JP7357903B2 - Method for forming microfabricated oxide films - Google Patents
Method for forming microfabricated oxide films Download PDFInfo
- Publication number
- JP7357903B2 JP7357903B2 JP2019141853A JP2019141853A JP7357903B2 JP 7357903 B2 JP7357903 B2 JP 7357903B2 JP 2019141853 A JP2019141853 A JP 2019141853A JP 2019141853 A JP2019141853 A JP 2019141853A JP 7357903 B2 JP7357903 B2 JP 7357903B2
- Authority
- JP
- Japan
- Prior art keywords
- film
- forming
- cao
- microfabricated
- oxide film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/60—Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment
Landscapes
- Photosensitive Polymer And Photoresist Processing (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
- Weting (AREA)
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
Description
特許法第30条第2項適用 1.「水リフトオフプロセスによるβ-Ga▲2▼O▲3▼薄膜の選択成長・マイクロパターニング及び特性評価」(19a-224A-1),2018年 第79回応用物理学会秋季学術講演会[講演予稿集],発行者 公益社団法人 応用物理学会,発行日 平成30年9月5日 2.「水リフトオフプロセスによるβ-Ga▲2▼O▲3▼薄膜の選択成長・マイクロパターニング及び特性評価」(19a-224A-1),集会名 2018年第79回 応用物理学会秋季学術講演会,開催日 平成30年9月19日(会期:9月18日~9月20日),開催場所 名古屋国際会議場 3.第28回日本MRS年次大会 アブストラクト「水リフトオフ法による微細加工されたβ-Ga▲2▼O▲3▼薄膜の選択成長」(A1-019-009),ウェブサイト掲載日 平成30年12月5日,ウェブサイトのアドレス https://www.mrs-j.org/meeting2018/abstract/jp/login.php 4.「水リフトオフ法による微細加工されたβ-Ga▲2▼O▲3▼薄膜の選択成長」(A1-019-009),開催日 平成30年12月19日(会期:12月18日~12月20日),北九州国際会議場・西日本総合展示場Application of Article 30, Paragraph 2 of the Patent Act 1. “Selective growth, micropatterning and property evaluation of β-Ga▲2▼O▲3▼ thin film by water lift-off process” (19a-224A-1), 2018 79th Japan Society of Applied Physics Autumn Academic Conference [Presentation proceedings] ], Publisher: Japan Society of Applied Physics, Public Interest Incorporated Association, Publication date: September 5, 2018 2. “Selective Growth, Micropatterning and Characteristic Evaluation of β-Ga▲2▼O▲3▼ Thin Films by Water Lift-off Process” (19a-224A-1), Meeting Name 2018 79th Japan Society of Applied Physics Autumn Academic Conference, Held Sunday, September 19, 2018 (Duration: September 18 to September 20), Venue: Nagoya International Conference Center 3. 28th Japan MRS Annual Conference Abstract “Selective growth of microfabricated β-Ga▲2▼O▲3▼ thin film by water lift-off method” (A1-019-009), Website publication date December 2018 5th, website address https://www. mrs-j. org/meeting2018/abstract/jp/login. php4. “Selective Growth of Microfabricated β-Ga▲2▼O▲3▼ Thin Films by Water Lift-off Method” (A1-019-009), Date: December 19, 2018 (Duration: December 18-12 (Mon. 20), Kitakyushu International Conference Center/West Japan General Exhibition Center
本発明は、酸化物からなる膜の選択的成長技術に関し、特に水リフトオフ法により微細加工された薄膜を形成する技術に係る。 The present invention relates to a technique for selectively growing a film made of an oxide, and particularly to a technique for forming a thin film microfabricated by a water lift-off method.
パワーデバイス材料として近年、酸化ガリウムが注目されている。
酸化ガリウムには、5種類の結晶形が知られていて、コランダム構造を有するα-Ga2O3,βガリア構造と称されるβ-Ga2O3等が例として挙げられる。
高温超電導材料分野にても、多くの酸化物の膜が提案されている。
例えば、Y-Ba-Cu-O系,Bi-Sr-Ca-Cu-O系の材料が報告され、具体例としてはYBa2Cu3O7-X,Bi2Sr2Ca2Cu3O10等があり、いろいろな酸化物の膜が検討されている。
酸化物の膜には、強誘電特性を示すものもあり、例えばBaTiO3(チタン酸バリウム),Pb(Zr,Ti)O3(チタン酸ジルコン酸鉛)等が例として挙げられ、これらは圧電特性を有する。
Gallium oxide has attracted attention in recent years as a power device material.
Five types of crystal forms of gallium oxide are known, and examples thereof include α-Ga 2 O 3 having a corundum structure and β-Ga 2 O 3 called β-gallium structure.
Many oxide films have also been proposed in the field of high-temperature superconducting materials.
For example, Y-Ba-Cu-O based materials and Bi-Sr-Ca-Cu-O based materials have been reported, and specific examples include YBa 2 Cu 3 O 7-X , Bi 2 Sr 2 Ca 2 Cu 3 O 10 Various oxide films are being considered.
Some oxide films exhibit ferroelectric properties, such as BaTiO 3 (barium titanate) and Pb(Zr,Ti)O 3 (lead zirconate titanate), which are piezoelectric. have characteristics.
これらの酸化物の膜は、融点が高く、従来のレジスト材料を用いたレジストリフトオフ法を用いることができないため、微細加工された状態に成膜するのが難しいとされている。 Films of these oxides have high melting points, and resist lift-off methods using conventional resist materials cannot be used, so it is said that it is difficult to form films in a microfabricated state.
特許文献1には、基板上にフォトレジスト材料を用いたパターニングにより、基板/フォトレジスト材料表面を形成し、その上に水溶性材料を堆積した後に有機溶媒中にてフォトレジスト材料をリフトオフし、有機/無機材料を積層した後に水溶性材料をリフトオフさせるパターニング方法を開示するが、基板上に有機/無機材料をパターニングする目的であって、酸化物の膜を選択成長させるものではない。 Patent Document 1 discloses that a substrate/photoresist material surface is formed by patterning a photoresist material on a substrate, a water-soluble material is deposited thereon, and then the photoresist material is lifted off in an organic solvent. A patterning method is disclosed in which a water-soluble material is lifted off after stacking organic/inorganic materials, but the purpose is to pattern organic/inorganic materials on a substrate, and not to selectively grow an oxide film.
本発明は、所定の微細形状又はパターニングされた状態に成膜できる酸化物の膜の形成方法の提供を目的とする。 An object of the present invention is to provide a method for forming an oxide film that can be formed into a predetermined fine shape or patterned state.
本発明に係る微細加工された酸化物の膜の形成方法は、基板の表面にフォトレジスト材料を用いて所定の微細形状又はパターニングされたフォトレジスト層を形成するステップと、前記表面にa-CaO膜(非晶質CaO膜)を形成するステップと、次に溶剤に浸漬し前記フォトレジスト層を有する部分を除去するステップと、次に前記表面に酸化物の膜を成長させるステップと、次に水に浸漬して前記a-CaO膜を有する部分を除去するステップとを有することを特徴とする。 The method for forming a microfabricated oxide film according to the present invention includes the steps of: forming a photoresist layer with a predetermined microshape or patterning on the surface of a substrate using a photoresist material; forming a film (amorphous CaO film), then immersing in a solvent to remove the portion having the photoresist layer, then growing an oxide film on the surface, and then The method is characterized by comprising the step of removing the portion having the a-CaO film by immersing it in water.
酸化物の膜は、各種PVD(物理蒸着)により成膜されるが、本発明において微細加工された酸化物の膜と表現したのは、単に酸化物の膜を成膜するのではなく、例えばデバイス加工等、所定の微細形状あるいはパターニングされた状態に酸化物の膜を選択成長させることをいう。 Oxide films are formed by various types of PVD (physical vapor deposition), but what is referred to as a microfabricated oxide film in the present invention does not mean simply forming an oxide film; This refers to the selective growth of an oxide film in a predetermined fine shape or patterned state, such as in device processing.
本発明において、酸化物の膜は強誘電特性,圧電特性,高温超電導特性,半導体特性又は導電性のいずれかを有しているのが好ましい。
強誘電特性及び圧電特性を有するものとしては、BaTiO3,Pb(Zr,Ti)O3が挙げられ、高温超電導特性を有するものとしては、YBa2Cu3O7-X,Bi2Sr2Ca2Cu3O10等が例として挙げられる。
また、パワーデバイス材料としては、Ga2O3が例として挙げられる。
導電性の酸化物としてはSrRuO3が例として挙げられる。
In the present invention, the oxide film preferably has ferroelectric properties, piezoelectric properties, high temperature superconducting properties, semiconductor properties, or conductivity.
Those with ferroelectric properties and piezoelectric properties include BaTiO 3 and Pb(Zr,Ti)O 3 , and those with high temperature superconducting properties include YBa 2 Cu 3 O 7-X and Bi 2 Sr 2 Ca. 2Cu3O10 etc. are mentioned as an example.
Moreover, as a power device material, Ga2O3 is mentioned as an example.
An example of the conductive oxide is SrRuO 3 .
本発明においては、所定の微細形状にあるいは微細にパターニングされた酸化物の成膜に対して融点が高く、水による潮解性に優れたa-CaOの堆積膜を水リフトオフ法の犠牲層に用いたので、精密に制御された選択成長膜を形成することができる。
例えば、a-CaOはa-MgOに比較して、約290倍の潮解レート(210nm/min)を有する。
In the present invention, a deposited film of a-CaO, which has a high melting point and is excellent in deliquescence with water, is used as a sacrificial layer in the water lift-off method compared to the formation of an oxide film formed into a predetermined fine shape or finely patterned. Therefore, it is possible to form a selectively grown film that is precisely controlled.
For example, a-CaO has a deliquescence rate (210 nm/min) about 290 times higher than a-MgO.
本発明に係る微細加工された酸化物の膜の形成方法の例を以下、図に基づいて説明するが、本発明はこれに限定されない。 An example of the method for forming a microfabricated oxide film according to the present invention will be described below based on the drawings, but the present invention is not limited thereto.
図1に、評価したプロセスの流れを模式的に示す。
まず、c面サファイア基板の表面にフォトリソグラフィによりレジスト材料を用いて、レジスト層をパターニングする(図1a)。
次に、図1(b)に示すようにPulsed Laser Deposition(PLD)法を用いて、a-CaOの膜を堆積した。
次に、図1(c)に示すようにアセントに浸漬し、レジスト層を有する部分を除去することで、a-CaO犠牲層がパターニングされる。
a-CaO層がパターニングされた基板の表面にPLD法を用い、600℃の高温にて減圧下、β-Ga2O3の膜を成膜した(図1d)。
次に、a-CaO層を有する部分を純水に浸漬し、潮解させることでリフトオフさせた。
Figure 1 schematically shows the flow of the evaluated process.
First, a resist layer is patterned using a resist material on the surface of a c-plane sapphire substrate by photolithography (FIG. 1a).
Next, as shown in FIG. 1(b), an a-CaO film was deposited using the Pulsed Laser Deposition (PLD) method.
Next, as shown in FIG. 1C, the a-CaO sacrificial layer is patterned by immersing it in Ascent and removing the portion having the resist layer.
A β-Ga 2 O 3 film was formed on the surface of the substrate on which the a-CaO layer was patterned using the PLD method at a high temperature of 600° C. under reduced pressure (FIG. 1d).
Next, the part having the a-CaO layer was immersed in pure water to deliquesce and lift off.
上記のプロセスにて作製した試料(サンプル)の表面の電子顕微鏡画像を図2,図3に示す。
図2は、サファイア基板上にa-CaOの残渣がないか確認したものであり、パターニングされた以外の部位には、a-CaOが認められなかった。
図3は、いろいろな微細形状の選択成長例を示す。
図4は、上記サンプルのXRDの分析結果を示す。
β-Ga2O3が配向成長されているのが分かる。
図5にEBSDによる解析結果を示し、図6のAFM像を示す。
これらの情報から、パターニング部における表面形状の変化や結晶性の劣化が見られないがことが確認できた。
Electron microscope images of the surface of the sample produced by the above process are shown in FIGS. 2 and 3.
In FIG. 2, it was confirmed that there was no a-CaO residue on the sapphire substrate, and no a-CaO was observed in areas other than the patterned areas.
FIG. 3 shows examples of selective growth of various fine features.
FIG. 4 shows the results of XRD analysis of the sample.
It can be seen that β-Ga 2 O 3 is grown in an oriented manner.
FIG. 5 shows the analysis results by EBSD, and the AFM image in FIG. 6 is shown.
From this information, it was confirmed that no change in surface shape or deterioration of crystallinity was observed in the patterned portion.
次に、PZT:Pb(Zr,Ti)O3の膜を成膜した例を図7に示す。
基板上にPLD法により、SRO(SrRuO3)膜を成膜し、その上、本発明に係るプロセスを用いて、PZTの膜をパターニングした。
図7では、犠牲層にa-CaOを用いたものの他に、比較例としてa-MgOを用いたもの及びPZTを一様堆積させたサンプルを作製し、そのP-Eヒステリシスループを計測した。
図7中、CaOで示したループは、犠牲層にa-CaOを用いたものを示し、MgOで示したループは犠牲層にa-MgOを用いたものを示す。
また、cfで示したループは、PZTを一様堆積させたものを示す。
このことから、a-CaOの方がa-MgOよりも電気特性の劣化が抑えられていることが分かる。
これは、a-CaOの方がa-MgOよりも水による潮解性に優れているためと推定される。
Next, FIG. 7 shows an example in which a PZT:Pb(Zr,Ti)O 3 film is formed.
An SRO (SrRuO 3 ) film was formed on the substrate by the PLD method, and then a PZT film was patterned using the process according to the present invention.
In FIG. 7, in addition to the sacrificial layer using a-CaO, samples using a-MgO and uniformly deposited PZT were prepared as comparative examples, and their PE hysteresis loops were measured.
In FIG. 7, loops indicated by CaO indicate those using a-CaO for the sacrificial layer, and loops indicated by MgO indicate those using a-MgO for the sacrificial layer.
Further, a loop indicated by cf indicates a uniformly deposited PZT.
From this, it can be seen that deterioration of electrical properties is suppressed more in a-CaO than in a-MgO.
This is presumed to be because a-CaO has better deliquescence with water than a-MgO.
Claims (2)
前記表面にa-CaO膜を形成するステップと、
次に溶剤に浸漬し前記フォトレジスト層を有する部分を除去するステップと、
次に前記表面に酸化物の膜を成長させるステップと、
次に水に浸漬して前記a-CaO膜を有する部分を潮解レート210nm/min以上で除去するステップとを有し、
前記酸化物の膜はβ-Ga 2 O 3 であることを特徴とする微細加工された酸化物の膜の形成方法。 forming a photoresist layer with a predetermined fine shape or pattern using a photoresist material on the surface of the substrate;
forming an a-CaO film on the surface;
then immersing in a solvent to remove the portion having the photoresist layer;
then growing an oxide film on the surface;
Next, immersing in water to remove the part having the a-CaO film at a deliquescent rate of 210 nm/min or more ,
A method for forming a microfabricated oxide film, characterized in that the oxide film is β-Ga 2 O 3 .
前記表面にa-CaO膜を形成するステップと、
次に溶剤に浸漬し前記フォトレジスト層を有する部分を除去するステップと、
次に前記表面に酸化物の膜を成長させるステップと、
次に水に浸漬して前記a-CaO膜を有する部分を潮解レート210nm/min以上で除去するステップとを有し、
前記酸化物の膜はPb(Zr,Ti)O 3 であることを特徴とする微細加工された酸化物の膜の形成方法。 forming a SrRuO 3 film on the surface of the substrate , and forming a photoresist layer with a predetermined fine shape or pattern using a photoresist material on the surface;
forming an a-CaO film on the surface;
then immersing in a solvent to remove the portion having the photoresist layer;
then growing an oxide film on the surface;
Next, immersing in water to remove the part having the a-CaO film at a deliquescent rate of 210 nm/min or more,
A method for forming a microfabricated oxide film, characterized in that the oxide film is Pb(Zr,Ti)O 3 .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019141853A JP7357903B2 (en) | 2019-08-01 | 2019-08-01 | Method for forming microfabricated oxide films |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019141853A JP7357903B2 (en) | 2019-08-01 | 2019-08-01 | Method for forming microfabricated oxide films |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2021026062A JP2021026062A (en) | 2021-02-22 |
JP7357903B2 true JP7357903B2 (en) | 2023-10-10 |
Family
ID=74664660
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019141853A Active JP7357903B2 (en) | 2019-08-01 | 2019-08-01 | Method for forming microfabricated oxide films |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7357903B2 (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20190131168A1 (en) | 2017-11-01 | 2019-05-02 | Semi Automation & Technologies, Inc. | Inorganic Lift-Off Profile Process For Semiconductor Wafer Processing |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE59203408D1 (en) * | 1991-01-21 | 1995-10-05 | Siemens Ag | Process for producing a structured structure with high-temperature superconductor material. |
JPH05221794A (en) * | 1992-02-13 | 1993-08-31 | Sumitomo Electric Ind Ltd | Formation of thin oxide superconducting film having different orientation properties at different parts |
KR100968809B1 (en) * | 2008-09-30 | 2010-07-08 | 한국전자통신연구원 | METHOD OF FORMING ZnO NANO PATTERN |
-
2019
- 2019-08-01 JP JP2019141853A patent/JP7357903B2/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20190131168A1 (en) | 2017-11-01 | 2019-05-02 | Semi Automation & Technologies, Inc. | Inorganic Lift-Off Profile Process For Semiconductor Wafer Processing |
Also Published As
Publication number | Publication date |
---|---|
JP2021026062A (en) | 2021-02-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Ramesh et al. | Epitaxial growth of ferroelectric bismuth titanate thin films by pulsed laser deposition | |
US7772157B2 (en) | Superconducting film and method of manufacturing the same | |
JPH06500669A (en) | Grain boundary bonding in high-temperature superconductor films | |
US8993092B2 (en) | Polycrystalline ferroelectric or multiferroic oxide articles on biaxially textured substrates and methods for making same | |
US6821338B2 (en) | Particle beam biaxial orientation of a substrate for epitaxial crystal growth | |
Jung et al. | Platinum (100) hillock growth in a Pt/Ti electrode stack for ferroelectric random access memory | |
CN104103752A (en) | Method of preparing oxide film material with shape memory effects and application thereof | |
Cojocaru et al. | Nanoscale patterning of functional perovskite-type complex oxides by pulsed laser deposition through a nanostencil | |
Ruzmetov et al. | Epitaxial magnetic perovskite nanostructures | |
JP7357903B2 (en) | Method for forming microfabricated oxide films | |
US20040131537A1 (en) | Functional bimorph composite nanotapes and methods of fabrication | |
US20030019668A1 (en) | Particle beam biaxial orientation of a substrate for epitaxial crystal growth | |
Bertsche et al. | Nanometer‐scale surface modifications of YBa2Cu3O7− δ thin films using a scanning tunneling microscope | |
KR20050118294A (en) | Metal base plate for oxide superconductive wire rod, oxide superconductive wire rod and process for producing the same | |
Tang et al. | Surface morphology and chemical states of highly oriented PbZrO3 thin films prepared by a sol–gel process | |
JP2010115772A (en) | Method of patterning nanowire on surface of substrate using new sacrificial layer material | |
Tue et al. | Fine-patterning of sol-gel derived PZT film by a novel lift-off process using solution-processed metal oxide as a sacrificial layer | |
JP2007088205A (en) | Manufacturing method of metallic material layer and manufacturing method of electronic device | |
Ning et al. | Selective area epitaxy of complex oxide heterostructures on Si by oxide hard mask lift-off | |
Harada et al. | Microfabrication of SrRuO3 thin films on various oxide substrates using LaAlO3/BaOx sacrificial bilayers | |
JP4809700B2 (en) | YBCO high temperature superconductor film-forming substrate and YBCO high temperature superconductor film production method | |
JP2005001935A (en) | Method for producing thin oxide film | |
Di | Fabrication and Characterisation of Epitaxial PMN-PT Nano-Structures | |
JP2024120200A (en) | Method for forming a pattern on an oxide film | |
Telesio et al. | Nanopatterning process based on epitaxial masking for the fabrication of electronic and spintronic devices made of La0. 67Sr0. 33MnO3/LaAlO3/SrTiO3 heterostructures with in situ interfaces |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A80 | Written request to apply exceptions to lack of novelty of invention |
Free format text: JAPANESE INTERMEDIATE CODE: A80 Effective date: 20190827 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20220616 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20230315 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20230411 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20230605 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230803 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20230919 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20230920 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7357903 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |