JP7352786B1 - Buried pile for in-situ remediation of contaminated soil capable of sustained drug release and remediation method - Google Patents

Buried pile for in-situ remediation of contaminated soil capable of sustained drug release and remediation method Download PDF

Info

Publication number
JP7352786B1
JP7352786B1 JP2023104523A JP2023104523A JP7352786B1 JP 7352786 B1 JP7352786 B1 JP 7352786B1 JP 2023104523 A JP2023104523 A JP 2023104523A JP 2023104523 A JP2023104523 A JP 2023104523A JP 7352786 B1 JP7352786 B1 JP 7352786B1
Authority
JP
Japan
Prior art keywords
drug
remediation
release
pile tube
pile
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2023104523A
Other languages
Japanese (ja)
Inventor
孔令雅
応蓉蓉
李旭偉
▲とう▼紹坡
姜登登
謝文逸
彭立
李梅
Original Assignee
生態環境部南京環境科学研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 生態環境部南京環境科学研究所 filed Critical 生態環境部南京環境科学研究所
Application granted granted Critical
Publication of JP7352786B1 publication Critical patent/JP7352786B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09CRECLAMATION OF CONTAMINATED SOIL
    • B09C1/00Reclamation of contaminated soil
    • B09C1/08Reclamation of contaminated soil chemically
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09CRECLAMATION OF CONTAMINATED SOIL
    • B09C2101/00In situ

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Soil Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

【課題】土壤へ放出する薬剤量を正確に制御することができる、薬剤を徐放可能な汚染土壌原位置修復用埋設杭、及び修復方法を提供する。【解決手段】本発明は、杭筒10と、杭筒内に設けられた薬剤徐放機構20と、を含み、杭筒全体を地中に埋設し、薬剤散布装置に修復薬剤を散布放出した後、薬剤散布装置内に高圧空気を導入し、高圧気流による衝撃作用によって修復薬剤を土壤に散布放出する薬剤を徐放可能な汚染土壌原位置修復用埋設杭、及び修復方法を開示する。【選択図】図2An object of the present invention is to provide a buried pile for in-situ remediation of contaminated soil and a remediation method that can accurately control the amount of a chemical released into a soil pot and that can release a chemical in a sustained manner. [Solution] The present invention includes a pile tube 10 and a drug sustained release mechanism 20 provided in the pile tube, the entire pile tube is buried underground, and a drug dispersing device sprays and releases a repair agent. The present invention discloses a buried pile for in-situ remediation of contaminated soil and a remediation method that can gradually release a remediation agent by introducing high-pressure air into the agent dispersion device and spraying and releasing the remediation agent onto the soil by the impact effect of the high-pressure airflow. [Selection diagram] Figure 2

Description

本発明は、土壤原位置修復の技術分野に関し、具体的には、薬剤を徐放可能な汚染土壌原
位置修復用埋設杭、及び修復方法に関する。
The present invention relates to the technical field of in-situ remediation of soil, and specifically relates to a buried pile for in-situ remediation of contaminated soil that is capable of releasing a drug in a sustained manner, and a remediation method.

原位置化学酸化修復技術とは、現場に酸化剤を添加することによって、現場の汚染物質を
無毒或いは低毒性物質にすることで、汚染土壌修復の目的を達成することである。このよ
うな汚染土壌修復方法は、土壌の掘削や運搬が不要で、施工が簡単で、コストが低く、周
辺環境への影響が少ないなどの利点がある。
しかし、土壌中の汚染物質が深く潜んでいれば、一般的な化学的修復手段でも効果的な根
絶は難しく、土を掘り返すと作業量が多く、土壌中の汚染物質も短時間で薬剤により除去
できるものではない。
そのため、土壌深部の汚染物質を除去する装置が必要であり、修復薬剤を土壌に徐放し、
修復薬剤と土壌中の汚染物質との緩やかな化学反応を利用して土壌中の汚染物質を徹底的
に除去する。
In-situ chemical oxidation remediation technology is the addition of oxidizing agents to the site to make on-site pollutants non-toxic or low-toxic substances, thereby achieving the purpose of contaminated soil remediation. Such contaminated soil remediation methods have the advantage of not requiring soil excavation or transportation, being easy to construct, low cost, and having little impact on the surrounding environment.
However, if the contaminants in the soil are deeply hidden, it is difficult to eradicate them effectively even with general chemical remediation methods. Digging up the soil requires a lot of work, and the contaminants in the soil can be removed quickly using chemicals. It's not something that can be done.
Therefore, a device is needed to remove pollutants deep in the soil, and it is necessary to slowly release remediation agents into the soil.
Contaminants in the soil are thoroughly removed using a slow chemical reaction between the remediation agent and the contaminants in the soil.

本発明の目的は、土壤へ放出する薬剤量を正確に制御することができる、薬剤を徐放可能
な汚染土壌原位置修復用埋設杭、及び修復方法を提供することである。
An object of the present invention is to provide a buried pile for in-situ remediation of contaminated soil and a remediation method that can accurately control the amount of a chemical released into a soil pot and that can release a chemical in a controlled manner.

上記の目的を達成させるために、本発明は、下記の技術的解決手段を提供する。
薬剤を徐放可能な汚染土壌原位置修復用埋設杭であって、
杭筒と、杭筒内に設けられた薬剤徐放機構と、を含み、
杭筒は、内部が中空で且つ上端が開放した円筒形構造であり、頂部に薬剤タンクを収納す
るための収納キャビティが設けられており、
薬剤徐放機構は、杭筒の内側壁に固定された複数の薬剤散布装置を含み、薬剤散布装置は
、内部が中空で且つ杭筒に接合する側に開口が設けられ、薬剤散布装置内に、複数の散布
貫通孔を側壁に有する散布用カートリッジが設けられ、
杭筒の側壁には、薬剤散布装置に連通している複数の薬剤放出貫通孔を有し、
散布用カートリッジ内の頂部に粉末ノズルが固設され、薬剤タンク内に粉末コンベアが固
設され、粉末コンベアの出力端が接続管を介して粉末ノズル内に連通しており、
薬剤散布装置の外側に加圧装置が固設され、加圧装置は第1連通管を介して薬剤散布装置
に連通しており、
加圧装置の外側壁に、その内部に連通している複数の第2連通管が固設され、第2連通管
に第1バルブを有し、
加圧装置内に空気圧開放装置が固設され、空気圧開放装置の外側には、その内部に連通し
ている空気圧開放管が固設され、空気圧開放管に第2バルブを有し、空気圧開放管は配管
を介して加圧装置の外部まで延在しており、
収納キャビティ内には、空気圧縮機と、空気圧縮機に接続された複数の圧縮空気貯蔵タン
クとがさらに設けられ、各圧縮空気貯蔵タンクは1つの第2連通管を介して加圧装置に連
通している。
好ましくは、薬剤散布装置の下端には、薬剤カプセルを内部に有する薬剤仮貯蔵カートリ
ッジが設けられ、散布用カートリッジ内の底部には、薬剤仮貯蔵カートリッジ内に挿入す
る第3連通管が固設され、第3連通管に第3バルブを有し、
薬剤仮貯蔵カートリッジの下端には薬剤移送機構が固設され、薬剤移送機構の頂部には、
薬剤仮貯蔵カートリッジの内部に連通している穿刺連通管が固設され、薬剤移送機構内に
は、垂直に配置された穿刺伸縮ロッドが固設され、穿刺伸縮ロッドは電気制御伸縮ロッド
であり、内部ロッドが上を向いており、穿刺伸縮ロッドの内部ロッドの頂部には、垂直に
延びている穿刺ニードルが固設され、穿刺ニードル内に気密性セパレータが固設され、穿
刺ニードルの側壁において気密性セパレータの下方に位置する部位に内外を連通させる複
数の気流導出孔を有し、穿刺ニードルの側壁において気密性セパレータの上方に位置する
部位に内外を連通させる複数の気流導入孔を有する。
説明:薬剤カプセルは、修復薬剤を内部に封入した密閉プラスチップシェルであり、必要
な場合、穿刺ニードルは薬剤カプセルを穿刺すると、薬剤カプセル内の修復薬剤が放出さ
れる。
好ましくは、薬剤仮貯蔵カートリッジの外側に薬剤交換機構が設けられ、薬剤交換機構は
、薬剤仮貯蔵カートリッジの外側に固定されたカプセル貯蔵装置及びカプセル回収装置を
含み、カプセル貯蔵装置内には、薬剤仮貯蔵カートリッジの内部に連通している輸送管が
固設され、カプセル貯蔵装置内には、巻き取りリールが回転嵌合可能に接続され、巻き取
りリールは水平に配置され、その回転軸が縦方向に延びており、巻き取りリールは、サー
ボモータによって回転駆動され、固定膜が巻設され、固定膜には複数の薬剤カプセルが固
定されており、
カプセル回収装置内には、薬剤仮貯蔵カートリッジの内部に連通している回収管が固設さ
れ、カプセル回収装置内に回収リールが回転嵌合可能に接続され、回収リールは水平に配
置され、その回転軸が縦方向に延びており、回収リールは、サーボモータによって回転駆
動され、固定膜の一端は輸送管及び回収管を通ってカプセル回収装置内まで延びており、
固定膜のカプセル回収装置内まで延びている一端は回収リールに巻き付けられて固定され
る。
説明:薬剤交換機構は、複数の薬剤カプセルを一括して貯蔵することができ、これにより
、修復薬剤を頻繁に交換することを回避し、薬剤交換機構は薬剤仮貯蔵カートリッジ内に
収納された薬剤カプセルを効率的に交換することができる。
好ましくは、薬剤散布装置の頂部に貫通孔開閉機構が設けられ、貫通孔開閉機構は、薬剤
散布装置の頂部に固定された開閉機構ハウジングを含み、開閉機構ハウジングの底部には
、薬剤散布装置の内部に連通している密閉板シュートを有し、薬剤散布装置内において密
閉板が杭筒の内側壁に密着して設けられ、密閉板の上端は密閉板シュートを通って開閉機
構ハウジング内に伸びており、
密閉板の上端には、軸線が縦方向に延びている昇降制御リングが固設され、昇降制御リン
グの内側に雌ネジが加工されており、開閉機構ハウジング内の頂部に昇降制御モータが固
設され、昇降制御モータの出力軸には、縦方向に延びている昇降制御レバーが固設され、
昇降制御レバーに雄ネジが加工されており、昇降制御レバーは昇降制御リング内にネジ伝
動可能能に嵌合され、
密閉板には、両側を貫通している複数の薬剤放出嵌合孔を有する。
説明:貫通孔開閉機構は薬剤放出貫通孔が薬剤散布装置の内部に連通しているか否かを制
御し、作動以外の場合は、密閉板を利用して薬剤放出貫通孔を閉鎖し、外部土壤の薬剤散
布装置への侵入を回避することができる。
本発明はまた、
杭筒全体を地中に固定して埋設し、杭筒の頂部にある収納キャビティを地上に露出させる
ステップS1と、
空気圧縮機によって圧縮空気貯蔵タンクに空気を充填し、圧縮空気貯蔵タンク内の気圧を
6~10標準大気圧とするステップS2と、
粉末コンベアによって薬剤タンク内の粉末薬剤を粉末ノズルに輸送し、粉末ノズルを利用
して粉末薬剤を散布用カートリッジにスプレーして散布させるステップS3と、
圧縮空気貯蔵タンク内の高圧空気を第2連通管で加圧装置に輸送し、次に、第1連通管を
介して薬剤散布装置に入れて、薬剤放出貫通孔へ流通させるステップS4と、
高圧空気は、薬剤放出貫通孔へ流れる過程において、散布貫通孔から散布用カートリッジ
に入って粉末薬剤と混合され、次に、粉末薬剤は、高圧空気による衝撃を受けて気流によ
り散布用カートリッジ外へ取り出され、気流とともに薬剤放出貫通孔から土壤に入るステ
ップS5と、
次に、加圧装置への気体供給を停止し、空気圧開放装置を利用して、加圧装置及び薬剤散
布装置内の空気を排出するステップS6と、
加圧装置及び薬剤散布装置内の気圧が外界気圧と一致すると、上記のステップS4を繰り
返して加圧装置へ高圧空気を導入し、高圧空気による衝撃作用により、土壤の内部に入っ
た粉末薬剤をより広範な範囲へ拡散させるステップS7と、を含む、上記の埋設杭による
汚染土壌原位置修復方法を提供する。
In order to achieve the above object, the present invention provides the following technical solutions.
A buried pile for in-situ remediation of contaminated soil capable of slow release of drugs,
It includes a pile tube and a drug sustained release mechanism provided in the pile tube,
The pile tube has a cylindrical structure that is hollow inside and open at the top, and has a storage cavity at the top to store the drug tank.
The drug sustained release mechanism includes a plurality of drug dispersing devices fixed to the inner wall of the pile tube, and the drug dispersing device is hollow inside and has an opening on the side connected to the pile tube. , a dispersion cartridge having a plurality of dispersion through holes in a side wall is provided,
The side wall of the pile tube has a plurality of drug release through holes communicating with the drug dispersion device,
A powder nozzle is fixed to the top of the dispersion cartridge, a powder conveyor is fixed to the medicine tank, and the output end of the powder conveyor communicates with the powder nozzle through a connecting pipe.
A pressurizing device is fixedly installed outside the drug dispersing device, and the pressurizing device communicates with the drug dispersing device via a first communication pipe,
A plurality of second communication pipes communicating with the inside thereof are fixedly installed on the outer wall of the pressurizing device, and the second communication pipe has a first valve,
A pneumatic release device is fixedly installed inside the pressurizing device, and an air pressure release tube communicating with the inside is fixedly installed on the outside of the pneumatic pressure release device, and the pneumatic pressure release tube has a second valve. Extends to the outside of the pressurizing device via piping,
The storage cavity further includes an air compressor and a plurality of compressed air storage tanks connected to the air compressor, each compressed air storage tank communicating with the pressurizing device via one second communication pipe. are doing.
Preferably, a drug temporary storage cartridge having a drug capsule inside is provided at the lower end of the drug dispersion device, and a third communication pipe to be inserted into the drug temporary storage cartridge is fixedly installed at the bottom of the dispersion cartridge. , having a third valve in the third communicating pipe,
A drug transfer mechanism is fixedly installed at the lower end of the drug temporary storage cartridge, and a drug transfer mechanism is installed at the top of the drug transfer mechanism.
A puncturing communication tube communicating with the interior of the drug temporary storage cartridge is fixedly installed, a vertically arranged puncturing telescopic rod is fixedly installed in the drug transfer mechanism, and the puncturing telescopic rod is an electrically controlled telescopic rod; The inner rod faces upward, and a vertically extending puncture needle is fixed to the top of the inner rod of the puncture telescopic rod, and an air-tight separator is fixed in the puncture needle, and an air-tight separator is fixed on the side wall of the puncture needle. A region located below the airtight separator has a plurality of airflow outlet holes that communicate the inside and outside, and a region located above the airtight separator in the side wall of the puncture needle has a plurality of airflow introduction holes that communicate the inside and outside.
Description: The drug capsule is a sealed plastic tip shell with the repair agent sealed inside, and if necessary, the puncture needle will puncture the drug capsule and the repair agent inside the drug capsule will be released.
Preferably, a drug exchange mechanism is provided outside the temporary drug storage cartridge, and the drug exchange mechanism includes a capsule storage device and a capsule recovery device fixed to the outside of the temporary drug storage cartridge, and the drug exchange mechanism includes a capsule storage device and a capsule recovery device fixed to the outside of the temporary drug storage cartridge. A transport pipe communicating with the inside of the temporary storage cartridge is fixedly installed, and a take-up reel is rotatably connected to the inside of the capsule storage device, and the take-up reel is arranged horizontally and its rotation axis is vertically connected. The take-up reel is rotationally driven by a servo motor, and a fixed membrane is wound around the take-up reel, and a plurality of drug capsules are fixed to the fixed membrane.
A recovery pipe communicating with the inside of the temporary drug storage cartridge is fixed in the capsule recovery device, and a recovery reel is rotatably connected to the capsule recovery device, and the recovery reel is arranged horizontally. The rotation shaft extends in the longitudinal direction, the collection reel is rotationally driven by a servo motor, and one end of the fixed membrane extends into the capsule collection device through the transport pipe and the collection pipe,
One end of the fixed membrane extending into the capsule recovery device is wound and fixed around a recovery reel.
Description: The drug exchange mechanism can store multiple drug capsules at once, thereby avoiding frequent replacement of the repair drug, and the drug exchange mechanism can store the drugs stored in the drug temporary storage cartridge. Capsules can be exchanged efficiently.
Preferably, a through-hole opening/closing mechanism is provided at the top of the drug dispersing device, the through-hole opening/closing mechanism includes an opening/closing mechanism housing fixed to the top of the drug dispersing device, and a bottom of the opening/closing mechanism housing is provided with a through-hole opening/closing mechanism. It has a sealing plate chute communicating with the inside, and the sealing plate is provided in close contact with the inner wall of the pile tube in the chemical dispersion device, and the upper end of the sealing plate extends into the opening/closing mechanism housing through the sealing plate chute. and
A lift control ring whose axis extends vertically is fixed to the upper end of the sealing plate, a female thread is machined inside the lift control ring, and a lift control motor is fixed to the top inside the opening/closing mechanism housing. A vertically extending elevator control lever is fixed to the output shaft of the elevator control motor.
A male thread is machined on the elevation control lever, and the elevation control lever is fitted into the elevation control ring to enable screw transmission.
The sealing plate has a plurality of drug release fitting holes passing through both sides.
Description: The through-hole opening/closing mechanism controls whether the drug release through hole communicates with the inside of the drug dispersion device, and when it is not in operation, the drug release through hole is closed using a sealing plate and the external soil is closed. can be avoided from entering the chemical dispensing equipment.
The present invention also provides
Step S1 of fixing and burying the entire pile tube underground and exposing the storage cavity at the top of the pile tube above the ground;
Step S2: filling the compressed air storage tank with air using an air compressor, and setting the pressure inside the compressed air storage tank to 6 to 10 standard atmospheric pressure;
A step S3 in which the powdered medicine in the medicine tank is transported to a powder nozzle by a powder conveyor, and the powdered medicine is sprayed onto a dispersion cartridge using the powder nozzle to be dispersed;
Step S4: transporting the high-pressure air in the compressed air storage tank to the pressurizing device through the second communication pipe, and then entering the drug dispensing device via the first communication pipe and causing it to flow to the drug release through hole;
In the process of flowing to the drug release through-hole, the high-pressure air enters the dispensing cartridge through the dispensing through-hole and is mixed with the powdered drug.Then, the powdered drug is shocked by the high-pressure air and moves out of the dispensing cartridge by the airflow. step S5, which is taken out and enters the pot through the drug release through hole along with the airflow;
Next, step S6 of stopping the gas supply to the pressurizing device and discharging the air inside the pressurizing device and the drug dispersing device using an air pressure release device;
When the air pressure inside the pressurizing device and the drug dispersing device matches the outside atmospheric pressure, the above step S4 is repeated to introduce high pressure air into the pressurizing device, and the powdered drug that has entered the inside of the soil is removed by the impact action of the high pressure air. The present invention provides a method for in-situ remediation of contaminated soil using buried piles, which includes step S7 of diffusing the contaminated soil to a wider range.

本発明の有益な効果は以下のとおりである。
(1)本発明は、構造の設計が合理的で、操作されやすく、杭筒全体を地中に埋設し、薬
剤散布装置に修復薬剤を散布放出した後、薬剤散布装置内に高圧空気を導入し、高圧気流
による衝撃作用によって修復薬剤を土壤に散布放出し、修復薬剤を土壤中の汚染物と十分
に接触して反応させ、土壤中の有害汚染物を除去する。
(2)本発明では、電磁ハンマが設けられることによって、薬剤放出管が放出管収納貫通
孔を貫通して衝撃により土壤に挿入され、薬剤放出管により、杭筒からより離れた箇所へ
の修復薬剤の放出が可能になり、薬剤が作用する範囲が広がる。
(3)本発明では、修復薬剤が薬剤カプセルに貯蔵されることで、修復薬剤が空気と接触
して作用を失うことを回避し、しかも、薬剤交換機構は複数の薬剤カプセルを一括して貯
蔵することができ、これにより、修復薬剤を頻繁に交換することを回避し、薬剤交換機構
は薬剤仮貯蔵カートリッジ内に収納された薬剤カプセルを効率的に交換することができる
The beneficial effects of the present invention are as follows.
(1) The present invention has a rational structure design and is easy to operate, and the entire pile tube is buried underground, and after spraying and releasing the remediation chemical into the chemical spraying device, high-pressure air is introduced into the chemical spraying device. Then, the remediation agent is dispersed and released onto the soil by the impact action of the high-pressure air flow, and the remediation agent is brought into sufficient contact with the contaminants in the soil to cause a reaction, thereby removing harmful contaminants in the soil.
(2) In the present invention, by providing an electromagnetic hammer, the drug release tube penetrates the release tube storage through hole and is inserted into the soil by impact, and the drug release tube allows repair to a location further away from the pile tube. The drug can be released and the range of action of the drug is expanded.
(3) In the present invention, by storing the repair agent in a drug capsule, the repair agent is prevented from coming into contact with air and losing its effectiveness, and the drug exchange mechanism stores multiple drug capsules at once. This avoids frequent replacement of the repair agent and allows the agent exchange mechanism to efficiently exchange the agent capsules housed in the temporary agent storage cartridge.

本発明の埋設杭の外観図である。It is an external view of the buried pile of the present invention. 本発明の埋設杭の内部構造の概略図である。It is a schematic diagram of the internal structure of the buried pile of the present invention. 本発明における薬剤徐放機構と杭筒を接続したときの縦断面概略図である。FIG. 2 is a schematic vertical cross-sectional view when the drug sustained release mechanism and the pile tube of the present invention are connected. 本発明における薬剤徐放機構の前面外観図である。FIG. 2 is a front external view of the drug sustained release mechanism according to the present invention. 本発明における薬剤徐放機構の後面外観図である。FIG. 3 is a rear external view of the drug sustained release mechanism according to the present invention. 本発明における加圧装置を省略した薬剤徐放機構の構造概略図である。FIG. 2 is a structural schematic diagram of a sustained drug release mechanism in which a pressurizing device is omitted in the present invention. 本発明における薬剤徐放機構の散布用カートリッジの構造概略図である。FIG. 2 is a schematic structural diagram of a dispersion cartridge of the drug sustained release mechanism according to the present invention. 本発明における薬剤徐放機構の密閉板と昇降制御モータの組立構造の概略図である。FIG. 3 is a schematic diagram of an assembly structure of a sealing plate and a lifting control motor of a drug sustained release mechanism according to the present invention. 本発明における薬剤徐放機構の加圧装置の構造概略図である。FIG. 2 is a schematic structural diagram of a pressurizing device of a drug sustained release mechanism according to the present invention. 本発明における薬剤徐放機構の加圧装置の内部構造の概略図である。FIG. 2 is a schematic diagram of the internal structure of the pressurizing device of the drug sustained release mechanism according to the present invention. 本発明における薬剤徐放機構の薬剤移送機構の内部構造の概略図である。FIG. 3 is a schematic diagram of the internal structure of the drug transfer mechanism of the drug sustained release mechanism in the present invention. 本発明における薬剤徐放機構の穿刺ニードルと薬剤カプセルとの位置関係の概略図である。FIG. 3 is a schematic diagram of the positional relationship between a puncture needle and a drug capsule of the drug sustained release mechanism in the present invention. 本発明における薬剤徐放機構の薬剤交換機構の内部構造の概略図である。FIG. 3 is a schematic diagram of the internal structure of the drug exchange mechanism of the drug sustained release mechanism in the present invention. 本発明における薬剤交換機構の固定膜の構造概略図である。FIG. 3 is a schematic structural diagram of a fixed membrane of the drug exchange mechanism in the present invention.

[符号の説明]
10-杭筒
11 薬剤タンク
12 収納キャビティ
121 空気圧縮機
122 圧縮空気貯蔵タンク
13 粉末コンベア
20 薬剤徐放機構
21 薬剤散布装置
211 粉末ノズル
212 薬剤放出貫通孔
213 散布用カートリッジ
214 散布貫通孔
22 加圧装置
221 第1連通管
222 第2連通管
223 第1バルブ
23 空気圧開放装置
231 空気圧開放管
232 第2バルブ
24 薬剤仮貯蔵カートリッジ
241 第3連通管
242 第3バルブ
243 薬剤カプセル
25 薬剤移送機構
251 穿刺連通管
252 穿刺伸縮ロッド
253 穿刺ニードル
254 気密性セパレータ
255 気流導出孔
256 気流導入孔
26 薬剤交換機構
261 カプセル貯蔵装置
262 カプセル回収装置
263 輸送管
264 巻き取りリール
265 固定膜
266 回収管
267 回収リール
27 貫通孔開閉機構
271 開閉機構ハウジング
272 密閉板シュート
273 密閉板
274 昇降制御リング
275 昇降制御モータ
276 昇降制御レバー
277 薬剤放出嵌合孔
[Explanation of symbols]
10-Pile tube 11 Drug tank 12 Storage cavity 121 Air compressor 122 Compressed air storage tank 13 Powder conveyor 20 Drug sustained release mechanism 21 Drug spraying device 211 Powder nozzle 212 Drug release through hole 213 Spraying cartridge 214 Spraying through hole 22 Pressurization Device 221 First communication tube 222 Second communication tube 223 First valve 23 Pneumatic release device 231 Pneumatic release tube 232 Second valve 24 Drug temporary storage cartridge 241 Third communication tube 242 Third valve 243 Drug capsule 25 Drug transfer mechanism 251 Puncture Communication tube 252 Puncture telescopic rod 253 Puncture needle 254 Airtight separator 255 Airflow outlet hole 256 Airflow introduction hole 26 Drug exchange mechanism 261 Capsule storage device 262 Capsule recovery device 263 Transport tube 264 Take-up reel 265 Fixed membrane 266 Recovery tube 267 Recovery reel 27 Through-hole opening/closing mechanism 271 Opening/closing mechanism housing 272 Sealing plate chute 273 Sealing plate 274 Lifting control ring 275 Lifting control motor 276 Lifting control lever 277 Drug release fitting hole

以下では、特定実施形態を参照して、本発明についてさらに詳細に説明し、本発明の優位
性をより明確にする。
実施例1
薬剤を徐放可能な汚染土壌原位置修復用埋設杭は、図1、図2に示すように、杭筒10と
、杭筒10内に設けられた薬剤徐放機構20と、を含み、
図2に示すように、杭筒10は、内部が中空でかつ上端が開放した円筒形構造であり、頂
部に薬剤タンク11を収納するための収納キャビティ12が設けられており、
図2、図3、及び図7に示すように、薬剤徐放機構20は、杭筒10の内側壁に固定され
た複数の薬剤散布装置21を含み、薬剤散布装置21は、内部が中空でかつ杭筒10に接
合する側に開口が設けられ、薬剤散布装置21内に、複数の散布貫通孔214を側壁に有
する散布用カートリッジ213が設けられ、杭筒10の側壁には、薬剤散布装置21に連
通している複数の薬剤放出貫通孔212を有し、
散布用カートリッジ213内の頂部に粉末ノズル211が固設され、薬剤タンク11内に
粉末コンベア13が固設され、粉末コンベア13の出力端が接続管を介して粉末ノズル2
11内に連通しており、
図4~6、図9、及び図10に示すように、薬剤散布装置21の外側に加圧装置22が固
設され、加圧装置22は第1連通管221を介して薬剤散布装置21に連通しており、
加圧装置22の外側壁に、その内部に連通している5つの第2連通管222が固設され、
第2連通管222に第1バルブ223を有し、
加圧装置22内に空気圧開放装置23が固設され、空気圧開放装置23の外側には、その
内部に連通している空気圧開放管231が固設され、空気圧開放管231に第2バルブ2
32を有し、空気圧開放管231は配管を介して加圧装置22の外部まで延在している。
図5、図8に示すように、薬剤散布装置21の頂部に貫通孔開閉機構27が設けられ、貫
通孔開閉機構27は、薬剤散布装置21の頂部に固定された開閉機構ハウジング271を
含み、開閉機構ハウジング271の底部には、薬剤散布装置21の内部に連通している密
閉板シュート272を有し、薬剤散布装置21内において密閉板273が杭筒10の内側
壁に密着して設けられ、密閉板273の上端は密閉板シュート272を通って開閉機構ハ
ウジング271内に伸びており、
密閉板273の上端には、軸線が縦方向に延びている昇降制御リング274が固設され、
昇降制御リング274の内側に雌ネジが加工されており、開閉機構ハウジング271内の
頂部に昇降制御モータ275が固設され、昇降制御モータ275は市販モータであり、昇
降制御モータ275の出力軸には、縦方向に延びている昇降制御レバー276が固設され
、昇降制御レバー276に雄ネジが加工されており、昇降制御レバー276は、昇降制御
リング274内にネジ伝動可能能に嵌合され、密閉板273には、両側を貫通している複
数の薬剤放出嵌合孔277を有する。
図2に示すように、収納キャビティ12内には、空気圧縮機121及び空気圧縮機121
に接続された5つの圧縮空気貯蔵タンク122がさらに設けられ、各圧縮空気貯蔵タンク
122は2つの第2連通管222を介して加圧装置22に連通している。
図4、図11~14に示すように、薬剤散布装置21の下端には、薬剤カプセル243を
内部に有する薬剤仮貯蔵カートリッジ24が設けられ、散布用カートリッジ213内の底
部には、薬剤仮貯蔵カートリッジ24内に挿入する第3連通管241が固設され、第3連
通管241に第3バルブ242を有し、
薬剤仮貯蔵カートリッジ24の下端には薬剤移送機構25が固設され、薬剤移送機構25
の頂部には、薬剤仮貯蔵カートリッジ24の内部に連通している穿刺連通管251が固設
され、薬剤移送機構25内には、垂直に配置された穿刺伸縮ロッド252が固設され、穿
刺伸縮ロッド252は電気制御伸縮ロッドであり、内部ロッドが上を向いており、穿刺伸
縮ロッド252の内部ロッドの頂部に、縦方向に延びている穿刺ニードル253が固設さ
れ、穿刺ニードル253内に気密性セパレータ254が固設され、穿刺ニードル253の
側壁において気密性セパレータ254の下方に位置する部位に内外を連通させる複数の気
流導出孔255を有し、穿刺ニードル253の側壁において気密性セパレータ254の上
方に位置する部位に内外を連通させる複数の気流導入孔256を有する。
薬剤交換機構26は、薬剤仮貯蔵カートリッジ24の外側に固定されたカプセル貯蔵装置
261及びカプセル回収装置262を含み、カプセル貯蔵装置261内には、薬剤仮貯蔵
カートリッジ24の内部に連通している輸送管263が固設され、カプセル貯蔵装置26
1内には、巻き取りリール264が回転嵌合可能に接続され、巻き取りリール264は水
平に配置され、その回転軸が縦方向に延びており、巻き取りリール264は、サーボモー
タによって回転駆動され、サーボモータは市販モータであり、巻き取りリール264には
固定膜265が巻設され、固定膜265には15個の薬剤カプセル243が固定されてお
り、
カプセル回収装置262内には、薬剤仮貯蔵カートリッジ24の内部に連通している回収
管266が固設され、カプセル回収装置262内に回収リール267が回転嵌合可能に接
続され、回収リール267は水平に配置され、その回転軸が縦方向に延びており、回収リ
ール267は、サーボモータによって回転駆動され、サーボモータは市販モータであり、
固定膜265の一端は輸送管263及び回収管266を通ってカプセル回収装置262内
まで延びており、固定膜265のカプセル回収装置262内まで延びている一端は回収リ
ール267に巻き付けられて固定される。
In the following, the invention will be explained in more detail with reference to specific embodiments to make the advantages of the invention clearer.
Example 1
A buried pile for in-situ remediation of contaminated soil capable of sustained drug release includes a pile tube 10 and a drug sustained release mechanism 20 provided within the pile tube 10, as shown in FIGS. 1 and 2.
As shown in FIG. 2, the pile tube 10 has a cylindrical structure that is hollow inside and open at the top, and is provided with a storage cavity 12 at the top for storing a drug tank 11.
As shown in FIGS. 2, 3, and 7, the drug sustained release mechanism 20 includes a plurality of drug dispersing devices 21 fixed to the inner wall of the pile tube 10, and the drug dispersing devices 21 are hollow inside. Further, an opening is provided on the side to be joined to the pile tube 10, and a dispersion cartridge 213 having a plurality of dispersion through holes 214 in the side wall is provided in the chemical dispersion device 21. It has a plurality of drug release through holes 212 communicating with 21,
A powder nozzle 211 is fixed to the top of the dispersion cartridge 213, a powder conveyor 13 is fixed to the medicine tank 11, and the output end of the powder conveyor 13 is connected to the powder nozzle 2 through a connecting pipe.
It communicates with 11,
As shown in FIGS. 4 to 6, FIG. 9, and FIG. 10, a pressurizing device 22 is fixedly installed outside the drug dispersing device 21, and the pressurizing device 22 is connected to the drug dispersing device 21 through a first communication pipe 221. It is in communication,
Five second communication pipes 222 are fixed to the outer wall of the pressurizing device 22 and communicate with the inside thereof,
The second communication pipe 222 has a first valve 223;
A pneumatic release device 23 is fixedly installed inside the pressurizing device 22, and an air pressure release pipe 231 communicating with the inside thereof is fixedly installed on the outside of the pneumatic pressure release device 23.
32, and the pneumatic release pipe 231 extends to the outside of the pressurizing device 22 via piping.
As shown in FIGS. 5 and 8, a through-hole opening/closing mechanism 27 is provided at the top of the chemical dispersing device 21, and the through-hole opening/closing mechanism 27 includes an opening/closing mechanism housing 271 fixed to the top of the chemical dispersing device 21. The bottom of the opening/closing mechanism housing 271 has a sealing plate chute 272 that communicates with the inside of the chemical spraying device 21 , and a sealing plate 273 is provided in close contact with the inner wall of the pile tube 10 inside the chemical spraying device 21 . , the upper end of the sealing plate 273 extends into the opening/closing mechanism housing 271 through the sealing plate chute 272;
An elevation control ring 274 whose axis extends in the vertical direction is fixed to the upper end of the sealing plate 273.
A female screw is machined inside the lift control ring 274, and a lift control motor 275 is fixedly installed at the top of the opening/closing mechanism housing 271. The lift control motor 275 is a commercially available motor, and the output shaft of the lift control motor 275 In this case, an elevation control lever 276 extending in the vertical direction is fixed, a male thread is machined on the elevation control lever 276, and the elevation control lever 276 is fitted into the elevation control ring 274 so as to be able to transmit a screw. , the sealing plate 273 has a plurality of drug release fitting holes 277 passing through both sides.
As shown in FIG. 2, the storage cavity 12 includes an air compressor 121 and an air compressor 121.
There are further provided five compressed air storage tanks 122 connected to, each compressed air storage tank 122 communicating with the pressurizing device 22 via two second communication pipes 222.
As shown in FIGS. 4 and 11 to 14, a temporary drug storage cartridge 24 having a drug capsule 243 inside is provided at the lower end of the drug dispersion device 21, and a temporary drug storage cartridge 24 is provided at the bottom of the dispersion cartridge 213. A third communication pipe 241 inserted into the cartridge 24 is fixedly provided, and the third communication pipe 241 has a third valve 242.
A drug transfer mechanism 25 is fixed to the lower end of the drug temporary storage cartridge 24.
A puncture communication tube 251 that communicates with the inside of the drug temporary storage cartridge 24 is fixedly installed at the top of the drug temporary storage cartridge 24, and a vertically arranged puncture telescopic rod 252 is fixedly installed inside the drug transfer mechanism 25, and a puncturing telescopic rod 252 is fixedly connected to the inside of the drug temporary storage cartridge 24. The rod 252 is an electrically controlled telescoping rod, with an internal rod facing upward, and a vertically extending puncturing needle 253 is fixed to the top of the internal rod of the puncturing telescopic rod 252, and the puncturing needle 253 is airtight. The airtight separator 254 is fixedly installed, and has a plurality of airflow outlet holes 255 that connect the inside and outside to a portion located below the airtight separator 254 on the side wall of the puncture needle 253. The upper part has a plurality of air flow introduction holes 256 that communicate the inside and outside.
The drug exchange mechanism 26 includes a capsule storage device 261 and a capsule recovery device 262 fixed to the outside of the temporary drug storage cartridge 24 . A tube 263 is fixedly connected to the capsule storage device 26.
1, a take-up reel 264 is rotatably connected thereto, the take-up reel 264 is arranged horizontally, and its rotating shaft extends in the vertical direction, and the take-up reel 264 is rotationally driven by a servo motor. The servo motor is a commercially available motor, a fixed film 265 is wound around the take-up reel 264, and 15 drug capsules 243 are fixed to the fixed film 265.
A recovery pipe 266 communicating with the inside of the drug temporary storage cartridge 24 is fixedly installed in the capsule recovery device 262, and a recovery reel 267 is rotatably connected to the capsule recovery device 262. The collection reel 267 is arranged horizontally and has a rotation axis extending in the vertical direction, and is rotationally driven by a servo motor, and the servo motor is a commercially available motor.
One end of the fixed membrane 265 extends into the capsule recovery device 262 through the transport pipe 263 and the recovery tube 266, and one end of the fixed membrane 265 that extends into the capsule recovery device 262 is wound and fixed around a recovery reel 267. Ru.

実施例2
実施例1の埋設杭による汚染土壌原位置修復方法は、以下のステップを含む。
S1、杭筒10全体を地中に固定して埋設し、杭筒10の頂部にある収納キャビティ12
を地上に露出させ、修復対象領域の土壤について汚染物検出を定期的に行い、土壤中への
薬剤放出のタイミング及び薬剤量を決定する。
S2、空気圧縮機121によって圧縮空気貯蔵タンク122に空気を充填し、圧縮空気貯
蔵タンク122内の気圧を9標準大気圧とする。
S3、粉末コンベア13によって薬剤タンク11内の粉末薬剤を粉末ノズル211に輸送
し、粉末ノズル211を利用して粉末薬剤を散布用カートリッジ213にスプレーして散
布させ、粉末薬剤は修復薬剤であり、市販の過マンガン酸カリウム粉末を用いる。
薬剤仮貯蔵カートリッジ24内には薬剤カプセル243があり、穿刺伸縮ロッド252の
内部ロッドは伸長して穿刺ニードル253を上へ移動させ、穿刺ニードル253は薬剤カ
プセル243を下から上へ刺穿し、このようにすると、穿刺ニードル253の気流導出孔
255及び気流導入孔256が薬剤カプセル243の内部にあり、穿刺ニードル253の
上端が第3連通管241内に挿入され、穿刺ニードル253の下部が配を介して圧縮空気
貯蔵タンク122に連通し、配管にはバルブがあり、穿刺ニードル253の下部へ空気が
導入され、穿刺ニードル253内の空気は気流導出孔255から薬剤カプセル243の内
部に排出され、薬剤カプセル243の内部に入った気流は、薬剤粉末を運んで気流導入孔
256から穿刺ニードル253の上部に入り、薬剤粉末を同伴させた気流は穿刺ニードル
253の上端から排出され、第3連通管241を介して薬剤散布装置21の内部に入り、
薬剤を薬剤散布装置21内に散布させる。
S4、圧縮空気貯蔵タンク122内の高圧空気を第2連通管222で加圧装置22に輸送
し、次に、第1連通管221を介して薬剤散布装置21に入れて、薬剤放出貫通孔212
へ流通させる。
初期の状態では、密閉板273の下端は薬剤散布装置21内の底部に接触し、すなわち、
密閉板273の薬剤放出嵌合孔277と薬剤放出貫通孔212は位置をずらして分離され
る。
昇降制御モータ275は、昇降制御レバー276を回転駆動し、昇降制御レバー276は
、昇降制御リング274を駆動させて密閉板273とともに上へ移動させ、これにより、
密閉板273の薬剤放出嵌合孔277と薬剤放出貫通孔212は同軸に連通するようにな
る。
S5、高圧空気は、薬剤放出貫通孔212へ流れる過程において、散布貫通孔214から
散布用カートリッジ213に入って粉末薬剤と混合され、次に、粉末薬剤は、高圧空気に
よる衝撃を受けて気流により散布用カートリッジ213外へ取り出され、気流とともに薬
剤放出貫通孔212から土壤に入る。
S6、次に、加圧装置22への気体供給を停止し、空気圧開放装置23を利用して、加圧
装置22及び薬剤散布装置21内の空気を排出する。
S7、加圧装置22及び薬剤散布装置21内の気圧が外界気圧と一致すると、上記のステ
ップS4を繰り返して加圧装置22へ高圧空気を導入し、高圧空気による衝撃作用により
、土壤の内部に入った粉末薬剤をより広範な範囲へ拡散させる。
Example 2
The method for in-situ remediation of contaminated soil using buried piles of Example 1 includes the following steps.
S1, the entire pile tube 10 is fixed and buried underground, and a storage cavity 12 at the top of the pile tube 10 is installed.
is exposed on the ground, and contaminants are detected periodically on the soil in the area to be repaired, and the timing and amount of chemical release into the soil are determined.
S2, the compressed air storage tank 122 is filled with air by the air compressor 121, and the pressure inside the compressed air storage tank 122 is brought to 9 standard atmospheric pressure.
S3, the powdered medicine in the medicine tank 11 is transported by the powder conveyor 13 to the powder nozzle 211, and the powdered medicine is sprayed onto the dispersion cartridge 213 using the powder nozzle 211 to be dispersed, the powdered medicine is a repairing medicine; Commercially available potassium permanganate powder is used.
There is a drug capsule 243 in the drug temporary storage cartridge 24, and the inner rod of the puncture telescopic rod 252 extends to move the puncture needle 253 upward, and the puncture needle 253 punctures the medicine capsule 243 from the bottom to the top. In this way, the airflow outlet hole 255 and the airflow introduction hole 256 of the puncture needle 253 are inside the drug capsule 243, the upper end of the puncture needle 253 is inserted into the third communication tube 241, and the lower end of the puncture needle 253 is inserted into the third communication tube 241. The pipe is connected to the compressed air storage tank 122 through the pipe, and has a valve to introduce air to the lower part of the puncture needle 253, and the air inside the puncture needle 253 is discharged from the air flow outlet hole 255 into the inside of the drug capsule 243. The airflow that has entered the inside of the drug capsule 243 carries the drug powder and enters the upper part of the puncture needle 253 through the airflow introduction hole 256, and the airflow carrying the drug powder is discharged from the upper end of the puncture needle 253 and passes through the third communication enters the inside of the drug dispersion device 21 via the pipe 241;
The medicine is sprayed into the medicine spraying device 21.
S4, the high-pressure air in the compressed air storage tank 122 is transported to the pressurizing device 22 through the second communication pipe 222, then introduced into the drug dispersion device 21 through the first communication pipe 221, and then transferred to the drug release through hole 212.
be distributed to.
In the initial state, the lower end of the sealing plate 273 is in contact with the bottom inside the drug dispensing device 21, that is,
The drug release fitting hole 277 and the drug release through hole 212 of the sealing plate 273 are separated by shifting their positions.
The lift control motor 275 rotationally drives the lift control lever 276, and the lift control lever 276 drives the lift control ring 274 to move upward together with the sealing plate 273.
The drug release fitting hole 277 of the sealing plate 273 and the drug release through hole 212 coaxially communicate with each other.
S5: In the process of flowing to the drug release through-hole 212, the high-pressure air enters the dispersion cartridge 213 from the dispersion through-hole 214 and is mixed with the powdered drug.Then, the powdered drug is impacted by the high-pressure air and is dispersed by the airflow. The drug is taken out of the dispersion cartridge 213 and enters the pot through the drug release through hole 212 along with the airflow.
S6: Next, the gas supply to the pressurizing device 22 is stopped, and the air inside the pressurizing device 22 and the drug dispersing device 21 is discharged using the air pressure release device 23.
S7: When the air pressure inside the pressurizing device 22 and the chemical dispersing device 21 matches the outside atmospheric pressure, the above step S4 is repeated to introduce high-pressure air into the pressurizing device 22, and the impact action of the high-pressure air causes the inside of the soil to be Spreads the powdered drug over a wider area.

実施例3
実施例2と比べて、ステップS2では、圧縮空気貯蔵タンク122内の気圧を6標準大気
圧とした点は相違する。
Example 3
The difference from the second embodiment is that in step S2, the pressure inside the compressed air storage tank 122 is set to 6 standard atmospheric pressures.

実施例4
実施例2と比べて、ステップS2では、圧縮空気貯蔵タンク122内の気圧を10標準大
気圧とした点は相違する。
実験例
現在、本市のある多環芳香族炭化水素(PAHs)汚染サイトで修復実験を行い、実施例
1の埋設杭を採用し、そして実施例2、3、4の汚染土壌原位置修復方法により汚染サイ
トの土壌修復と比較を行った。
汚染サイトをバリアで5トンの修復対象土壤領域4群に分け、各修復実験例で使用される
粉末薬剤として市販の過マンガン酸カリウム粉末80kg/Tを用いた。上記のステップ
S12を繰り返して、薬剤放出外管311へ高圧空気を導入する時間間隔を3hとし、1
5日間処理後の結果を以下の表1に示す。
表1 実施例2~4で多環芳香族炭化水素汚染サイトを処理した修復結果
Example 4
The difference from the second embodiment is that in step S2, the pressure inside the compressed air storage tank 122 is set to 10 standard atmospheric pressure.
Experimental example We are currently conducting a remediation experiment at a site contaminated with polycyclic aromatic hydrocarbons (PAHs) in our city, using the buried piles of Example 1, and using the in-situ remediation method of contaminated soil of Examples 2, 3, and 4. Comparisons were made with soil remediation at contaminated sites.
The contaminated site was divided into 4 groups with 5 tons of soil to be remediated using barriers, and 80 kg/T of commercially available potassium permanganate powder was used as the powder chemical used in each remediation experiment. The above step S12 is repeated, and the time interval for introducing high pressure air into the drug release outer tube 311 is set to 3 hours, and 1
The results after 5 days of treatment are shown in Table 1 below.
Table 1 Restoration results of polycyclic aromatic hydrocarbon contaminated sites treated in Examples 2 to 4

Figure 0007352786000002
Figure 0007352786000002

上記の表1の結果から分かるように、圧縮空気貯蔵タンクの気圧が多環芳香族炭化水素汚
染サイトの修復に影響を与え、その中でも、実施例2の9標準大気圧、実施例4の10標
準大気圧では、処理効果がより優れており、実施例2と実施例4を比較した結果、これら
の除去率には差が小さく、このため、経済的に考慮すると、実施例2の総合的な修復効果
はより優れている。
また、本発明の埋設杭の使用効果をさらに検証するために、1群の対照例を比較用に設置
し、対照例には、過マンガン酸カリウムを修復対象土壤領域に均一に撒いた。粉末薬剤と
して市販過マンガン酸カリウム粉末は80kg/T使用される。15日間処理後の結果を
以下の表2に示す。
表2 対照例で多環芳香族炭化水素汚染サイトを処理した修復結果
As can be seen from the results in Table 1 above, the pressure of the compressed air storage tank has an impact on the remediation of polycyclic aromatic hydrocarbon contaminated sites, among which 9 standard atmospheric pressure in Example 2, 10 in Example 4 At standard atmospheric pressure, the treatment effect is better, and as a result of comparing Example 2 and Example 4, there is a small difference in their removal rates. The repair effect is better.
In addition, in order to further verify the effectiveness of using the buried pile of the present invention, a group of control examples was set up for comparison, in which potassium permanganate was evenly spread over the soil area to be repaired. 80 kg/T of commercially available potassium permanganate powder is used as a powder drug. The results after 15 days of treatment are shown in Table 2 below.
Table 2 Restoration results of a polycyclic aromatic hydrocarbon contaminated site treated as a control example

Figure 0007352786000003
Figure 0007352786000003

上記の表2の結果から分かるように、実施例2と対照例を比較した結果、薬剤を均一に撒
いて多環芳香族炭化水素汚染サイトを修復する場合、除去率は本発明の埋設杭を用いた場
合よりも有意に低く、このため、本発明の埋設杭を用いて粉末薬剤を徐放することにより
、汚染土壤の修復処理効果を効果的に向上させることができる。
As can be seen from the results in Table 2 above, as a result of comparing Example 2 and the control example, when a polycyclic aromatic hydrocarbon contaminated site is repaired by uniformly spreading the chemical, the removal rate is higher than that of the buried pile of the present invention. Therefore, by using the buried pile of the present invention to release powdered chemicals in a controlled manner, it is possible to effectively improve the remediation effect of contaminated soil.

Claims (1)

薬剤を徐放可能な汚染土壌原位置修復用埋設杭であって、
杭筒(10)と、前記杭筒(10)内に設けられた薬剤徐放機構(20)と、を含み、
前記杭筒(10)は、内部が中空で且つ上端が開放した円筒形構造であり、頂部に薬剤タ
ンク(11)を収納するための収納キャビティ(12)が設けられており、
前記薬剤徐放機構(20)は、前記杭筒(10)の内側壁に固定された複数の薬剤散布装
置(21)を含み、前記薬剤散布装置(21)は、内部が中空で且つ杭筒(10)に接合
する側に開口が設けられ、薬剤散布装置(21)内に、複数の散布貫通孔(214)を側
壁に有する散布用カートリッジ(213)が設けられ、
前記杭筒(10)の側壁には、薬剤散布装置(21)に連通している複数の薬剤放出貫通
孔(212)を有し、
前記散布用カートリッジ(213)内の頂部に粉末ノズル(211)が固設され、前記薬
剤タンク(11)内に粉末コンベア(13)が固設され、前記粉末コンベア(13)の出
力端が接続管を介して前記粉末ノズル(211)内に連通しており、
前記薬剤散布装置(21)の外側に加圧装置(22)が固設され、前記加圧装置(22)
は第1連通管(221)を介して薬剤散布装置(21)に連通しており、
前記加圧装置(22)の外側壁に、その内部に連通している複数の第2連通管(222)
が固設され、前記第2連通管(222)に第1バルブ(223)を有し、
前記加圧装置(22)内に空気圧開放装置(23)が固設され、前記空気圧開放装置(2
3)の外側には、その内部に連通している空気圧開放管(231)が固設され、前記空気
圧開放管(231)は第2バルブ(232)を有し、前記空気圧開放管(231)は配管
を介して加圧装置(22)の外部まで延在しており、
前記収納キャビティ(12)内には、空気圧縮機(121)と、前記空気圧縮機(121
)に接続された複数の圧縮空気貯蔵タンク(122)とがさらに設けられ、各前記圧縮空
気貯蔵タンク(122)は1つの第2連通管(222)を介して加圧装置(22)に連通
している、ことを特徴とする埋設杭。
A buried pile for in-situ remediation of contaminated soil capable of slow release of drugs,
comprising a pile tube (10) and a drug sustained release mechanism (20) provided in the pile tube (10),
The pile tube (10) has a cylindrical structure that is hollow inside and open at the top, and is provided with a storage cavity (12) at the top for storing the drug tank (11).
The drug sustained release mechanism (20) includes a plurality of drug dispersing devices (21) fixed to the inner wall of the pile tube (10), and the drug dispersing device (21) is hollow inside and arranged in a pile tube. (10), and a dispersion cartridge (213) having a plurality of dispersion through holes (214) in the side wall is provided in the drug dispersion device (21);
The side wall of the pile tube (10) has a plurality of drug release through holes (212) communicating with the drug dispersion device (21),
A powder nozzle (211) is fixed to the top of the dispersion cartridge (213), a powder conveyor (13) is fixed to the medicine tank (11), and the output end of the powder conveyor (13) is connected. communicates with the powder nozzle (211) via a pipe,
A pressurizing device (22) is fixedly installed outside the drug dispersing device (21), and the pressurizing device (22)
communicates with the drug dispersion device (21) via the first communication pipe (221),
A plurality of second communication pipes (222) are connected to the outer wall of the pressurizing device (22) and to the inside thereof.
is fixedly installed, and has a first valve (223) in the second communication pipe (222),
An air pressure release device (23) is fixedly installed in the pressurization device (22), and the air pressure release device (23)
3), an air pressure release pipe (231) communicating with the inside thereof is fixedly installed, the air pressure release pipe (231) has a second valve (232), and the air pressure release pipe (231) has a second valve (232). extends to the outside of the pressurizing device (22) via piping,
Inside the storage cavity (12) are an air compressor (121) and an air compressor (121).
), each compressed air storage tank (122) communicating with the pressurizing device (22) via one second communication pipe (222). A buried pile characterized by:
JP2023104523A 2023-05-09 2023-06-26 Buried pile for in-situ remediation of contaminated soil capable of sustained drug release and remediation method Active JP7352786B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202310514156.0A CN116586418A (en) 2023-05-09 2023-05-09 Buried pile capable of slowly releasing medicament for in-situ repair of polluted soil and repair method
CN202310514156.0 2023-05-09

Publications (1)

Publication Number Publication Date
JP7352786B1 true JP7352786B1 (en) 2023-09-29

Family

ID=87605560

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2023104523A Active JP7352786B1 (en) 2023-05-09 2023-06-26 Buried pile for in-situ remediation of contaminated soil capable of sustained drug release and remediation method

Country Status (2)

Country Link
JP (1) JP7352786B1 (en)
CN (1) CN116586418A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015121031A (en) 2013-12-24 2015-07-02 株式会社フジタ Mouth pipe for high pressure jet mixing method, and high pressure jet mixing method
JP2017109188A (en) 2015-12-18 2017-06-22 強化土株式会社 Soil cleaning method
JP2019519702A (en) 2016-06-23 2019-07-11 北京建工環境修復股▲ふん▼有限公司Bceg Environmental Remediation Co.,Ltd In situ injection of soil and groundwater-High pressure jet grout injection in situ remediation system and method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015121031A (en) 2013-12-24 2015-07-02 株式会社フジタ Mouth pipe for high pressure jet mixing method, and high pressure jet mixing method
JP2017109188A (en) 2015-12-18 2017-06-22 強化土株式会社 Soil cleaning method
JP2019519702A (en) 2016-06-23 2019-07-11 北京建工環境修復股▲ふん▼有限公司Bceg Environmental Remediation Co.,Ltd In situ injection of soil and groundwater-High pressure jet grout injection in situ remediation system and method

Also Published As

Publication number Publication date
CN116586418A (en) 2023-08-15

Similar Documents

Publication Publication Date Title
CN104174643B (en) A kind of organic polluted soil and underground water in-situ repairing device and restorative procedure
US5499665A (en) Cylinder rupture vessel
US4690180A (en) Cylinder rupture vessel
CN203991656U (en) A kind of organic polluted soil and underground water in-situ repairing device
CN205676214U (en) Organic polluted soil and subsoil water in-situ immobilization inject well injected system
JP7352786B1 (en) Buried pile for in-situ remediation of contaminated soil capable of sustained drug release and remediation method
CN112875881B (en) Aeration device for repairing VOCs pollution
US5511907A (en) Mobile injection device and method for delivery of remediation materials to underground contaminated soils and water
USRE33799E (en) Cylinder rupture vessel
CN113020243A (en) High-pressure splitting extrusion powder-doping infiltration-assisting in-situ remediation method for low-permeability polluted soil
CN111420983A (en) Method for restoring polluted soil and underground water by in-situ aeration
CN107363089A (en) A kind of Fenton reagent injection restorative procedure in situ
JP4573286B2 (en) Soil purification method
JPS6255316A (en) Method and apparatus for forming continuous horizontal columnar wall
KR200402215Y1 (en) Oxidizer Injection System for Restoration of Contaminated Soil and Underground water
CN210816698U (en) Be used for prosthetic bayonet prosthetic devices of agricultural soil
JP6023040B2 (en) Mouth pipe for high-pressure jet stirring method and high-pressure jet stirring method
CN215785668U (en) Oxidation agent in-situ injection repair system for soil repair
CN109174946A (en) A kind of screening thermal desorption device and its method for soil remediation
JP2003159584A (en) Polluted soil treatment method
JP4518504B2 (en) Contaminated soil purification method and equipment
CN206567315U (en) Original position removes the device with rehabilitating soil/underground water pollutant
CN219112497U (en) Mobile in-situ repairing device for industrial production area
CN215965488U (en) In-situ medicine injection device
JPS60186373A (en) Water jet machining method and system therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230626

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20230626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230724

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230817

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230821

R150 Certificate of patent or registration of utility model

Ref document number: 7352786

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150