JP7351028B2 - Slmプロセスを制御することによって気孔欠陥を予備成形する方法 - Google Patents
Slmプロセスを制御することによって気孔欠陥を予備成形する方法 Download PDFInfo
- Publication number
- JP7351028B2 JP7351028B2 JP2022577438A JP2022577438A JP7351028B2 JP 7351028 B2 JP7351028 B2 JP 7351028B2 JP 2022577438 A JP2022577438 A JP 2022577438A JP 2022577438 A JP2022577438 A JP 2022577438A JP 7351028 B2 JP7351028 B2 JP 7351028B2
- Authority
- JP
- Japan
- Prior art keywords
- scanning
- stripe
- area
- path
- laser
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000007547 defect Effects 0.000 title claims description 103
- 239000011148 porous material Substances 0.000 title claims description 97
- 238000000034 method Methods 0.000 title claims description 88
- 230000008569 process Effects 0.000 title claims description 43
- 239000002184 metal Substances 0.000 claims description 21
- 229910000856 hastalloy Inorganic materials 0.000 claims description 6
- 239000012778 molding material Substances 0.000 claims description 6
- 229910045601 alloy Inorganic materials 0.000 claims description 4
- 239000000956 alloy Substances 0.000 claims description 4
- 230000000694 effects Effects 0.000 description 14
- 238000010586 diagram Methods 0.000 description 13
- 239000011295 pitch Substances 0.000 description 13
- 238000007689 inspection Methods 0.000 description 10
- 238000005516 engineering process Methods 0.000 description 9
- 238000012360 testing method Methods 0.000 description 8
- 230000002950 deficient Effects 0.000 description 7
- 238000000465 moulding Methods 0.000 description 7
- 238000009826 distribution Methods 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 238000011156 evaluation Methods 0.000 description 4
- 230000004927 fusion Effects 0.000 description 4
- 238000010835 comparative analysis Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000000155 melt Substances 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000009659 non-destructive testing Methods 0.000 description 3
- 238000010146 3D printing Methods 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 230000001066 destructive effect Effects 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F10/00—Additive manufacturing of workpieces or articles from metallic powder
- B22F10/20—Direct sintering or melting
- B22F10/28—Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F10/00—Additive manufacturing of workpieces or articles from metallic powder
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F10/00—Additive manufacturing of workpieces or articles from metallic powder
- B22F10/30—Process control
- B22F10/36—Process control of energy beam parameters
- B22F10/366—Scanning parameters, e.g. hatch distance or scanning strategy
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F10/00—Additive manufacturing of workpieces or articles from metallic powder
- B22F10/30—Process control
- B22F10/38—Process control to achieve specific product aspects, e.g. surface smoothness, density, porosity or hollow structures
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F12/00—Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
- B22F12/40—Radiation means
- B22F12/41—Radiation means characterised by the type, e.g. laser or electron beam
- B22F12/43—Radiation means characterised by the type, e.g. laser or electron beam pulsed; frequency modulated
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/10—Sintering only
- B22F3/11—Making porous workpieces or articles
- B22F3/1103—Making porous workpieces or articles with particular physical characteristics
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y10/00—Processes of additive manufacturing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y50/00—Data acquisition or data processing for additive manufacturing
- B33Y50/02—Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y80/00—Products made by additive manufacturing
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/25—Process efficiency
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Automation & Control Theory (AREA)
- Plasma & Fusion (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Mechanical Engineering (AREA)
- Laser Beam Processing (AREA)
- Powder Metallurgy (AREA)
Description
a=(N×(πR2)×L/h)/Sという式によって確定され、
ここで、Nはストライプラップ領域の数であり、Rは気孔半径であり、Lはストライプラップ領域の長さであり、hは走査ピッチであり、Sは欠陥層の断面積である。
本発明に係る上記の、および他の特徴、性質と利点は、以下の図面と実施例の説明から更に明らかになる。
a=(N×(πR2)×L/h)/S 式(1)
ここで、Nはストライプラップ領域Z0の数であり、Rは気孔半径であり、Lはストライプラップ領域Z0の長さであり、hは走査ピッチであり、Sは上記欠陥層の断面積である。
(第1実施例)
層厚dは30μmであり、走査ピッチhは70μmであり、ストライプラップ領域Z0の幅δは0.5mmであり、
ストライプ幅w0は5mmであり、レーザ走査方向は90°であり、長さ10mmの水平に延びるストライプラップ領域Z0を形成する。
(第2実施例)
層厚dは30μmであり、走査ピッチhは100μmであり、ストライプラップ量δは0.5mmであり、
ストライプ幅w0は7mmであり、レーザ走査方向は45°であり、長さは14.14mmの対角線に延びるストライプラップ領域Z0を形成する。
(第3実施例)
層厚dは30μmであり、走査ピッチhは90μmであり、ストライプラップ量δは0.5mmであり、
ストライプ幅w0は7mmであり、レーザ走査方向は-45°であり、長さは14.14mmの他の対角線に延びるストライプラップ領域Z0を形成する。
Claims (6)
- SLMプロセスを制御することによって気孔欠陥を予備成形する方法であって、
指定金属溶融層において、第1走査経路に沿ってレーザ走査を実行し、
前記指定金属溶融層において、第2走査経路に沿ってレーザ走査を実行し、
前記第1走査経路と前記第2走査経路とが経路重複領域を有し、前記経路重複領域に所定の幅を有するようにし、前記経路重複領域に重複するレーザエネルギ入力が所定のエネルギ値になるように制御され、これにより前記経路重複領域の長手方向に沿った複数の位置にキーホールを形成し、前記指定金属溶融層を欠陥層とし、かつ前記経路重複領域のキーホールを気孔欠陥とし、
前記第1走査経路および前記第2走査経路に沿ったレーザ走査は、ストライプ式レーザ走査方式を採用し、かつレーザパルス露光モードを採用し、
前記第1走査経路は第1ストライプ領域に位置し、前記第2走査経路は第2ストライプ領域に位置し、前記第1ストライプ領域および前記第2ストライプ領域はストライプラップ領域を形成し、前記ストライプラップ領域は前記経路重複領域を構成し、前記ストライプラップ領域のストライプラップ量は前記経路重複領域の幅であり、
SLMプロセスパラメータを以下のように制御し、
成形材料はHastelloy X合金を用いており、
レーザ走査パワーPは180-210Wであり、
走査線ドット間距離Dは80-100μmであり、
走査線露光時間tは70-90μsであることを特徴とする方法。 - 前記第1走査経路は、平行かつ等間隔に設置された複数の第1走査線を含み、前記第2走査経路は、平行かつ等間隔に設置された複数の第2走査線を含み、前記第1走査経路と前記第2走査経路の走査ピッチは同じであることを特徴とする請求項1に記載の方法。
- 前記第1走査経路および前記第2走査経路に沿ったレーザ走査は、ストライプ式レーザ往復走査方式を採用することを特徴とする請求項1に記載の方法。
- SLMプロセスパラメータをさらに以下のように制御し、
層厚dは30μmであり、
走査間隔hは70-100μmであり、
ストライプラップ量δは0.5-0.9mmであることを特徴とする請求項1に記載の方法。 - レーザ走査方向と前記第1ストライプ領域および/または前記第2ストライプ領域のストライプ幅とを変更することによって、前記欠陥層における前記ストライプラップ領域の位置、数および長さを制御し、これにより前記欠陥層における気孔欠陥の割合を制御することを特徴とする請求項1~3のいずれか一項に記載の方法。
- 前記欠陥層における気孔欠陥の割合aは、
a=(N×(πR2)×L/h)/Sという式によって確定され、
ここで、Nはストライプラップ領域の数であり、Rは気孔半径であり、Lはストライプラップ領域の長さであり、hは走査ピッチであり、Sは欠陥層の断面積であることを特徴とする請求項2に記載の方法。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010319637.2 | 2020-04-22 | ||
CN202010319637.2A CN111203536B (zh) | 2020-04-22 | 2020-04-22 | 通过控制slm工艺预制气孔缺陷的方法 |
PCT/CN2020/137881 WO2021212887A1 (zh) | 2020-04-22 | 2020-12-21 | 通过控制slm工艺预制气孔缺陷的方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2023516509A JP2023516509A (ja) | 2023-04-19 |
JP7351028B2 true JP7351028B2 (ja) | 2023-09-26 |
Family
ID=70781952
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2022577438A Active JP7351028B2 (ja) | 2020-04-22 | 2020-12-21 | Slmプロセスを制御することによって気孔欠陥を予備成形する方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20230141551A1 (ja) |
EP (1) | EP4140620A4 (ja) |
JP (1) | JP7351028B2 (ja) |
CN (1) | CN111203536B (ja) |
WO (1) | WO2021212887A1 (ja) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111203536B (zh) * | 2020-04-22 | 2020-07-28 | 中国航发上海商用航空发动机制造有限责任公司 | 通过控制slm工艺预制气孔缺陷的方法 |
DE102020210681A1 (de) | 2020-08-21 | 2022-03-10 | Trumpf Laser- Und Systemtechnik Gmbh | Planungseinrichtung, Fertigungseinrichtung, Verfahren und Computerprogrammprodukt zum additiven Fertigen von Bauteilen aus einem Pulvermaterial |
CN113084199B (zh) * | 2021-06-10 | 2021-11-02 | 西安赛隆金属材料有限责任公司 | 细化晶粒的金属粉末床增材制造方法 |
CN114734058B (zh) * | 2022-03-31 | 2024-02-09 | 西安航天发动机有限公司 | 一种多激光拼接扫描路径规划方法及多激光拼接扫描方法 |
US20240003263A1 (en) * | 2022-06-30 | 2024-01-04 | General Electric Company | Calibration component for a turbomachine having representative quality indicators |
GB2621566A (en) * | 2022-08-11 | 2024-02-21 | Alloyed Ltd | A method of manufacturing a 3D object, a 3D object and a computer-readable medium |
CN116144962B (zh) * | 2023-04-17 | 2023-06-27 | 北京科技大学 | 一种高强韧哈氏合金及其制备工艺 |
CN116883400B (zh) * | 2023-09-07 | 2023-11-21 | 山东大学 | 一种激光选区熔化过程中的铺粉孔隙率预测方法及系统 |
CN118470117B (zh) * | 2024-07-10 | 2024-09-17 | 泉州装备制造研究所 | 航空发动机短舱声衬制孔的定位误差测量方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20170291367A1 (en) | 2016-04-12 | 2017-10-12 | United Technologies Corporation | System and process for evaluating and validating additive manufacturing operations |
US20180281112A1 (en) | 2017-03-30 | 2018-10-04 | General Electric Company | Overlapping border and internal sections of object formed by different am melting beam sources in overlapping field region |
CN110527937A (zh) | 2019-10-12 | 2019-12-03 | 中南大学 | 一种采用电脉冲处理3d打印件的方法 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9999924B2 (en) * | 2014-08-22 | 2018-06-19 | Sigma Labs, Inc. | Method and system for monitoring additive manufacturing processes |
WO2018010132A1 (en) * | 2016-07-14 | 2018-01-18 | GM Global Technology Operations LLC | Multi-beam laser spot welding of coated steels |
US10646963B2 (en) * | 2016-09-29 | 2020-05-12 | Nlight, Inc. | Use of variable beam parameters to control a melt pool |
US20180369961A1 (en) * | 2017-06-23 | 2018-12-27 | Applied Materials, Inc. | Treatment of solidified layer |
CN108436081A (zh) * | 2018-03-06 | 2018-08-24 | 无锡市产品质量监督检验院 | 一种预置缺陷的金属试样3d打印成形方法 |
CN108817386B (zh) * | 2018-06-29 | 2020-02-14 | 西北工业大学 | 用于多光束激光选区熔化成形的层间梳状拼接方法 |
CN111203536B (zh) * | 2020-04-22 | 2020-07-28 | 中国航发上海商用航空发动机制造有限责任公司 | 通过控制slm工艺预制气孔缺陷的方法 |
-
2020
- 2020-04-22 CN CN202010319637.2A patent/CN111203536B/zh active Active
- 2020-12-21 JP JP2022577438A patent/JP7351028B2/ja active Active
- 2020-12-21 EP EP20932468.0A patent/EP4140620A4/en active Pending
- 2020-12-21 WO PCT/CN2020/137881 patent/WO2021212887A1/zh active Application Filing
- 2020-12-21 US US17/920,545 patent/US20230141551A1/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20170291367A1 (en) | 2016-04-12 | 2017-10-12 | United Technologies Corporation | System and process for evaluating and validating additive manufacturing operations |
US20180281112A1 (en) | 2017-03-30 | 2018-10-04 | General Electric Company | Overlapping border and internal sections of object formed by different am melting beam sources in overlapping field region |
CN110527937A (zh) | 2019-10-12 | 2019-12-03 | 中南大学 | 一种采用电脉冲处理3d打印件的方法 |
Also Published As
Publication number | Publication date |
---|---|
CN111203536A (zh) | 2020-05-29 |
CN111203536B (zh) | 2020-07-28 |
EP4140620A1 (en) | 2023-03-01 |
JP2023516509A (ja) | 2023-04-19 |
WO2021212887A1 (zh) | 2021-10-28 |
US20230141551A1 (en) | 2023-05-11 |
EP4140620A4 (en) | 2024-05-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7351028B2 (ja) | Slmプロセスを制御することによって気孔欠陥を予備成形する方法 | |
Gockel et al. | The influence of additive manufacturing processing parameters on surface roughness and fatigue life | |
JP7454063B2 (ja) | 予備成形クラック欠陥、内蔵式クラック欠陥の製造方法および予備成形体 | |
CN106825574B (zh) | 一种金属梯度材料激光冲击锻打复合增材制造方法及装置 | |
JP7450758B2 (ja) | クラック欠陥の非破壊検査方法、検査標準品及びその製造方法 | |
Krauss et al. | Investigations on manufacturability and process reliability of selective laser melting | |
JP7450757B2 (ja) | 未融合欠陥の非破壊検査方法、検査標準品及びその製造方法 | |
Ermurat et al. | Process parameters investigation of a laser-generated single clad for minimum size using design of experiments | |
Du Plessis | Porosity in laser powder bed fusion | |
CN103240414A (zh) | 激光熔化技术制造金属零件参数的选择方法及基板试样 | |
US20200111269A1 (en) | Test specimen for validating operating parameters of a method for the additive manufacturing of a part by laser melting on powder beds | |
Palousek et al. | SLM process parameters development of Cu-alloy Cu7. 2Ni1. 8Si1Cr | |
CN113414407A (zh) | 一种镍基合金增材制造方法和镍基合金零件 | |
Yasa et al. | Investigation of sectoral scanning in selective laser melting | |
JP7418620B2 (ja) | Lmdプロセスを制御することによって融合不良欠陥を予備成形する方法 | |
Wang et al. | Influence mechanism of laser delay on internal defect and surface quality in stitching region of 316L stainless steel fabricated by dual-laser selective laser melting | |
Dursun et al. | Understanding the parameter effects on densification and single track formation of laser powder bed fusion Inconel 939 | |
RU2807099C1 (ru) | Способ предварительного изготовления поровых дефектов путем управления процессом slm | |
AN et al. | Quantitative study of geometric characteristics and formation mechanism of porosity defects in selective laser melted Ti6Al4V alloy by micro-computed tomography | |
Nuñez et al. | Analysis of surface roughness in metal directed energy deposition | |
RU2808971C1 (ru) | Способ неразрушающего испытания на дефекты типа lof, и стандартная деталь для испытания и способ ее производства | |
Chen et al. | Effect of Processing Parameters on the Roundness and Dimensional Accuracy of Overhanging Channel Structure During Laser Powder Bed Fusion of Ti6Al4V | |
Reddy et al. | Mechanical properties of selective laser melting of SS316L with different scanning strategies | |
DHOONOOAH et al. | Influence of deposition strategy on porosity in powder-feed directed energy deposition (DED) | |
Hemachandra et al. | Strategy for developing aluminum alloy-based solid structure with homogeneous properties in the overlapping direction using wire arc additive manufacturing |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20220830 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20230823 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20230905 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20230913 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7351028 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |