JP7355351B2 - Fire-resistant resin molded product, fire-resistant structure of structural member, construction method of fire-resistant structural member, and manufacturing method of fire-resistant resin molded product - Google Patents

Fire-resistant resin molded product, fire-resistant structure of structural member, construction method of fire-resistant structural member, and manufacturing method of fire-resistant resin molded product Download PDF

Info

Publication number
JP7355351B2
JP7355351B2 JP2022160769A JP2022160769A JP7355351B2 JP 7355351 B2 JP7355351 B2 JP 7355351B2 JP 2022160769 A JP2022160769 A JP 2022160769A JP 2022160769 A JP2022160769 A JP 2022160769A JP 7355351 B2 JP7355351 B2 JP 7355351B2
Authority
JP
Japan
Prior art keywords
mass
parts
binder
fire
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022160769A
Other languages
Japanese (ja)
Other versions
JP2022189839A (en
Inventor
圭一 加藤
賢 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Construction Materials Corp
Original Assignee
Asahi Kasei Construction Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Construction Materials Corp filed Critical Asahi Kasei Construction Materials Corp
Priority to JP2022160769A priority Critical patent/JP7355351B2/en
Publication of JP2022189839A publication Critical patent/JP2022189839A/en
Application granted granted Critical
Publication of JP7355351B2 publication Critical patent/JP7355351B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Building Environments (AREA)
  • Fireproofing Substances (AREA)

Description

本明細書によって開示される技術は、耐火性樹脂成形物、構造部材の耐火構造、および、耐火構造部材の施工方法に関する。 The technology disclosed in this specification relates to a fire-resistant resin molded product, a fire-resistant structure of a structural member, and a method of constructing a fire-resistant structural member.

鉄骨等の建築材を被覆する耐火性の被覆材として、結合剤、難燃剤、発泡剤、炭化材および充填剤等を混錬してシート状とした被覆材が提案されている(特許文献1参照)。この被覆材は、建築物の火災によって高温にさらされると、発泡、炭化して断熱層を形成し、この断熱層によって建築材を保護する。 As a fire-resistant coating material for covering building materials such as steel frames, a coating material made into a sheet by kneading a binder, a flame retardant, a foaming agent, a carbonized material, a filler, etc. has been proposed (Patent Document 1) reference). When this covering material is exposed to high temperatures due to a building fire, it foams and carbonizes to form a heat insulating layer, which protects the building materials.

国際公開2013/008819号公報International Publication No. 2013/008819

しかし、上記のような被覆材では、火災時の炎に耐えて断熱層の形状を維持するために、充填剤等の含有量を高めようとすると、相対的に結合剤の含有量が低くなるため、混合物の流動性が低くなり混錬が困難となる等の問題があり、充分な耐火性能と製造のしやすさとを両立するためには、改善の余地があった。 However, in the above-mentioned covering materials, when trying to increase the content of fillers, etc. in order to withstand flames in the event of a fire and maintain the shape of the heat insulating layer, the content of binder becomes relatively low. Therefore, there are problems such as the fluidity of the mixture becoming low and kneading becoming difficult, and there is room for improvement in order to achieve both sufficient fire resistance and ease of manufacture.

本明細書によって開示される耐火性樹脂成形物は、合成樹脂からなる結合剤と、前記結合剤以外の成分である非結合剤により構成され、前記非結合剤が、ポリリン酸アンモニウムと、多価アルコールと、酸化チタンとを含み、前記結合剤100質量部に対して、前記非結合剤が240質量部以上365質量部以下である。 The fire-resistant resin molded product disclosed herein is composed of a binder made of a synthetic resin and a non-binder that is a component other than the binder, and the non-binder is composed of ammonium polyphosphate and polyvalent It contains alcohol and titanium oxide, and the amount of the non-binder is 240 parts by mass or more and 365 parts by mass or less with respect to 100 parts by mass of the binder.

上記のような組成の耐火性樹脂成形物は、所望の形状(ペレット、シートなど)に成形して使うことができるため、施工が容易である。また、火災時に充分な厚さの断熱層を形成し、吸熱反応によって燃焼熱の伝導を遅らせる効果を大きくするためには、ポリリン酸アンモニウムや多価アルコールの含有量が大きい方がよく、断熱層のたれ落ちを抑制して強度を維持するためには酸化チタンの含有量が大きい方がよいが、これらの成分の含有量を大きくすると、相対的に結合剤の含有量が小さくなり、製造時の混錬が困難となる。結合剤100質量部に対して、非結合剤が240質量部以上365質量部以下であれば、耐火性能と製造時の混錬の容易性とを両立させることができる。 A fire-resistant resin molded product having the composition as described above can be molded into a desired shape (pellet, sheet, etc.) and is therefore easy to construct. In addition, in order to form a sufficiently thick insulation layer in the event of a fire and increase the effect of delaying the conduction of combustion heat through an endothermic reaction, it is better to have a large content of ammonium polyphosphate or polyhydric alcohol. In order to suppress dripping and maintain strength, it is better to have a large content of titanium oxide, but if the content of these components is increased, the content of the binder will be relatively small, which may cause problems during manufacturing. Kneading becomes difficult. If the amount of the non-binder is 240 parts by mass or more and 365 parts by mass or less with respect to 100 parts by mass of the binder, both fire resistance and ease of kneading during production can be achieved.

上記の耐火性樹脂成形物において、前記酸化チタンの吸油量が15g/100g以上25g/100g以下であっても構わない。 In the above fire-resistant resin molded article, the oil absorption amount of the titanium oxide may be 15 g/100 g or more and 25 g/100 g or less.

使用される酸化チタンの比表面積が小さすぎると、火災時に形成された断熱層が構造部材からたれ落ちることを抑制して断熱層の強度を維持する効果が十分に得られなくなるおそれがある。一方、使用される酸化チタンの比表面積が大きすぎると、混錬が困難となる。酸化チタンの吸油量が15g/100g以上25g/100g以下であれば、断熱層の強度維持と、混練の容易性を両立することができる。なお、本明細書において、吸油量とはJIS K5101-13に準拠して測定されたものを意味する。 If the specific surface area of the titanium oxide used is too small, there is a risk that the effect of maintaining the strength of the heat insulating layer by preventing the heat insulating layer formed from dripping from the structural member during a fire and maintaining the strength of the heat insulating layer may not be achieved. On the other hand, if the specific surface area of the titanium oxide used is too large, kneading becomes difficult. When the oil absorption amount of titanium oxide is 15 g/100 g or more and 25 g/100 g or less, it is possible to maintain both the strength of the heat insulating layer and the ease of kneading. Note that in this specification, oil absorption means that measured in accordance with JIS K5101-13.

また、本明細書によって開示される構造部材の耐火構造は、他の部材を挿通可能な挿通孔を有する構造部材と、前記挿通孔の内周面に配置される耐火性樹脂層とを備え、前記耐火性樹脂層が、合成樹脂からなる結合剤と、前記結合剤以外の成分である非結合剤により構成され、前記非結合剤が、ポリリン酸アンモニウムと、多価アルコールと、酸化チタンとを含み、前記結合剤100質量部に対して、前記非結合剤が240質量部以上365質量部以下である。 Further, the fireproof structure of a structural member disclosed in this specification includes a structural member having an insertion hole through which another member can be inserted, and a fireproof resin layer disposed on the inner peripheral surface of the insertion hole, The fire-resistant resin layer is composed of a binder made of a synthetic resin and a non-binder which is a component other than the binder, and the non-binder comprises ammonium polyphosphate, polyhydric alcohol, and titanium oxide. The amount of the non-binder is 240 parts by mass or more and 365 parts by mass or less with respect to 100 parts by mass of the binder.

上記の構造部材の耐火構造において、前記構造部材が、貫通孔を有する鉄骨梁と、前記鉄骨梁に取り付けられる補強部材とを備え、前記補強部材が、外周面にねじ山を有し、前記貫通孔に挿通される挿通部材と、ねじ孔を有し、前記挿通部材にねじ付けにより固定されるととともに、前記鉄骨梁における前記貫通孔の周縁部分に沿って配置されるリング部材とを備え、前記挿通部材が前記挿通孔を有していても構わない。 In the fireproof structure of the structural member, the structural member includes a steel beam having a through hole, and a reinforcing member attached to the steel beam, the reinforcing member having a thread on an outer peripheral surface, and the reinforcing member having a thread through the through hole. an insertion member that is inserted into the hole; and a ring member that has a screw hole, is fixed to the insertion member by screwing, and is arranged along the peripheral edge of the through hole in the steel beam, The insertion member may have the insertion hole.

また、本明細書によって開示される耐火構造部材の施工方法は、合成樹脂からなる結合剤と、前記結合剤以外の成分である非結合剤とを混練する混練工程と、前記混練工程で得られた混練物をシート状に成形する成形工程と、前記成形工程で得られた成形物を、他の部材を挿通可能な挿通孔を有する構造部材における前記挿通孔の内周面に貼り付けて耐火性樹脂層を形成させる施工工程とを含み、前記混練工程において、前記非結合剤が、ポリリン酸アンモニウムと、多価アルコールと、酸化チタンとを含み、かつ、前記結合剤100質量部に対して、前記非結合剤が240質量部以上365質量部以下である。 Furthermore, the method for constructing a fire-resistant structural member disclosed in this specification includes a kneading step of kneading a binder made of a synthetic resin and a non-binder that is a component other than the binder, and A molding step in which the kneaded material is formed into a sheet shape, and the molded product obtained in the molding step is attached to the inner circumferential surface of the insertion hole of a structural member having an insertion hole through which another member can be inserted, thereby making it fireproof. in the kneading step, the non-binder contains ammonium polyphosphate, polyhydric alcohol, and titanium oxide, and based on 100 parts by mass of the binder. , the amount of the non-binder is 240 parts by mass or more and 365 parts by mass or less.

上記の構成の構造部材の耐火構造、および、耐火構造部材の施工方法によれば、火災が生じると、耐火性樹脂層が発泡して膨張するとともに炭化し、断熱層を形成する。この断熱層が挿通孔の孔縁と他の部材との隙間を埋めることで、構造部材への熱の伝達を抑制するとともに、火炎や熱が挿通孔を通って拡がることを抑制できる。 According to the fire-resistant structure of the structural member and the construction method of the fire-resistant structural member having the above-described configuration, when a fire occurs, the fire-resistant resin layer foams, expands, and carbonizes to form a heat insulating layer. This heat insulating layer fills the gap between the edge of the insertion hole and other members, thereby suppressing the transfer of heat to the structural member and suppressing the spread of flame and heat through the insertion hole.

ここで、他の部材の挿通作業の困難化を避けるために、耐火性樹脂層の厚さはある程度薄くされ、施工時に、挿通される他の部材と耐火性樹脂層との間に十分な隙間が確保されることが好ましい。一方、火災時に構造部材への熱の伝達を抑制するとともに、断熱層が挿通孔の内周面と他の部材との隙間をある程度埋め、充分な耐火性能を発揮するためには、充分な厚さの断熱層が形成されることが望ましい。上記の組成の耐火性樹脂層は、発泡倍率(発泡前の厚さに対する発泡後の厚さの比率)が十分に大きいため、他の部材の挿通作業の困難化を避けることと、必要な耐火性能を確保することとを両立することができる。 Here, in order to avoid difficulty in inserting other parts, the thickness of the fire-resistant resin layer is made thinner to a certain extent, and during construction, there is enough space between the other parts to be inserted and the fire-resistant resin layer. It is preferable that this is ensured. On the other hand, in order to suppress the transfer of heat to structural members in the event of a fire, and to ensure that the heat insulating layer fills the gap between the inner peripheral surface of the insertion hole and other members to some extent and exhibits sufficient fire resistance, it is necessary to have a sufficient thickness. It is desirable that a heat insulating layer be formed. The fire-resistant resin layer with the above composition has a sufficiently large expansion ratio (the ratio of the thickness after foaming to the thickness before foaming), so it is possible to avoid the difficulty of inserting other parts and to achieve the necessary fire resistance. It is possible to achieve both ensuring performance and ensuring performance.

本明細書によって開示される耐火性樹脂成形物、構造部材の耐火構造、および、耐火構造部材の施工方法によれば、充分な耐火性能と製造のしやすさとを両立できる。 According to the fire-resistant resin molded product, the fire-resistant structure of a structural member, and the construction method of a fire-resistant structural member disclosed in this specification, sufficient fire resistance performance and ease of manufacture can be achieved at the same time.

実施形態における構造部材の部分拡大斜視図A partially enlarged perspective view of a structural member in an embodiment 実施形態における構造部材の部分拡大分解斜視図A partially enlarged exploded perspective view of a structural member in an embodiment 実施形態における、構造部材の耐火構造の断面図Cross-sectional view of a fireproof structure of a structural member in an embodiment 変形例における構造部材の部分拡大分解斜視図Partially enlarged exploded perspective view of a structural member in a modified example 変形例における、構造部材の耐火構造の断面図Cross-sectional view of the fireproof structure of the structural member in a modified example

実施形態を、図1~図3を参照しつつ説明する。本実施形態の耐火性樹脂成形物は、合成樹脂からなる結合剤と、結合剤以外の成分である非結合剤とを混錬し、任意の形状に成形することによって製造され、建築材等、耐火性が要求される施工対象物を被覆する耐火性の被覆材として好適に用いられる。非結合剤は、難燃剤としてのポリリン酸アンモニウムと、炭化材としての多価アルコールと、増粘剤としての酸化チタンとを含む。この耐火性樹脂組成物は、火災時の燃焼熱によって発泡して炭化し、断熱層を形成する。 Embodiments will be described with reference to FIGS. 1 to 3. The fire-resistant resin molded product of this embodiment is manufactured by kneading a binder made of synthetic resin and a non-binder, which is a component other than the binder, and molding it into an arbitrary shape. It is suitably used as a fire-resistant coating material for covering construction objects that require fire resistance. The non-binder includes ammonium polyphosphate as a flame retardant, polyhydric alcohol as a carbonizing agent, and titanium oxide as a thickener. This fire-resistant resin composition foams and carbonizes due to the heat of combustion during a fire, forming a heat insulating layer.

結合剤としての合成樹脂の種類は、特に限定されないが、EVA(エチレン-酢酸ビニル共重合体)、EEA(エチレン-酢酸エチル共重合体)等のエチレン共重合体樹脂、塩化ビニル、塩化ビニル-酢酸ビニル共重合体等の塩化ビニル樹脂、ブチルゴム、スチレンブタジエンゴム等の合成ゴム等を用いることができる。特に、練り込み特性に優れるエチレン共重合体樹脂を用いることが好ましい。結合剤としてEVAを用いる場合には、充分な発泡倍率を得るために、VA比率(酢酸ビニルの含有率)が10~20%であることが好ましい。 The type of synthetic resin used as the binder is not particularly limited, but includes ethylene copolymer resins such as EVA (ethylene-vinyl acetate copolymer) and EEA (ethylene-ethyl acetate copolymer), vinyl chloride, and vinyl chloride. Vinyl chloride resin such as vinyl acetate copolymer, synthetic rubber such as butyl rubber, styrene-butadiene rubber, etc. can be used. In particular, it is preferable to use an ethylene copolymer resin which has excellent kneading properties. When EVA is used as the binder, the VA ratio (vinyl acetate content) is preferably 10 to 20% in order to obtain a sufficient expansion ratio.

非結合剤のうち、ポリリン酸アンモニウムは、難燃剤であり、火災時の燃焼熱により脱水縮合して発泡する。この脱水縮合は吸熱反応であり、この吸熱反応により、鉄骨等の被覆対象に火災時の燃焼熱が伝導することを遅らせることができる。吸熱反応はポリリン酸アンモニウムの脱アンモニア反応である。 Among the non-binding agents, ammonium polyphosphate is a flame retardant, and is dehydrated and condensed by the combustion heat during a fire and foams. This dehydration condensation is an endothermic reaction, and this endothermic reaction can delay the conduction of combustion heat during a fire to a covered object such as a steel frame. The endothermic reaction is a deammonification reaction of ammonium polyphosphate.

多価アルコールは、炭化剤であり、ポリリン酸アンモニウムと同様に、火災時の燃焼熱により脱水縮合して発泡する。多価アルコールの種類は、特に限定されないが、ペンタエリスリトールを好ましく用いることができる。 Polyhydric alcohol is a carbonizing agent, and like ammonium polyphosphate, it undergoes dehydration condensation and foaming due to the heat of combustion during a fire. The type of polyhydric alcohol is not particularly limited, but pentaerythritol can be preferably used.

酸化チタンは、増粘剤であり、火災時に形成された断熱層が、施工対象物からたれ落ちることを抑制して断熱層の強度を維持する。使用される酸化チタンの比表面積が大きいほどたれ落ち抑制効果が大きいが、製造時の混錬が困難となる。このため、酸化チタンの、JIS K5101-13に準拠して測定された吸油量が15g/100g以上25g/100g以下であることが好ましい。 Titanium oxide is a thickener that prevents the heat insulating layer formed in the event of a fire from dripping from the object to be constructed, thereby maintaining the strength of the heat insulating layer. The larger the specific surface area of the titanium oxide used, the greater the effect of suppressing dripping, but it becomes difficult to knead during production. For this reason, it is preferable that the oil absorption amount of titanium oxide measured in accordance with JIS K5101-13 is 15 g/100 g or more and 25 g/100 g or less.

非結合剤は、上記の他に、無機繊維(セラミックファイバー、ロックウール等)、離型剤(脂肪酸エステル)、滑剤、加工助剤(ポリカルボジイミド等)等を含んでいても構わない。 In addition to the above, the non-binding agent may also contain inorganic fibers (ceramic fibers, rock wool, etc.), mold release agents (fatty acid esters), lubricants, processing aids (polycarbodiimide, etc.), and the like.

火災時に充分な厚さの断熱層を形成し、吸熱反応によって燃焼熱の伝導を遅らせる効果を大きくするためには、ポリリン酸アンモニウムや多価アルコールの含有量が大きい方がよく、断熱層のたれ落ち抑制効果を大きくするためには酸化チタンの含有量が大きい方がよい。しかし、これらの成分の含有量を大きくすると、相対的に結合剤の含有量が小さくなり、製造時の混錬が困難となる。結合剤100質量部に対して、非結合剤が240質量部以上365質量部以下であれば、耐火性能と製造時の混錬の容易性とを両立させることができる。 In order to form a sufficiently thick insulation layer in the event of a fire and increase the effect of delaying the conduction of combustion heat through an endothermic reaction, it is better to have a large content of ammonium polyphosphate or polyhydric alcohol. In order to increase the fall-off suppressing effect, it is better to have a larger content of titanium oxide. However, when the content of these components is increased, the content of the binder becomes relatively small, making kneading during production difficult. If the amount of the non-binder is 240 parts by mass or more and 365 parts by mass or less with respect to 100 parts by mass of the binder, both fire resistance and ease of kneading during production can be achieved.

本実施形態の耐火性樹脂成形物は、メラミンなどの発泡剤を含まないことが好ましい。これらの発泡剤の分解温度は一般的にポリリン酸アンモニウムや多価アルコールよりも高いため、ポリリン酸アンモニウムや多価アルコールの発泡によっていったん形成された断熱層を、発泡剤の発泡によって弱くしてしまうためである。 It is preferable that the fire-resistant resin molded article of this embodiment does not contain a blowing agent such as melamine. The decomposition temperature of these blowing agents is generally higher than that of ammonium polyphosphate or polyhydric alcohol, so the foaming of the blowing agent weakens the insulation layer that is once formed by the foaming of ammonium polyphosphate or polyhydric alcohol. It's for a reason.

本実施形態の耐火性樹脂成形物は、上記の材料を、例えば単軸押出機や二軸押出機を用いて溶融混練し、得られた混練物を紐または棒状に押し出したストランドを水冷してペレタイズすることにより得られるペレットであってもよく、上記の材料を、例えばバンバリーミキサー、ニーダーミキサーを用いて溶融混練し、得られた混練物を延伸ロール等で板状に成形したものを棒状にカットしてペレタイズすることにより得られるペレットであってもよく、これらの方法で得られたペレットをプレス成形、押出成形、射出成形等の公知の成形方法により任意の形状に成形した成形物であってもよく、あるいは、溶融混練物をペレット化することなく公知の成形方法により任意の形状に成形した成形物であってもよい。
特に、結合剤100質量部に対して、ポリリン酸アンモニウムと、多価アルコールと、酸化チタンとを含む非結合剤が240質量部以上365質量部以下となるようにする構成は、耐火性樹脂組成物がペレットである場合に、材料の混練が困難となったり、ストランドがちぎれてしまうことを避けることができ、好適である。また、二軸押出機を使用してペレットを製造する場合に、さらに好適である。
The fire-resistant resin molded product of this embodiment is produced by melt-kneading the above-mentioned materials using, for example, a single-screw extruder or a twin-screw extruder, extruding the resulting kneaded product into a string or rod shape, and cooling the strand with water. Pellets obtained by pelletizing may also be used, such as melt-kneading the above materials using a Banbury mixer or a kneader mixer, forming the resulting kneaded product into a plate shape using a stretching roll, etc., and then forming it into a rod shape. It may be pellets obtained by cutting and pelletizing, or it may be a molded product obtained by molding the pellets obtained by these methods into an arbitrary shape by a known molding method such as press molding, extrusion molding, or injection molding. Alternatively, it may be a molded product formed by molding a melt-kneaded product into an arbitrary shape by a known molding method without pelletizing it.
In particular, a configuration in which the non-binder containing ammonium polyphosphate, polyhydric alcohol, and titanium oxide is 240 parts by mass or more and 365 parts by mass or less with respect to 100 parts by mass of the binder is a fire-resistant resin composition. When the material is a pellet, it is possible to avoid difficulty in kneading the material and breakage of the strands, which is preferable. Further, it is more suitable when producing pellets using a twin-screw extruder.

本実施形態の耐火性樹脂成形物を、構造部材の耐火構造に好適に適用した一例を、以下に説明する。 An example in which the fire-resistant resin molded product of this embodiment is suitably applied to the fire-resistant structure of a structural member will be described below.

構造部材10は、図1および図2に示すように、貫通孔12を有する鉄骨梁11と、この鉄骨梁11に取り付けられ、貫通孔12の周辺部分を補強する補強部材21とを備える。鉄骨梁11は、H形鋼であって、図3に示すように、コンクリートスラブSの下に配置されている。補強部材21は、貫通孔12の内部に通されるスリーブ管22(挿通部材に該当)と、このスリーブ管22に接合されるとともに、鉄骨梁11に溶接される2つのリング鋼材25(リング部材に該当)とで構成される。スリーブ管22は、図2に示すように、貫通孔12の孔径とほぼ等しいか、僅かに小さい外径を有する短い円筒状の部材であって、筒の内部空間が挿通孔23に該当する。スリーブ管22の外周面には、ねじ山24が設けられている。2つのリング鋼材25のそれぞれは、図2に示すように、ねじ孔26を有するリング状の板材であって、スリーブ管22にねじ付けにより固定可能となっている。各リング鋼材25は、ねじ孔26を取り囲むように配置された複数の溶接孔27を有している。溶接孔27は、プラグ溶接を施すための孔である。 As shown in FIGS. 1 and 2, the structural member 10 includes a steel beam 11 having a through hole 12, and a reinforcing member 21 that is attached to the steel beam 11 and reinforces a portion around the through hole 12. The steel beam 11 is an H-beam, and as shown in FIG. 3, is placed under the concrete slab S. The reinforcing member 21 includes a sleeve pipe 22 (corresponding to the insertion member) passed through the inside of the through hole 12, and two ring steel members 25 (ring members) joined to the sleeve pipe 22 and welded to the steel beam 11. ). As shown in FIG. 2, the sleeve tube 22 is a short cylindrical member having an outer diameter that is approximately equal to or slightly smaller than the diameter of the through hole 12, and the inner space of the tube corresponds to the insertion hole 23. A thread 24 is provided on the outer peripheral surface of the sleeve tube 22 . As shown in FIG. 2, each of the two ring steel members 25 is a ring-shaped plate member having a screw hole 26, and can be fixed to the sleeve pipe 22 by screwing. Each ring steel material 25 has a plurality of weld holes 27 arranged so as to surround the screw hole 26. The welding hole 27 is a hole for performing plug welding.

スリーブ管22は、両端がそれぞれ鉄骨梁11の板面から突出するようにして、貫通孔12の内部に通されている。2つのリング鋼材25は、鉄骨梁11を挟むように配置され、それぞれスリーブ管22にねじ付けられることによって固定され、さらに、プラグ溶接によって鉄骨梁11に接合されている。挿通孔23の内周面には、図3に示すように、全周にわたって、耐火性樹脂層30が配置されている。耐火性樹脂層30は、シート状に成形された、上記の構成の耐火性樹脂成形物を、挿通孔23の内周面に貼り付けることによって形成された層である。スリーブ管22の一端は、一方のリング鋼材25の表面(鉄骨梁11とは反対側の面)から外方に僅かに突出しており、耐火性樹脂層30の一端は、それよりもさらに外側に突出している。他端についても同様である。 The sleeve tube 22 is passed through the through hole 12 with both ends protruding from the plate surface of the steel beam 11, respectively. The two ring steel members 25 are arranged to sandwich the steel beam 11, are fixed by being screwed to the sleeve pipe 22, and are further joined to the steel beam 11 by plug welding. As shown in FIG. 3, a fire-resistant resin layer 30 is disposed on the inner peripheral surface of the insertion hole 23 over the entire circumference. The fire-resistant resin layer 30 is a layer formed by pasting a sheet-shaped fire-resistant resin molded product having the above configuration onto the inner circumferential surface of the insertion hole 23 . One end of the sleeve pipe 22 slightly protrudes outward from the surface of one of the ring steel members 25 (the surface opposite to the steel beam 11), and one end of the fireproof resin layer 30 protrudes further outward than that. It stands out. The same goes for the other end.

上記のような耐火構造部材の施工方法の一例を、以下に説明する。 An example of a method for constructing a fireproof structural member as described above will be described below.

まず、上記した耐火性樹脂成形物の材料を、二軸押出機を用いて混練する(混練工程)。得られた混練物を紐または棒状に押し出したストランドを水冷してペレタイズすることによりペレットを得る。このペレットを、単軸押出機に投入して、幅60~120mm、厚さ3mmのシート状に成形する(成形工程)。なお、溶融混練物をペレット化することなくシート状に成形することも可能であるが、生産設備、工程の簡素化の観点から、溶融混練物からペレットを経てシート状に成形することが好ましい。
得られたシート状の成形物を、上記の構成の構造部材10において、スリーブ管22の挿通孔23の内周面に貼り付けて耐火性樹脂層30を形成させる(施工工程)。
この後、鉄骨梁11の表面には、図3に示すように、吹き付けロックウールによって耐火被覆Rが形成されてもよい。
First, the materials for the above-described fire-resistant resin molding are kneaded using a twin-screw extruder (kneading step). Pellets are obtained by extruding the obtained kneaded material into a string or rod shape, cooling the strand with water, and pelletizing it. The pellets are put into a single-screw extruder and formed into a sheet having a width of 60 to 120 mm and a thickness of 3 mm (molding step). Although it is possible to form the melt-kneaded product into a sheet without pelletizing it, from the viewpoint of simplifying production equipment and processes, it is preferable to form the melt-kneaded product into a sheet through pellets.
The obtained sheet-like molded product is attached to the inner circumferential surface of the insertion hole 23 of the sleeve pipe 22 in the structural member 10 having the above configuration to form the fire-resistant resin layer 30 (construction step).
Thereafter, a fireproof coating R may be formed on the surface of the steel beam 11 using sprayed rock wool, as shown in FIG.

耐火性樹脂層30が設けられた挿通孔23の内部には、図3に示すように、電気の配線等を通すための配管Pが挿通される。火災が起きていない通常時においては、耐火性樹脂層30の内周面と、配管Pの外周面との間には、ある程度の隙間がある。 As shown in FIG. 3, a pipe P for passing electrical wiring and the like is inserted into the insertion hole 23 provided with the fireproof resin layer 30. As shown in FIG. In normal times when a fire is not occurring, there is a certain amount of clearance between the inner circumferential surface of the fire-resistant resin layer 30 and the outer circumferential surface of the pipe P.

火災が生じると、耐火性樹脂層30が発泡して膨張するとともに炭化し、断熱層を形成する。この断熱層が構造部材への熱の伝達を抑制するとともに、挿通孔23の内周面と配管Pとの隙間をある程度埋めることで、火炎や熱が挿通孔23を通って拡がることを抑制できる。 When a fire occurs, the fireproof resin layer 30 foams, expands, and carbonizes to form a heat insulating layer. This heat insulating layer suppresses the transfer of heat to the structural members, and also fills the gap between the inner peripheral surface of the insertion hole 23 and the pipe P to some extent, thereby suppressing the spread of flame and heat through the insertion hole 23. .

配管Pの挿通作業の困難化を避けるために、施工時の耐火性樹脂層30の厚さはある程度薄く(例えば4mm以下)され、挿通される配管Pと耐火性樹脂層30との間に十分な隙間が確保されることが好ましい。一方、火災時に断熱層が構造部材への熱の伝達を抑制するとともに、挿通孔23の内周面と配管Pとの隙間をある程度埋め、充分な耐火性能を発揮するためには、充分な厚さ(例えば20mm以上)の断熱層が形成されることが望ましい。本実施形態の耐火性樹脂成形物は、発泡倍率(発泡前の厚さに対する発泡後の厚さの比率)が十分に大きいため、配管Pの挿通作業の困難化を避けることと、必要な耐火性能を確保することとを両立することができる。 In order to avoid complicating the work of inserting the pipe P, the thickness of the fire-resistant resin layer 30 at the time of construction is made thin to some extent (for example, 4 mm or less), and there is a sufficient space between the pipe P to be inserted and the fire-resistant resin layer 30. It is preferable that a sufficient gap be ensured. On the other hand, in order for the heat insulating layer to suppress the transfer of heat to the structural members in the event of a fire, and to fill the gap between the inner circumferential surface of the insertion hole 23 and the pipe P to some extent, and to exhibit sufficient fire resistance performance, a sufficient thickness is required. It is desirable to form a heat insulating layer with a thickness (for example, 20 mm or more). The fire-resistant resin molded product of this embodiment has a sufficiently large expansion ratio (the ratio of the thickness after foaming to the thickness before foaming), so it is possible to avoid complication of the work of inserting the pipe P and to achieve the necessary fire resistance. It is possible to achieve both ensuring performance and ensuring performance.

<試験例>
[使用機器、使用材料]
二軸混練押出機として、株式会社神戸製鋼所製「HYPERKTX」を使用した。単軸押出機として、東芝機械株式会社製「SE」を使用した。
結合剤としてEVA(エチレン-酢酸ビニル共重合体)樹脂、PP(ポリプロピレン)樹脂、EEA(エチレン-酢酸エチル共重合体)樹脂、または塩化ビニル樹脂を使用した。
非結合剤のうち、難燃剤としてポリリン酸アンモニウム、炭化剤としてペンタエリスリトール、増粘剤として酸化チタン、発泡剤としてメラミン、加工助剤として脂肪酸エステル、可塑剤としてアジピン酸系ポリエステルを使用した。
<Test example>
[Equipment and materials used]
As a twin-screw kneading extruder, "HYPERKTX" manufactured by Kobe Steel, Ltd. was used. As a single screw extruder, "SE" manufactured by Toshiba Machine Co., Ltd. was used.
EVA (ethylene-vinyl acetate copolymer) resin, PP (polypropylene) resin, EEA (ethylene-ethyl acetate copolymer) resin, or vinyl chloride resin was used as the binder.
Among the non-binding agents, ammonium polyphosphate was used as a flame retardant, pentaerythritol as a carbonizing agent, titanium oxide as a thickener, melamine as a blowing agent, fatty acid ester as a processing aid, and adipic acid polyester as a plasticizer.

[試験方法]
1)試験例1、3~9
表1に示す各成分を、二軸混練押出機を用いて溶融混錬し、ストランド状に押し出された溶融樹脂を水冷し、ペレタイザーで長さ5mmにカットしてペレットとした。押出機の温度設定は160℃とした。ペレット成形性を、問題なくペレット状に成形できたものを〇、ストランドがちぎれて連続生産できないものを△、押出機から吐出できずペレット状に成形できないものを×として評価した。
[Test method]
1) Test examples 1, 3 to 9
Each component shown in Table 1 was melt-kneaded using a twin-screw kneading extruder, and the molten resin extruded into a strand was cooled with water and cut into 5 mm lengths using a pelletizer to form pellets. The temperature setting of the extruder was 160°C. Pellet moldability was evaluated as ○ if the product could be molded into pellets without any problems, △ if the strands broke and could not be continuously produced, and × if the product could not be extruded from the extruder and could not be formed into pellets.

次に、得られたペレットを単軸押出機を用いて溶融して押し出し、厚さ2mm、幅20mmのシート状に成形した。押出機のシリンダー温度は120℃、金型温度は140℃とした。 Next, the obtained pellets were melted and extruded using a single screw extruder to form a sheet having a thickness of 2 mm and a width of 20 mm. The cylinder temperature of the extruder was 120°C, and the mold temperature was 140°C.

続いて、得られたシートを鋼板に両面テープで貼り付けて試験体とし、電気炉内に垂直に立てかけて800℃で2時間加熱して、断熱層を形成させた。断熱層の形状保持性を、力を入れないと断熱層がつぶれないものを〇、容易につぶれてしまうものを×として評価した。また発泡倍率についても測定を行った。さらに、加熱終了後の断熱層が垂れ落ちていないかどうかを評価した。加熱前とほぼ同じ位置を保っていたものを〇、同じ位置ではないものの、上端がずれている程度のものを△、電気炉内に垂れ落ちていたものを×とした。結果を表1に示した。 Subsequently, the obtained sheet was attached to a steel plate with double-sided tape to prepare a test specimen, and the sheet was placed vertically in an electric furnace and heated at 800° C. for 2 hours to form a heat insulating layer. The shape retention of the heat insulating layer was evaluated as ○ if the heat insulating layer did not collapse without applying force, and × if it collapsed easily. The expansion ratio was also measured. Furthermore, it was evaluated whether the heat insulating layer did not sag after heating was completed. Items that remained in almost the same position as before heating were rated as ○, items that were not in the same position but had some deviation of the top were rated as △, and items that were dripping into the electric furnace were rated as ×. The results are shown in Table 1.

2)試験例2、10
表1に示す各成分を加圧ニーダーで混練した後、オープンロールで厚さ5mmのシート状に加工してからカットしてペレット状に成形した。その他は上記1)と同様である。
2) Test examples 2 and 10
The components shown in Table 1 were kneaded using a pressure kneader, processed into a 5 mm thick sheet using open rolls, and then cut into pellets. The rest is the same as 1) above.

3)試験例11~20
表2に示す各成分をオープンニーダーで混練した後、150℃でホットプレス(手動式)してシート状に成形した。得られたシートを鋼板に両面テープで貼り付けて試験体とし、上記1)と同様にして断熱層の形状保持性、およびたれ落ちを評価した。また発泡倍率についても測定を行った。結果を表2に示した。
3) Test examples 11 to 20
The components shown in Table 2 were kneaded using an open kneader, and then hot pressed (manually) at 150° C. to form a sheet. The obtained sheet was attached to a steel plate with double-sided tape to prepare a test specimen, and the shape retention and dripping of the heat insulating layer were evaluated in the same manner as in 1) above. The expansion ratio was also measured. The results are shown in Table 2.

Figure 0007355351000001
Figure 0007355351000001

Figure 0007355351000002
Figure 0007355351000002

なお、表1および表2における各成分の配合比を示す数値の単位は質量部である。 Note that the units of numerical values indicating the blending ratio of each component in Tables 1 and 2 are parts by mass.

[結果と考察]
結合剤100質量部に対して、非結合剤が240質量部以上365質量部以下である試験例1~6では、混錬物を良好にペレットとして成形することができた。また、断熱層は良好に形状を保持しており、たれ落ちも観察されなかった。発泡倍率は5倍~12倍であり、例えば構造部材における挿通孔の内周面に配置される場合に、配管の挿通作業の困難化を避けることと、必要な耐火性能を確保することとを両立するために十分であった。
[Results and discussion]
In Test Examples 1 to 6, in which the amount of the non-binder was 240 parts by mass or more and 365 parts by mass or less with respect to 100 parts by mass of the binder, the kneaded product could be well formed into pellets. Furthermore, the heat insulating layer maintained its shape well, and no dripping was observed. The foaming ratio is 5 times to 12 times, and for example, when placed on the inner peripheral surface of an insertion hole in a structural member, it is possible to avoid complicating the work of inserting piping and to ensure the necessary fire resistance performance. It was enough to make both work compatible.

非結合剤の配合量が365質量部よりも大きい試験例7、10では、材料の混錬が困難であり、ペレットを得ることができなかった。また非結合剤の配合量が240質量部よりも小さい試験例8、9では、発泡倍率が充分ではなかったり、断熱層のたれ落ちが観察されたりした。 In Test Examples 7 and 10 in which the amount of non-binder was greater than 365 parts by mass, it was difficult to knead the materials and pellets could not be obtained. Further, in Test Examples 8 and 9 in which the amount of the non-binder was less than 240 parts by mass, the expansion ratio was not sufficient or sagging of the heat insulating layer was observed.

断熱層の形状保持、十分な発泡倍率、断熱層のたれ落ち抑制という性能をバランスよく発揮させるために、結合剤100質量部に対して、ポリリン酸アンモニウムが120~185質量部、ペンタエリスリトールが40~100質量部、酸化チタンが60~95質量部であることが好ましいと考えられた。 In order to achieve a well-balanced performance of maintaining the shape of the heat insulating layer, sufficient expansion ratio, and suppressing the dripping of the heat insulating layer, 120 to 185 parts by mass of ammonium polyphosphate and 40 parts by mass of pentaerythritol were added to 100 parts by mass of the binder. It was considered preferable that the amount of titanium oxide be 60 to 95 parts by weight.

<変形例>
図4および図5に示す構造部材40のように、補強部材41が、2つのフランジ付き筒42により構成されていてもよい。各フランジ付き筒42は、貫通孔12の内径とほぼ等しい内径を有し、両端が開口した円筒状の筒部43と、筒部43の一方の開口部の開口縁から外側に張り出すフランジ部44とを備えている。各フランジ付き筒42は、フランジ部44が、鉄骨梁11において貫通孔12の周縁部に当接するように配置され、溶接されることによって、鉄骨梁11に固定されている。
<Modified example>
As in the structural member 40 shown in FIGS. 4 and 5, the reinforcing member 41 may be composed of two flanged tubes 42. Each flanged tube 42 has an inner diameter approximately equal to the inner diameter of the through hole 12, and includes a cylindrical tube portion 43 that is open at both ends, and a flange portion that projects outward from the opening edge of one opening of the tube portion 43. 44. Each flanged tube 42 is arranged such that the flange portion 44 abuts the peripheral edge of the through hole 12 in the steel beam 11, and is fixed to the steel beam 11 by welding.

2つのフランジ付筒42の筒部43と、貫通孔12の内周面とには、全周にわたって、上記実施形態と同様の耐火性樹脂層45が配置されている。耐火性樹脂層45の一端は、一方の筒部43の一端(フランジ部44とは反対側の端縁)から外方に僅かに突出している。他端についても同様である。 A fire-resistant resin layer 45 similar to that of the above embodiment is disposed over the entire circumference of the cylindrical portions 43 of the two flanged cylinders 42 and the inner peripheral surface of the through hole 12. One end of the fire-resistant resin layer 45 slightly protrudes outward from one end of one cylindrical portion 43 (the edge on the opposite side to the flange portion 44). The same goes for the other end.

<他の実施形態>
本明細書によって開示される技術は上記記述及び図面によって説明した実施形態に限定されるものではなく、例えば次のような種々の態様も含まれる。
(1)上記実施形態では、補強部材21が、スリーブ管22とリング鋼材25とを備えていたが、補強部材の構成は上記実施形態の限りではなく、例えば、補強部材がスリーブ管を備えておらず、2つのリング鋼材が、溶接のみによって鉄骨梁に接合されていても構わない。あるいは、補強部材が、鉄骨梁の片面に溶接される1つのリング鋼材のみを備えていても構わない。あるいは、補強部材が、配管を挿通可能な孔を有する鉄板であって、溶接によって鉄骨梁に接合されていても構わない。これらの場合、鉄骨梁の貫通孔および、リング鋼材または鉄板の孔の内周面に、耐火性樹脂層を配置すればよい。
また、補強部材が配管を挿通可能な鋼管であって、鉄骨梁の貫通孔の内周面に溶接により接合されていても構わない。この場合、鋼管の内周面に耐火性樹脂層を配置すればよい。
また、鉄骨梁が補強部材を備えていなくても構わない。その場合、鉄骨梁の貫通孔の内周面に、耐火性樹脂層を配置すればよい。
<Other embodiments>
The technology disclosed in this specification is not limited to the embodiments described above and illustrated in the drawings, but also includes various aspects such as the following.
(1) In the above embodiment, the reinforcing member 21 includes the sleeve pipe 22 and the ring steel material 25, but the structure of the reinforcing member is not limited to the above embodiment. For example, the reinforcing member may include a sleeve pipe. However, the two ring steel members may be joined to the steel beam only by welding. Alternatively, the reinforcing member may include only one ring of steel welded to one side of the steel beam. Alternatively, the reinforcing member may be a steel plate having a hole through which the pipe can be inserted, and may be joined to the steel beam by welding. In these cases, a fire-resistant resin layer may be placed on the inner peripheral surface of the through hole of the steel beam and the hole of the ring steel material or iron plate.
Further, the reinforcing member may be a steel pipe through which the pipe can be inserted, and may be joined by welding to the inner circumferential surface of the through hole of the steel beam. In this case, a fire-resistant resin layer may be placed on the inner peripheral surface of the steel pipe.
Moreover, the steel beam does not need to be provided with a reinforcing member. In that case, a fire-resistant resin layer may be placed on the inner peripheral surface of the through-hole of the steel beam.

(2)耐火性樹脂組成物は、所望の形状に成形することにより種々の用途に用いることができる。例えば、シート状に成形して、鉄骨構造物の耐火被覆材として用いることができる。また、テープ状に成形して、窓枠、扉枠等の隙間に配置し、火災時に膨張して空隙を埋めることで火炎の裏面貫通を防ぐために用いたり、樹脂製・木製窓枠の外表面に設けて火災時の燃焼熱から樹脂枠・木枠にチャックすることを防止する耐火被覆テープとして用いたりすることができる。また、板状に成形して、軽量防火シャッターとして用いることもできる。また、フィルム状に成形して、リチウムイオン電池等の蓄電池が発火した場合に燃焼を抑制するフィルム、溶接時の火花から保護するシートとして使用することもできる。その他に、適切な形状に成形して、水素タンクやガソリンタンクの外表面に設けて火災時の温度上昇により引火することを抑制する自動車用部品、自動車の燃料タンクを収容する内壁に設けて火災時に居室内を保護する部品として使用することもできる。 (2) The fire-resistant resin composition can be used for various purposes by molding it into a desired shape. For example, it can be formed into a sheet and used as a fireproof coating for steel structures. In addition, it can be formed into a tape and placed in gaps between window frames, door frames, etc., and expanded in the event of a fire to fill the void and prevent flames from penetrating the back side. It can also be used as a fireproof covering tape to prevent resin frames or wooden frames from being chucked by combustion heat in the event of a fire. It can also be formed into a plate shape and used as a lightweight fireproof shutter. It can also be formed into a film and used as a film that suppresses combustion when a storage battery such as a lithium ion battery catches fire, or a sheet that protects from sparks during welding. In addition, we also offer automotive parts that are molded into an appropriate shape and placed on the outer surface of hydrogen or gasoline tanks to prevent ignition from igniting due to temperature rise in the event of a fire; Sometimes it can also be used as a part to protect the inside of a living room.

(3)上記実施形態では、耐火性樹脂層30の端部がスリーブ管22から突出していたが、耐火性樹脂層の端面がスリーブ管の端面と面一となっていても構わない。変形例についても同様に、耐火性樹脂層の端面が筒部の端面と面一となっていても構わない。 (3) In the above embodiment, the end of the fire-resistant resin layer 30 protrudes from the sleeve tube 22, but the end surface of the fire-resistant resin layer may be flush with the end surface of the sleeve tube. Similarly, in the modified example, the end surface of the fire-resistant resin layer may be flush with the end surface of the cylindrical portion.

10、40…構造部材
11…鉄骨梁
12…貫通孔
21、41…補強部材
22…スリーブ管(挿通部材)
23…挿通孔
24…ねじ山
25…リング鋼材(リング部材)
26…ねじ孔
30、45…耐火性樹脂層
10, 40...Structural member 11...Steel beam 12...Through hole 21, 41...Reinforcement member 22...Sleeve pipe (insertion member)
23...Insertion hole 24...Thread 25...Ring steel material (ring member)
26...Screw holes 30, 45...Fireproof resin layer

Claims (6)

溶融混錬により形成される耐火性樹脂成形物であって、
合成樹脂からなる結合剤と、前記結合剤以外の成分である非結合剤により構成され、
前記非結合剤が、ポリリン酸アンモニウムと、多価アルコールと、酸化チタンとを含み、
前記結合剤が、エチレン共重合体樹脂であり、
前記結合剤100質量部に対して、前記非結合剤が230質量部以上365質量部以下であり、
前記結合剤100質量部に対して前記酸化チタンが60質量部以上95質量部以下であり、
前記結合剤100質量部に対して前記ポリリン酸アンモニウムが120質量部以上185質量部以下であり、
800℃で2時間加熱後の発泡倍率が5~12倍である耐火性樹脂成形物。
A fire-resistant resin molded product formed by melt-kneading,
Consisting of a binder made of synthetic resin and a non-binder that is a component other than the binder,
The non-binding agent includes ammonium polyphosphate, polyhydric alcohol, and titanium oxide,
the binder is an ethylene copolymer resin,
The amount of the non-binder is 230 parts by mass or more and 365 parts by mass or less with respect to 100 parts by mass of the binder,
The titanium oxide is 60 parts by mass or more and 95 parts by mass or less with respect to 100 parts by mass of the binder,
The ammonium polyphosphate is 120 parts by mass or more and 185 parts by mass or less with respect to 100 parts by mass of the binder,
A fire-resistant resin molded product with an expansion ratio of 5 to 12 times after heating at 800°C for 2 hours.
前記酸化チタンの吸油量が15g/100g以上25g/100g以下である、請求項1に記載の耐火性樹脂成形物。 The fire-resistant resin molded article according to claim 1, wherein the titanium oxide has an oil absorption amount of 15 g/100 g or more and 25 g/100 g or less. 他の部材を挿通可能な挿通孔を有する構造部材と、
前記挿通孔の内周面に配置される耐火性樹脂層とを備え、
前記耐火性樹脂層が、
合成樹脂からなる結合剤と、前記結合剤以外の成分である非結合剤により構成され、
前記非結合剤が、ポリリン酸アンモニウムと、多価アルコールと、酸化チタンとを含み、
前記結合剤が、エチレン共重合体樹脂であり、
前記結合剤100質量部に対して、前記非結合剤が230質量部以上365質量部以下であり、
前記結合剤100質量部に対して前記酸化チタンが60質量部以上95質量部以下であり、
前記結合剤100質量部に対して前記ポリリン酸アンモニウムが120質量部以上185質量部以下であり、
800℃で2時間加熱後の前記耐火性樹脂層の発泡倍率が5~12倍である構造部材の耐火構造。
a structural member having an insertion hole through which another member can be inserted;
and a fire-resistant resin layer disposed on the inner circumferential surface of the insertion hole,
The fire-resistant resin layer is
Consisting of a binder made of synthetic resin and a non-binder that is a component other than the binder,
The non-binding agent includes ammonium polyphosphate, polyhydric alcohol, and titanium oxide,
the binder is an ethylene copolymer resin,
The amount of the non-binder is 230 parts by mass or more and 365 parts by mass or less with respect to 100 parts by mass of the binder,
The titanium oxide is 60 parts by mass or more and 95 parts by mass or less with respect to 100 parts by mass of the binder,
The ammonium polyphosphate is 120 parts by mass or more and 185 parts by mass or less with respect to 100 parts by mass of the binder,
A fireproof structure of a structural member, wherein the foaming ratio of the fireproof resin layer after heating at 800° C. for 2 hours is 5 to 12 times.
前記構造部材が、貫通孔を有する鉄骨梁と、前記鉄骨梁に取り付けられる補強部材とを備え、
前記補強部材が、外周面にねじ山を有し、前記貫通孔に挿通される挿通部材と、ねじ孔を有し、前記挿通部材にねじ付けにより固定されるととともに、前記鉄骨梁における前記貫通孔の周縁部分に沿って配置されるリング部材とを備え、
前記挿通部材が前記挿通孔を有している、請求項3に記載の構造部材の耐火構造。
The structural member includes a steel beam having a through hole and a reinforcing member attached to the steel beam,
The reinforcing member has a screw thread on an outer circumferential surface, an insertion member that is inserted into the through hole, and a screw hole, and is fixed to the insertion member by screwing, and a ring member disposed along the peripheral edge of the hole;
The fireproof structure of a structural member according to claim 3, wherein the insertion member has the insertion hole.
合成樹脂からなる結合剤と、前記結合剤以外の成分である非結合剤とを混練する混練工程と、
前記混練工程で得られた混練物をシート状に成形する成形工程と、
前記成形工程で得られた成形物を、他の部材を挿通可能な挿通孔を有する構造部材における前記挿通孔の内周面に貼り付けて耐火性樹脂層を形成させる施工工程とを含み、
前記混練工程において、前記非結合剤が、ポリリン酸アンモニウムと、多価アルコールと、酸化チタンとを含み、前記結合剤が、エチレン共重合体樹脂であり、かつ、前記結合剤100質量部に対して、前記非結合剤が230質量部以上365質量部以下であり、前記結合剤100質量部に対して前記酸化チタンが60質量部以上95質量部以下であり、前記結合剤100質量部に対して前記ポリリン酸アンモニウムが120質量部以上185質量部以下であり、800℃で2時間加熱後の前記耐火性樹脂層の発泡倍率が5~12倍である耐火構造部材の施工方法。
a kneading step of kneading a binder made of a synthetic resin and a non-binder that is a component other than the binder;
a molding step of molding the kneaded material obtained in the kneading step into a sheet shape;
a construction step of forming a fire-resistant resin layer by pasting the molded product obtained in the molding step on the inner peripheral surface of the insertion hole of a structural member having an insertion hole through which another member can be inserted;
In the kneading step, the non-binder contains ammonium polyphosphate, polyhydric alcohol, and titanium oxide, and the binder is an ethylene copolymer resin, and based on 100 parts by mass of the binder, The non-binder is 230 parts by mass or more and 365 parts by mass or less, and the titanium oxide is 60 parts by mass or more and 95 parts by mass or less based on 100 parts by mass of the binder. A method for constructing a fire-resistant structural member, wherein the ammonium polyphosphate is 120 parts by mass or more and 185 parts by mass or less, and the foaming ratio of the fire-resistant resin layer after heating at 800° C. for 2 hours is 5 to 12 times.
合成樹脂からなる結合剤と、前記結合剤以外の成分である非結合剤とを混練する混練工程と、
前記混練工程で得られた混練物を成形する成形工程と、を含み、
前記混練工程において、前記非結合剤が、ポリリン酸アンモニウムと、多価アルコールと、酸化チタンとを含み、前記結合剤が、エチレン共重合体樹脂であり、かつ、前記結合剤100質量部に対して、前記非結合剤が230質量部以上365質量部以下であり、前記結合剤100質量部に対して前記酸化チタンが60質量部以上95質量部以下であり、前記結合剤100質量部に対して前記ポリリン酸アンモニウムが120質量部以上185質量部以下であり、800℃で2時間加熱後の発泡倍率が5~12倍である耐火性樹脂成形物の製造方法。
a kneading step of kneading a binder made of a synthetic resin and a non-binder that is a component other than the binder;
a molding step of molding the kneaded material obtained in the kneading step,
In the kneading step, the non-binder contains ammonium polyphosphate, polyhydric alcohol, and titanium oxide, and the binder is an ethylene copolymer resin, and based on 100 parts by mass of the binder, The non-binder is 230 parts by mass or more and 365 parts by mass or less, and the titanium oxide is 60 parts by mass or more and 95 parts by mass or less based on 100 parts by mass of the binder. A method for producing a fire-resistant resin molded article, wherein the ammonium polyphosphate is 120 parts by mass or more and 185 parts by mass or less, and the expansion ratio after heating at 800° C. for 2 hours is 5 to 12 times.
JP2022160769A 2017-12-27 2022-10-05 Fire-resistant resin molded product, fire-resistant structure of structural member, construction method of fire-resistant structural member, and manufacturing method of fire-resistant resin molded product Active JP7355351B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022160769A JP7355351B2 (en) 2017-12-27 2022-10-05 Fire-resistant resin molded product, fire-resistant structure of structural member, construction method of fire-resistant structural member, and manufacturing method of fire-resistant resin molded product

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017250823A JP2019116759A (en) 2017-12-27 2017-12-27 Fire-resistant resin molded product, fire-resistant structure for structural member, and method for constructing fire-resistant structural member
JP2022160769A JP7355351B2 (en) 2017-12-27 2022-10-05 Fire-resistant resin molded product, fire-resistant structure of structural member, construction method of fire-resistant structural member, and manufacturing method of fire-resistant resin molded product

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2017250823A Division JP2019116759A (en) 2017-12-27 2017-12-27 Fire-resistant resin molded product, fire-resistant structure for structural member, and method for constructing fire-resistant structural member

Publications (2)

Publication Number Publication Date
JP2022189839A JP2022189839A (en) 2022-12-22
JP7355351B2 true JP7355351B2 (en) 2023-10-03

Family

ID=67304126

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2017250823A Pending JP2019116759A (en) 2017-12-27 2017-12-27 Fire-resistant resin molded product, fire-resistant structure for structural member, and method for constructing fire-resistant structural member
JP2022160769A Active JP7355351B2 (en) 2017-12-27 2022-10-05 Fire-resistant resin molded product, fire-resistant structure of structural member, construction method of fire-resistant structural member, and manufacturing method of fire-resistant resin molded product

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2017250823A Pending JP2019116759A (en) 2017-12-27 2017-12-27 Fire-resistant resin molded product, fire-resistant structure for structural member, and method for constructing fire-resistant structural member

Country Status (1)

Country Link
JP (2) JP2019116759A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114342025A (en) * 2019-09-26 2022-04-12 松下知识产权经营株式会社 Electricity storage bag
JP7399703B2 (en) * 2019-12-19 2023-12-18 センクシア株式会社 Fireproof sheathing material, beam reinforcement metal fittings, fireproof sheathing retaining structure, and construction method of fireproof structure
JP7477288B2 (en) * 2019-12-19 2024-05-01 センクシア株式会社 Fireproof coating material, fireproof coating material retention structure, and method for constructing fireproof structure
JP7507027B2 (en) 2020-07-22 2024-06-27 株式会社竹中工務店 Reinforcement structure of steel perforated beam

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003064261A (en) 2001-08-27 2003-03-05 Kanegafuchi Chem Ind Co Ltd Foamable fireproof composition excellent in fire resistance, foamable fireproof sheet-form molding, and foamable fireproof sheet laminate
JP2006183444A (en) 2004-03-22 2006-07-13 Ishihara:Kk Method of reinforcing opening of steel frame girder
JP5535406B2 (en) 2011-07-12 2014-07-02 株式会社エフコンサルタント Coating material

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09176404A (en) * 1995-12-22 1997-07-08 Sekisui Chem Co Ltd Fire-resistant resin composition
JP2000043035A (en) * 1998-07-28 2000-02-15 Sekisui Chem Co Ltd Production of fire resistant resin composition
JP2002225200A (en) * 2001-01-30 2002-08-14 Kanegafuchi Chem Ind Co Ltd Non-combustible fire-resistant foaming composite body
JP2002309183A (en) * 2001-02-07 2002-10-23 Kikusui Chemical Industries Co Ltd Foaming fireproof coating material and foaming fireproof sheet

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003064261A (en) 2001-08-27 2003-03-05 Kanegafuchi Chem Ind Co Ltd Foamable fireproof composition excellent in fire resistance, foamable fireproof sheet-form molding, and foamable fireproof sheet laminate
JP2006183444A (en) 2004-03-22 2006-07-13 Ishihara:Kk Method of reinforcing opening of steel frame girder
JP5535406B2 (en) 2011-07-12 2014-07-02 株式会社エフコンサルタント Coating material

Also Published As

Publication number Publication date
JP2022189839A (en) 2022-12-22
JP2019116759A (en) 2019-07-18

Similar Documents

Publication Publication Date Title
JP7355351B2 (en) Fire-resistant resin molded product, fire-resistant structure of structural member, construction method of fire-resistant structural member, and manufacturing method of fire-resistant resin molded product
US8578672B2 (en) Intumescent backer rod
JP4594445B1 (en) Foam and production method thereof
JP4953049B2 (en) Fireproof resin composition, fireproof resin strip, fireproof tape
JP5313048B2 (en) Thermally expandable refractory material, fire-resistant molded article, and fire-proof treatment method
JP4621804B1 (en) Insulation
US10436994B2 (en) Optical fiber cable
KR101236553B1 (en) Method for manufacturing foam insulation having a function of resistance to flame
JP2013075941A (en) Foamable polystyrenic resin particle, production method thereof, foamed particle and foamed molding
JP4975551B2 (en) Fireproof insulation sheet and fireproof treatment method
DK2708667T3 (en) Process for producing a fire-retardant insulating element, insulating element and using an insulating element
KR20180102784A (en) Organic insulation including expanding inorganic aggregate
JP7046727B2 (en) Thermally expandable refractory materials and refractory moldings
JP6924733B2 (en) How to manufacture fire protection sheet, fire protection member and fire protection sheet
JP5808612B2 (en) Thermally expandable heat insulating sealing material
JP7254577B2 (en) Piping material
JP2008133666A (en) Heat-insulation waterproof structure and heat-insulating waterproofing method
JP5120912B2 (en) Method for manufacturing a panel having a self-flame blocking function
US11161952B2 (en) Methods of insulating piping and other materials using high temperature non-crosslinked polyethylene-based foam
JP2020176206A (en) Resin-based fire-resistant composition
JP2010133177A (en) Structure having drainage slope of outside building excellent in heat resistance
JP6534914B2 (en) Fire protection structure, construction method of fire protection structure
JP7269133B2 (en) multilayer pipe
KR20140000807A (en) Flame retardant piping material and manufacturing method thereof
EP2431410A1 (en) Sunlight-resistant expanded styrene-polymerised sheets with high heat insulation value

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221006

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230822

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230912

R150 Certificate of patent or registration of utility model

Ref document number: 7355351

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150