JP7351141B2 - tapered roller bearing - Google Patents

tapered roller bearing Download PDF

Info

Publication number
JP7351141B2
JP7351141B2 JP2019153914A JP2019153914A JP7351141B2 JP 7351141 B2 JP7351141 B2 JP 7351141B2 JP 2019153914 A JP2019153914 A JP 2019153914A JP 2019153914 A JP2019153914 A JP 2019153914A JP 7351141 B2 JP7351141 B2 JP 7351141B2
Authority
JP
Japan
Prior art keywords
oil
groove
tapered roller
annular portion
end surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019153914A
Other languages
Japanese (ja)
Other versions
JP2021032353A (en
Inventor
誠 前佛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2019153914A priority Critical patent/JP7351141B2/en
Priority to PCT/JP2020/031268 priority patent/WO2021039532A1/en
Publication of JP2021032353A publication Critical patent/JP2021032353A/en
Application granted granted Critical
Publication of JP7351141B2 publication Critical patent/JP7351141B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/34Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load
    • F16C19/36Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with a single row of rollers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/34Rollers; Needles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/46Cages for rollers or needles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/66Special parts or details in view of lubrication

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Rolling Contact Bearings (AREA)

Description

本発明は、円すいころ軸受に関し、特に、軸受内部に潤滑油が供給される円すいころ軸受に関する。 The present invention relates to a tapered roller bearing, and particularly to a tapered roller bearing in which lubricating oil is supplied inside the bearing.

近年、一部のハイブリッド車のトランスミッションのように、エンジン停止時に潤滑油ポンプを停止する機構が登場しており、軸受の焼付き問題を生じさせやすい。また、自動車の被牽引時には潤滑油ポンプが作動せずにタイヤが空転するため、トランスミッション内の軸受に焼付きが生じることがある。このため、潤滑油の供給が断続的である潤滑環境下、或いは、潤滑油が微量である潤滑環境下であったとしても焼付きを防止することができる軸受が求められている。 In recent years, mechanisms have been introduced that stop the lubricating oil pump when the engine is stopped, such as in the transmissions of some hybrid vehicles, which can easily cause the problem of bearing seizure. Furthermore, when the vehicle is being towed, the lubricating oil pump does not operate and the tires spin, which may cause seizing of the bearings in the transmission. Therefore, there is a need for a bearing that can prevent seizure even under a lubricating environment where the supply of lubricating oil is intermittent or under a lubricating environment where the lubricating oil is in a small amount.

従来の円すいころ軸受100として、図23~図26に示すように、内周面に外輪軌道面111aを有する外輪111と、外周面に内輪軌道面112aを有する内輪112と、外輪軌道面111aと内輪軌道面112aとの間に転動可能に設けられる複数の円すいころ113と、複数の円すいころ113を周方向に略等間隔に保持する保持器114と、を備えるものが知られている(例えば、特許文献1参照)。 As shown in FIGS. 23 to 26, a conventional tapered roller bearing 100 includes an outer ring 111 having an outer ring raceway surface 111a on its inner peripheral surface, an inner ring 112 having an inner ring raceway surface 112a on its outer peripheral surface, and an outer ring raceway surface 111a on its outer peripheral surface. It is known that the bearing includes a plurality of tapered rollers 113 that are rotatably provided between the inner ring raceway surface 112a and a cage 114 that holds the plurality of tapered rollers 113 at approximately equal intervals in the circumferential direction ( For example, see Patent Document 1).

また、保持器114は、大径側円環部115と、大径側円環部115と同軸配置される小径側円環部116と、大径側円環部115と小径側円環部116とを軸方向で連結し、周方向に略等間隔に設けられる複数の柱部117と、周方向に互いに隣り合う柱部117間で、大径側円環部115及び小径側円環部116により囲まれて形成され、円すいころ113を転動可能に保持するポケット118と、を有する。また、円すいころ113は、円すいころ113の周面に設けられる転動面113aと、円すいころ113の大径側端部に設けられる大径側端面113bと、円すいころ113の小径側端部に設けられる小径側端面113cと、を有する。 The retainer 114 also includes a large-diameter annular portion 115 , a small-diameter annular portion 116 coaxially arranged with the large-diameter annular portion 115 , and a large-diameter annular portion 115 and a small-diameter annular portion 116 . A large diameter annular portion 115 and a small diameter annular portion 116 are connected to each other in the axial direction and are provided at approximately equal intervals in the circumferential direction. The pocket 118 is surrounded by a pocket 118 and holds the tapered roller 113 in a rollable manner. Further, the tapered rollers 113 have a rolling surface 113a provided on the circumferential surface of the tapered rollers 113, a large diameter end surface 113b provided on the large diameter end of the tapered rollers 113, and a small diameter end of the tapered rollers 113. It has a small diameter side end surface 113c provided.

特許第6354242号公報Patent No. 6354242

そして、上記特許文献1に記載の円すいころ軸受100では、保持器114の大径側円環部115の軸方向内端面115aに、円周方向に沿った1つの油溝120が形成され、油溝120の内部に蓄えられる潤滑油量を多くするために、この油溝120の径方向幅が大径側円環部115の径方向幅の1/3に設定されている。つまり、例えば、大径側円環部115の径方向幅が9mmの場合、油溝120の径方向幅は3mmとなる。この場合、油溝120の単体で毛細管現象を発生させて潤滑油を保持することができないため、上記特許文献1に記載されているように、円すいころ113で油溝120に蓋をする必要があった。 In the tapered roller bearing 100 described in Patent Document 1, one oil groove 120 along the circumferential direction is formed in the axially inner end surface 115a of the large-diameter side annular portion 115 of the cage 114, and the oil groove 120 is formed along the circumferential direction. In order to increase the amount of lubricating oil stored inside the groove 120, the radial width of the oil groove 120 is set to 1/3 of the radial width of the large diameter annular portion 115. That is, for example, when the radial width of the large-diameter side annular portion 115 is 9 mm, the radial width of the oil groove 120 is 3 mm. In this case, since the oil groove 120 alone cannot generate capillary action and retain lubricating oil, it is necessary to cover the oil groove 120 with tapered rollers 113 as described in Patent Document 1 mentioned above. there were.

しかしながら、図23に示すように、保持器114が円すいころ113の大径側に軸方向に移動した場合、円すいころ113の大径側端面113bと大径側円環部115の軸方向内端面115aとの間の隙間が大きくなって、毛細管現象が働かずに油溝120から潤滑油が漏れ出てしまう。このため、上記特許文献1では、円すいころ113と保持器114との間の軸方向の隙間を極めて小さくする必要があり、円すいころ113の軸方向長さの管理と円すいころ113の保持器114への組み込みが困難であった。 However, as shown in FIG. 23, when the cage 114 moves axially toward the larger diameter side of the tapered rollers 113, the larger diameter end surface 113b of the tapered roller 113 and the axial inner end surface of the larger diameter annular portion 115 115a becomes large, and the lubricating oil leaks out from the oil groove 120 without capillary action. Therefore, in Patent Document 1, it is necessary to make the axial gap between the tapered rollers 113 and the cage 114 extremely small. It was difficult to incorporate into

さらに、上記特許文献1の図面では、円すいころの大径側端面が平面状に記載されているが、図23~図25に示すように、円すいころ113の大径側端面113bが凸球面状に形成されると共に、大径側端面113bの中心部に凹部113dが形成されている場合がある。このような円すいころ113では、例え、円すいころ113と保持器114との間の軸方向の隙間を小さくしたとしても、円すいころ113の凹部113dと油溝120が重なり合う部分の隙間SP(図26参照)から潤滑油が漏れ出てしまっていた。 Furthermore, in the drawings of Patent Document 1, the large-diameter side end surfaces of the tapered rollers are shown as planar, but as shown in FIGS. 23 to 25, the large-diameter side end surfaces 113b of the tapered rollers 113 have a convex spherical shape. In some cases, a concave portion 113d is formed in the center of the large-diameter end surface 113b. In such a tapered roller 113, even if the axial gap between the tapered roller 113 and the cage 114 is made small, the gap SP (Fig. 26 Lubricant oil was leaking from the

本発明は、前述した課題に鑑みてなされたものであり、その目的は、油溝の単体で潤滑油を保持することができ、潤滑油の供給が断続的である潤滑環境下、或いは、潤滑油が微量である潤滑環境下であったとしても焼付きを防止することができる円すいころ軸受を提供することにある。 The present invention has been made in view of the above-mentioned problems, and its purpose is to be able to hold lubricating oil in a single oil groove, and to be used in a lubricating environment where the supply of lubricating oil is intermittent, or when lubricating oil is An object of the present invention is to provide a tapered roller bearing that can prevent seizure even under a lubricated environment with a small amount of oil.

本発明の上記目的は、下記の構成により達成される。
(1)内周面に外輪軌道面を有する外輪と、外周面に内輪軌道面を有する内輪と、前記外輪軌道面と前記内輪軌道面との間に転動可能に設けられる複数の円すいころと、前記複数の円すいころを周方向に略等間隔に保持する保持器と、を備え、前記保持器は、大径側円環部と、前記大径側円環部と同軸に配置される小径側円環部と、前記大径側円環部と前記小径側円環部とを軸方向に連結し、周方向に略等間隔に設けられる複数の柱部と、周方向に互いに隣り合う前記柱部間に形成され、前記円すいころを転動可能に保持するポケットと、を有する円すいころ軸受であって、前記保持器は、前記小径側円環部の軸方向内端面と前記円すいころの小径側端面との間に第1隙間を有すると共に、前記大径側円環部の軸方向内端面と前記円すいころの大径側端面との間に第2隙間を有して、軸方向に沿って所定の範囲で移動可能に設けられ、前記大径側円環部の軸方向内端面には、毛管力で潤滑油を保持する複数の油溝が設けられ、前記保持器が前記円すいころの小径側に軸方向に移動したときに、前記複数の油溝が前記円すいころの大径側端面に接触し、前記保持器が前記円すいころの大径側に軸方向に移動したときに、前記複数の油溝が前記円すいころの大径側端面から離れることを特徴とする円すいころ軸受。
(2)前記複数の油溝は、前記保持器の周方向に沿って平行に形成されることを特徴とする(1)に記載の円すいころ軸受。
(3)前記複数の油溝は、前記円すいころの大径側端面と接触可能な溝端部をそれぞれ有し、前記円すいころの大径側端面は、前記大径側端面の中心部に形成される円形状の凹部と、前記凹部の周囲に設けられ、前記大径側円環部の軸方向内端面と接触可能な円環状の接触面と、を有し、前記複数の油溝のそれぞれの前記溝端部は、前記円環状の接触面と前記大径側円環部の軸方向内端面とが前記円すいころの長手方向において重なり合う領域に収まるように設けられることを特徴とする(2)に記載の円すいころ軸受。
(4)前記大径側円環部の軸方向内端面が凹球面状に形成され、前記円すいころの大径側端面が凸球面状に形成され、前記大径側円環部の軸方向内端面の凹球面状の曲率半径SRyは、前記円すいころの大径側端面の凸球面状の曲率半径Raの±10%以内に設定されることを特徴とする(1)に記載の円すいころ軸受。
(5)前記複数の油溝は、環状扇形状にそれぞれ形成され、前記複数の油溝の長手方向両端辺である一対の端部連結辺は、一対の直線に揃うようにそれぞれ設けられ、前記一対の直線は、前記大径側円環部の径方向内側に向かうに従って互いの周方向間隔が大きくなるような傾斜した線であることを特徴とする(2)に記載の円すいころ軸受。
(6)隣接する前記複数の油溝は、少なくとも1つの接続溝により互いに接続されることを特徴とする(2)に記載の円すいころ軸受。
(7)潤滑油が軸受内部に断続的に供給される、或いは、軸受内部の潤滑油が微量である潤滑環境下で使用されることを特徴とする(1)~(6)のいずれか1つに記載の円すいころ軸受。
The above object of the present invention is achieved by the following configuration.
(1) An outer ring having an outer ring raceway surface on its inner peripheral surface, an inner ring having an inner ring raceway surface on its outer peripheral surface, and a plurality of tapered rollers that are rotatably provided between the outer ring raceway surface and the inner ring raceway surface. , a cage that holds the plurality of tapered rollers at substantially equal intervals in the circumferential direction, and the cage includes a large diameter annular portion and a small diameter annular portion disposed coaxially with the large diameter annular portion. a side annular portion, a plurality of column portions that connect the large diameter side annular portion and the small diameter side annular portion in the axial direction and are provided at approximately equal intervals in the circumferential direction; A tapered roller bearing having a pocket formed between column parts and holding the tapered roller in a rollable manner, wherein the cage is arranged between an axially inner end surface of the small-diameter side annular part and the tapered roller. a first gap between the small diameter side end face and a second gap between the axially inner end face of the large diameter side annular portion and the large diameter side end face of the tapered roller; A plurality of oil grooves for retaining lubricating oil by capillary force are provided on the axially inner end surface of the large-diameter side annular portion, and the retainer is movable within a predetermined range along the tapered roller. When the retainer moves axially toward the small diameter side of the tapered roller, the plurality of oil grooves come into contact with the large diameter end surface of the tapered roller, and when the cage moves axially toward the large diameter side of the tapered roller, A tapered roller bearing, wherein the plurality of oil grooves are spaced apart from a large-diameter end face of the tapered roller.
(2) The tapered roller bearing according to (1), wherein the plurality of oil grooves are formed in parallel along the circumferential direction of the cage.
(3) The plurality of oil grooves each have a groove end that can come into contact with the large-diameter end surface of the tapered roller, and the large-diameter end surface of the tapered roller is formed at the center of the large-diameter end surface. a circular recessed portion; and an annular contact surface provided around the recessed portion and capable of contacting the axially inner end surface of the large-diameter side annular portion; According to (2), the groove end portion is provided in a region where the annular contact surface and the axially inner end surface of the large diameter annular portion overlap in the longitudinal direction of the tapered roller. Tapered roller bearings listed.
(4) The axially inner end surface of the large diameter annular portion is formed in a concave spherical shape, and the large diameter end surface of the tapered roller is formed in a convex spherical shape, and the axially inner end surface of the large diameter annular portion is formed in a convex spherical shape. The tapered roller bearing according to (1), wherein the radius of curvature SRy of the concave spherical end face is set within ±10% of the radius of curvature Ra of the convex spherical end face of the large diameter side of the tapered roller. .
(5) The plurality of oil grooves are each formed in an annular fan shape, and a pair of end connecting sides, which are both end sides in the longitudinal direction of the plurality of oil grooves, are each provided so as to be aligned with a pair of straight lines, and the The tapered roller bearing according to item (2), wherein the pair of straight lines are inclined lines such that the circumferential distance between them increases as the line goes radially inward of the large-diameter side annular portion.
(6) The tapered roller bearing according to (2), wherein the plurality of adjacent oil grooves are connected to each other by at least one connecting groove.
(7) Any one of (1) to (6) characterized in that the bearing is used under a lubrication environment in which lubricating oil is intermittently supplied inside the bearing or in which the lubricating oil inside the bearing is in a small amount. Tapered roller bearings listed in .

本発明によれば、保持器の大径側円環部の軸方向内端面に、毛管力で潤滑油を保持する複数の油溝が設けられるため、円すいころで油溝に蓋をしなくても、油溝の単体で潤滑油を保持することができる。また、保持器が円すいころの小径側に軸方向に移動したときに、油溝が円すいころの大径側端面に接触するため、潤滑油の供給が断続的である潤滑環境下、或いは、潤滑油が微量である潤滑環境下であったとしても軸受の焼付きを防止することができる。また、保持器が円すいころの大径側に軸方向に移動したときに、油溝が円すいころの大径側端面から離れて、大径側円環部が円すいころに常時接触しないため、軸受回転時の摩擦抵抗の増加を抑制することができ、さらに、大径側円環部の摩耗を抑制することができる。また、高度な部品寸法精度などの管理が不要であり、製造コストの増大を抑制することができる。 According to the present invention, a plurality of oil grooves that retain lubricating oil by capillary force are provided on the axially inner end surface of the large-diameter annular portion of the cage, so there is no need to cover the oil grooves with tapered rollers. Also, the oil groove alone can hold lubricating oil. In addition, when the cage moves axially to the small diameter side of the tapered rollers, the oil grooves come into contact with the large diameter side end face of the tapered rollers, so it is difficult to operate under a lubrication environment where the supply of lubricating oil is intermittent, or when the lubrication oil is intermittently supplied. Even in a lubricated environment with a small amount of oil, seizure of the bearing can be prevented. In addition, when the cage moves axially toward the large diameter side of the tapered rollers, the oil groove moves away from the large diameter side end face of the tapered rollers, and the large diameter side ring part does not constantly contact the tapered rollers. It is possible to suppress an increase in frictional resistance during rotation, and further, it is possible to suppress wear of the large-diameter side annular portion. Furthermore, there is no need for sophisticated management of component dimensional accuracy, and an increase in manufacturing costs can be suppressed.

本発明に係る円すいころ軸受の一実施形態を説明する断面図である。FIG. 1 is a sectional view illustrating an embodiment of a tapered roller bearing according to the present invention. 保持器と円すいころを径方向外側から見た平面図である。FIG. 3 is a plan view of the cage and tapered rollers viewed from the outside in the radial direction. 図1に示す保持器を径方向内側から見た模式図である。FIG. 2 is a schematic diagram of the retainer shown in FIG. 1 viewed from the inside in the radial direction. 油溝の周方向の溝端部と円すいころの大径側端面との接触位置関係を示す模式図である。FIG. 3 is a schematic diagram showing a contact positional relationship between a circumferential groove end of an oil groove and a large-diameter end surface of a tapered roller. 図1に示す保持器が円すいころの大径側に軸方向に移動したときを説明する断面図である。FIG. 2 is a cross-sectional view illustrating a case where the cage shown in FIG. 1 is moved in the axial direction toward the larger diameter side of the tapered rollers. 図1に示す保持器が円すいころの小径側に軸方向に移動したときを説明する断面図である。FIG. 2 is a cross-sectional view illustrating a case where the cage shown in FIG. 1 is moved in the axial direction toward the small diameter side of the tapered rollers. 溝端部が円すいころと接する状態を示す説明図である。FIG. 3 is an explanatory diagram showing a state in which a groove end is in contact with a tapered roller. 溝端部が円すいころと接しない状態を示す説明図である。It is an explanatory view showing a state where a groove end does not contact a tapered roller. 油溝の角部がシャープエッジに形成される場合を示す説明図である。FIG. 3 is an explanatory diagram showing a case where the corners of the oil groove are formed with sharp edges. 油溝の角部が大きな円弧状に形成される場合を示す説明図である。It is an explanatory view showing the case where the corner of the oil groove is formed in a large circular arc shape. 油溝の深さを油溝の溝中央部から溝端部に向かうに従って小さくした場合を示す説明図である。FIG. 3 is an explanatory diagram showing a case where the depth of the oil groove is decreased from the center of the oil groove toward the end of the groove. 油溝の深さを油溝の溝中央部から溝端部まで均一にした場合を示す説明図である。It is an explanatory view showing a case where the depth of the oil groove is made uniform from the groove center part to the groove end part of the oil groove. 油溝の径方向断面の溝底すみの円弧形状の半径を、油溝の溝中央部から溝端部に向かうに従って小さくすることを説明する模式図である。FIG. 2 is a schematic diagram illustrating that the radius of the arc shape at the groove bottom corner of the radial cross section of the oil groove is made smaller from the center of the oil groove toward the groove end. 油溝の径方向幅を長手方向両端部で小さくした第1例を説明する模式図である。FIG. 3 is a schematic diagram illustrating a first example in which the radial width of the oil groove is reduced at both ends in the longitudinal direction. 油溝の径方向幅を長手方向両端部で小さくした第2例を説明する模式図である。FIG. 7 is a schematic diagram illustrating a second example in which the radial width of the oil groove is reduced at both ends in the longitudinal direction. 油溝の径方向幅を長手方向両端部で小さくした第3例を説明する模式図である。FIG. 7 is a schematic diagram illustrating a third example in which the radial width of the oil groove is reduced at both ends in the longitudinal direction. 油溝の径方向幅を長手方向両端部で小さくした第4例を説明する模式図である。FIG. 7 is a schematic diagram illustrating a fourth example in which the radial width of the oil groove is reduced at both ends in the longitudinal direction. 油溝の径方向幅を溝中央部から溝端部に向かうに従って小さくした第1例を説明する模式図である。FIG. 3 is a schematic diagram illustrating a first example in which the radial width of the oil groove is reduced from the groove center toward the groove end. 油溝の径方向幅を溝中央部から溝端部に向かうに従って小さくした第2例を説明する模式図である。FIG. 7 is a schematic diagram illustrating a second example in which the radial width of the oil groove decreases from the groove center toward the groove end. 保持器の第1変形例を説明する模式図である。It is a schematic diagram explaining the 1st modification of a cage. 保持器の第2変形例を説明する模式図である。It is a schematic diagram explaining the 2nd modification of a cage. 保持器の第3変形例を説明する模式図である。It is a schematic diagram explaining the 3rd modification of a cage. 第3変形例の保持器を径方向外側から見た平面図である。FIG. 7 is a plan view of a third modification of the retainer viewed from the outside in the radial direction. 潤滑油ポンプによる軸受への給油を説明する断面図である。FIG. 3 is a cross-sectional view illustrating oil supply to a bearing by a lubricating oil pump. 歯車の跳ね掛けによる軸受への給油を説明する断面図である。FIG. 3 is a cross-sectional view illustrating oil supply to a bearing by splashing a gear. 従来の円すいころ軸受において、保持器が円すいころの大径側に軸方向に移動したときを説明する断面図である。FIG. 3 is a cross-sectional view illustrating a conventional tapered roller bearing in which the retainer moves in the axial direction toward the larger diameter side of the tapered rollers. 図23に示す保持器が円すいころの小径側に軸方向に移動したときを説明する断面図である。FIG. 24 is a cross-sectional view illustrating a case where the cage shown in FIG. 23 is moved in the axial direction toward the small diameter side of the tapered rollers. 図23に示す保持器と円すいころを径方向外側から見た平面図である。FIG. 24 is a plan view of the cage and tapered rollers shown in FIG. 23 viewed from the outside in the radial direction. 図23に示す油溝と円すいころの大径側端面との接触位置関係を示す模式図である。FIG. 24 is a schematic diagram showing the contact positional relationship between the oil groove shown in FIG. 23 and the large-diameter end surface of the tapered roller.

以下、本発明に係る円すいころ軸受の一実施形態について、図面に基づいて詳細に説明する。 Hereinafter, one embodiment of a tapered roller bearing according to the present invention will be described in detail based on the drawings.

本実施形態の円すいころ軸受10は、図1に示すように、内周面に外輪軌道面11aを有する外輪11と、外周面に内輪軌道面12aを有する内輪12と、外輪軌道面11aと内輪軌道面12aとの間に転動可能に設けられる複数の円すいころ13と、複数の円すいころ13を周方向に略等間隔に保持する保持器14と、を備える。なお、本実施形態では、ハウジングH(図21参照)の内部を循環する潤滑油が、潤滑油ポンプP(図21参照)などにより軸受内部に適宜供給される。 As shown in FIG. 1, the tapered roller bearing 10 of this embodiment includes an outer ring 11 having an outer ring raceway surface 11a on its inner peripheral surface, an inner ring 12 having an inner ring raceway surface 12a on its outer peripheral surface, an outer ring raceway surface 11a and an inner ring. It includes a plurality of tapered rollers 13 that are rotatably provided between the raceway surface 12a and a cage 14 that holds the plurality of tapered rollers 13 at approximately equal intervals in the circumferential direction. In this embodiment, the lubricating oil circulating inside the housing H (see FIG. 21) is appropriately supplied to the inside of the bearing by a lubricating oil pump P (see FIG. 21) or the like.

内輪12は、内輪12の大径側端部に設けられる大鍔部12bと、内輪12の小径側端部に設けられる小鍔部12cと、を有する。内輪12の外周面は、略円すい状に形成されている。 The inner ring 12 has a large flange 12 b provided at the large diameter end of the inner ring 12 and a small flange 12 c provided at the small diameter end of the inner ring 12 . The outer peripheral surface of the inner ring 12 is formed into a substantially conical shape.

円すいころ13は、円すいころ13の周面に設けられる転動面13aと、円すいころ13の大径側端部に設けられる大径側端面13bと、円すいころ13の小径側端部に設けられる小径側端面13cと、を有する。また、大径側端面13bは、曲率半径Raの凸球面状に形成されており、その中心部に円形状の凹部13dが形成されている。上記凸球面の中心は、円すいころ13の自転軸上に位置している。 The tapered rollers 13 are provided with rolling surfaces 13a provided on the circumferential surface of the tapered rollers 13, large diameter end surfaces 13b provided on the large diameter side ends of the tapered rollers 13, and provided on small diameter side ends of the tapered rollers 13. It has a small diameter side end surface 13c. Further, the large-diameter side end surface 13b is formed in a convex spherical shape with a radius of curvature Ra, and a circular recess 13d is formed in the center thereof. The center of the convex spherical surface is located on the rotation axis of the tapered rollers 13.

保持器14は、合成樹脂製であり、アキシアルドローにより射出成形されており、大径側円環部15と、大径側円環部15と同軸配置される小径側円環部16と、大径側円環部15と小径側円環部16とを軸方向で連結し、周方向に略等間隔に設けられる複数の柱部17と、周方向に互いに隣り合う柱部17間で、大径側円環部15及び小径側円環部16により囲まれて形成され、円すいころ13を転動可能に保持するポケット18と、を有する。 The cage 14 is made of synthetic resin and is injection molded by axial draw, and includes a large diameter annular portion 15, a small diameter annular portion 16 coaxially arranged with the large diameter annular portion 15, and a large diameter annular portion 16. The diameter side annular part 15 and the small diameter side annular part 16 are connected in the axial direction, and a plurality of pillar parts 17 provided at approximately equal intervals in the circumferential direction and between the pillar parts 17 adjacent to each other in the circumferential direction are connected to each other in the axial direction. It has a pocket 18 that is surrounded by the diameter side annular portion 15 and the small diameter side annular portion 16 and holds the tapered roller 13 in a rollable manner.

また、保持器14は、保持器14の小径側円環部16の軸方向内端面16aと円すいころ13の小径側端面13cとの間に第1隙間S1を有する。また、保持器14は、保持器14の大径側円環部15の軸方向内端面15aと円すいころ13の大径側端面13bとの間に第2隙間S2を有する。これにより、保持器14は、軸方向に沿って所定の範囲で移動可能に設けられる。なお、図1では、円すいころ13及び保持器14が、外輪11に対して軸方向中間に位置した状態で図示されている。 Further, the cage 14 has a first gap S1 between the axially inner end surface 16a of the small-diameter side annular portion 16 of the cage 14 and the small-diameter side end surface 13c of the tapered rollers 13. Further, the cage 14 has a second gap S2 between the axially inner end surface 15a of the large-diameter side annular portion 15 of the cage 14 and the large-diameter side end surface 13b of the tapered rollers 13. Thereby, the retainer 14 is provided so as to be movable within a predetermined range along the axial direction. In addition, in FIG. 1, the tapered rollers 13 and the cage 14 are shown in a state located in the middle in the axial direction with respect to the outer ring 11.

そして、本実施形態の円すいころ軸受10では、図1に示すように、第1隙間S1のころ軸方向寸法をD1、第2隙間S2のころ軸方向寸法をD2、円すいころ13の長さ寸法をLR、保持器14のポケット18のころ軸方向の長さ寸法をLP、隙間全体のころ軸方向の総和寸法をDtとしたとき、Dt=D1+D2=LP-LRの関係となる。なお、ころ軸方向寸法D1,D2、円すいころ13の長さ寸法LR、及びポケット18のころ軸方向の長さ寸法LPは、円すいころ13の中心軸(自転軸)方向に沿った寸法である。 In the tapered roller bearing 10 of this embodiment, as shown in FIG. LR, the length of the pocket 18 of the retainer 14 in the roller axial direction is LP, and the total dimension of the entire gap in the roller axial direction is Dt, the relationship is Dt=D1+D2=LP-LR. Note that the roller axial dimensions D1 and D2, the length LR of the tapered roller 13, and the roller axial length LP of the pocket 18 are dimensions along the central axis (rotation axis) direction of the tapered roller 13. .

このように、円すいころ13と保持器14との間には軸方向の隙間が設けられるため、保持器14は、軸方向に沿って隙間の総和寸法Dtの範囲で自由に移動可能である。また、本実施形態では、第1隙間S1のころ軸方向寸法D1及び第2隙間S2のころ軸方向寸法D2は、厳密な寸法管理は不要で、保持器の一般的な加工精度を考慮して、一般的な隙間寸法である0.05mm以上に設定されている。 In this way, since an axial gap is provided between the tapered rollers 13 and the cage 14, the cage 14 can freely move along the axial direction within the range of the total gap dimension Dt. In addition, in this embodiment, the roller axial dimension D1 of the first gap S1 and the roller axial dimension D2 of the second gap S2 do not require strict dimensional control, and are taken into account in consideration of the general machining accuracy of the cage. , is set to 0.05 mm or more, which is a general gap size.

また、保持器14の大径側円環部15の軸方向内端面(以下、単に「ポケット面」とも言う)15aの表面は、粗く形成されており、具体的なポケット面15aの表面粗さ(算術平均粗さ)は3μm~20μmに設定される。 Further, the surface of the axially inner end surface (hereinafter also simply referred to as "pocket surface") 15a of the large-diameter side annular portion 15 of the retainer 14 is formed to be rough, and the surface roughness of the specific pocket surface 15a is rough. (Arithmetic mean roughness) is set to 3 μm to 20 μm.

そして、大径側円環部15のポケット面15aの粗さは、後述する油溝20が蓄えた潤滑油を円すいころ13に導くように機能する。これにより、ポケット面15aの保油能力及び給油能力を高めることができる。また、後述する油溝20の内面も保油能力を高めるために粗く形成されていた方が好ましい。また、ポケット面15aが保持器成形時の型抜き方向に対してほぼ垂直なため、ポケット面15aを粗く形成したとしても、成形後の離型の際に支障になることはない。なお、ポケット面15aの表面粗さは、全てのポケット18に対して設定してもよいし、一部のポケット18に対して設定してもよい。 The roughness of the pocket surface 15a of the large-diameter annular portion 15 functions to guide lubricating oil stored in oil grooves 20, which will be described later, to the tapered rollers 13. Thereby, the oil retention ability and oil supply ability of the pocket surface 15a can be improved. Further, it is preferable that the inner surface of the oil groove 20, which will be described later, is also formed roughly to improve the oil retaining ability. Furthermore, since the pocket surface 15a is substantially perpendicular to the direction of mold removal during molding of the cage, even if the pocket surface 15a is formed roughly, it will not be a problem during mold release after molding. Note that the surface roughness of the pocket surface 15a may be set for all pockets 18 or for some pockets 18.

大径側円環部15のポケット面15aは、曲率半径SRyの凹球面状に形成されている。そして、ポケット面15aの凹球面状の曲率半径SRyは、円すいころ13の大径側端面13bの凸球面状の曲率半径Raの±10%以内に設定されている(0.9Ra≦SRy≦1.1Ra)。これにより、ポケット面15aと円すいころ13の大径側端面13bとの密着度合いが向上するため、高い保油及び給油効果を得ることができる。しかしながら、SRyをRaに一致(SRy=Ra)させて全面当りにしてしまうと、摩擦抵抗が増加してしまうため、僅かに曲率半径をずらして完全密着させない状態が最適である。 The pocket surface 15a of the large diameter annular portion 15 is formed into a concave spherical shape with a radius of curvature SRy. The radius of curvature SRy of the concave spherical surface of the pocket surface 15a is set within ±10% of the radius of curvature Ra of the convex spherical surface of the large diameter end surface 13b of the tapered roller 13 (0.9Ra≦SRy≦1 .1Ra). This improves the degree of close contact between the pocket surface 15a and the large-diameter end surface 13b of the tapered roller 13, so that high oil retention and oil supply effects can be obtained. However, if SRy is made to match Ra (SRy=Ra) and the entire surface contacts, the frictional resistance will increase, so it is best to slightly shift the radius of curvature so that complete contact is not achieved.

また、図1~図4に示すように、保持器14の大径側円環部15のポケット面15aには、複数(本実施形態では2つ)の微細な油溝20が形成されている。そして、2つの油溝20は、有底溝であり、それぞれのポケット18において、保持器14の周方向に沿って平行に形成されている。油溝20は、毛管力で潤滑油を保持可能な溝であり、保持器14の保油能力を高めると共に、円すいころ13への潤滑油の伝播を促進する。なお、油溝20は、全てのポケット18に対して設けられてもよいし、一部のポケット18に対して設けられてもよい。なお、油溝20は、2つ以上であればよく、設置数は任意である。 Further, as shown in FIGS. 1 to 4, a plurality (two in this embodiment) of fine oil grooves 20 are formed in the pocket surface 15a of the large-diameter annular portion 15 of the retainer 14. . The two oil grooves 20 are bottomed grooves, and are formed in parallel along the circumferential direction of the retainer 14 in each pocket 18 . The oil groove 20 is a groove capable of retaining lubricating oil by capillary force, and enhances the oil retaining ability of the retainer 14 and promotes the propagation of the lubricating oil to the tapered rollers 13. Note that the oil groove 20 may be provided for all pockets 18 or for some pockets 18. Note that the number of oil grooves 20 may be two or more, and the number of installed oil grooves 20 is arbitrary.

図4は、油溝20の周方向の溝端部20aと円すいころ13の大径側端面13bとの接触位置関係を示す模式図である。円すいころ13の大径側端面13bは、大径側端面13bの中心部に形成される円形状の凹部13dと、凹部13dの周囲に設けられ、ポケット面15aと接触可能な円環状の接触面13eと、を有する。そして、2つの油溝20のそれぞれの溝端部20aは、円環状の接触面13eとポケット面15aとが円すいころ13の長手方向において重なり合う領域(円すいころ13の長手方向に見たときに重なり合う領域)に収まるように設けられる。これにより、図7~図9を用いて後述するメカニズムにより溝端部20aに集まった潤滑油を余す事なく、円すいころ13との毛管力によって円すいころ13に給油することが可能となる。なお、図4、図7~図9中の符号Lは潤滑油(ドット模様を付与した部分)である。 FIG. 4 is a schematic diagram showing the contact positional relationship between the circumferential groove end 20a of the oil groove 20 and the large-diameter end surface 13b of the tapered roller 13. The large-diameter end surface 13b of the tapered roller 13 includes a circular recess 13d formed at the center of the large-diameter end surface 13b, and an annular contact surface provided around the recess 13d and capable of contacting the pocket surface 15a. 13e. The groove ends 20a of each of the two oil grooves 20 are located in a region where the annular contact surface 13e and the pocket surface 15a overlap in the longitudinal direction of the tapered roller 13 (an area where the annular contact surface 13e and the pocket surface 15a overlap when viewed in the longitudinal direction of the tapered roller 13). ). This makes it possible to supply lubricating oil to the tapered rollers 13 by capillary force with the tapered rollers 13 without leaving any of the lubricating oil collected at the groove ends 20a by a mechanism described later with reference to FIGS. 7 to 9. Note that the symbol L in FIGS. 4 and 7 to 9 indicates lubricating oil (the part provided with a dot pattern).

また、図4に示すように、本実施形態では、2つの油溝20は環状扇形状にそれぞれ形成されており、2つの油溝20の長手方向両端辺である一対の端部連結辺21は、一対の直線21Lに揃うようにそれぞれ設けられている。そして、一対の直線21Lは、大径側円環部15の径方向内側に向かうに従って互いの周方向間隔が大きくなるような傾斜した線である。これにより、成形金型の加工を容易にすることができると共に、2つの油溝20のそれぞれの溝端部20aを円すいころ13の円環状の接触面13e内に容易に配置することができる。 Further, as shown in FIG. 4, in this embodiment, the two oil grooves 20 are each formed in an annular fan shape, and a pair of end connecting sides 21, which are both ends in the longitudinal direction of the two oil grooves 20, are formed in an annular fan shape. , are provided so as to be aligned with a pair of straight lines 21L. The pair of straight lines 21L are inclined lines such that the distance between them in the circumferential direction increases toward the inside of the large-diameter annular portion 15 in the radial direction. Thereby, the processing of the molding die can be facilitated, and the respective groove ends 20a of the two oil grooves 20 can be easily arranged within the annular contact surface 13e of the tapered roller 13.

ここで、本説明で述べる毛管力とは、固体が液体を引き寄せようとする力のことである。固体(保持器)の表面張力が液体(潤滑油)の表面張力よりも大きなときに毛管力が生じ、液体は固体表面に引き寄せられる。また、液体は表面張力により空気と触れる面を減らそうともする。つまり、潤滑油は空気と接する面積を減少させながら、保持器と接する面積を増そうとする。このため、保持器の油溝は、細い(油溝20の径方向幅寸法が小さい)ほど毛管力が高まる。この原理を利用し、本発明では、ポケット面15aに、細い形状の油溝20を形成している。そして、油溝20は、大径側円環部15のポケット面15aと接続する溝端部20aから円すいころ13の大径側端面13bに潤滑油を供給することを特徴とする。なお、溝端部20aは、油溝20の周方向(長手方向)の端部のことである。また、後述する溝中央部20bは、油溝20の周方向(長手方向)の中央部のことである。 Here, the capillary force mentioned in this explanation is the force by which a solid tries to attract a liquid. Capillary force occurs when the surface tension of the solid (retainer) is greater than the surface tension of the liquid (lubricating oil), and the liquid is attracted to the solid surface. Liquids also tend to reduce the surface area that comes into contact with air due to surface tension. In other words, the lubricating oil attempts to increase the area in contact with the cage while decreasing the area in contact with air. Therefore, the capillary force increases as the oil groove of the retainer becomes thinner (the radial width dimension of the oil groove 20 is smaller). Utilizing this principle, in the present invention, a thin oil groove 20 is formed in the pocket surface 15a. The oil groove 20 is characterized in that lubricating oil is supplied from the groove end 20a connected to the pocket surface 15a of the large-diameter annular portion 15 to the large-diameter end surface 13b of the tapered roller 13. Note that the groove end portion 20a is an end portion of the oil groove 20 in the circumferential direction (longitudinal direction). Further, the groove center portion 20b, which will be described later, refers to the center portion of the oil groove 20 in the circumferential direction (longitudinal direction).

また、油溝20は、毛管力の作用で保油及び円すいころ13への給油が可能な微細な形状であることが必要であり、本実施形態では、油溝20の径方向幅及び深さ(軸方向幅)は一定又は溝端部20aが浅くなる(軸方向幅が小さくなる)ように設定されており、油溝20の潤滑油の保油性、保持器14の強度及び一般的な射出成形の精度などを考慮して、例えば、油溝20の径方向幅D3は、最大部で0.5mm以下に設定されており、0.2mm以下に設定された方がより望ましい。油溝20の深さD4は、最大部で0.05mmから円すいころ13の長さ寸法LRの1/5以下の範囲に設定される。なお、油溝20の径方向幅D3は、油溝20の延在方向と直交する方向の幅である。また、アキシアルドローにより成形される油溝20は、射出成形時に成形金型が移動(離型)する方向である、保持器14の中心軸と同じ方向(軸方向)に延在している。 In addition, the oil groove 20 needs to have a fine shape that allows oil retention and oil supply to the tapered rollers 13 by the action of capillary force, and in this embodiment, the radial width and depth of the oil groove 20 are (Axial width) is set to be constant or so that the groove end 20a becomes shallow (axial width becomes small), and is determined by the lubricating oil retention of the oil groove 20, the strength of the retainer 14, and general injection molding. In consideration of the accuracy, for example, the radial width D3 of the oil groove 20 is set to 0.5 mm or less at the maximum part, and more preferably to 0.2 mm or less. The depth D4 of the oil groove 20 is set in a range from 0.05 mm at the maximum part to 1/5 or less of the length LR of the tapered roller 13. Note that the radial width D3 of the oil groove 20 is the width in the direction orthogonal to the extending direction of the oil groove 20. Further, the oil groove 20 formed by axial draw extends in the same direction (axial direction) as the central axis of the retainer 14, which is the direction in which the mold moves (releases the mold) during injection molding.

保持器14は、合成樹脂製であり、例えば、アキシアルドローにより射出成形可能である。大径側円環部15のポケット面15aの表面粗さ及び油溝20もこの射出成形により同時に形成可能である。この場合、加工工程の追加、二色成形(ダブルモールド)のような特殊な成形、及び別途製作した保油部材の接着などが不要である。従って、製造コストをほぼ増大させることなく、耐焼付き性を向上することができる。 The cage 14 is made of synthetic resin, and can be injection molded by, for example, axial draw. The surface roughness of the pocket surface 15a of the large-diameter annular portion 15 and the oil groove 20 can also be formed at the same time by this injection molding. In this case, there is no need for additional processing steps, special molding such as two-color molding (double molding), or adhesion of a separately manufactured oil retaining member. Therefore, seizure resistance can be improved without substantially increasing manufacturing costs.

また、保持器14の材料としては、特に制限はないが、使用される潤滑油に対して表面張力が高く毛管力を生じる親油性を有する合成樹脂材であればよく、例えば、ナイロンなどの一般的な保持器樹脂材を挙げることができる。なお、保持器14の合成樹脂に強化剤として繊維を含有させてもよい。また、親油性が低い樹脂材を使用することも可能であるが、この場合、親油処理を施した方が好ましい。 The material for the retainer 14 is not particularly limited, but may be any synthetic resin material that has a high surface tension and lipophilicity that generates capillary force with respect to the lubricating oil used; for example, a general material such as nylon. Examples of cage resin materials include: Note that the synthetic resin of the cage 14 may contain fibers as a reinforcing agent. It is also possible to use a resin material with low lipophilicity, but in this case it is preferable to perform lipophilic treatment.

図7A及び図7Bは、油溝20の長手方向(周方向)と円すいころ13との位置関係を示す説明図であり、保持器14の1つの油溝20の部分を周方向に沿って切断した断面図である。保持器14は、毛管力によって油溝20の内部に蓄えられた潤滑油を、同じくころ表面との毛管力の作用によって円すいころ13の大径側端面13bに供給することを特徴としている。この作用を効果的にさせるためには、油溝20は、円すいころ13とポケット面15aが接する部分に高い毛管力を発生させることが重要である。そして、その手法の1つとして、本実施形態では、図7Aに示すように、油溝20の中間部分よりも毛管力が高い溝端部20aが円すいころ13と接するように構成している。これにより、油溝20の内部の潤滑油を、溝端部20aの角部20dから円すいころ13の大径側端面13bとの毛管力で吸い上げることができる。なお、図7Bでは、溝端部20aが円すいころ13と接しないため、潤滑油を吸い上げる量が少なくなる。また、図7A及び図7Bでは、説明の理解を容易にするため、油溝20の深さを実際よりも拡大して表している。 7A and 7B are explanatory diagrams showing the positional relationship between the longitudinal direction (circumferential direction) of the oil groove 20 and the tapered rollers 13, in which one oil groove 20 portion of the cage 14 is cut along the circumferential direction. FIG. The retainer 14 is characterized by supplying the lubricating oil stored inside the oil groove 20 by capillary force to the large-diameter side end surface 13b of the tapered roller 13 by the action of capillary force with the roller surface. In order to make this effect effective, it is important that the oil groove 20 generates a high capillary force at the portion where the tapered roller 13 and the pocket surface 15a are in contact. As one method for this, in this embodiment, as shown in FIG. 7A, the groove end portion 20a having a higher capillary force than the middle portion of the oil groove 20 is configured to contact the tapered roller 13. Thereby, the lubricating oil inside the oil groove 20 can be sucked up from the corner 20d of the groove end 20a by capillary force with the large-diameter end surface 13b of the tapered roller 13. In addition, in FIG. 7B, since the groove end portion 20a does not come into contact with the tapered roller 13, the amount of lubricating oil sucked up is reduced. Further, in FIGS. 7A and 7B, the depth of the oil groove 20 is shown enlarged from the actual depth in order to facilitate understanding of the explanation.

図8A及び図8Bは、油溝20の径方向の断面形状を示す説明図であり、保持器14の1つの油溝20の部分を径方向に沿って切断した断面図である。毛管力は毛細管現象などからも明白なように、狭い空間ほど強く働くため、油溝20の径方向幅D3が細くても、図8Bに示すように開口部が広がっていると弱くなる。そこで、本実施形態では、図8Aに示すように、油溝20の壁面(油溝20の径方向の壁面と周方向の壁面の少なくとも一方)20cとポケット面15aとを接続する角部20dがシャープエッジ(半径0.1mm以下の円弧状の面取り、好ましくは半径0.05mm以下の円弧状の面取り、又は1辺0.1mmで45度の直線状の面取り)に形成されている。角部20dをシャープエッジに形成することにより、潤滑油をポケット面15aまで導きやすくすることが可能となる。なお、図8Bでは、角部20dの円弧が大きいため、潤滑油の油面がポケット面15aに届かず、給油量が少なくなる。 8A and 8B are explanatory diagrams showing the radial cross-sectional shape of the oil groove 20, and are cross-sectional views of one oil groove 20 of the retainer 14 cut along the radial direction. As is clear from the capillary phenomenon, the capillary force acts more strongly in a narrower space, so even if the radial width D3 of the oil groove 20 is narrow, it becomes weaker if the opening is widened as shown in FIG. 8B. Therefore, in this embodiment, as shown in FIG. 8A, a corner 20d connecting the wall surface of the oil groove 20 (at least one of the radial wall surface and the circumferential wall surface of the oil groove 20) 20c and the pocket surface 15a is It is formed into a sharp edge (an arc-shaped chamfer with a radius of 0.1 mm or less, preferably an arc-shaped chamfer with a radius of 0.05 mm or less, or a linear chamfer with a side of 0.1 mm and an angle of 45 degrees). By forming the corner portion 20d with a sharp edge, it becomes possible to easily guide lubricating oil to the pocket surface 15a. In addition, in FIG. 8B, since the arc of the corner 20d is large, the oil level of the lubricating oil does not reach the pocket surface 15a, and the amount of oil supplied is reduced.

また、油溝20の径方向断面の溝底すみ20eは、円弧形状に形成されており、この溝底すみ20eの円弧形状の半径Rwが小さい場合、毛管力が高まり潤滑油が溝底すみ20eに留まるように作用する。このため、油溝20の径方向断面の溝底すみ20eの円弧形状の半径Rwは、最大となる油溝20の長手方向中央である溝中央部20bにおいて油溝20の径方向幅D3の1/4~1/2に設定される方が望ましい。また、溝端部20aへの毛管力を高めるためには、図10に示すように、油溝20の径方向断面の溝底すみ20eの円弧形状の半径Rwを、油溝20の溝中央部20bから溝端部20aに向かうに従って小さくする(Rw1>Rw2>Rw3)方が更に望ましい。これにより、溝中央部20bに溜まった潤滑油を、より毛管力の高い溝端部20aに吸い上げて、ポケット面15aに導くことが可能となる。 Further, the groove bottom corner 20e of the radial cross section of the oil groove 20 is formed in an arc shape, and when the radius Rw of the arc shape of the groove bottom corner 20e is small, capillary force increases and lubricating oil flows into the groove bottom corner 20e. It acts to stay in place. Therefore, the radius Rw of the arc shape of the groove bottom corner 20e in the radial cross section of the oil groove 20 is 1 of the radial width D3 of the oil groove 20 at the groove center portion 20b, which is the longitudinal center of the oil groove 20, which is the maximum. It is preferable to set it between /4 and 1/2. In addition, in order to increase the capillary force to the groove end 20a, as shown in FIG. It is even more desirable to make it smaller toward the groove end 20a (Rw1>Rw2>Rw3). Thereby, the lubricating oil accumulated in the groove center portion 20b can be sucked up to the groove end portion 20a where the capillary force is higher and guided to the pocket surface 15a.

図9A及び図9Bは、油溝20の長手方向(周方向)の断面形状を示す説明図であり、保持器14の1つの油溝20の部分を周方向に沿って切断した断面図である。図9Bに示すように、油溝20の周方向断面の溝底すみ20fが直角に近い場合、潤滑油が溝底すみ20fに留まってしまい、円すいころ13への給油が難しくなる。このため、溝端部20aの深さD4を、溝中央部20bの深さD4よりも小さく(浅く)設定した方が望ましい。具体的には、図9Aに示すように、油溝20の周方向断面の溝底すみ20fを円弧形状に形成して、油溝20の深さD4を、油溝20の溝中央部20bから溝端部20aに向かうに従って小さくしている。これにより、溝端部20aのポケット面15aと接続する部分の毛管力を高めることができ、溝底に溜まった潤滑油を効率よく吸い上げて、円すいころ13に給油することが可能となる。なお、図9A及び図9Bでは、説明の理解を容易にするため、油溝20の深さを実際よりも拡大して表している。 9A and 9B are explanatory diagrams showing the cross-sectional shape of the oil groove 20 in the longitudinal direction (circumferential direction), and are cross-sectional views of one oil groove 20 of the retainer 14 cut along the circumferential direction. . As shown in FIG. 9B, when the groove bottom corner 20f of the circumferential cross section of the oil groove 20 is close to a right angle, the lubricating oil remains at the groove bottom corner 20f, making it difficult to supply oil to the tapered rollers 13. For this reason, it is desirable to set the depth D4 of the groove end portion 20a to be smaller (shallower) than the depth D4 of the groove center portion 20b. Specifically, as shown in FIG. 9A, the groove bottom corner 20f of the circumferential cross section of the oil groove 20 is formed into an arc shape, and the depth D4 of the oil groove 20 is set from the groove center portion 20b of the oil groove 20. It becomes smaller toward the groove end 20a. Thereby, the capillary force of the portion of the groove end 20a connected to the pocket surface 15a can be increased, and the lubricating oil accumulated at the groove bottom can be efficiently sucked up and supplied to the tapered rollers 13. Note that in FIGS. 9A and 9B, the depth of the oil groove 20 is shown enlarged from the actual depth in order to facilitate understanding of the explanation.

図11~図14は、油溝20の径方向幅D3を長手方向両端部で小さく(細く)した例を説明する模式図である。つまり、図11~図14に示す油溝20では、溝端部20aの径方向幅D3を、溝中央部20bの径方向幅D3よりも小さく設定している。このように油溝20の先端を細くすることにより、溝端部20aの毛管力を高めることができ、溝底に溜まった潤滑油を効率よく吸い上げて、円すいころ13に給油することが可能となる。また、細くなっている部分が先端の一部に限られるため、溝全体の空間体積をあまり減らすことなく、多くの潤滑油を蓄えやすい形状でもある。 11 to 14 are schematic diagrams illustrating an example in which the radial width D3 of the oil groove 20 is made smaller (thinner) at both ends in the longitudinal direction. That is, in the oil groove 20 shown in FIGS. 11 to 14, the radial width D3 of the groove end portion 20a is set smaller than the radial width D3 of the groove center portion 20b. By making the tip of the oil groove 20 thinner in this way, the capillary force at the groove end 20a can be increased, and the lubricating oil accumulated at the groove bottom can be efficiently sucked up and supplied to the tapered rollers 13. . In addition, since the narrowed part is limited to a portion of the tip, the shape makes it easy to store a large amount of lubricating oil without reducing the overall space volume of the groove.

そして、図11に示す油溝20は、油溝20の長手方向端部の径方向一方側に直線状の面取りCxを施した形状(環状扇形状)である。図12に示す油溝20は、油溝20の長手方向端部の径方向両側に直線状の面取りCxを施した形状(略六角形状)である。図13に示す油溝20は、図11に示す環状扇形状の油溝20において、その長手方向端部に円弧状の面取りRxを施した形状である。図14に示す油溝20は、図11に示す環状扇形状の油溝20において、その長手方向端部である溝端部20aに直線状の小面取りCxxを施した形状である。また、図11~図14に示す油溝20では、油溝20の深さD4を溝中央部20bから溝端部20aに向かうに従って浅く、且つ油溝20の径方向断面の溝底すみ20eの円弧形状の半径Rwを、油溝20の溝中央部20bから溝端部20aに向かうに従って小さく(Rw1>Rw2>Rw3)している。 The oil groove 20 shown in FIG. 11 has a shape (annular fan shape) in which a linear chamfer Cx is provided on one radial side of the longitudinal end of the oil groove 20. The oil groove 20 shown in FIG. 12 has a shape (approximately hexagonal shape) in which linear chamfers Cx are provided on both sides of the longitudinal end portion of the oil groove 20 in the radial direction. The oil groove 20 shown in FIG. 13 has a shape in which an arcuate chamfer Rx is applied to the longitudinal end of the annular fan-shaped oil groove 20 shown in FIG. The oil groove 20 shown in FIG. 14 has a shape in which a linear small chamfer Cxx is formed on the groove end 20a, which is the longitudinal end of the annular fan-shaped oil groove 20 shown in FIG. In addition, in the oil groove 20 shown in FIGS. 11 to 14, the depth D4 of the oil groove 20 becomes shallower from the groove center portion 20b toward the groove end portion 20a, and the groove bottom corner 20e of the radial cross section of the oil groove 20 has a circular arc. The radius Rw of the shape is made smaller (Rw1>Rw2>Rw3) from the groove center part 20b of the oil groove 20 toward the groove end part 20a.

図15及び図16は、油溝20の径方向幅D3を溝中央部20bから溝端部20aに向かうに従って小さく(細く)した例を説明する模式図である。図16に示す油溝20は、溝端部20aが尖った略三日月形状である。また、図15及び図16に示す油溝20では、油溝20の深さD4を溝中央部20bから溝端部20aに向かうに従って浅く、且つ油溝20の径方向断面の溝底すみ20eの円弧形状の半径Rwを、油溝20の溝中央部20bから溝端部20aに向かうに従って小さく(Rw1>Rw2>Rw3)している。このような構造にすることにより、溝端部20aのポケット面15aと接続する部分の毛管力を高めることができ、溝底に溜まった潤滑油を効率よく吸い上げて、円すいころ13に給油することが可能となる。 15 and 16 are schematic diagrams illustrating an example in which the radial width D3 of the oil groove 20 is made smaller (narrower) from the groove center portion 20b toward the groove end portion 20a. The oil groove 20 shown in FIG. 16 has a substantially crescent shape with a pointed groove end 20a. In addition, in the oil groove 20 shown in FIGS. 15 and 16, the depth D4 of the oil groove 20 becomes shallower from the groove center portion 20b toward the groove end portion 20a, and the groove bottom corner 20e of the radial cross section of the oil groove 20 has a circular arc. The radius Rw of the shape is made smaller (Rw1>Rw2>Rw3) from the groove center part 20b of the oil groove 20 toward the groove end part 20a. With such a structure, the capillary force of the portion of the groove end 20a connected to the pocket surface 15a can be increased, and the lubricating oil accumulated at the groove bottom can be efficiently sucked up and supplied to the tapered roller 13. It becomes possible.

なお、油溝20の周方向長さ、油溝20の径方向幅D3の変化度合い、油溝20の深さD4の変化度合い、油溝20の径方向断面の溝底すみ20eの円弧形状の半径Rwの変化度合い、及びその変化の連続・不連続は自由に設定可能である。また、上記項目の一部のみを採用してもよい。また、図11に示した形状例の油溝20の場合、油溝20の径方向幅D3は、溝端部20aの近傍において、溝中央部20bから溝端部20aに向かうに従い徐々に小さくされている。具体的には、溝端部20aを軸方向から見た場合、溝端部20aを構成する部分の角部20dの成す角度θ20aは、30~60度の範囲の鋭角(図11の場合は45度)に設定されている。また、図15に示した形状例の油溝20の場合、溝中央部20bに対する溝端部20aでの寸法の比率は、径方向幅D3を略50%とし、深さD4を略25%としている。また、図16に示した三日月形状の油溝20の場合、溝中央部20bに対する溝端部20a近傍での深さD4の比率を略25%とすると共に、溝端部20aの成す角度θ20aを30~60度の範囲の鋭角(図16の場合は30度)に設定している。 In addition, the circumferential length of the oil groove 20, the degree of change in the radial width D3 of the oil groove 20, the degree of change in the depth D4 of the oil groove 20, and the circular arc shape of the groove bottom corner 20e in the radial cross section of the oil groove 20. The degree of change in the radius Rw and the continuity or discontinuity of the change can be freely set. Also, only some of the above items may be adopted. Further, in the case of the oil groove 20 having the shape example shown in FIG. 11, the radial width D3 of the oil groove 20 is gradually reduced in the vicinity of the groove end 20a from the groove center portion 20b toward the groove end 20a. . Specifically, when the groove end 20a is viewed from the axial direction, the angle θ20a formed by the corner 20d of the portion constituting the groove end 20a is an acute angle in the range of 30 to 60 degrees (45 degrees in the case of FIG. 11). is set to . Further, in the case of the oil groove 20 having the shape example shown in FIG. 15, the ratio of the dimensions of the groove end portion 20a to the groove center portion 20b is such that the radial width D3 is approximately 50% and the depth D4 is approximately 25%. . In the case of the crescent-shaped oil groove 20 shown in FIG. 16, the ratio of the depth D4 near the groove end 20a to the groove center 20b is approximately 25%, and the angle θ20a formed by the groove end 20a is 30~30%. The acute angle is set within a range of 60 degrees (30 degrees in the case of FIG. 16).

このように構成された円すいころ軸受10では、軸受に潤滑油が供給され軸受内が潤滑油で満たされている場合、軸受回転のポンプ作用により潤滑油が内輪12の小径側から大径側へ流れる現象が起きる。従って、本実施形態では、図5に示すように、上記ポンプ作用による潤滑油の流れの力を受けて、保持器14が円すいころ13の大径側に軸方向に移動し、保持器14の大径側円環部15が円すいころ13から離れる側に移動する(Dt=D2、D1=0)。これにより、大径側円環部15が円すいころ13に常時接触しないため、軸受回転時の摩擦抵抗の増加が抑制される。また、軸受に供給された潤滑油は、毛管力により、油溝20の内部に蓄えられる。 In the tapered roller bearing 10 configured in this way, when lubricating oil is supplied to the bearing and the inside of the bearing is filled with lubricating oil, the lubricating oil flows from the small diameter side of the inner ring 12 to the large diameter side due to the pump action of the bearing rotation. A flowing phenomenon occurs. Therefore, in this embodiment, as shown in FIG. 5, the cage 14 moves in the axial direction toward the larger diameter side of the tapered rollers 13 under the force of the flow of lubricating oil due to the pump action, and the cage 14 The large diameter annular portion 15 moves away from the tapered rollers 13 (Dt=D2, D1=0). As a result, the large-diameter side annular portion 15 does not constantly contact the tapered rollers 13, so that an increase in frictional resistance during rotation of the bearing is suppressed. Furthermore, the lubricating oil supplied to the bearing is stored inside the oil groove 20 due to capillary force.

その一方、軸受に潤滑油が供給されず軸受内の潤滑油が微量である場合、ポンプ作用による潤滑油の流れは発生せず、図6に示すように、保持器14は自重の分力により円すいころ13の小径側に軸方向に移動し、保持器14の大径側円環部15のポケット面15aに形成された油溝20が円すいころ13の大径側端面13bに接触する(Dt=D1、D2=0)。これにより、油溝20に蓄えられた潤滑油が円すいころ13の大径側端面13bに供給される。つまり、軸受内の潤滑油が微量である場合にのみ、油溝20が円すいころ13の大径側端面13bに接触し、潤滑油が円すいころ13に供給される。なお、本発明の円すいころ軸受10は、保持器14の自重の分力を利用して保持器14を移動させるものであるため、水平に設けられる軸(横軸)を支持する構造に用いるのが好適である。 On the other hand, if no lubricating oil is supplied to the bearing and the lubricating oil inside the bearing is in a small amount, no lubricating oil flow occurs due to the pump action, and as shown in FIG. The tapered roller 13 moves axially toward the small diameter side, and the oil groove 20 formed in the pocket surface 15a of the large diameter annular portion 15 of the cage 14 comes into contact with the large diameter end surface 13b of the tapered roller 13 (Dt =D1, D2=0). As a result, the lubricating oil stored in the oil groove 20 is supplied to the large-diameter side end surface 13b of the tapered roller 13. In other words, the oil grooves 20 come into contact with the large-diameter end surfaces 13b of the tapered rollers 13, and the lubricating oil is supplied to the tapered rollers 13 only when there is a small amount of lubricating oil in the bearing. Note that since the tapered roller bearing 10 of the present invention moves the cage 14 using a component of the weight of the cage 14, it cannot be used in a structure that supports a horizontal shaft (horizontal shaft). is suitable.

以上説明したように、本実施形態の円すいころ軸受10によれば、保持器14の大径側円環部15のポケット面15aに、毛管力で潤滑油を保持する微細な油溝20が設けられるため、円すいころ13で油溝20に蓋をしなくても、油溝20の単体で潤滑油を保持することができる。また、保持器14が円すいころ13の小径側に軸方向に移動したときに、油溝20が円すいころ13の大径側端面13bに接触するため、潤滑油の供給が断続的である潤滑環境下、或いは、潤滑油が微量である潤滑環境下であったとしても軸受10の焼付きを防止することができる。また、保持器14が円すいころ13の大径側に軸方向に移動したときに、油溝20が円すいころ13の大径側端面13bから離れて、大径側円環部15が円すいころ13に常時接触しないため、軸受回転時の摩擦抵抗の増加を抑制することができ、さらに、大径側円環部15の摩耗を抑制することができる。また、高度な部品寸法精度などの管理が不要であり、製造コストの増大を抑制することができる。 As explained above, according to the tapered roller bearing 10 of this embodiment, the pocket surface 15a of the large-diameter side annular portion 15 of the cage 14 is provided with the fine oil grooves 20 that retain lubricating oil by capillary force. Therefore, the oil groove 20 alone can hold lubricating oil without covering the oil groove 20 with the tapered rollers 13. Furthermore, when the cage 14 moves in the axial direction toward the small diameter side of the tapered rollers 13, the oil grooves 20 come into contact with the large diameter side end surface 13b of the tapered rollers 13, so the lubricating oil is in an intermittent supply environment. Seizure of the bearing 10 can be prevented even under a lubricating environment where only a small amount of lubricating oil is present. Further, when the cage 14 moves in the axial direction toward the larger diameter side of the tapered rollers 13, the oil groove 20 separates from the larger diameter side end surface 13b of the tapered rollers 13, and the larger diameter side annular portion 15 moves toward the larger diameter side of the tapered rollers 13. Since it is not in constant contact with the bearing, it is possible to suppress an increase in frictional resistance during rotation of the bearing, and furthermore, it is possible to suppress wear of the large-diameter side annular portion 15. Furthermore, there is no need for sophisticated management of component dimensional accuracy, and an increase in manufacturing costs can be suppressed.

更に詳細に説明すると、油溝20が形成された大径側円環部15は、事前に接触力(押付け力)が設定されているわけではなく、保持器14の自重の分力により円すいころ13に接触するため、摩擦抵抗を殆ど発生させず、大径側円環部15の摩耗劣化を最小限に抑えることができる。 To explain in more detail, the large-diameter side annular portion 15 in which the oil groove 20 is formed has no contact force (pressing force) set in advance, but the tapered roller 13, almost no frictional resistance is generated, and wear and deterioration of the large-diameter side annular portion 15 can be minimized.

また、本実施形態の円すいころ軸受10によれば、保持器14が、合成樹脂製であり、保持器14の大径側円環部15のポケット面15aの表面粗さ及び油溝20がアキシアルドローにより保持器14と同時に射出成形されるため、製造コストの増大を抑制することができる。 Further, according to the tapered roller bearing 10 of this embodiment, the cage 14 is made of synthetic resin, and the surface roughness of the pocket surface 15a of the large-diameter side annular portion 15 of the cage 14 and the oil groove 20 are axial. Since injection molding is performed simultaneously with the retainer 14 by drawing, an increase in manufacturing costs can be suppressed.

また、本実施形態の円すいころ軸受10によれば、油溝20が周方向に沿って形成され、軸受回転時の遠心力の作用方向と油溝20の形成方向が直交するため、油溝20に保持される潤滑油が遠心力により飛散するのを抑制することができる。 Further, according to the tapered roller bearing 10 of the present embodiment, the oil grooves 20 are formed along the circumferential direction, and the direction of action of centrifugal force during rotation of the bearing is orthogonal to the direction in which the oil grooves 20 are formed. It is possible to suppress the lubricating oil held in the container from scattering due to centrifugal force.

また、本実施形態の円すいころ軸受10によれば、潤滑油量を大幅に減らすことができるので、潤滑油の攪拌抵抗を低減することができる。また、例えば、歯車による跳ね掛けなどによって潤滑油を微量でも供給できる構造(図22参照)とすれば、潤滑油ポンプや給油路を廃止することもでき、これにより、潤滑システム全体の軽量コンパクト化、低コスト化を図ることができる。 Further, according to the tapered roller bearing 10 of this embodiment, the amount of lubricating oil can be significantly reduced, so that the stirring resistance of the lubricating oil can be reduced. For example, if a structure is adopted in which even a small amount of lubricant can be supplied by splashing with gears (see Figure 22), the lubricant pump and oil supply path can be eliminated, which makes the entire lubrication system lighter and more compact. , it is possible to achieve cost reduction.

また、本実施形態の円すいころ軸受10によれば、潤滑油が軸受内に断続的に供給される、或いは、軸受内の潤滑油が微量である潤滑環境下でも、焼付きを防止して軸受性能や潤滑効果を長期間に亘って維持することができる。このため、本実施形態の円すいころ軸受10は、例えば、一部のハイブリッド車のトランスミッションのようにエンジン停止時に潤滑油ポンプが一時的に停止する機構に好適に用いることができ、また、自動車の被牽引時に潤滑油ポンプが作動せずに潤滑油の十分な供給が困難な状況などに対応することができる。 Further, according to the tapered roller bearing 10 of the present embodiment, even in a lubrication environment where lubricating oil is intermittently supplied into the bearing or where there is a small amount of lubricating oil inside the bearing, seizure can be prevented and the bearing can be maintained. Performance and lubrication effects can be maintained over a long period of time. Therefore, the tapered roller bearing 10 of this embodiment can be suitably used, for example, in a mechanism in which a lubricating oil pump is temporarily stopped when the engine is stopped, such as in the transmission of some hybrid vehicles. This can be used in situations where it is difficult to supply a sufficient amount of lubricant due to the lubricant pump not operating when the vehicle is being towed.

ここで、本明細書における潤滑油が微量である潤滑環境下について説明する。例えば、自動車などのトランスミッションの場合、潤滑油の供給方法として、図21に示す潤滑油ポンプPによる潤滑油の圧送と、図22に示す歯車Gによる潤滑油の跳ね掛けとの2通りが一般的に知られている。 Here, a lubrication environment in which a small amount of lubricating oil is used in this specification will be explained. For example, in the case of a transmission such as an automobile, there are generally two methods for supplying lubricating oil: pumping the lubricating oil by a lubricating oil pump P shown in FIG. 21, and splashing the lubricating oil by a gear G shown in FIG. 22. known to.

潤滑油ポンプPにより潤滑油を圧送する構造としては、図21に示すように、円すいころ軸受10の外輪11がハウジングHに内嵌され、内輪12が回転軸Aに外嵌されており、ハウジングHに軸受10に連通する給油路Rが設けられ、この給油路Rに潤滑油ポンプPが接続される構造が一般的に知られている。この構造の場合、潤滑油ポンプPから圧送された潤滑油が給油路Rを介して軸受10に供給される。 As shown in FIG. 21, the structure for pumping lubricating oil by the lubricating oil pump P is such that the outer ring 11 of the tapered roller bearing 10 is fitted inside the housing H, the inner ring 12 is fitted outside the rotating shaft A, and the housing A structure in which an oil supply path R communicating with the bearing 10 is provided in H, and a lubricating oil pump P is connected to this oil supply path R is generally known. In the case of this structure, lubricating oil pressure-fed from the lubricating oil pump P is supplied to the bearing 10 via the oil supply path R.

また、歯車Gにより潤滑油を跳ね掛ける構造としては、図22に示すように、円すいころ軸受10の外輪11がハウジングHに内嵌され、内輪12が回転軸Aに外嵌されており、回転軸Aに内輪12と隣接して歯車Gが設けられる構造が一般的に知られている。この構造の場合、歯車Gに付着している潤滑油が軸回転に伴う遠心力により飛散し、飛散した潤滑油が軸受10に付着して給油される。 Furthermore, as shown in FIG. 22, the structure in which lubricating oil is splashed by the gear G is such that the outer ring 11 of the tapered roller bearing 10 is fitted inside the housing H, the inner ring 12 is fitted outside the rotating shaft A, and the A structure in which a gear G is provided on the shaft A adjacent to the inner ring 12 is generally known. In the case of this structure, the lubricating oil adhering to the gear G is scattered by the centrifugal force accompanying the rotation of the shaft, and the scattered lubricating oil adheres to the bearing 10 and is supplied with oil.

上記した2通りの構造では、軸受の焼付きを防止するため、50cc/minから1000cc/min程度の潤滑油量が供給されている。そして、この潤滑油量が10cc/minを下回ると潤滑油不足に伴う油膜不足により発熱や焼付きが起こりやすくなり、0cc/min(無潤滑油)では焼付きが生じる。本発明は、無潤滑状態ではなく希薄潤滑状態への対応であり、潤滑油が微量である潤滑環境下、具体的には、0.01cc/min~10cc/min程度の希薄潤滑状態で大きな効果を発揮する。 In the above two types of structures, in order to prevent seizure of the bearing, lubricating oil is supplied in an amount of about 50 cc/min to 1000 cc/min. When the amount of lubricating oil is less than 10 cc/min, heat generation and seizure are likely to occur due to insufficient oil film due to lack of lubricating oil, and when the amount is 0 cc/min (no lubricating oil), seizure occurs. The present invention deals with a lean lubrication state rather than an unlubricated state, and has a large effect in a lubrication environment where a small amount of lubricating oil is present, specifically in a lean lubrication state of about 0.01cc/min to 10cc/min. demonstrate.

次に、本明細書における潤滑油が断続的に供給される環境について説明する。例えば、ハイブリッド車では、エンジンを停止したまま電動モータで走行するモードがある。このモード中は、エンジンと直結した潤滑油ポンプだけの構造では、軸受に潤滑油が給油されない状態で走行が行われる。このため、数分程度までの無給油走行状態が発生するが、軸受はこの間に焼付きを起こしてはならない。この電動走行時間はバッテリーの進化と共に延長させたいニーズがある。現状では焼付き防止のために一定間隔毎にエンジンを回し、潤滑油ポンプを作動させる制御を行っている車種もある。この課題を解決するには、電動潤滑油ポンプをシステムに追加するか、本発明のような無潤滑で焼付きにくい軸受の採用が必要となる。本発明では、焼付きまでの時間は油溝に蓄えられる潤滑油量と関連があることから、潤滑油量を増やすことで無潤滑適用時間を数十分から数時間と大幅に延長させることが可能である。潤滑油量の拡大には、例えば、油溝の数の増加や油溝深さの拡大で対応できる。 Next, an environment in which lubricating oil is intermittently supplied in this specification will be described. For example, in a hybrid car, there is a mode in which the electric motor is used to drive the car while the engine is stopped. In this mode, if the vehicle is configured with only a lubricating oil pump directly connected to the engine, the vehicle will run without lubricating oil being supplied to the bearings. For this reason, a state of no-lubrication occurs for up to several minutes, but the bearing must not seize during this time. There is a need to extend this electric driving time as batteries evolve. Currently, some car models are controlled to rotate the engine and operate the lubricating oil pump at regular intervals to prevent seizure. To solve this problem, it is necessary to add an electric lubricating oil pump to the system or to use a bearing like the present invention that does not require lubrication and is resistant to seizure. In the present invention, since the time until seizure is related to the amount of lubricating oil stored in the oil groove, increasing the amount of lubricating oil can significantly extend the no-lubrication application time from several tens of minutes to several hours. It is possible. The amount of lubricating oil can be increased by, for example, increasing the number of oil grooves or increasing the depth of the oil grooves.

また、乗用車は、故障時やキャンピングカーなどの大型車両での移動先での補助用車両として牽引されることがある。このようなときは、車両の駆動輪を台車などに載せることで空転を防止することが可能であるが、現実には、駆動輪を空転させながら牽引される事例が起こっている。この場合、駆動伝達はなく無負荷空転のため軸受の負担も軽微であるが、円すいころ軸受の場合、一般的に予圧をかけて使用されるため、予圧分の負荷が常に作用している。そして、この空転状態では、エンジンや電動潤滑油ポンプが稼働せず、潤滑油ポンプは停止しているため、軸受は焼付きを起こしやすい。この対策のために、跳ね掛け給油が起こるように駆動装置に工夫を施している車種もある。本発明では、潤滑油ポンプが停止しても、油溝に蓄えられた潤滑油がなくなるまで軸受に給油を行えるため、跳ね掛けが不十分又は跳ね掛けがないような被牽引状態でも耐焼付き性を大幅に向上することができる。 In addition, passenger cars may be towed as auxiliary vehicles when a vehicle breaks down or when a large vehicle such as a camper is traveling. In such cases, it is possible to prevent the vehicle from idling by placing the drive wheels of the vehicle on a trolley or the like, but in reality, there are cases where the vehicle is towed while the drive wheels are idling. In this case, there is no drive transmission and the bearing idles under no load, so the load on the bearing is light. However, in the case of tapered roller bearings, they are generally used with a preload, so the load corresponding to the preload always acts on them. In this idling state, the engine and the electric lubricating oil pump do not operate, and the lubricating oil pump is stopped, so the bearing is likely to seize. To counter this problem, some vehicle models have devised drive systems that allow splash refueling to occur. In the present invention, even if the lubricating oil pump stops, the bearing can be lubricated until the lubricating oil stored in the oil groove runs out, so even when the bearing is being towed with insufficient splashing or no splashing, the seizure resistance is maintained. can be significantly improved.

また、極寒環境での始動時には、潤滑油が凍結し、潤滑油ポンプによる給油も跳ね掛けによる給油も起こらない現象が一時的に発生する。この場合は、凍結した潤滑油が温まって溶けるまでの間、軸受自身に付着していた僅かな油分で潤滑を賄わなければならない。そして、本発明では、凍結した潤滑油が油溝に蓄えられているため、軸受の発熱に伴い徐々に溶けながら潤滑するため、耐焼付き性を飛躍的に向上することができる。 Furthermore, when the engine is started in an extremely cold environment, the lubricating oil freezes, and there is a temporary phenomenon in which neither the lubricating oil pump nor the splashing lubrication occurs. In this case, until the frozen lubricating oil warms up and melts, lubrication must be provided by the small amount of oil adhering to the bearing itself. Further, in the present invention, since the frozen lubricating oil is stored in the oil groove, the lubricating oil is gradually melted as the bearing heats up, so that the seizure resistance can be dramatically improved.

次に、本実施形態の第1変形例として、図17に示すように、隣接する2つの油溝20を径方向に延びる接続溝22により互いに接続してもよい。本変形例によれば、油溝20に蓄えられる潤滑油を増やすことができるため、微量な潤滑油の潤滑環境下における軸受10の耐焼付き性を更に向上することができる。なお、接続溝22は、1つに限定されず、複数であってもよい。 Next, as a first modification of this embodiment, as shown in FIG. 17, two adjacent oil grooves 20 may be connected to each other by a connecting groove 22 extending in the radial direction. According to this modification, the amount of lubricating oil stored in the oil groove 20 can be increased, so that the seizure resistance of the bearing 10 in a lubrication environment with a small amount of lubricating oil can be further improved. Note that the number of connection grooves 22 is not limited to one, and may be plural.

また、本実施形態の第2変形例として、図18に示すように、保持器14のポケット面15aに3つの油溝20を形成すると共に、隣接する3つの油溝20を径方向に延びる接続溝22により互いに接続してもよい。また、本変形例では、3つの油溝20の周方向両端辺である一対の端部連結辺21は、円すいころ13の円環状の接触面13eに倣った円弧状の線21Cに揃うようにそれぞれ設けられている。本変形例によれば、油溝20に蓄えられる潤滑油を増やすことができるため、微量な潤滑油の潤滑環境下における軸受10の耐焼付き性を更に向上することができる。なお、接続溝22は、1つに限定されず、複数であってもよい。 In addition, as a second modification of the present embodiment, as shown in FIG. 18, three oil grooves 20 are formed in the pocket surface 15a of the retainer 14, and three adjacent oil grooves 20 are connected to each other extending in the radial direction. They may also be connected to each other by grooves 22. In addition, in this modification, a pair of end connecting sides 21, which are both end sides in the circumferential direction of the three oil grooves 20, are aligned with an arc-shaped line 21C that follows the annular contact surface 13e of the tapered roller 13. Each is provided. According to this modification, the amount of lubricating oil stored in the oil groove 20 can be increased, so that the seizure resistance of the bearing 10 in a lubrication environment with a small amount of lubricating oil can be further improved. Note that the number of connection grooves 22 is not limited to one, and may be plural.

また、本実施形態の第3変形例として、図19及び図20に示すように、保持器14のポケット面15aに、2つの油溝20の溝端部20aを通過する一対の直線21Lに沿って膨出部15bをそれぞれ形成してもよい。このため、保持器14が円すいころ13の小径側に移動した際、油溝20の溝端部20aが円すいころ13の大径側端面13bに接触し、油溝20の溝端部20a以外の部分は円すいころ13の大径側端面13bに接触しない。これにより、油溝20の溝端部20aから円すいころ13の大径側端面13bに潤滑油を供給することができると共に、保持器14のポケット面15aが円すいころ13の大径側端面13bに接触する際の摩擦抵抗を低減することができる。 In addition, as a third modification of the present embodiment, as shown in FIGS. 19 and 20, the pocket surface 15a of the retainer 14 is provided along a pair of straight lines 21L passing through the groove ends 20a of the two oil grooves 20. The bulging portions 15b may be formed respectively. Therefore, when the cage 14 moves to the small diameter side of the tapered rollers 13, the groove end 20a of the oil groove 20 contacts the large diameter side end surface 13b of the tapered roller 13, and the portion of the oil groove 20 other than the groove end 20a It does not come into contact with the large diameter side end surface 13b of the tapered roller 13. As a result, lubricating oil can be supplied from the groove end 20a of the oil groove 20 to the large-diameter end surface 13b of the tapered roller 13, and the pocket surface 15a of the cage 14 comes into contact with the large-diameter end surface 13b of the tapered roller 13. It is possible to reduce the frictional resistance when

なお、本発明は、上記実施形態に例示したものに限定されるものではなく、本発明の要旨を逸脱しない範囲において適宜変更可能である。 It should be noted that the present invention is not limited to what has been exemplified in the above embodiments, and can be modified as appropriate without departing from the gist of the present invention.

10 円すいころ軸受
11 外輪
11a 外輪軌道面
12 内輪
12a 内輪軌道面
13 円すいころ
13a 転動面
13b 大径側端面
13c 小径側端面
13d 凹部
13e 円環状の接触面
14 保持器
15 大径側円環部
15a 軸方向内端面(ポケット面)
16 小径側円環部
16a 軸方向内端面
17 柱部
18 ポケット
20 油溝
20a 溝端部
20b 溝中央部
20c 壁面
20d 角部
20e 径方向断面の溝底すみ
20f 周方向断面の溝底すみ
21 端部連結辺
21L 一対の直線
L 潤滑油
S1 第1隙間
S2 第2隙間
D1 第1隙間のころ軸方向寸法
D2 第2隙間のころ軸方向寸法
D3 油溝の径方向幅
D4 油溝の深さ
Dt 隙間全体のころ軸方向の総和寸法
LR 円すいころの長さ寸法
LP ポケットのころ軸方向の長さ寸法
Ra 円すいころの大径側端面の曲率半径
SRy ポケット面の曲率半径
10 Tapered roller bearing 11 Outer ring 11a Outer ring raceway surface 12 Inner ring 12a Inner ring raceway surface 13 Tapered rollers 13a Rolling surface 13b Large diameter end surface 13c Small diameter end surface 13d Recess 13e Annular contact surface 14 Cage 15 Large diameter annular portion 15a Axial inner end surface (pocket surface)
16 Small diameter annular portion 16a Axial inner end surface 17 Pillar portion 18 Pocket 20 Oil groove 20a Groove end 20b Groove center portion 20c Wall surface 20d Corner portion 20e Groove bottom corner in radial cross section 20f Groove bottom corner in circumferential cross section 21 End portion Connecting side 21L Pair of straight lines L Lubricating oil S1 First gap S2 Second gap D1 First gap dimension in roller axial direction D2 Second gap dimension in roller axial direction D3 Radial width of oil groove D4 Depth of oil groove Dt Gap Total dimension of the entire roller in the axial direction LR Length dimension of the tapered roller LP Length dimension of the pocket in the axial direction of the roller Ra Radius of curvature of the large-diameter end face of the tapered roller SRy Radius of curvature of the pocket surface

Claims (5)

内周面に外輪軌道面を有する外輪と、外周面に内輪軌道面を有する内輪と、前記外輪軌道面と前記内輪軌道面との間に転動可能に設けられる複数の円すいころと、前記複数の円すいころを周方向に略等間隔に保持する保持器と、を備え、
前記保持器は、大径側円環部と、前記大径側円環部と同軸に配置される小径側円環部と、前記大径側円環部と前記小径側円環部とを軸方向に連結し、周方向に略等間隔に設けられる複数の柱部と、周方向に互いに隣り合う前記柱部間に形成され、前記円すいころを転動可能に保持するポケットと、を有する円すいころ軸受であって、
前記保持器は、前記小径側円環部の軸方向内端面と前記円すいころの小径側端面との間に第1隙間を有すると共に、前記大径側円環部の軸方向内端面と前記円すいころの大径側端面との間に第2隙間を有して、軸方向に沿って所定の範囲で移動可能に設けられ、
前記大径側円環部の軸方向内端面には、毛管力で潤滑油を保持する複数の油溝が設けられ、
前記保持器が前記円すいころの小径側に軸方向に移動したときに、前記複数の油溝が前記円すいころの大径側端面に接触し、前記保持器が前記円すいころの大径側に軸方向に移動したときに、前記複数の油溝が前記円すいころの大径側端面から離れ
前記複数の油溝は、前記保持器の周方向に沿って平行に形成され、
前記複数の油溝は、前記円すいころの大径側端面と接触可能な溝端部をそれぞれ有し、
前記円すいころの大径側端面は、前記大径側端面の中心部に形成される円形状の凹部と、前記凹部の周囲に設けられ、前記大径側円環部の軸方向内端面と接触可能な円環状の接触面と、を有し、
前記複数の油溝のそれぞれの前記溝端部は、前記円環状の接触面と前記大径側円環部の軸方向内端面とが前記円すいころの長手方向において重なり合う領域に収まるように設けられる
ことを特徴とする円すいころ軸受。
an outer ring having an outer ring raceway surface on its inner peripheral surface; an inner ring having an inner ring raceway surface on its outer peripheral surface; a plurality of tapered rollers rotatably provided between the outer ring raceway surface and the inner ring raceway surface; a cage that holds the tapered rollers at approximately equal intervals in the circumferential direction;
The retainer includes a large-diameter annular portion, a small-diameter annular portion disposed coaxially with the large-diameter annular portion, and an axis that connects the large-diameter annular portion and the small-diameter annular portion. a plurality of pillars connected in the direction and provided at approximately equal intervals in the circumferential direction; and a pocket formed between the pillars adjacent to each other in the circumferential direction and holding the tapered roller in a rollable manner. A roller bearing,
The retainer has a first gap between the axial inner end surface of the small diameter annular portion and the small diameter end surface of the tapered roller, and a first gap between the axial inner end surface of the large diameter annular portion and the tapered roller. having a second gap between the roller and the large-diameter end face of the roller, and being movable within a predetermined range along the axial direction;
A plurality of oil grooves for retaining lubricating oil by capillary force are provided on the axially inner end surface of the large-diameter side annular portion,
When the cage moves axially toward the small diameter side of the tapered rollers, the plurality of oil grooves come into contact with the large diameter end surface of the tapered rollers, and the cage moves axially toward the large diameter side of the tapered rollers. when the plurality of oil grooves move away from the large diameter side end surface of the tapered roller ,
The plurality of oil grooves are formed in parallel along the circumferential direction of the retainer,
Each of the plurality of oil grooves has a groove end that can come into contact with the large diameter side end surface of the tapered roller,
The large-diameter end surface of the tapered roller has a circular recess formed at the center of the large-diameter end surface, and is provided around the recess and comes into contact with an axially inner end surface of the large-diameter annular portion. a possible toroidal contact surface;
The groove ends of each of the plurality of oil grooves are provided so as to fit in a region where the annular contact surface and the axial inner end surface of the large-diameter annular portion overlap in the longitudinal direction of the tapered roller.
A tapered roller bearing characterized by:
前記大径側円環部の軸方向内端面が凹球面状に形成され、前記円すいころの大径側端面が凸球面状に形成され、
前記大径側円環部の軸方向内端面の凹球面状の曲率半径SRyは、前記円すいころの大径側端面の凸球面状の曲率半径Raの±10%以内に設定されることを特徴とする請求項1に記載の円すいころ軸受。
The axially inner end surface of the large-diameter side annular portion is formed in a concave spherical shape, and the large-diameter side end surface of the tapered roller is formed in a convex spherical shape,
The radius of curvature SRy of the concave spherical surface of the axially inner end surface of the large-diameter side annular portion is set within ±10% of the radius of curvature Ra of the convex spherical surface of the large-diameter side end surface of the tapered roller. The tapered roller bearing according to claim 1.
前記複数の油溝は、環状扇形状にそれぞれ形成され、
前記複数の油溝の長手方向両端辺である一対の端部連結辺は、一対の直線に揃うようにそれぞれ設けられ、
前記一対の直線は、前記大径側円環部の径方向内側に向かうに従って互いの周方向間隔が大きくなるような傾斜した線であることを特徴とする請求項に記載の円すいころ軸受。
Each of the plurality of oil grooves is formed in an annular fan shape,
A pair of end connecting sides, which are both end sides in the longitudinal direction of the plurality of oil grooves, are each provided so as to be aligned with a pair of straight lines,
2. The tapered roller bearing according to claim 1 , wherein the pair of straight lines are inclined lines such that a circumferential interval between them increases as the line goes radially inward of the large-diameter side annular portion.
隣接する前記複数の油溝は、少なくとも1つの接続溝により互いに接続されることを特徴とする請求項に記載の円すいころ軸受。 The tapered roller bearing according to claim 1 , wherein the plurality of adjacent oil grooves are connected to each other by at least one connection groove. 潤滑油が軸受内部に断続的に供給される、或いは、軸受内部の潤滑油が微量である潤滑環境下で使用されることを特徴とする請求項1~のいずれか1項に記載の円すいころ軸受。 The cone according to any one of claims 1 to 4 , characterized in that the cone is used under a lubrication environment in which lubricating oil is intermittently supplied into the bearing, or in which a small amount of lubricating oil is present inside the bearing. roller bearings.
JP2019153914A 2019-08-26 2019-08-26 tapered roller bearing Active JP7351141B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019153914A JP7351141B2 (en) 2019-08-26 2019-08-26 tapered roller bearing
PCT/JP2020/031268 WO2021039532A1 (en) 2019-08-26 2020-08-19 Tapered roller bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019153914A JP7351141B2 (en) 2019-08-26 2019-08-26 tapered roller bearing

Publications (2)

Publication Number Publication Date
JP2021032353A JP2021032353A (en) 2021-03-01
JP7351141B2 true JP7351141B2 (en) 2023-09-27

Family

ID=74677191

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019153914A Active JP7351141B2 (en) 2019-08-26 2019-08-26 tapered roller bearing

Country Status (2)

Country Link
JP (1) JP7351141B2 (en)
WO (1) WO2021039532A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023074356A (en) * 2021-11-17 2023-05-29 日本精工株式会社 tapered roller bearing
WO2024079790A1 (en) * 2022-10-11 2024-04-18 株式会社ジェイテクト Tapered roller bearing

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015183804A (en) 2014-03-25 2015-10-22 株式会社ジェイテクト Retainer unit, and conical roller bearing including retainer unit
JP2017166641A (en) 2016-03-17 2017-09-21 日本精工株式会社 Cage for conical roller bearing and conical roller bearing
JP2018159411A (en) 2017-03-22 2018-10-11 Ntn株式会社 Conical roller bearing

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3723247B2 (en) * 1995-01-27 2005-12-07 光洋精工株式会社 Roller bearing cage

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015183804A (en) 2014-03-25 2015-10-22 株式会社ジェイテクト Retainer unit, and conical roller bearing including retainer unit
JP2017166641A (en) 2016-03-17 2017-09-21 日本精工株式会社 Cage for conical roller bearing and conical roller bearing
JP2018159411A (en) 2017-03-22 2018-10-11 Ntn株式会社 Conical roller bearing

Also Published As

Publication number Publication date
WO2021039532A1 (en) 2021-03-04
JP2021032353A (en) 2021-03-01

Similar Documents

Publication Publication Date Title
EP3763958B1 (en) Tapered roller bearing
US10190637B2 (en) Sealed bearing assembly
WO2010150707A1 (en) Synthetic resin holder for deep groove ball bearings, deep groove ball bearing, and gear supporting device
JP7351141B2 (en) tapered roller bearing
US11300155B2 (en) Cage for a tapered roller bearing and tapered roller bearing
EP3425222B1 (en) Bearing with seal
JP6672059B2 (en) Crown type cage and ball bearing
WO2018186346A1 (en) Tapered roller bearing
JP7272175B2 (en) tapered roller bearing
CN111757993B (en) Retainer for tapered roller bearing and tapered roller bearing
WO2019172447A1 (en) Tapered roller bearing
JP7272176B2 (en) tapered roller bearing
JP2002515105A (en) Self pump operated roller bearing
JP7466501B2 (en) Tapered roller bearings
JP2021060071A (en) Tapered roller bearing
JP7088286B2 (en) Ball bearings
JP2021032360A (en) Radial roller bearing
WO2023090208A1 (en) Tapered roller bearing
JP2015206448A (en) Bearing lubrication structure of transmission
JP7294316B2 (en) tapered roller bearing
JP2013142407A (en) Ball bearing cage and ball bearing
JPH10274243A (en) Rolling bearing device equipped with oil supplying means
WO2020246589A1 (en) Tapered roller bearing
JP2021025550A (en) Conical roller bearing
JP2021085500A (en) Radial-type roller bearing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230404

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230815

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230828

R150 Certificate of patent or registration of utility model

Ref document number: 7351141

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150