or proteins having thrombin activity include, but are not limited to, bovine thrombin, human thrombin, and recombinants thereof. In certain embodiments, the thrombin or protein with thrombin activity can be bovine thrombin. Bovine thrombin that is generally commercially available as a freeze-dried product can be used. In addition, as thrombin or a protein with thrombin activity, snake thrombin (snake-derived thrombin-like enzyme) and factor Examples include, but are not limited to, combinations with proteins that have a cleaving effect. The activity of thrombin or a protein having thrombin activity to be contained in the dry reagent for quantitative determination of fibrinogen according to the present invention is not particularly limited, but the amount of bovine thrombin activity may be selected within the range of, for example, 100 to 500 NIHU/1 mL final solution; A range of ˜400 NIHU/1 mL final solution is preferred.

ある実施形態において、本発明に係るフィブリノゲン定量乾燥試薬は、磁性粒子を含む。本発明のフィブリノゲン定量乾燥試薬に用いる磁性粒子としては、公知のものを何ら制限なく使用することができる。磁性粒子としては、例えば、四三酸化鉄粒子、三二酸化鉄粒子、鉄粒子、コバルト粒子、ニッケル粒子、酸化クロム粒子等が挙げられるが、これに限らない。ある実施形態では、磁性粒子は四三酸化鉄の微粒子であり得る。すなわち特定の実施形態では、得られる磁性粒子の運動シグナルの強度の点で四三酸化鉄の微粒子が好適に使用される。磁性粒子の粒子径は、特に限定されないが、平均粒子径0.05~5μm、0.1~3.0μm、例えば0.25~0.5μmとすることができるが、これに限らない。ある実施形態では、磁性粒子は、平均粒子径が0.1~3.0μmのものであり得る。本明細書において平均粒子径とは、特に断らない限り、レーザー回折・散乱法により決定した粒度分布における積算値50%での粒径(D50)をいう。本発明に係るフィブリノゲン定量乾燥試薬に含有される磁性粒子の量は、特に限定されず、例えば4~40mg/1mL最終溶液の範囲が好適である。 In certain embodiments, the dry quantitative fibrinogen reagent of the present invention comprises magnetic particles. As the magnetic particles used in the fibrinogen quantitative drying reagent of the present invention, known magnetic particles can be used without any restrictions. Examples of the magnetic particles include, but are not limited to, triiron tetroxide particles, iron sesquioxide particles, iron particles, cobalt particles, nickel particles, and chromium oxide particles. In some embodiments, the magnetic particles can be triiron tetroxide microparticles. That is, in a specific embodiment, triiron tetroxide fine particles are preferably used in terms of the strength of the motion signal of the magnetic particles obtained. The particle size of the magnetic particles is not particularly limited, but may have an average particle size of 0.05 to 5 μm, 0.1 to 3.0 μm, for example, 0.25 to 0.5 μm, but is not limited thereto. In certain embodiments, the magnetic particles can have an average particle size of 0.1-3.0 μm. In this specification, the average particle diameter refers to the particle diameter (D50) at 50% of the integrated value in the particle size distribution determined by laser diffraction/scattering method, unless otherwise specified. The amount of magnetic particles contained in the dried quantitative fibrinogen reagent according to the present invention is not particularly limited, and is preferably in the range of 4 to 40 mg/1 mL final solution, for example.

ある実施形態において、本発明に係るフィブリノゲン定量乾燥試薬は、任意成分として、ヘパリン中和剤を含み得る。ヘパリン中和剤としては、公知のものを何ら制限なく使用することができ、例えばポリブレン、硫酸プロタミン、およびヘパリナーゼ等が挙げられるがこれに限らない。ある実施形態において、ヘパリン中和剤としては、保存安定性の良さ、価格面からポリブレンを好適に使用することができる。フィブリノゲン定量乾燥試薬に含有させるヘパリン中和剤の量としては、適宜設定すればよく、特に制限されない。ある実施形態においてヘパリン中和剤としてポリブレンを用いる場合、フィブリノゲン定量乾燥試薬に含有させるポリブレン量は、例えば50~300μg/1mL最終溶液の範囲が好適である。 In one embodiment, the dry quantitative fibrinogen reagent of the present invention may include a heparin neutralizing agent as an optional component. As the heparin neutralizing agent, any known agent can be used without any restriction, and examples thereof include, but are not limited to, polybrene, protamine sulfate, heparinase, and the like. In one embodiment, polybrene can be preferably used as the heparin neutralizing agent due to its good storage stability and cost. The amount of the heparin neutralizing agent contained in the fibrinogen quantitative drying reagent may be appropriately set and is not particularly limited. In one embodiment, when polybrene is used as a heparin neutralizing agent, the amount of polybrene contained in the dry quantitative fibrinogen reagent is preferably in the range of, for example, 50 to 300 μg/1 mL final solution.

本発明に係るフィブリノゲン定量乾燥試薬は、フィブリンモノマー会合阻害剤を含む。本発明のフィブリノゲン定量乾燥試薬に用いるフィブリンモノマー会合阻害剤は、公知のものが何ら制限なく使用できる。フィブリンモノマー会合阻害剤としては、例えば、GPRP(グリシン-プロリン-アルギニン-プロリン)ペプチドおよびその誘導体、例えばGPRP-アミド、GHRP(グリシン-ヒスチジン-アルギニン-プロリン)ペプチドおよびその誘導体、例えばGHRP-アミド等が挙げられるが、これに限らない。別の実施形態では、フィブリンモノマー会合阻害剤はGPRPA(グリシン-プロリン-アルギニン-プロリン-アラニン)ペプチドおよびその誘導体、例えばGPRPA-アミドであり得る。ある実施形態では、フィブリンモノマー会合阻害剤としては、フィブリノゲンに対する親和性の面でGPRPペプチドおよびその誘導体が好適である。該ペプチドは、フィブリノゲンにトロンビンが反応し、フィブリノゲンのα鎖からフィブリノペプチドAの遊離によって露出されるknob ‘A’のアナログであり、該ペプチドがknob‘A’の代わりにγ鎖に存在するhole‘a’に結合することにより、フィブリンモノマーの会合を阻害する(John WW:Mechanisms of fibrin polymerization and Clinical implications, Blood, 121(10), 1712-1719, 2013)。 The fibrinogen quantitative drying reagent according to the present invention contains a fibrin monomer association inhibitor. As the fibrin monomer association inhibitor used in the fibrinogen quantitative drying reagent of the present invention, any known inhibitor can be used without any restriction. Examples of fibrin monomer association inhibitors include GPRP (glycine-proline-arginine-proline) peptide and its derivatives, such as GPRP-amide, GHRP (glycine-histidine-arginine-proline) peptide and its derivatives, such as GHRP-amide, etc. Examples include, but are not limited to. In another embodiment, the fibrin monomer association inhibitor can be GPRPA (glycine-proline-arginine-proline-alanine) peptide and derivatives thereof, such as GPRPA-amide. In one embodiment, GPRP peptide and its derivatives are suitable as fibrin monomer association inhibitors in terms of their affinity for fibrinogen. The peptide is an analog of knob 'A' which is exposed by the release of fibrinopeptide A from the alpha chain of fibrinogen when thrombin reacts with fibrinogen, and the peptide is present in the gamma chain instead of knob 'A'. By binding to hole'a', it inhibits the association of fibrin monomers (John WW: Mechanisms of fibrin polymerization and clinical implications, Blood, 121(10), 1712-1719, 2013).

フィブリノゲン定量乾燥試薬に含有させるフィブリンモノマー会合阻害剤の量としては、適宜設定すればよく、特に制限されない。フィブリンモノマー会合阻害剤としてGPRPアミドを用いる場合、本発明のフィブリノゲン定量乾燥試薬に含有させるGPRPアミドの量としては、100~300μg/1mL最終溶液の範囲が好適である。 The amount of the fibrin monomer association inhibitor to be contained in the dry fibrinogen quantitative reagent may be set as appropriate and is not particularly limited. When GPRP amide is used as a fibrin monomer association inhibitor, the amount of GPRP amide contained in the fibrinogen quantitative drying reagent of the present invention is preferably in the range of 100 to 300 μg/1 mL final solution.

ある実施形態において、本発明に係るフィブリノゲン定量乾燥試薬は、カルシウム塩を含む。該乾燥試薬に用いるカルシウム塩は、公知のものが何ら制限なく使用できる。例えば、無機酸とカルシウムとの塩として、塩化カルシウム、亜硝酸カルシウム、硫酸カルシウム、および炭酸カルシウム等が挙げられる。また、有機酸とカルシウムとの塩としては、乳酸カルシウムおよび酒石酸カルシウム等が挙げられる。ある実施形態では、カルシウム塩として、塩化カルシウムが好適である。フィブリノゲン定量乾燥試薬に含有させるカルシウム塩の量は、適宜設定すればよく、特に制限されない。カルシウム塩として塩化カルシウム・2水和物を用いる場合、本発明のフィブリノゲン定量乾燥試薬に含有させる塩化カルシウム・2水和物量は、0.2~2mg/1mL最終溶液の範囲が好適である。 In certain embodiments, the dry quantitative fibrinogen reagent of the present invention comprises a calcium salt. As the calcium salt used in the dry reagent, any known calcium salt can be used without any restriction. Examples of salts of inorganic acids and calcium include calcium chloride, calcium nitrite, calcium sulfate, and calcium carbonate. Further, examples of salts of organic acids and calcium include calcium lactate and calcium tartrate. In certain embodiments, calcium chloride is suitable as the calcium salt. The amount of calcium salt contained in the dry reagent for quantitative determination of fibrinogen may be appropriately set and is not particularly limited. When calcium chloride dihydrate is used as the calcium salt, the amount of calcium chloride dihydrate contained in the fibrinogen quantitative drying reagent of the present invention is preferably in the range of 0.2 to 2 mg/1 mL final solution.

ある実施形態において、本発明に係るフィブリノゲン定量乾燥試薬は、乾燥試薬層溶解性向上剤を含む。乾燥試薬層溶解性向上剤としては、アミノ酸またはその塩もしくは糖類が挙げられる。本発明に用いるアミノ酸またはその塩もしくは糖類としては、中性アミノ酸若しくはその塩、酸性アミノ酸若しくはその塩、塩基性アミノ酸若しくはその塩、単糖類及び多糖類のいずれを使用しても良い。代表的な酸性アミノ酸若しくはその塩としては、グルタミン酸、グルタミン酸ナトリウム、アスパラギン酸、アスパラギン酸ナトリウム等が挙げられる。代表的な中性アミノ酸またはその塩としては、グリシン、グリシン塩酸塩、アラニン等が挙げられる。代表的な塩基性アミノ酸またはその塩としては、リジン、リジン塩酸塩、アルギニン等が挙げられる。さらに、単糖類としては、グルコース、フルクトース等が挙げられる。また、多糖類としては、ショ糖、乳糖、デキストリン等が挙げられる。そのうち、フィブリノゲン定量乾燥試薬に試料を添加した際の試薬の溶解性が良好な点、得られる磁性粒子の運動シグナルの再現性が良好な点、および耐衝撃性が良好な点から、グリシンが最も好ましい。すなわち、ある実施形態において、本発明に用いる乾燥試薬層溶解性向上剤はグリシンであり得る。 In one embodiment, the dry quantitative fibrinogen reagent of the present invention includes a dry reagent layer solubility enhancer. Examples of the dry reagent layer solubility improver include amino acids, salts thereof, and saccharides. As the amino acids, salts thereof, or saccharides used in the present invention, any of neutral amino acids or salts thereof, acidic amino acids or salts thereof, basic amino acids or salts thereof, monosaccharides, and polysaccharides may be used. Representative acidic amino acids or salts thereof include glutamic acid, sodium glutamate, aspartic acid, sodium aspartate, and the like. Representative neutral amino acids or salts thereof include glycine, glycine hydrochloride, alanine, and the like. Typical basic amino acids or salts thereof include lysine, lysine hydrochloride, arginine, and the like. Furthermore, examples of monosaccharides include glucose, fructose, and the like. Further, examples of polysaccharides include sucrose, lactose, dextrin, and the like. Among these, glycine is the most preferred because of its good solubility when the sample is added to the dry fibrinogen quantitative reagent, its good reproducibility of the motion signal of the obtained magnetic particles, and its good impact resistance. preferable. That is, in certain embodiments, the dry reagent layer solubility enhancer used in the present invention may be glycine.

本発明に用いるフィブリノゲン定量乾燥試薬に含有させる乾燥試薬層溶解性向上剤、例えばアミノ酸またはその塩もしくは糖類の量は、適宜設定すればよく、特に制限されない。ある実施形態において、乾燥試薬層溶解性向上剤としてグリシンを用いる場合、本発明のフィブリノゲン定量乾燥試薬に含有させるグリシン量は、1.5重量%以上、1.6重量%以上、1.7重量%以上、1.8重量%以上、1.9重量%以上、2.0重量%以上、2.1重量%以上、2.2重量%以上、2.3重量%以上、2.4重量%以上、2.5重量%以上、2.6重量%以上、2.7重量%以上、2.8重量%以上、2.9重量%以上、3.0重量%以上、3.1重量%以上、3.2重量%以上、3.3重量%以上、3.4重量%以上、3.5重量%以上、3.6重量%以上、3.7重量%以上、3.8重量%以上、3.9重量%以上、4.0重量%以上、4.1重量%以上、4.2重量%以上、4.3重量%以上、4.4重量%以上、4.5重量%以上、4.6重量%以上、4.7重量%以上、4.8重量%以上、4.9重量%以上、例えば5.0重量%とすることができる。ある実施形態において、乾燥試薬層溶解性向上剤としてグリシンを用いる場合、本発明のフィブリノゲン定量乾燥試薬に含有させるグリシン量は、5.0重量%以下、4.9重量%以下、4.8重量%以下、4.7重量%以下、4.6重量%以下、4.5重量%以下、4.4重量%以下、4.3重量%以下、4.2重量%以下、4.1重量%以下、4.0重量%以下、3.9重量%以下、3.8重量%以下、3.7重量%以下、3.6重量%以下、3.5重量%以下、3.4重量%以下、3.3重量%以下、3.2重量%以下、3.1重量%以下、3.0重量%以下、2.9重量%以下、2.8重量%以下、2.7重量%以下、2.6重量%以下、2.5重量%以下、2.4重量%以下、2.3重量%以下、2.2重量%以下、2.1重量%以下、2.0重量%以下、1.9重量%以下、1.8重量%以下、1.7重量%以下、1.6重量%以下、例えば1.5重量%とすることができる。本明細書において、本発明のフィブリノゲン定量乾燥試薬に含有させるグリシン量は下限値と上限値とを、前記のいずれかの値に設定した、あらゆる組合せを包含する。例えばある実施形態において、本発明のフィブリノゲン定量乾燥試薬に含有させるグリシン量は1.5~5.0重量%、2.0~5.0重量%、2.5~5.0重量%、3.0~5.0重量%、3.5~5.0重量%、4.0~5.0重量%、4.5~5.0重量%、1.5~4.5重量%、2.0~4.5重量%、2.5~4.5重量%、3.0~4.5重量%、3.5~4.5重量%、4.0~4.5重量%、1.5~4.0重量%、2.0~4.0重量%、2.5~4.0重量%、3.0~4.0重量%、3.5~4.0重量%、1.5~3.5重量%、2.0~3.5重量%、2.5~3.5重量%、3.0~3.5重量%、1.5~3.0重量%、2.0~3.0重量%、2.5~3.0重量%、1.5~2.5重量%、2.0~2.5重量%、又は1.5~2.0重量%とし得る。ある実施形態において、乾燥試薬層溶解性向上剤としてグリシンを用いる場合、本発明のフィブリノゲン定量乾燥試薬に含有させるグリシン量は1.5~4.0重量%の範囲が好適である。別の実施形態において、乾燥試薬層溶解性向上剤としてグリシンを用いる場合、本発明のフィブリノゲン定量乾燥試薬に含有させるグリシン量は2.0~3.0重量%の範囲が好適である。無希釈血漿を測定する場合は、乾燥試薬層溶解性向上剤としてグリシンを用いる場合、本発明のフィブリノゲン定量乾燥試薬に含有させるグリシン量は、上記の範囲、例えば1.5%~4.0重量%とすることができる。無希釈全血を測定する場合は、乾燥試薬層溶解性向上剤としてグリシンを用いる場合、本発明のフィブリノゲン定量乾燥試薬に含有させるグリシン量は、上記の範囲、例えば1.5重量%以上とすることができる。例えば無希釈全血を測定する場合において、乾燥試薬層溶解性向上剤としてグリシンを用いるとき、本発明のフィブリノゲン定量乾燥試薬に含有させるグリシン量は、1.5~5.0重量%、1.5~4.5重量%、例えば1.5~4.0重量%とすることができる。無希釈血漿でも無希釈全血でも測定可能とする場合には、乾燥試薬層溶解性向上剤としてグリシンを用いる場合、本発明のフィブリノゲン定量乾燥試薬に含有させるグリシン量は、これらの範囲の種々の組み合わせでもよい。なお、本明細書において重量%は、特に断らない限り、最終溶液における濃度、すなわち終濃度である。 The amount of the dry reagent layer solubility improver, such as an amino acid, a salt thereof, or a saccharide, to be contained in the dry fibrinogen quantitative dry reagent used in the present invention may be appropriately determined and is not particularly limited. In one embodiment, when glycine is used as a dry reagent layer solubility improver, the amount of glycine contained in the dry fibrinogen quantitative dry reagent of the present invention is 1.5% by weight or more, 1.6% by weight or more, 1.7% by weight. % or more, 1.8 wt% or more, 1.9 wt% or more, 2.0 wt% or more, 2.1 wt% or more, 2.2 wt% or more, 2.3 wt% or more, 2.4 wt% 2.5% by weight or more, 2.6% by weight or more, 2.7% by weight or more, 2.8% by weight or more, 2.9% by weight or more, 3.0% by weight or more, 3.1% by weight or more , 3.2% by weight or more, 3.3% by weight or more, 3.4% by weight or more, 3.5% by weight or more, 3.6% by weight or more, 3.7% by weight or more, 3.8% by weight or more, 3.9% by weight or more, 4.0% by weight or more, 4.1% by weight or more, 4.2% by weight or more, 4.3% by weight or more, 4.4% by weight or more, 4.5% by weight or more, 4 The content may be .6% by weight or more, 4.7% by weight or more, 4.8% by weight or more, 4.9% by weight or more, for example, 5.0% by weight. In one embodiment, when glycine is used as the dry reagent layer solubility improver, the amount of glycine contained in the dry fibrinogen quantitative dry reagent of the present invention is 5.0% by weight or less, 4.9% by weight or less, 4.8% by weight % or less, 4.7% by weight or less, 4.6% by weight or less, 4.5% by weight or less, 4.4% by weight or less, 4.3% by weight or less, 4.2% by weight or less, 4.1% by weight 4.0% by weight or less, 3.9% by weight or less, 3.8% by weight or less, 3.7% by weight or less, 3.6% by weight or less, 3.5% by weight or less, 3.4% by weight or less , 3.3% by weight or less, 3.2% by weight or less, 3.1% by weight or less, 3.0% by weight or less, 2.9% by weight or less, 2.8% by weight or less, 2.7% by weight or less, 2.6% by weight or less, 2.5% by weight or less, 2.4% by weight or less, 2.3% by weight or less, 2.2% by weight or less, 2.1% by weight or less, 2.0% by weight or less, 1 It can be .9% by weight or less, 1.8% by weight or less, 1.7% by weight or less, 1.6% by weight or less, for example 1.5% by weight. In this specification, the amount of glycine contained in the fibrinogen quantitative drying reagent of the present invention includes all combinations in which the lower limit and upper limit are set to any of the above values. For example, in certain embodiments, the amount of glycine contained in the dry quantitative fibrinogen reagent of the present invention is 1.5 to 5.0% by weight, 2.0 to 5.0% by weight, 2.5 to 5.0% by weight, 3 .0 to 5.0% by weight, 3.5 to 5.0% by weight, 4.0 to 5.0% by weight, 4.5 to 5.0% by weight, 1.5 to 4.5% by weight, 2 .0 to 4.5% by weight, 2.5 to 4.5% by weight, 3.0 to 4.5% by weight, 3.5 to 4.5% by weight, 4.0 to 4.5% by weight, 1 .5-4.0% by weight, 2.0-4.0% by weight, 2.5-4.0% by weight, 3.0-4.0% by weight, 3.5-4.0% by weight, 1 .5 to 3.5% by weight, 2.0 to 3.5% by weight, 2.5 to 3.5% by weight, 3.0 to 3.5% by weight, 1.5 to 3.0% by weight, 2 .0 to 3.0% by weight, 2.5 to 3.0% by weight, 1.5 to 2.5% by weight, 2.0 to 2.5% by weight, or 1.5 to 2.0% by weight. obtain. In one embodiment, when glycine is used as the dry reagent layer solubility improver, the amount of glycine contained in the dry quantitative fibrinogen reagent of the present invention is preferably in the range of 1.5 to 4.0% by weight. In another embodiment, when glycine is used as the dry reagent layer solubility enhancer, the amount of glycine contained in the dry quantitative fibrinogen reagent of the present invention is preferably in the range of 2.0 to 3.0% by weight. When measuring undiluted plasma, when glycine is used as a solubility enhancer in the dry reagent layer, the amount of glycine to be contained in the dry fibrinogen quantitative dry reagent of the present invention is within the above range, for example, 1.5% to 4.0% by weight. %. When measuring undiluted whole blood, when glycine is used as a solubility enhancer in the dry reagent layer, the amount of glycine contained in the dry fibrinogen quantitative dry reagent of the present invention is within the above range, for example, 1.5% by weight or more. be able to. For example, when measuring undiluted whole blood and using glycine as a dry reagent layer solubility enhancer, the amount of glycine to be contained in the dry fibrinogen quantitative dry reagent of the present invention is 1.5 to 5.0% by weight, 1. It can be 5 to 4.5% by weight, for example 1.5 to 4.0% by weight. If measurement is possible with undiluted plasma or undiluted whole blood, and if glycine is used as a solubility enhancer in the dry reagent layer, the amount of glycine to be contained in the dry reagent for fibrinogen quantitative determination of the present invention may vary within these ranges. A combination is also possible. Note that in this specification, % by weight refers to the concentration in the final solution, that is, the final concentration, unless otherwise specified.

ある実施形態において、本発明に係るフィブリノゲン定量乾燥試薬は、pH緩衝剤(pH調整剤ともいう)を含む。凍結乾燥に先立ち、トロンビン活性を有するタンパク、磁性粒子、ヘパリン中和剤、フィブリンモノマー会合阻害剤、カルシウム塩、乾燥試薬層溶解性向上剤を含有させる緩衝液は、pH=6.0~8.0の間で緩衝作用があるものであれば特に限定されない。ある実施形態においてpH調整剤(pH緩衝剤)は、試薬のpHをpH6.0~pH8.0、例えばpH約7.35やpH約7.5に調整するものであり得る。緩衝剤としては、例示すれば、40mM HEPES緩衝液(pH=7.35)または40mM Tris-HCl緩衝液(pH=7.5)等が好適なものとして挙げられる。 In one embodiment, the dry quantitative fibrinogen reagent of the present invention includes a pH buffer (also referred to as a pH adjuster). Prior to freeze-drying, a buffer containing a protein with thrombin activity, magnetic particles, a heparin neutralizer, a fibrin monomer association inhibitor, a calcium salt, and a dry reagent layer solubility enhancer is prepared at a pH between 6.0 and 8.0. It is not particularly limited as long as it has a buffering effect. In certain embodiments, the pH adjusting agent (pH buffering agent) can adjust the pH of the reagent from pH 6.0 to pH 8.0, such as about pH 7.35 or about pH 7.5. Suitable examples of the buffer include 40mM HEPES buffer (pH=7.35) and 40mM Tris-HCl buffer (pH=7.5).

ある実施形態において、本発明に係るフィブリノゲン定量乾燥試薬は、乾燥試薬層補強材を含む。乾燥試薬層補強材としては、ウシ血清アルブミン、ヒト血清アルブミンなどが挙げられるが、これに限らない。該定量乾燥試薬に含有させる乾燥試薬層補強材の量は、乾燥試薬層補強材としてウシ血清アルブミンを使用する場合、0.6~2.0mg/1mL最終溶液の範囲が好適である。 In some embodiments, the dry quantitative fibrinogen reagent of the present invention includes a dry reagent layer reinforcement. Examples of the dry reagent layer reinforcing material include, but are not limited to, bovine serum albumin, human serum albumin, and the like. When bovine serum albumin is used as the dry reagent layer reinforcing material, the amount of the dry reagent layer reinforcing material contained in the quantitative dry reagent is preferably in the range of 0.6 to 2.0 mg/1 mL final solution.

ある実施形態において、本発明に係るフィブリノゲン定量乾燥試薬は、任意成分として、消泡剤を含み得る。消泡剤としては、ソルビタンモノラウレート、シリコーン系消泡剤、ポリプロピレングリコール系消泡剤が挙げられるが、これに限らない。該定量乾燥試薬に含有させる消泡剤の量は、消泡剤としてソルビタンモノラウレートを使用する場合、約0.001~約0.010重量%の範囲が好適である。 In one embodiment, the dry fibrinogen quantitative reagent according to the present invention may include an antifoaming agent as an optional component. Examples of antifoaming agents include, but are not limited to, sorbitan monolaurate, silicone antifoaming agents, and polypropylene glycol antifoaming agents. When sorbitan monolaurate is used as the antifoaming agent, the amount of the antifoaming agent contained in the quantitative drying reagent is preferably in the range of about 0.001 to about 0.010% by weight.

上記の成分を含む緩衝液溶液の乾燥方法は、フィブリノゲン定量乾燥試薬の溶解性、得られる磁性粒子の運動シグナルの強度、再現性の点から凍結乾燥法が好ましい。風乾による乾燥では、試薬の溶解性が悪いため、磁性粒子の運動シグナルが弱く終点の検知が難しい。また、風乾試薬の場合、たとえ終点を見いだせたとしても終点から求められる凝固時間がフィブリノゲン濃度に対応しない場合も生じる。 As a method for drying a buffer solution containing the above-mentioned components, a freeze-drying method is preferable from the viewpoint of the solubility of the fibrinogen quantitative drying reagent, the strength of the motion signal of the obtained magnetic particles, and the reproducibility. When drying by air drying, the solubility of the reagent is poor, so the motion signal of the magnetic particles is weak, making it difficult to detect the end point. Furthermore, in the case of an air-dried reagent, even if an end point is found, the coagulation time determined from the end point may not correspond to the fibrinogen concentration.

凍結および凍結乾燥法は特に限定されない。例示すると、フィブリノゲン定量乾燥試薬用最終溶液を図1に示した分注口から反応スライドに分注した後、該反応スライドを-40℃以下に保温したフリーザーに一昼夜保管して凍結する、または棚温を-40℃以下にした凍結乾燥機に該反応スライドをセットし、一昼夜保管して凍結する、あるいは、該反応スライドを液体窒素で瞬間凍結する等の一般的な凍結方法が使用できる。また、凍結した反応スライドの凍結乾燥法も特に限定されない。凍結乾燥法を例示すると、凍結した反応スライドを真空状態で-30℃から-20℃まで24時間で直線的に温度上昇させた後、次いで、-20℃から30℃まで20時間で直線的に温度上昇させ、最後に30℃で3時間保った後、乾燥空気で真空解除する方法が挙げられる。 Freezing and freeze-drying methods are not particularly limited. For example, after dispensing the final solution for fibrinogen quantitative dry reagent onto a reaction slide from the dispensing port shown in Figure 1, the reaction slide is stored overnight in a freezer kept below -40°C and frozen, or frozen on a shelf. General freezing methods can be used, such as setting the reaction slide in a freeze dryer at a temperature of -40°C or lower and storing it overnight to freeze, or flash-freezing the reaction slide with liquid nitrogen. Furthermore, the method of freeze-drying frozen reaction slides is not particularly limited. To illustrate the freeze-drying method, frozen reaction slides are ramped linearly in vacuum from -30°C to -20°C in 24 hours, then linearly from -20°C to 30°C in 20 hours. One method is to raise the temperature, hold it at 30°C for 3 hours, and then release the vacuum using dry air.

上記凍結乾燥後のフィブリノゲン定量乾燥試薬は、直ちに、除湿された環境下で、アルミフィルムで密封することが好ましい。該除湿された環境は特に制限されないが、22~27℃の室温で相対湿度を35%以下とした環境が好ましい。また、アルミフィルムの仕様は特に制限されないが、ポリエステルフィルム(厚さ12μm)、ポリエチレン樹脂(厚さ15μm)、アルミニウム箔(厚さ9μm)、ポリエチレン樹脂(厚さ20μm)、ポリエチレンフィルム(厚さ30μm)をACコート剤で接着させた5層構造のアルミフィルム(厚さ86μm)が望ましい。該アルミフィルムでフィブリノゲン定量乾燥試薬全体を包容し、熱溶着で密封する。フィブリノゲン定量乾燥試薬は、それを用いてフィブリノゲン定量するまで、密封された状態で冷蔵保存することが好ましい。 It is preferable that the freeze-dried fibrinogen quantitative drying reagent is immediately sealed with an aluminum film in a dehumidified environment. The dehumidified environment is not particularly limited, but an environment with a room temperature of 22 to 27°C and a relative humidity of 35% or less is preferable. In addition, the specifications of the aluminum film are not particularly limited, but include polyester film (thickness 12 μm), polyethylene resin (thickness 15 μm), aluminum foil (thickness 9 μm), polyethylene resin (thickness 20 μm), polyethylene film (thickness 30 μm). ) is preferably a 5-layer aluminum film (thickness: 86 μm) bonded with an AC coating agent. The entire dry fibrinogen quantitative reagent is enclosed in the aluminum film and sealed by heat welding. The dry fibrinogen quantitative determination reagent is preferably stored refrigerated in a sealed state until it is used to quantify fibrinogen.

本発明のフィブリノゲン定量乾燥試薬を用いてのフィブリノゲン定量は、検体を試薬に添加して試薬を溶解させた後、振動磁場と静止永久磁場の組合せをかけて試薬中に含有された磁性粒子を運動させ、該磁性粒子の運動シグナルを散乱光の変化量として捉え、その経時的変化から凝固点を検出し、起点(凝固反応開始点)から該凝固点までの時間を凝固時間として算出する装置を用いて行うことができる。得られる凝固時間は、検体中フィブリノゲン濃度に相関する。 Fibrinogen quantification using the dry reagent for fibrinogen quantification of the present invention involves adding a sample to the reagent and dissolving the reagent, and then applying a combination of an oscillating magnetic field and a stationary permanent magnetic field to move the magnetic particles contained in the reagent. Using a device that captures the motion signal of the magnetic particles as the amount of change in scattered light, detects the freezing point from the change over time, and calculates the time from the starting point (the starting point of the coagulation reaction) to the freezing point as the coagulation time. It can be carried out. The clotting time obtained correlates with the fibrinogen concentration in the specimen.

該凝固時間を利用してのクエン酸加血漿中のフィブリノゲン定量法は特に限定されない。代表的な例を示すと、まず、フィブリノゲン濃度が既知で且つ濃度の異なる3種類のクエン酸加血漿を試料として上記の方法で測定し、それぞれのクエン酸加血漿に対応する凝固時間を得た後、それを基に検量線を予め作成しておく。次いで、任意のクエン酸加血漿を試料として上記の方法で測定し、凝固時間を得た後、前出の作成した検量線を使用して任意のクエン酸加血漿のフィブリノゲン濃度を見出す方法が挙げられる。該方法に使用される検量線はY軸をLN(フィブリノゲン濃度)とし、X軸をLN(凝固時間)とした直線回帰式が好適である。得られる直線回帰式は、一次式(Y=A×X+B)となり、任意のクエン酸加血漿のフィブリノゲン濃度は、一次式の傾き(A)と切片(B)に基づいて、下記の式で算出される。 The method for quantifying fibrinogen in citrated plasma using the clotting time is not particularly limited. To give a typical example, first, three types of citrated plasma with known fibrinogen concentrations and different concentrations were measured using the above method as samples, and the clotting time corresponding to each citrated plasma was obtained. After that, a calibration curve is created in advance based on this. Next, after measuring any citrated plasma using the above method as a sample and obtaining the clotting time, the fibrinogen concentration of any citrated plasma can be found using the calibration curve created above. It will be done. The calibration curve used in this method is preferably a linear regression equation in which the Y axis is LN (fibrinogen concentration) and the X axis is LN (coagulation time). The resulting linear regression equation is a linear equation (Y=A×X+B), and the fibrinogen concentration of any citrated plasma can be calculated using the following equation based on the slope (A) and intercept (B) of the linear equation. be done.

[数1]
任意のクエン酸加血漿中のフィブリノゲン濃度=eB ×(凝固時間)A
[Number 1]
Fibrinogen concentration in any citrated plasma = e B × (clotting time) A

本発明のフィブリノゲン定量乾燥試薬を用いてのフィブリノゲン定量に使用できる装置を例示すると、血液凝固分析装置CG02N((株)エイアンドティー製)等が挙げられる。尚、当装置は、起点(凝固反応開始点)以降で得られる磁性粒子の運動シグナルのピーク値に対して30%減衰した点を凝固点とし、起点(凝固反応開始点)から該凝固点までの時間を凝固時間として用いることができる。また、起点は、一定の時間間隔の磁性粒子運動シグナル比を連続的に算出し、その比が一定の範囲内で一定時間保たれた区間の先頭の点とすることができる。 Examples of devices that can be used for fibrinogen quantification using the fibrinogen quantification dry reagent of the present invention include blood coagulation analyzer CG02N (manufactured by A&T Co., Ltd.). In addition, in this device, the point at which the peak value of the motion signal of the magnetic particles attenuated by 30% obtained after the starting point (the starting point of the coagulating reaction) is defined as the freezing point, and the time from the starting point (the starting point of the coagulating reaction) to the freezing point is defined as the freezing point. can be used as the solidification time. Further, the starting point can be the starting point of an interval in which the magnetic particle motion signal ratio is continuously calculated at a certain time interval and the ratio is maintained within a certain range for a certain period of time.

検体中フィブリノゲン濃度は、通常、クエン酸加血漿中のフィブリノゲン濃度として表現される。全血検体は血漿成分だけではなく血球成分が含まれているため、全血検体を試料としてフィブリノゲン定量する場合には、該検体のヘマトクリット値を考慮する必要がある。つまり、全血検体を試料とする場合は、全血測定で得られた凝固時間から換算されたフィブリノゲン濃度に対しヘマトクリット補正式で補正を行い、検体中フィブリノゲン濃度を算出する必要がある。また、クエン酸加全血の場合は、クエン酸ナトリウム溶液1容に対して全血9容を添加・混和して測定試料が得られるのに対して、ヘパリン加全血の場合は、ヘパリンナトリウムあるいはヘパリンリチウムの粉末に対して全血を添加・混和して測定試料が得られるので、適用するヘマトクリット補正式は、クエン酸加全血の場合とヘパリン加全血の場合とで異なる。具体的には、クエン酸加全血を試料とした場合の検体中フィブリノゲン濃度は、以下の補正式で算出される。 The fibrinogen concentration in the specimen is usually expressed as the fibrinogen concentration in citrated plasma. Since a whole blood sample contains not only plasma components but also blood cell components, when fibrinogen is quantified using a whole blood sample as a sample, it is necessary to consider the hematocrit value of the sample. That is, when a whole blood specimen is used as a sample, it is necessary to correct the fibrinogen concentration converted from the clotting time obtained by whole blood measurement using a hematocrit correction formula to calculate the fibrinogen concentration in the specimen. In addition, in the case of citrated whole blood, the measurement sample is obtained by adding and mixing 9 volumes of whole blood to 1 volume of sodium citrate solution, whereas in the case of heparinized whole blood, heparin sodium Alternatively, since a measurement sample is obtained by adding and mixing whole blood to lithium heparin powder, the hematocrit correction formula to be applied differs depending on whether citrated whole blood is used or heparinized whole blood is used. Specifically, the fibrinogen concentration in the sample when citrated whole blood is used as a sample is calculated using the following correction formula.

[数2]
検体中フィブリノゲン濃度
=クエン酸加全血におけるフィブリノゲン濃度×(100/(100-ヘマトクリット値×0.9))
[Number 2]
Fibrinogen concentration in specimen = Fibrinogen concentration in citrated whole blood x (100/(100 - hematocrit value x 0.9))

また、ヘパリン加全血を試料とした場合の検体中フィブリノゲン濃度は、以下の補正式で算出される。 Furthermore, the fibrinogen concentration in the sample when heparinized whole blood is used as a sample is calculated using the following correction formula.

[数3]
検体中フィブリノゲン濃度
=ヘパリン加全血におけるフィブリノゲン濃度×0.9×(100/(100-ヘマトクリット値))
[Number 3]
Fibrinogen concentration in specimen = fibrinogen concentration in heparinized whole blood x 0.9 x (100/(100 - hematocrit value))

なお、クエン酸加全血を測定試料とし、クエン酸加全血を用いてヘマトクリット値を求めた場合の検体中フィブリノゲン濃度は、以下の補正式で算出される。 Note that when citrated whole blood is used as a measurement sample and the hematocrit value is determined using citrated whole blood, the fibrinogen concentration in the sample is calculated using the following correction formula.

[数4]
検体中フィブリノゲン濃度
=クエン酸加全血におけるフィブリノゲン濃度×(100/(100-ヘマトクリット値))
[Number 4]
Fibrinogen concentration in specimen = Fibrinogen concentration in citrated whole blood x (100/(100 - hematocrit value))

本発明の方法を用いてフィブリノゲンを定量した結果と従来法であるClauss法によりフィブリノゲンを定量した結果とは極めて良く一致する。さらに、再現性も好成績が得られ、無希釈血漿または無希釈全血を試料とした場合でも、信頼性のある定量を可能ならしめた。 The results of fibrinogen quantification using the method of the present invention and the results of fibrinogen quantification using the conventional Clauss method are in very good agreement. Furthermore, good results were obtained in reproducibility, making reliable quantification possible even when undiluted plasma or undiluted whole blood was used as a sample.

本発明により、試薬の調製や検体の希釈操作を必要とすることなく、迅速、かつ正確にフィブリノゲンを定量することができる。本発明は、周産期及び周術期での使用に耐えうるフィブリノゲン定量乾燥試薬を提供する。すなわちある実施形態では、本発明に係るフィブリノゲン定量乾燥試薬は周産期の患者用である。別の実施形態において、本発明に係るフィブリノゲン定量乾燥試薬は周術期の患者用である。なお、本明細書において周産期とは、妊娠22週から出生後7日未満をいう。これは国際疾病分類第10版における周産期の定義に即したものである。また本明細書において周術期とは、手術に必要な3つの段階、術前、術中、術後を含む期間をいう。 According to the present invention, fibrinogen can be rapidly and accurately quantified without requiring reagent preparation or sample dilution operations. The present invention provides a dry quantitative fibrinogen reagent that can withstand use in the perinatal and perioperative periods. That is, in one embodiment, the dry quantitative fibrinogen reagent of the present invention is for use in perinatal patients. In another embodiment, the fibrinogen quantitative dry reagent of the present invention is for use in perioperative patients. In this specification, the perinatal period refers to the period from 22 weeks of pregnancy to less than 7 days after birth. This is in line with the definition of the perinatal period in the 10th edition of the International Classification of Diseases. In this specification, the perioperative period refers to a period including the three stages necessary for surgery: preoperative, intraoperative, and postoperative.

本発明を一般的に説明に説明してきたが、以下の具体的な実施例を参照することによりさらに本発明を理解することができる。ここに示す実施例は説明及び例示のみを目的とするものであり、本発明を何ら限定するものではない。 While the invention has been generally described and illustrated, it may be further understood by reference to the following specific examples. The examples presented herein are for purposes of illustration and illustration only and are not intended to limit the invention in any way.

[実施例1 血漿中フィブリノゲン濃度と凝固時間の相関性]
10mM CaCl2・2H2O、2.0(wt/v)%グリシン、80μg/mLポリブレン、1.2mg/mLウシ血清アルブミン、0.005(wt/v)%ソルビタンモノラウレート、および150μg/mL GPRP-アミドを含有させた40mM HEPES緩衝液(pH 7.35)をウシトロンビン凍結乾燥品(オリエンタル酵母製)に添加し、溶解させて、300NIHU/mLのトロンビン活性を有する試薬液を得た。該試薬液35mLに対して、四三酸化鉄(製品名AAT-03;平均粒子径0.35μm;戸田工業製)0.47gを添加し、懸濁させて、最終溶液を得た。該最終溶液25μLを図1に示す反応スライドに分注した。該反応スライドを-40℃に保温したフリーザーに一昼夜保管して凍結した。次いで、凍結した反応スライドを凍結乾燥した。凍結乾燥の条件は、真空状態で-30℃から-20℃まで24時間で直線的に温度上昇させた後、-20℃から30℃まで20時間で直線的に温度上昇させ、最後に30℃で3時間保った後、乾燥空気で真空解除する方法により行った。凍結乾燥試薬は、直ちに除湿された環境下で、アルミフィルムに密封した。
[Example 1 Correlation between plasma fibrinogen concentration and clotting time]
10mM CaCl2.2H2O , 2.0 (wt/v)% glycine, 80 μg/mL polybrene, 1.2 mg/mL bovine serum albumin, 0.005 (wt/ v )% sorbitan monolaurate, and 150 μg/mL GPRP-amide. The containing 40mM HEPES buffer (pH 7.35) was added to lyophilized bovine thrombin (manufactured by Oriental Yeast) and dissolved to obtain a reagent solution having thrombin activity of 300 NIHU/mL. To 35 mL of the reagent solution, 0.47 g of triiron tetroxide (product name AAT-03; average particle size 0.35 μm; manufactured by Toda Kogyo) was added and suspended to obtain a final solution. 25 μL of the final solution was dispensed onto the reaction slide shown in FIG. The reaction slide was stored overnight in a freezer kept at -40°C and frozen. The frozen reaction slides were then lyophilized. The conditions for freeze-drying were to linearly increase the temperature from -30℃ to -20℃ in 24 hours in a vacuum, then linearly increase the temperature from -20℃ to 30℃ in 20 hours, and finally to 30℃. After keeping it for 3 hours, the vacuum was released with dry air. The lyophilized reagents were immediately sealed in aluminum film in a dehumidified environment.

血漿中フィブリノゲン濃度と凝固時間との相関性を調べる方法は、以下のように行った。先ず、299mg/dLのフィブリノゲンを含有するヒト血漿と、フィブリノゲン欠乏血漿(Clinisys Associate社製)とを使用して48~299mg/dLまでのヒト血漿6種類の希釈系列を作製した。次いで、血液凝固分析装置CG02N((株)エイアンドティー製)に上記凍結乾燥試薬をセットし、希釈系列の検体を25μL添加して、各々の検体の凝固時間を求めた。最後に、Y軸をLN(フィブリノゲン濃度)とし、X軸をLN(凝固時間)としてデータをプロットし、作製したグラフに直線性が見られるか否かで相関性の有無を調べた。 The correlation between plasma fibrinogen concentration and coagulation time was investigated as follows. First, six dilution series of human plasma ranging from 48 to 299 mg/dL were prepared using human plasma containing 299 mg/dL of fibrinogen and fibrinogen-deficient plasma (manufactured by Clinisys Associate). Next, the above freeze-dried reagent was set in a blood coagulation analyzer CG02N (manufactured by A&T Co., Ltd.), 25 μL of diluted samples were added, and the clotting time of each sample was determined. Finally, the data was plotted with the Y axis as LN (fibrinogen concentration) and the X axis as LN (coagulation time), and the presence or absence of a correlation was examined by checking whether linearity was observed in the created graph.

図3に血漿中フィブリノゲン濃度と凝固時間の相関図を示す。図3からわかる通り、得られる凝固時間と検体中フィブリノゲン濃度との間に極めて良好な相関性が認められた。 FIG. 3 shows a correlation diagram between plasma fibrinogen concentration and coagulation time. As can be seen from FIG. 3, an extremely good correlation was observed between the obtained clotting time and the fibrinogen concentration in the sample.

[実施例2 得られる血漿中フィブリノゲン濃度の特異性と再現性]
フィブリノゲン定量乾燥試薬を実施例1の凍結乾燥試薬とし、フィブリノゲンを定量する装置として血液凝固分析装置CG02N((株)エイアンドティー製)を使用して、得られる血漿中フィブリノゲン濃度の特異性と再現性を調べた。
[Example 2 Specificity and reproducibility of obtained plasma fibrinogen concentration]
The specificity and reproducibility of the obtained plasma fibrinogen concentration was determined by using the lyophilized reagent for fibrinogen quantitative determination as the freeze-dried reagent in Example 1 and using a blood coagulation analyzer CG02N (manufactured by A&T Co., Ltd.) as a device for quantifying fibrinogen. Examined.

CG02Nに上記試薬をセットし、フィブリノゲン濃度既知の血漿検体を25μL添加して、凝固時間を求めた。4種類の血漿検体についてそれぞれ5回行った。実施例1の結果から、当凍結乾燥試薬の検量線は、LN(フィブリノゲン濃度)=-0.7606×LN(凝固時間)+7.01であることから、以下の式で、得られた凝固時間をフィブリノゲン濃度に換算した。 The above reagents were set in CG02N, 25 μL of a plasma sample with a known fibrinogen concentration was added, and the clotting time was determined. The test was performed five times for each of the four types of plasma samples. From the results of Example 1, the calibration curve for this freeze-dried reagent is LN (fibrinogen concentration) = -0.7606 x LN (coagulation time) + 7.01. Converted to concentration.

[数5]
任意のクエン酸加血漿中のフィブリノゲン濃度=e7.01×(凝固時間)-0.7606
[Number 5]
Fibrinogen concentration in any citrated plasma = e 7.01 × (clotting time) -0.7606

既知のフィブリノゲン濃度に対する回収率で特異性を、連続5回測定のCV値(変動係数)で再現性を評価した。 Specificity was evaluated by the recovery rate for known fibrinogen concentrations, and reproducibility was evaluated by the CV value (coefficient of variation) of 5 consecutive measurements.

結果を表1に示す。表1から、得られるフィブリノゲン濃度に特異性と再現性が見られることは明白である。 The results are shown in Table 1. From Table 1 it is clear that the fibrinogen concentrations obtained are specific and reproducible.

Figure 0007359538000001
Figure 0007359538000001

[実施例3 Clauss法と本発明のフィブリノゲン定量乾燥試薬を用いた方法との相関性]
ヒト血漿51検体を用い、Clauss法で定量した結果と本発明のフィブリノゲン定量乾燥試薬でフィブリノゲンを定量した結果との相関性を調べた。Clauss法によるフィブリノゲンの定量は、試薬をデータファイ・フィブリノゲン(シスメックス製)とし、測定装置をKC4デルタ(商標)(Tcoag Ireland Ltd製)として、データファイ・フィブリノゲンの添付文書に示された方法により定量した。
[Example 3 Correlation between the Clauss method and the method using the fibrinogen quantitative dry reagent of the present invention]
Using 51 human plasma samples, the correlation between the results of quantitative determination using the Clauss method and the results of determining fibrinogen using the fibrinogen quantitative dry reagent of the present invention was investigated. Fibrinogen was quantified using the Clauss method using Dataphy Fibrinogen (manufactured by Sysmex) as the reagent and KC4 Delta (trademark) (manufactured by Tcoag Ireland Ltd) as the measuring device, using the method specified in the Dataphy Fibrinogen package insert. did.

本発明のフィブリノゲン定量乾燥試薬を用いてのフィブリノゲンの定量は、使用するフィブリノゲン定量乾燥試薬として、実施例1の凍結乾燥試薬を使用し、フィブリノゲンを定量する装置として、血液凝固分析装置CG02N((株)エイアンドティー製)を使用して行った。 For fibrinogen quantitative determination using the fibrinogen quantitative dry reagent of the present invention, the freeze-dried reagent of Example 1 was used as the fibrinogen quantitative dry reagent to be used, and the blood coagulation analyzer CG02N (Co., Ltd. ) manufactured by A&T).

CG02Nに凍結乾燥試薬をセットし、検体25μLを添加し、上記の方法を用いて各々の検体の凝固時間を求めた。そして、数5の式を用いて、得られた凝固時間をフィブリノゲン濃度に換算した。 The freeze-dried reagent was set in CG02N, 25 μL of the specimen was added, and the clotting time of each specimen was determined using the method described above. Then, the obtained coagulation time was converted into fibrinogen concentration using the equation (5).

図4にClauss法によるフィブリノゲン定量値と本発明のフィブリノゲン定量乾燥試薬を用いたフィブリノゲン定量値との相関図を示す。図4から、本発明のフィブリノゲン定量乾燥試薬を用いたフィブリノゲン定量値とClauss法によるフィブリノゲン定量値とは良く一致しており、相関性が高いことは明白である。 FIG. 4 shows a correlation diagram between fibrinogen quantitative values by the Clauss method and fibrinogen quantitative values using the fibrinogen quantitative dry reagent of the present invention. From FIG. 4, it is clear that the fibrinogen quantitative value using the dry reagent for fibrinogen quantitative determination of the present invention and the fibrinogen quantitative value using the Clauss method are in good agreement and have a high correlation.

[実施例4 クエン酸加血漿検体及びクエン酸加全血検体の相関性]
クエン酸加全血51検体に対して、本発明のフィブリノゲン定量乾燥試薬でフィブリノゲン定量した結果と同一検体を遠心して得たクエン酸加血漿51検体に対して、本発明のフィブリノゲン定量乾燥試薬でフィブリノゲン定量した結果との相関性を調べた。また、本発明のフィブリノゲン定量乾燥試薬として以下の組成のものを用いた:
160μg/mL ポリブレン
2.5 (wt/v) % グリシン
10mM CaCl2・2H2O
1.2 mg/mL ウシ血清アルブミン
0.005(wt/v)% ソルビタンモノラウレート
200μg/mL GPRP-アミド
40mM HEPES緩衝液(pH 7.35)
333NIHU/mL ウシトロンビン
[Example 4 Correlation between citrated plasma sample and citrated whole blood sample]
Fibrinogen was quantified using the fibrinogen quantitative dry reagent of the present invention for 51 citrated whole blood samples, and fibrinogen was determined using the fibrinogen quantitative dry reagent of the present invention for 51 citrated plasma samples obtained by centrifuging the same samples. The correlation with the quantitative results was investigated. In addition, the following composition was used as the fibrinogen quantitative drying reagent of the present invention:
160μg/mL polybrene
2.5 (wt/v)% glycine
10mM CaCl22H2O
1.2 mg/mL bovine serum albumin
0.005 (wt/v)% sorbitan monolaurate
200μg/mL GPRP-amide
40mM HEPES buffer (pH 7.35)
333NIHU/mL bovine thrombin

用いた装置および手順は実施例3と同様であった。当凍結乾燥試薬の検量線は、LN(フィブリノゲン濃度)=-0.7636×LN(凝固時間)+7.22であることから、以下の式で、得られた凝固時間をフィブリノゲン濃度に換算した。 The equipment and procedure used were similar to Example 3. Since the calibration curve of this freeze-dried reagent is LN (fibrinogen concentration) = -0.7636 x LN (coagulation time) + 7.22, the obtained coagulation time was converted to fibrinogen concentration using the following formula.

[数6]
任意のクエン酸加血漿中のフィブリノゲン濃度=e7.22×(凝固時間)-0.7636
[Number 6]
Fibrinogen concentration in any citrated plasma = e 7.22 × (clotting time) -0.7636

測定試料をクエン酸加全血とした場合の検体中フィブリノゲン濃度は、以下の方法で求めた。まず、クエン酸加全血51検体のヘマトクリット値を血球計数装置MYTHIC22(J)((株)エイアンドティー販売)にてそれぞれ求めた。次いで、血液凝固分析装置CG02N((株)エイアンドティー製)に上記凍結乾燥試薬をセットし、全血測定モードにした後、クエン酸加全血を25μL添加して、各々の検体の凝固時間を求めた。 When the measurement sample was citrated whole blood, the fibrinogen concentration in the specimen was determined by the following method. First, the hematocrit values of 51 citrated whole blood samples were determined using a blood cell counter MYTHIC22 (J) (manufactured by A&T Co., Ltd.). Next, set the above freeze-dried reagent in the blood coagulation analyzer CG02N (manufactured by A&T Co., Ltd.), set it to whole blood measurement mode, and then add 25 μL of citrated whole blood to determine the clotting time of each sample. Ta.

数6の式を用いて、得られた凝固時間をフィブリノゲン濃度に換算した後、数4の式を用いて測定試料をクエン酸加全血とした場合の検体中フィブリノゲン濃度を求めた。 After converting the obtained clotting time into a fibrinogen concentration using the equation 6, the concentration of fibrinogen in the specimen was determined using the equation 4 when the measurement sample was citrated whole blood.

測定試料をクエン酸加血漿とした場合の検体中のフィブリノゲン濃度は、以下の方法で求めた。まずクエン酸加全血51検体を4℃、3000rpm、15min遠心し、上清からクエン酸加血漿51検体を得た。次いで、CG02Nに上記凍結乾燥試薬をセットし、血漿測定モードにした後、クエン酸加血漿を25μL添加して、各々の検体の凝固時間を求めた。数6の式を用いて、得られた凝固時間をフィブリノゲン濃度に換算した。 When the measurement sample was citrated plasma, the fibrinogen concentration in the sample was determined by the following method. First, 51 samples of citrated whole blood were centrifuged at 4°C, 3000 rpm, for 15 minutes, and 51 samples of citrated plasma were obtained from the supernatant. Next, the above-mentioned freeze-dried reagent was set in CG02N and the mode was set to plasma measurement mode, and then 25 μL of citrated plasma was added to determine the clotting time of each specimen. The obtained coagulation time was converted into fibrinogen concentration using the formula 6.

図5に本発明のフィブリノゲン定量乾燥試薬を使用して、クエン酸加血漿を測定試料とした場合のフィブリノゲン定量値とクエン酸加全血を測定試料とした場合のフィブリノゲン定量値との相関図を示した。図5から、本発明のフィブリノゲン定量乾燥試薬を使用した時、測定試料をクエン酸加全血とした場合のフィブリノゲン定量値は測定試料をクエン酸加血漿とした場合のフィブリノゲン定量値と良く一致しており、相関性が高いことは明白である。 Figure 5 shows a correlation diagram between the fibrinogen quantitative value when citrated plasma is used as the measurement sample and the fibrinogen quantitative value when citrated whole blood is used as the measurement sample using the fibrinogen quantitative dry reagent of the present invention. Indicated. From Figure 5, when using the dry reagent for fibrinogen quantitative determination of the present invention, the fibrinogen quantitative value when the measurement sample was citrated whole blood was in good agreement with the fibrinogen quantitative value when the measurement sample was citrated plasma. It is clear that there is a high correlation.

[実施例5 各種グリシン濃度での試薬の調製及び評価]
フィブリノゲン定量乾燥試薬中のグリシン含有量の効果を、クエン酸加血漿およびクエン酸加全血の凝固時間とその同時再現性で調べた。まず、実施例4と同様の試薬組成を使用し、ただし試薬組成のうち、グリシン濃度を0.5%、1.0%、1.5%、2.0%、2.5%、3.0%、3.5%、4.0%、4.5%又は5.0%とした凍結乾燥試薬をそれぞれ作製した。次いで、CG02Nにて、フィブリノゲン濃度181mg/dLのクエン酸加血漿をそれぞれの凍結乾燥試薬を用いて5回連続で測定し、得られる凝固時間と5回連続測定のCV値を記録した。
[Example 5 Preparation and evaluation of reagents at various glycine concentrations]
The effect of the glycine content in the dry reagent for fibrinogen quantitative determination was investigated on the clotting time of citrated plasma and citrated whole blood and its simultaneous reproducibility. First, use the same reagent composition as in Example 4, except that the glycine concentration in the reagent composition is 0.5%, 1.0%, 1.5%, 2.0%, 2.5%, 3.0%, 3.5%, 4.0%, 4.5% or Freeze-dried reagents with a concentration of 5.0% were prepared. Next, at CG02N, citrated plasma with a fibrinogen concentration of 181 mg/dL was measured five times in a row using each freeze-dried reagent, and the resulting clotting time and CV value of the five consecutive measurements were recorded.

Figure 0007359538000002
Figure 0007359538000002

表2に示す通り、試薬液中のグリシン濃度が1.5%未満の試薬の場合は、試薬溶解性が不足して極端に延長した凝固時間となるが、試薬液中のグリシン濃度が1.5%以上の試薬の場合は、溶解性が向上して短縮した凝固時間が得られる。また、試薬液中のグリシン濃度が4.5%を超える試薬は、血液凝固分析装置CG02Nでの凝固時間が検出限界の5.0秒未満となった。このことは、検体中フィブリノゲン濃度が181mg/dLを超える検体についてはフィブリノゲン定量ができないことを意味する。即ち、試薬液中のグリシン濃度が4.5%を超える試薬の場合は、フィブリノゲン製剤を投与して検体中フィブリノゲン濃度が正常範囲(200~400mg/dL)に回復したことを確認することができなくなることから、血漿測定の場合は、試薬液中のグリシン濃度が、1.5%~4.0%の範囲が好適であることが明白である。 As shown in Table 2, when the glycine concentration in the reagent solution is less than 1.5%, the reagent solubility is insufficient and the clotting time is extremely prolonged, but when the glycine concentration in the reagent solution is 1.5% or more, In the case of reagents, improved solubility results in reduced clotting times. Furthermore, for reagents in which the glycine concentration in the reagent solution exceeded 4.5%, the coagulation time on the blood coagulation analyzer CG02N was less than 5.0 seconds, which is the detection limit. This means that fibrinogen quantification cannot be performed for samples in which the fibrinogen concentration exceeds 181 mg/dL. In other words, if the glycine concentration in the reagent solution exceeds 4.5%, it will not be possible to confirm that the fibrinogen concentration in the sample has returned to the normal range (200 to 400 mg/dL) after administering the fibrinogen preparation. From this, it is clear that in the case of plasma measurement, the glycine concentration in the reagent solution is preferably in the range of 1.5% to 4.0%.

次いで、CG02Nにて、フィブリノゲン濃度181mg/dLのクエン酸加全血をそれぞれの凍結乾燥試薬を用いて5回連続で測定し、得られる凝固時間と5回連続測定のCV値を記録した。 Next, at CG02N, citrated whole blood with a fibrinogen concentration of 181 mg/dL was measured five consecutive times using each freeze-dried reagent, and the resulting clotting time and CV value of the five consecutive measurements were recorded.

Figure 0007359538000003
Figure 0007359538000003

表3に示す通り、試薬液中のグリシン濃度が1.5%未満の試薬の場合は、試薬溶解性が不足して極端に延長した凝固時間となるが、試薬液中のグリシン濃度が1.5%以上の試薬の場合は、溶解性が向上して短縮した凝固時間が得られる。この結果から、全血測定の場合は、試薬液中のグリシン濃度が、1.5%以上の範囲が好適であることが明白である。 As shown in Table 3, when the glycine concentration in the reagent solution is less than 1.5%, the reagent solubility is insufficient and the clotting time is extremely prolonged, but when the glycine concentration in the reagent solution is 1.5% or more, In the case of reagents, improved solubility results in reduced clotting times. From this result, it is clear that in the case of whole blood measurement, the glycine concentration in the reagent solution is preferably in the range of 1.5% or more.

[比較例1 従来組成の凍結乾燥試薬との性能比較]
本発明のフィブリノゲン定量乾燥試薬と特許第3469909号に記載された試薬組成に準じて作製した凍結乾燥試薬との性能比較を行った。
[Comparative Example 1 Performance comparison with freeze-dried reagent with conventional composition]
Performance comparisons were made between the quantitative dried fibrinogen reagent of the present invention and a freeze-dried reagent prepared according to the reagent composition described in Patent No. 3469909.

実施例1に示した調製法のうち、試薬液中のグリシン濃度を2.5%としたフィブリノゲン定量乾燥試薬を作製した。また、実施例1に示した調製法のうち、試薬液の組成を下記の組成に変更した凍結乾燥試薬を作成した。当該試薬液の組成は、特開平05-219993号公報(特許第3469909号)で報告されている試薬組成である。
比較例の試薬組成:
15μg/mL ポリブレン
10mM CaCl2・2H2O
1.0 (wt/v) % ウシ血清アルブミン
0.08 (wt/v) % ポリエチレングリコール6000
200μg/mL 凝集抑制剤(GPRP-アミド)
50mM Tris緩衝液(pH8.0)
50IU/mL ウシトロンビン
110mM NaCl
Among the preparation methods shown in Example 1, a fibrinogen quantitative dry reagent was prepared in which the glycine concentration in the reagent solution was 2.5%. Moreover, among the preparation methods shown in Example 1, a freeze-dried reagent was prepared by changing the composition of the reagent solution to the following composition. The composition of the reagent liquid is the reagent composition reported in JP-A-05-219993 (Patent No. 3469909).
Reagent composition of comparative example:
15μg/mL polybrene
10mM CaCl22H2O
1.0 (wt/v)% bovine serum albumin
0.08 (wt/v)% polyethylene glycol 6000
200μg/mL aggregation inhibitor (GPRP-amide)
50mM Tris buffer (pH8.0)
50IU/mL bovine thrombin
110mM NaCl

CG02Nにて、フィブリノゲン濃度162mg/dLのクエン酸加血漿およびクエン酸加全血をそれぞれの試薬を用いて5回連続で測定し、得られる凝固時間とN=5回測定のCV値を記録した。また、測定時に得られる磁性粒子運動シグナルの経時変化も記録した。 At CG02N, citrated plasma and citrated whole blood with a fibrinogen concentration of 162 mg/dL were measured five times in a row using each reagent, and the obtained clotting time and CV value of N = 5 measurements were recorded. . In addition, changes over time in the magnetic particle motion signals obtained during the measurements were also recorded.

Figure 0007359538000004
Figure 0007359538000004

表4に示す通り、従来組成の凍結乾燥試薬より本発明のフィブリノゲン定量乾燥試薬の方が、得られる凝固時間が短く、それに伴い、得られる凝固時間の再現性も良好であることが明白である。 As shown in Table 4, it is clear that the fibrinogen quantitative drying reagent of the present invention obtains a shorter coagulation time than the freeze-dried reagent of the conventional composition, and that the reproducibility of the obtained coagulation time is also better. .

また、この測定時に得られた磁性粒子運動シグナルの経時変化を図6、図7に示す。図6は、本発明のフィブリノゲン定量乾燥試薬で測定した時の磁性粒子運動シグナルの経時変化を示したグラフであり、図7は、従来技術の試薬組成に準じて作製した凍結乾燥試薬で測定した時の磁性粒子運動シグナルの経時変化を示したグラフである。グラフの横軸は、検体を添加してからの経過時間を示し、グラフ中の数字「51」は25.5秒、「101」は50.5秒を指す。縦軸は、散乱光の変化量、すなわち、磁性粒子の運動シグナル(単位:カウント)を指す。本発明のフィブリノゲン定量乾燥試薬の方が、磁性粒子運動シグナルの経時変化が5回測定で揃っており、凝固反応の進行に伴う磁性粒子運動シグナルの減衰が大きいことが明白である。それに対して、従来組成の凍結乾燥試薬は、磁性粒子運動シグナルの経時変化が5回測定で大きくばらついており、凝固反応の進行に伴う磁性粒子運動シグナルの減衰がゆるやかである。このような試薬の場合、誤測定を引き起こす危険性がある。 Moreover, the time-dependent changes in the magnetic particle motion signals obtained during this measurement are shown in FIGS. 6 and 7. FIG. 6 is a graph showing the change in magnetic particle movement signal over time when measured using the dry fibrinogen quantitative dry reagent of the present invention, and FIG . 3 is a graph showing changes in magnetic particle motion signals over time. The horizontal axis of the graph indicates the elapsed time after the addition of the sample, and the number "51" in the graph indicates 25.5 seconds and "101" indicates 50.5 seconds. The vertical axis indicates the amount of change in scattered light, that is, the motion signal of the magnetic particles (unit: counts). It is clear that with the dried fibrinogen quantitative reagent of the present invention, the change over time of the magnetic particle movement signal is consistent in five measurements, and the attenuation of the magnetic particle movement signal is greater as the coagulation reaction progresses. On the other hand, with the freeze-dried reagent with the conventional composition, the change in magnetic particle motion signal over time varies greatly over five measurements, and the magnetic particle motion signal attenuates slowly as the coagulation reaction progresses. In the case of such reagents, there is a risk of causing erroneous measurements.

また、各試薬の血漿測定前後の写真を図8に示す。図8において、上が測定前の試薬であり、下が測定後の試薬である。従来組成の凍結乾燥試薬では、試薬溶解性が不十分なため、測定後、局所的に磁性粒子が集まり、永久磁石の磁場に由来する磁性粒子線が判別しにくくなっている。このことは、磁性粒子の運動が凝固反応の進行に伴う反応系内の粘度変化に必ずしも対応していない場合も発生することを意味している。これに対して、本発明の試薬(試薬液中グリシン濃度2.5%の試薬)では、試薬溶解性が向上しているため、永久磁石の磁場に由来する磁性粒子線が明確に判別できる。試薬液中グリシン濃度1.5%、2.0%、3.0%、3.5%及び4.0%の本発明試薬についても同様に、永久磁石の磁場に由来する磁性粒子線が明確に判別できた。なお、試薬液中グリシン濃度4.5%及び5.0%の試薬については、局所的な磁性粒子の集まりが見られるなど、測定後の外観は必ずしも良好ではなかった。 Further, FIG. 8 shows photographs of each reagent before and after plasma measurement. In FIG. 8, the top is the reagent before measurement, and the bottom is the reagent after measurement. Freeze-dried reagents with conventional compositions have insufficient reagent solubility, so magnetic particles locally gather after measurement, making it difficult to distinguish magnetic particle beams originating from the magnetic field of a permanent magnet. This means that there are cases in which the movement of the magnetic particles does not necessarily correspond to the viscosity change within the reaction system as the coagulation reaction progresses. On the other hand, in the reagent of the present invention (a reagent with a glycine concentration of 2.5% in the reagent solution), the solubility of the reagent is improved, so that the magnetic particle beam originating from the magnetic field of the permanent magnet can be clearly distinguished. Similarly, magnetic particle beams originating from the magnetic field of the permanent magnet could be clearly identified for the reagents of the present invention with glycine concentrations of 1.5%, 2.0%, 3.0%, 3.5%, and 4.0% in the reagent solution. Note that for the reagents with a glycine concentration of 4.5% and 5.0% in the reagent solution, the appearance after measurement was not necessarily good, as localized collections of magnetic particles were observed.

本発明によりフィブリノゲンを無希釈にて定量測定することができる。
本明細書において言及された文献はいずれも、参照によりその全内容を本明細書に組み入れる。
According to the present invention, fibrinogen can be quantitatively measured without dilution.
All documents mentioned herein are incorporated by reference in their entirety.

A 透明樹脂板
B 透明樹脂板
C 白色樹脂板
D 試薬充填部
A Transparent resin plate B Transparent resin plate C White resin plate D Reagent filling section

Claims (11)

(i)トロンビン又はトロンビン活性を有するタンパク質、ここで該トロンビン活性は、(a)フィブリノゲンのフィブリンモノマーへの変換、及び(b)カルシウムイオンの存在下での、第XIII因子の、XIIIaへの活性化、の両方の反応を進めることができる活性である、
(ii) 磁性粒子、
(iii) フィブリンモノマー会合阻害剤、
(iv) カルシウム塩、
(v) 乾燥試薬層溶解性向上剤、
(vi) 乾燥試薬層補強材、並びに
(vii) pH緩衝剤
を含む、無希釈の血漿又は全血検体を測定するための、フィブリノゲン定量用のフィブリノゲン定量乾燥試薬。
(i) thrombin or a protein with thrombin activity, where the thrombin activity involves (a) the conversion of fibrinogen to fibrin monomers, and (b) the activity of factor XIII to XIIIa in the presence of calcium ions. It is an active substance that can proceed with both reactions,
(ii) magnetic particles;
(iii) a fibrin monomer association inhibitor;
(iv) calcium salts;
(v) a dry reagent layer solubility improver;
(vi) dry reagent layer reinforcement; and
(vii) Fibrinogen quantification dry reagent for fibrinogen quantification for measuring undiluted plasma or whole blood specimens containing a pH buffer.
トロンビン又はトロンビン活性を有するタンパク質がウシトロンビンである、請求項1に記載のフィブリノゲン定量乾燥試薬。 The dry fibrinogen quantitative reagent according to claim 1, wherein the thrombin or the protein having thrombin activity is bovine thrombin. 磁性粒子が四三酸化鉄である、請求項1又は2に記載のフィブリノゲン定量乾燥試薬。 The fibrinogen quantitative drying reagent according to claim 1 or 2, wherein the magnetic particles are triiron tetroxide. フィブリンモノマー会合阻害剤がGPRP-アミド、又はGHRP-アミドである、請求項1~3のいずれか1項に記載のフィブリノゲン定量乾燥試薬。 The fibrinogen quantitative drying reagent according to any one of claims 1 to 3, wherein the fibrin monomer association inhibitor is GPRP-amide or GHRP-amide. カルシウム塩が塩化カルシウム二水和物である、請求項1~4のいずれか1項に記載のフィブリノゲン定量乾燥試薬。 The dry reagent for fibrinogen quantitative determination according to any one of claims 1 to 4, wherein the calcium salt is calcium chloride dihydrate. 乾燥試薬層溶解性向上剤がグリシンである、請求項1~5のいずれか1項に記載のフィブリノゲン定量乾燥試薬。 The dry reagent for fibrinogen quantitative determination according to any one of claims 1 to 5, wherein the dry reagent layer solubility enhancer is glycine. グリシンを、1.5~4.0重量%最終溶液にて含む、請求項6に記載のフィブリノゲン定量乾燥試薬。 Fibrinogen quantitative dry reagent according to claim 6, comprising glycine at 1.5-4.0% by weight final solution. 乾燥試薬層補強材がウシ血清アルブミンである、請求項1~7のいずれか1項に記載のフィブリノゲン定量乾燥試薬。 The dry reagent for fibrinogen quantitative determination according to any one of claims 1 to 7, wherein the dry reagent layer reinforcing material is bovine serum albumin. pH緩衝剤がHEPES-水酸化ナトリウムである、請求項1~8のいずれか1項に記載のフィブリノゲン定量乾燥試薬。 The fibrinogen quantitative drying reagent according to any one of claims 1 to 8, wherein the pH buffer is HEPES-sodium hydroxide. さらにヘパリン中和剤、及び/又は消泡剤を含む、請求項1~9のいずれか1項に記載のフィブリノゲン定量乾燥試薬。 The fibrinogen quantitative drying reagent according to any one of claims 1 to 9, further comprising a heparin neutralizing agent and/or an antifoaming agent. ヘパリン中和剤がポリブレンである、及び/又は消泡剤がソルビタンモノラウレートである、請求項10に記載のフィブリノゲン定量乾燥試薬。 The fibrinogen quantitative drying reagent according to claim 10, wherein the heparin neutralizing agent is polybrene and/or the antifoaming agent is sorbitan monolaurate.
JP2018229919A 2018-12-07 2018-12-07 Fibrinogen measurement reagent Active JP7359538B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018229919A JP7359538B2 (en) 2018-12-07 2018-12-07 Fibrinogen measurement reagent
PCT/JP2019/047592 WO2020116556A1 (en) 2018-12-07 2019-12-05 Reagent for measuring fibrinogen
US17/311,131 US20220120768A1 (en) 2018-12-07 2019-12-05 Reagent for measuring fibrinogen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018229919A JP7359538B2 (en) 2018-12-07 2018-12-07 Fibrinogen measurement reagent

Publications (2)

Publication Number Publication Date
JP2020091251A JP2020091251A (en) 2020-06-11
JP7359538B2 true JP7359538B2 (en) 2023-10-11

Family

ID=71012696

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018229919A Active JP7359538B2 (en) 2018-12-07 2018-12-07 Fibrinogen measurement reagent

Country Status (1)

Country Link
JP (1) JP7359538B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002519635A (en) 1998-06-25 2002-07-02 カルディオバスキュラ ダイアグノスティクス,インク. Method for performing fibrinogen assay using dry chemical reagent containing ecarin and magnetic particles
US20030044871A1 (en) 2001-08-27 2003-03-06 Pharmanetics Incorporated Coagulation assay reagents containing lanthanides and a protein C assay using such a lanthanide-containing reagent
WO2009026164A1 (en) 2007-08-17 2009-02-26 The General Hospital Corporation Magnetic resonance-based viscometers and methods

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4014655A1 (en) * 1990-05-08 1991-11-14 Behringwerke Ag PEPTIDAMIDES, METHOD FOR THE PRODUCTION THEREOF AND METHODS CONTAINING THEM AS FIBRIN / THROMBIN COOLING INHIBITORS
DE4133946A1 (en) * 1991-10-14 1993-04-15 Behringwerke Ag FUNCTIONAL TEST AND REAGENT FOR DETERMINING FIBRINOGEN
JP2980468B2 (en) * 1992-11-12 1999-11-22 株式会社トクヤマ Fibrinogen determination method
US5670329A (en) * 1993-05-28 1997-09-23 Cardiovascular Diagnostics, Inc. Method and analytical system for performing fibrinogen assays accurately, rapidly and simply using a rotating magnetic field
JP3236206B2 (en) * 1995-12-19 2001-12-10 株式会社トクヤマ Dry reagent for blood coagulation time measurement

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002519635A (en) 1998-06-25 2002-07-02 カルディオバスキュラ ダイアグノスティクス,インク. Method for performing fibrinogen assay using dry chemical reagent containing ecarin and magnetic particles
US20030044871A1 (en) 2001-08-27 2003-03-06 Pharmanetics Incorporated Coagulation assay reagents containing lanthanides and a protein C assay using such a lanthanide-containing reagent
WO2009026164A1 (en) 2007-08-17 2009-02-26 The General Hospital Corporation Magnetic resonance-based viscometers and methods

Also Published As

Publication number Publication date
JP2020091251A (en) 2020-06-11

Similar Documents

Publication Publication Date Title
JP5628409B2 (en) Composition for measuring the coagulation characteristics of a test solution
US6448024B1 (en) Method, reagent, cartridge, and device for determining fibrinogen
JP6300793B2 (en) Simultaneous measurement of thrombin production and clot strength in plasma and whole blood
US20060035383A1 (en) Dry platelet preparations for use in diagnostics
US9234902B2 (en) Method for monitoring anticoagulant therapy
US20030044871A1 (en) Coagulation assay reagents containing lanthanides and a protein C assay using such a lanthanide-containing reagent
US20110183311A1 (en) Dry platelet preparations for use in diagnostics
US20230158485A1 (en) Pipette tip and uses and methods thereof
JP5947085B2 (en) Controls and kits for platelet activity testing
CN109932512A (en) A kind of fibrinogen detection reagent/freeze-drying detection reagent and preparation method thereof completely inhibiting platelet function
JP5201822B2 (en) Immunological assay for gastrin releasing peptide precursor
US7294479B2 (en) Compositions, kit and one-step method for monitoring compounds having anti-factor Xa and/or anti factor IIa activities
WO2021246096A1 (en) Fibrinogen measurement method
CN109082458B (en) Kit for quantitatively detecting oral blood coagulation factor Xa inhibitor by using thrombus elastography method and preparation method of kit
JP7359538B2 (en) Fibrinogen measurement reagent
WO2020116556A1 (en) Reagent for measuring fibrinogen
JP7410652B2 (en) Method for quantifying fibrinogen
US20040029193A1 (en) Simple methods for the drug monitoring of gpiib/iiia-receptor antagonists
Mischke Laboratory evaluation and interpretation of haemostasis in small animals
JP3095608B2 (en) Blood clotting time measurement dry reagent
WO2014194922A1 (en) Kit for measuring parameters of a hemostasis system in a sample of blood or components thereof
JP2857043B2 (en) Blood clotting time measurement dry reagent
RU2698206C1 (en) Reagent kit for diagnosing degree of neuroinflammation
JP6278454B2 (en) Reagent and method for measuring direct thrombin inhibitor in biological sample
JP2012519674A (en) New use of fibrinogen

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230110

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230310

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230511

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20230511

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230606

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230619

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230912

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230928

R150 Certificate of patent or registration of utility model

Ref document number: 7359538

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150