JP7349051B2 - Method for improving sustainability of reduced state of reducing agent, reducing agent with improved sustainability, medium containing this reducing agent, and method for culturing anaerobic microorganisms using this medium - Google Patents

Method for improving sustainability of reduced state of reducing agent, reducing agent with improved sustainability, medium containing this reducing agent, and method for culturing anaerobic microorganisms using this medium Download PDF

Info

Publication number
JP7349051B2
JP7349051B2 JP2019135445A JP2019135445A JP7349051B2 JP 7349051 B2 JP7349051 B2 JP 7349051B2 JP 2019135445 A JP2019135445 A JP 2019135445A JP 2019135445 A JP2019135445 A JP 2019135445A JP 7349051 B2 JP7349051 B2 JP 7349051B2
Authority
JP
Japan
Prior art keywords
medium
reducing agent
culture
reduced glutathione
minutes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019135445A
Other languages
Japanese (ja)
Other versions
JP2021016369A (en
Inventor
雅子 伊藤
陽 高畑
佳仁 内野
敦司 山副
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taisei Corp
National Institute of Technology and Evaluation (NITE)
Original Assignee
Taisei Corp
National Institute of Technology and Evaluation (NITE)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taisei Corp, National Institute of Technology and Evaluation (NITE) filed Critical Taisei Corp
Priority to JP2019135445A priority Critical patent/JP7349051B2/en
Publication of JP2021016369A publication Critical patent/JP2021016369A/en
Application granted granted Critical
Publication of JP7349051B2 publication Critical patent/JP7349051B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Description

NPMD NPMD NITE P-1469NITE P-1469 NPMD NPMD NITE P-1470NITE P-1470 NPMD NPMD NITE P-1471NITE P-1471

本発明は、還元剤の還元状態の持続性向上方法、具体的には、還元型グルタチオンを嫌気状態で加熱処理する還元状態の持続性向上方法と、還元状態の持続性が向上した還元剤と、この還元剤を含む培地、この培地を用いた嫌気性微生物の培養方法に関する。 The present invention provides a method for improving the sustainability of the reduced state of a reducing agent, specifically, a method for improving the sustainability of the reduced state in which reduced glutathione is heat-treated in an anaerobic state, and a reducing agent with improved sustainability of the reduced state. , a medium containing this reducing agent, and a method for culturing anaerobic microorganisms using this medium.

微生物を用いる浄化技術は、排水処理における活性汚泥法や嫌気処理法などに広く利用されている。また、近年では、有害化学物質で汚染された土壌や地下水を微生物により浄化する技術(バイオレメディエーション)が、環境負荷および浄化コストの小さい浄化方法として着目されている。 Purification technology using microorganisms is widely used in activated sludge treatment, anaerobic treatment, etc. in wastewater treatment. Furthermore, in recent years, technology for purifying soil and groundwater contaminated with hazardous chemicals using microorganisms (bioremediation) has been attracting attention as a purification method with low environmental impact and low purification costs.

テトラクロロエチレン(PCE)やトリクロロエチレン(TCE)などの塩素化エチレン類は、安価で油に対する洗浄力の強い溶剤として、金属産業、半導体産業、ドライクリーニング店など幅広い分野で使用されている。その一方、塩素化エチレン類による土壌や地下水汚染について多くの報告があり、社会問題となっている。
塩素化エチレン類のバイオレメディエーションには、「テトラクロロエチレン(PCE)→トリクロロエチレン(TCE)→シス-1,2-ジクロロエチレン(cis-DCE)→塩化ビニルモノマー(VCM)→エチレン」という還元的脱塩素化反応により塩素化エチレン類を無害化する嫌気性脱塩素化菌が用いられている。

Figure 0007349051000001
Chlorinated ethylenes such as tetrachlorethylene (PCE) and trichlorethylene (TCE) are used in a wide range of fields, including the metal industry, semiconductor industry, and dry cleaning shops, as inexpensive solvents with strong cleaning power against oil. On the other hand, there have been many reports of soil and groundwater contamination by chlorinated ethylenes, which has become a social problem.
Bioremediation of chlorinated ethylenes involves the reductive dechlorination reaction of "tetrachlorethylene (PCE) → trichlorethylene (TCE) → cis-1,2-dichloroethylene (cis-DCE) → vinyl chloride monomer (VCM) → ethylene." Anaerobic dechlorinating bacteria are used to render chlorinated ethylene harmless.
Figure 0007349051000001

嫌気性脱塩素化菌の一種であるデハロコッコイデス(Dehalococcoides)属細菌は、cis-DCE以降の脱塩素化を進行できることが報告されている唯一の細菌である。すなわち、塩素化エチレン類のバイオレメディエーションにおいて、処理対象土壌中にデハロコッコイデス属細菌が存在しないとcis-DCEまでしか脱塩素化できない。また、デハロコッコイデス属細菌が存在していたとしても、環境中でのデハロコッコイデス属細菌の菌体量は非常に少なく、その増殖速度も遅いため、浄化期間が長期化するという問題がある。 Bacteria of the genus Dehalococcoides, which is a type of anaerobic dechlorinating bacteria, are the only bacteria reported to be able to proceed with dechlorination after cis-DCE. That is, in bioremediation of chlorinated ethylenes, if Dehalococcoides bacteria are not present in the soil to be treated, dechlorination can only be achieved up to cis-DCE. Furthermore, even if Dehalococcoides bacteria exist, the amount of Dehalococcoides bacteria in the environment is very small and their growth rate is slow, resulting in a long purification period. There is.

このような問題を解決するため、デハロコッコイデス属細菌を人為的に培養して増加させ、浄化対象とする環境に導入して浄化を促進させる方法(バイオオーグメンテーション)が期待されている。しかし、デハロコッコイデス属細菌は、絶対嫌気性であり、電子供与体として水素のみを利用するなど活動条件が極めて厳しく、その単離や培養が難しいという問題がある。本発明者らは、特許文献1において、国内で初めて、デハロコッコイデス・エスピーUCH007株(NITE P-1471、以下、UCH007株ともいう)を単離し、このUCH007株を用いる塩素化エチレン類の浄化方法を提案している。 In order to solve these problems, there is hope for a method (bioaugmentation) in which Dehalococcoides bacteria are artificially cultivated and increased, and then introduced into the environment to be purified to promote purification. . However, bacteria of the genus Dehalococcoides are obligately anaerobic and have extremely severe operating conditions, such as using only hydrogen as an electron donor, making it difficult to isolate and culture them. In Patent Document 1, the present inventors isolated Dehalococcoides sp. UCH007 strain (NITE P-1471, hereinafter also referred to as UCH007 strain) for the first time in Japan, and developed a method for producing chlorinated ethylene using this UCH007 strain. A purification method is proposed.

ここで、嫌気性菌を安定的に培養するには、気密性の高い容器に培地を入れ、容器内の気相を窒素ガス等の酸素を含まないガスをパージして置換することが行われている。そして、デハロコッコイデス属細菌のような、より高い嫌気状態を必要とする絶対嫌気性細菌の場合は、培地に還元剤を添加して酸化還元電位(Oxidation-Reduction Potential:ORP)をさらに低くする必要がある。還元剤には様々な種類があり、到達するORP、到達速度、効果の持続性等に違いがあるが、添加する還元剤の種類と量は、還元剤の特性だけでなく、還元剤に対する微生物の感受性を考慮し決定されなければならない。 In order to stably cultivate anaerobic bacteria, the culture medium is placed in a highly airtight container, and the gas phase inside the container is purged and replaced with a gas that does not contain oxygen, such as nitrogen gas. ing. In the case of obligate anaerobic bacteria that require higher anaerobic conditions, such as Dehalococcoides bacteria, a reducing agent is added to the culture medium to lower the oxidation-reduction potential (ORP). There is a need to. There are various types of reducing agents, and there are differences in the ORP reached, the rate of arrival, and the durability of the effect.The type and amount of reducing agent added depends not only on the characteristics of the reducing agent, but also on the The decision must be made taking into account the susceptibility of

デハロコッコイデス属細菌を培養するための還元剤としては、これまで、硫化鉄(0.5mM(設定濃度))、硫化ナトリウム(0.2-0.5mM)+L-システイン(0.2mM)+DL-ジチオトレイトール(0.5-1mM)の組み合わせ、クエン酸塩またはニトリロ三酢酸塩と錯体化したチタン(III)(0.2-1.5mM)等が知られている(非特許文献1、特許文献1の段落0050)。
これらの還元剤は、デハロコッコイデス属細菌を気密性の高い培養容器で培養する場合に限り安定的な培養できるが、少しでも空気が入ると、菌の増殖が阻害されてしまうという課題があった。そして、培養スケールを大きくすると気密性を高く保つことが難しく、少量の空気が混入する可能性が高くなるため、デハロコッコイデス属細菌を大量に培養することは困難であった。
As reducing agents for culturing Dehalococcoides bacteria, iron sulfide (0.5mM (set concentration)), sodium sulfide (0.2-0.5mM) + L-cysteine (0.2mM) have been used so far. Combinations of +DL-dithiothreitol (0.5-1mM), titanium(III) complexed with citrate or nitrilotriacetate (0.2-1.5mM), etc. are known (non-patent literature). 1, paragraph 0050 of Patent Document 1).
These reducing agents allow stable cultivation of Dehalococcoides bacteria only when cultured in a highly airtight culture container, but the problem is that if even a small amount of air gets in, the growth of the bacteria will be inhibited. there were. When the culture scale is increased, it is difficult to maintain high airtightness and there is a high possibility that a small amount of air may be mixed in, so it has been difficult to culture Dehalococcoides bacteria in large quantities.

特開2014-108061号公報Japanese Patent Application Publication No. 2014-108061

Loffler, F.E., Yan, J., Ritalahti, K.M., Adrian, L., Edwards, E.A., Konstantinidis, K.T., Muller, J.A., Fullerton, H., Zinder, S.H. & Spormann, A.M. " Dehalococcoides mccartyi gen. nov., sp. nov., obligately organohalide-respiring anaerobic bacteria relevant to halogen cycling and bioremediation, belong to a novel bacterial class, Dehalococcoidia classis nov., order Dehalococcoidales ord. nov. and family Dehalococcoidaceae fam. nov., within the phylum Chloroflexi." Int. J. Syst. Evol. Microbiol. (2013) 63: p625-635.Loffler, F.E., Yan, J., Ritalahti, K.M., Adrian, L., Edwards, E.A., Konstantinidis, K.T., Muller, J.A., Fullerton, H., Zinder, S.H. & Spormann, A.M. " Dehalococcoides mccartyi gen. nov., sp. nov., obligately organohalide-respiring anaerobic bacteria relevant to halogen cycling and bioremediation, belong to a novel bacterial class, Dehalococcoidia classis nov., order Dehalococcoidales ord. nov. and family Dehalococcoidaceae fam. nov., within the phylum Chloroflexi." Int. J. Syst. Evol. Microbiol. (2013) 63: p625-635.

還元剤の持続性向上方法、還元状態の持続性が向上した還元剤と、この還元剤を含む培地と培地の製造方法、及び、この培地を用いた嫌気性微生物の培養方法を提供することを課題とする。 It is an object of the present invention to provide a method for improving the sustainability of a reducing agent, a reducing agent with improved sustainability of a reduced state, a medium containing this reducing agent, a method for producing the medium, and a method for culturing anaerobic microorganisms using this medium. Take it as a challenge.

本発明の課題を解決するための手段は以下の通りである。
1.還元型グルタチオンを、嫌気条件下で加熱処理することを特徴とする還元状態の持続性向上方法。
2.嫌気条件下で加熱処理した還元型グルタチオンからなる還元剤。
3.2.に記載の還元剤を含むことを特徴とする培地。
4.還元型グルタチオンを含む培地を密封容器内で嫌気性ガス置換し、加熱処理することを特徴とする培地の製造方法。
5.前記還元型グルタチオンの濃度が、1mM以上10mM以下であることを特徴とする4.に記載の培地の製造方法。
6.3.に記載の培地を用いることを特徴とする嫌気性微生物の培養方法。
7.前記嫌気性微生物が、デハロコッコイデス(Dehalococcoides)属細菌であることを特徴とする6.に記載の培養方法。
8.前記還元型グルタチオンの濃度が、1mM以上10mM以下であることを特徴とする6.または7.に記載の培養方法。
9.前記培地の容量が、10L以上であることを特徴とする6.~8.のいずれかに記載の培養方法。
10.前記デハロコッコイデス属細菌が、受託番号NITE P-141として寄託されたUCH007株またはその変異株であることを特徴とする7.~9.のいずれかに記載の培養方法。
Means for solving the problems of the present invention are as follows.
1. A method for improving the sustainability of a reduced state, which comprises heat-treating reduced glutathione under anaerobic conditions.
2. A reducing agent consisting of reduced glutathione heated under anaerobic conditions.
3.2. A medium comprising the reducing agent described in .
4. 1. A method for producing a culture medium, which comprises replacing a culture medium containing reduced glutathione with anaerobic gas in a sealed container and subjecting it to heat treatment.
5. 4. The concentration of the reduced glutathione is 1 mM or more and 10 mM or less. A method for producing the medium described in .
6.3. A method for culturing anaerobic microorganisms, characterized by using the medium described in .
7. 6. The anaerobic microorganism is a bacterium belonging to the genus Dehalococcoides. The culture method described in.
8. 6. The concentration of the reduced glutathione is 1 mM or more and 10 mM or less. or 7. The culture method described in.
9. 6. The medium has a capacity of 10 L or more. ~8. The culture method according to any one of.
10. 7. The Dehalococcoides bacterium is the UCH007 strain deposited under accession number NITE P- 1471 or a mutant strain thereof.7. ~9. The culture method according to any one of.

本発明は、還元型グルタチオンを溶解させた蒸留水や培地が嫌気状態で加熱処理することで、還元状態の持続性が格段に向上するという新規な知見に基づいている。
還元型グルタチオンを、嫌気状態で加熱処理するという容易な方法により、還元状態の持続性を向上させることができる。還元状態の持続性が向上した本発明の還元剤は、多少の空気(酸素)が混入しても還元状態を維持することができ、この還元剤を含む本発明の培地は、嫌気条件の維持が容易である。そのため、この培地を用いた本発明の培養方法は、嫌気性微生物をより安定して培養することができる。本発明の培養方法は、多少の空気が混入しても還元状態を維持することができるため、大容量での培養に適しており、10L以上の大容量での培養に適している。
The present invention is based on the novel finding that the sustainability of the reduced state is significantly improved by heating distilled water or culture medium in which reduced glutathione is dissolved in an anaerobic state.
The sustainability of the reduced state can be improved by a simple method of heat-treating reduced glutathione in an anaerobic state. The reducing agent of the present invention, which has improved sustainability of the reducing state, can maintain the reducing state even if some air (oxygen) is mixed in, and the culture medium of the present invention containing this reducing agent can maintain the reducing state under anaerobic conditions. is easy. Therefore, the culture method of the present invention using this medium can more stably culture anaerobic microorganisms. The culture method of the present invention is suitable for culturing in a large capacity, and is suitable for culturing in a large capacity of 10 L or more, since it is possible to maintain a reduced state even if some air is mixed in.

実験1におけるレサズリンの色を示す図。A diagram showing the color of resazurin in Experiment 1. 実験2におけるレサズリンの色を示す図。A diagram showing the color of resazurin in Experiment 2. 実験4における塩素化エチレン類濃度の経時変化を示すグラフ。Graph showing changes in chlorinated ethylene concentration over time in Experiment 4. 実験5における塩素化エチレン類濃度の経時変化を示すグラフ。Graph showing changes in chlorinated ethylene concentration over time in Experiment 5. 実施例14で、培地量15LでTCEを分解したときの塩素化エチレン類濃度の経時変化を示すグラフ。12 is a graph showing changes over time in the concentration of chlorinated ethylenes when TCE is decomposed in a medium volume of 15 L in Example 14.

本発明は、還元型グルタチオンを溶解させた蒸留水や培地が嫌気状態で加熱処理することで、還元状態の持続性が格段に向上するという新規な知見に基づくものである。
以下に、本発明を順に説明する。
The present invention is based on the novel finding that when distilled water or a culture medium in which reduced glutathione is dissolved is heat-treated in an anaerobic state, the sustainability of the reduced state is significantly improved.
The present invention will be explained in order below.

「還元剤」
本発明の還元剤は、嫌気条件下で加熱処理した還元型グルタチオンを含む。
グルタチオンは、グルタミン酸、システイン、グリシンの3つのアミノ酸からなるトリペプチドであり、「還元型グルタチオン」とも称される。還元型グルタチオンにおいて、還元能を担うのはシステイン構造由来のチオール基であり、酸素が混入すると、チオール基が酸化されてジスルフィドとなり、2つのグルタチオン分子がジスルフィド結合で結合した酸化型グルタチオンとなる。
"Reducing agent"
The reducing agent of the present invention contains reduced glutathione that has been heat-treated under anaerobic conditions.
Glutathione is a tripeptide consisting of three amino acids: glutamic acid, cysteine, and glycine, and is also called "reduced glutathione." In reduced glutathione, the thiol group derived from the cysteine structure is responsible for the reducing ability, and when oxygen is mixed in, the thiol group is oxidized to disulfide, resulting in oxidized glutathione in which two glutathione molecules are bonded by a disulfide bond.

還元型グルタチオンを嫌気状態で加熱する際の温度は、80℃以上が好ましく、100℃以上がより好ましく、110℃以上であることがさらに好ましい。加熱する温度の上限は、140℃以下程度である。また、嫌気状態で加熱処理する温度は、10分以上であることが好ましく、20分以上であることがより好ましい。加熱処理条件の一例として、115℃~125℃で15~25分間が挙げられる。 The temperature when heating reduced glutathione in an anaerobic state is preferably 80°C or higher, more preferably 100°C or higher, and even more preferably 110°C or higher. The upper limit of the heating temperature is about 140°C or lower. Further, the temperature at which the heat treatment is performed in an anaerobic state is preferably 10 minutes or more, more preferably 20 minutes or more. An example of the heat treatment conditions is 115° C. to 125° C. for 15 to 25 minutes.

嫌気条件下で加熱処理した還元型グルタチオンが、嫌気条件下で加熱処理していない還元型グルタチオンと比較して還元状態の持続性が格段に向上する原因は、現時点で不明である。本発明者らは、嫌気条件下での加熱処理により還元型グルタチオン(トリペプチド)が分解されて、スルフィド結合を有するモノペプチド、ジペプチドが生じ、これらの混合物となり、酸素が混入すると、これらスルフィド結合を有するモノペプチド、ジペプチド、トリペプチド間でジスルフィド結合が形成されるためであると推測している。なお、システインを嫌気条件下で加熱処理しても、還元状態の持続性に変化は認められない。 The reason why reduced glutathione heat-treated under anaerobic conditions has significantly improved sustainability of the reduced state compared to reduced glutathione that has not been heat-treated under anaerobic conditions is currently unknown. The present inventors discovered that heat treatment under anaerobic conditions decomposes reduced glutathione (tripeptide) to produce monopeptides and dipeptides with sulfide bonds, which form a mixture, and when oxygen is mixed in, these sulfide bonds break down. It is speculated that this is due to the formation of disulfide bonds between monopeptides, dipeptides, and tripeptides having . Note that even when cysteine is heat-treated under anaerobic conditions, no change is observed in the sustainability of the reduced state.

「培地」
本発明の培地は、嫌気条件下で加熱処理した還元型グルタチオンを含む。本発明の培地は、嫌気条件下で加熱処理した還元型グルタチオンを含めばよく、電子受容体源、微生物の生育に必要な炭素源、窒素源、無機塩、微量元素、酵母エキス等を含むことができ、固体培地及び液体培地のいずれであってもよい。
"Culture medium"
The culture medium of the present invention contains reduced glutathione that has been heat-treated under anaerobic conditions. The culture medium of the present invention may contain reduced glutathione heat-treated under anaerobic conditions, and may also contain an electron acceptor source, a carbon source necessary for the growth of microorganisms, a nitrogen source, inorganic salts, trace elements, yeast extract, etc. It can be either a solid medium or a liquid medium.

炭素源としては、メタノールやエタノール等のアルコール類、ピルビン酸、酢酸、乳酸などの有機酸類が挙げられる。ピルビン酸は、電子供与体としても作用するため、ピルビン酸を用いることが好ましい。
窒素源としては、例えば、ペプトン、カシトン、尿素、硫酸アンモニウム、塩化アンモニウム、リン酸アンモニウム、硝酸アンモニウム、各種アミノ酸が挙げられる。
無機塩としては、リン酸塩、マグネシウム塩、カルシウム塩が挙げられる。
微量元素としては、鉄、コバルト、銅、亜鉛、ホウ素、ニッケル、モリブデンが挙げられる。
上記に例示した炭素源、窒素源、無機塩、微量元素は1種でもよく、2種以上を適宜組み合わせてもよい。
さらに、本発明の微生物の増殖を促進するための栄養源として、シアノコバラミン等のビタミン、酵母エキス、麦芽エキスなどを適量添加してもよい。
Examples of carbon sources include alcohols such as methanol and ethanol, and organic acids such as pyruvic acid, acetic acid, and lactic acid. Since pyruvic acid also acts as an electron donor, it is preferable to use pyruvic acid.
Examples of nitrogen sources include peptone, cacitone, urea, ammonium sulfate, ammonium chloride, ammonium phosphate, ammonium nitrate, and various amino acids.
Inorganic salts include phosphates, magnesium salts, and calcium salts.
Trace elements include iron, cobalt, copper, zinc, boron, nickel, and molybdenum.
The carbon sources, nitrogen sources, inorganic salts, and trace elements exemplified above may be used alone or in combination of two or more.
Furthermore, appropriate amounts of vitamins such as cyanocobalamin, yeast extract, malt extract, etc. may be added as nutritional sources for promoting the growth of the microorganisms of the present invention.

本発明の培地の製造方法は特に制限されず、常法に従って製造することができる。例えば、以下の方法1、2により製造することができる。
方法1:還元型グルタチオンを含む全成分を混合した後、嫌気条件下で加熱処理する方法。
方法2:還元型グルタチオン以外の成分を含む水溶液をガス置換・滅菌処理した後、別にガス置換・加熱処理した還元型グルタチオン水溶液を嫌気的に添加する方法。
培地の加熱処理(滅菌処理)の条件は、培地の種類に応じて適宜選択すればよく、例えば、115℃~125℃で15~25分間が例示できる。
The method for producing the culture medium of the present invention is not particularly limited, and can be produced according to conventional methods. For example, it can be manufactured by methods 1 and 2 below.
Method 1: A method in which all components including reduced glutathione are mixed and then heated under anaerobic conditions.
Method 2: A method in which an aqueous solution containing components other than reduced glutathione is gas replaced and sterilized, and then a reduced glutathione aqueous solution that has been separately gas replaced and heat treated is added anaerobically.
Conditions for heat treatment (sterilization treatment) of the medium may be appropriately selected depending on the type of medium, and may be, for example, 115° C. to 125° C. for 15 to 25 minutes.

方法1、方法2のいずれで製造した培地も、還元状態の持続性が向上しており、酸素が多少混入しても還元状態を維持することができる。ただし、方法1で製造した培地は、加熱処理後に還元状態となっているのに対し、方法2で製造した培地は、添加時等に酸素が混入してしまう場合がある。そのため、短時間かつ簡単に培地調製できる方法1で製造することが好ましい。 The medium produced by either method 1 or method 2 has improved sustainability of the reduced state, and can maintain the reduced state even if some oxygen is mixed in. However, whereas the medium produced by method 1 is in a reduced state after heat treatment, the culture medium produced by method 2 may be contaminated with oxygen during addition. Therefore, it is preferable to use Method 1, which allows medium preparation in a short time and easily.

「培養方法」
本発明の培養方法は、嫌気条件下で加熱処理した還元型グルタチオンを含む培地で嫌気性微生物を培養する。本発明の培養方法で培養する嫌気性微生物は、特に制限されず、硝酸塩、硫酸塩、鉄、VOC等の酸素以外の物質を最終電子受容体として呼吸を行う嫌気性菌(デハロコッコイデス属細菌等)、メタン菌、発酵菌等が挙げられる。また、本発明の培養方法で使用する培地、培養条件は、培養する嫌気性微生物の種類に応じて、適宜調整することができる。
以下に、デハロコッコイデス属細菌の培養を例に説明する。
"Culture method"
In the culture method of the present invention, anaerobic microorganisms are cultured in a medium containing reduced glutathione that has been heat-treated under anaerobic conditions. The anaerobic microorganisms to be cultured in the culture method of the present invention are not particularly limited, and include anaerobic bacteria (Dehalococcoides sp. bacteria, etc.), methane bacteria, fermentation bacteria, etc. Further, the culture medium and culture conditions used in the culture method of the present invention can be adjusted as appropriate depending on the type of anaerobic microorganism to be cultured.
The culture of Dehalococcoides bacteria will be described below as an example.

デハロコッコイデス属細菌は、塩素化エチレン類および塩素化エタン類を脱塩素化する能力を有する。デハロコッコイデス属細菌であっても、その種類により分解可能な塩素化エチレン類は異なる。培養したデハロコッコイデス属細菌をバイオオーグメンテーション等で塩素化エチレン類の浄化に利用する場合は、塩素化エチレン類をエチレンまで完全に脱塩素化できる菌株であることが好ましく、一例として、デハロコッコイデス・エスピー(Dehalococcoides sp.)UCH007株またはその変異株が挙げられる。なお、本明細書において、変異株とは、16S rRNA遺伝子の塩基配列が、98%以上の相同性を有する株を意味する。16S rRNA遺伝子の相同性は、99%以上であることが好ましく、99.5%以上であることがより好ましく、100%であることがさらに好ましい。 Bacteria of the genus Dehalococcoides have the ability to dechlorinate chlorinated ethylenes and chlorinated ethanes. Even with Dehalococcoides bacteria, the chlorinated ethylenes that can be decomposed differ depending on the type of bacteria. When cultured Dehalococcoides bacteria are used to purify chlorinated ethylene by bioaugmentation etc., it is preferable that the strain is a strain that can completely dechlorinate chlorinated ethylene to ethylene. Examples include Dehalococcoides sp. UCH007 strain or a mutant strain thereof. In addition, in this specification, a mutant strain means a strain in which the base sequence of the 16S rRNA gene has 98% or more homology. The homology of the 16S rRNA gene is preferably 99% or more, more preferably 99.5% or more, and even more preferably 100%.

UCH007株は、受託番号NITE P-1471として、独立行政法人製品評価技術基盤機構 特許微生物寄託センター(NPMD)(日本国千葉県木更津市かずさ鎌足2-5-8(郵便番号292-0818))に、2012年11月22日付で寄託されている。
UCH007株の菌学的性質は、以下のとおりである。
(a)形態学的性状
非運動性、胞子非形成、円盤状形態(光学顕微鏡での観察は困難)。
(b)培地の一例
絶対嫌気。電子供与体として水素、電子受容体としてTCEあるいはcis-DCE、炭素源として酢酸塩を使用する。bicarbonate buffer。pH7.2。H/COの混合ガス(80:20)で培地・培養容器内をガス置換する。
Strain UCH007 has been deposited with the accession number NITE P-1471 at the National Institute of Technology and Evaluation, Patent Microorganism Depositary (NPMD) (2-5-8 Kazusa Kamatari, Kisarazu City, Chiba Prefecture, Japan (zip code 292-0818)). It was deposited on November 22, 2012.
The mycological properties of UCH007 strain are as follows.
(a) Morphological characteristics Non-motile, non-spore forming, disc-shaped form (difficult to observe with an optical microscope).
(b) Example of culture medium Absolute anaerobic. Hydrogen is used as an electron donor, TCE or cis-DCE is used as an electron acceptor, and acetate is used as a carbon source. bicarbonate buffer. pH 7.2. The inside of the culture medium/culture container is replaced with a mixed gas of H 2 /CO 2 (80:20).

(c)生理学的特徴
絶対嫌気性。脱ハロゲン呼吸によりエネルギーを獲得する。電子供与体として水素を利用、電子受容体として塩素化エチレン類を利用。
トリクロロエチレン(TCE)、シス-1,2-ジクロロエチレン(cis-DCE)、1,1-ジクロロエチレン(1,1-DCE)、塩化ビニルモノマー(VCM)の脱塩素化能を有する。炭素源として酢酸塩を資化。ビタミンB12要求性。高濃度の硫化物(還元剤として使用)に感受性。
増殖温度:30℃。
至適pH:7.2±0.3。
(c) Physiological characteristics: Absolute anaerobic. Obtain energy through dehalogenated respiration. Hydrogen is used as the electron donor and chlorinated ethylenes are used as the electron acceptor.
It has the ability to dechlorinate trichlorethylene (TCE), cis-1,2-dichloroethylene (cis-DCE), 1,1-dichloroethylene (1,1-DCE), and vinyl chloride monomer (VCM). Assimilates acetate as a carbon source. Vitamin B12 requirement. Sensitive to high concentrations of sulfides (used as reducing agents).
Growth temperature: 30°C.
Optimum pH: 7.2±0.3.

本発明において、デハロコッコイデス属細菌は、単独で培養してもよく、分離した純粋株を他の菌を含むバイオコンソーシア(複合微生物系)として共培養することができる。例えば、スルフロスピリラム(Sulfurospirillum)属細菌と共培養することが好ましい。スルフロスピリラム属細菌は、デハロコッコイデス属細菌の脱塩素化反応を促進する能力を備えており、デハロコッコイデス属細菌と共培養することにより、デハロコッコイデス属細菌の脱塩素化によるエネルギー獲得を助け、デハロコッコイデス属細菌の増殖を促進することができる。スルフロスピリラム属細菌としては、スルフロスピリラム・エスピー(Sulfurospirillum sp.)UCH001株(以下、UCH001株ともいう)、スルフロスピリラム・エスピー(Sulfurospirillum sp.)UCH003株(以下、UCH003株ともいう)のいずれか、または両方、もしくは、これらの変異株が挙げられる。 In the present invention, the Dehalococcoides bacterium may be cultured alone, or the isolated pure strain may be co-cultured as a bioconsortium (composite microbial system) containing other bacteria. For example, it is preferable to co-culture with bacteria of the genus Sulfurospirillum. Bacteria of the genus Sulfurospirillum have the ability to promote the dechlorination reaction of bacteria of the genus Dehalococcoides. It can help obtain energy through oxidation and promote the growth of Dehalococcoides bacteria. Sulfurospirillum bacteria include Sulfurospirillum sp. UCH001 strain (hereinafter also referred to as UCH001 strain) and Sulfurospirillum sp. UCH003 strain (hereinafter also referred to as UCH003 strain). ), or mutant strains thereof.

UCH001株、UCH003株は、それぞれ受託番号NITE P-1419、NITE P-1470として、独立行政法人製品評価技術基盤機構 特許微生物寄託センター(NPMD)(日本国千葉県木更津市かずさ鎌足2-5-8(郵便番号292-0818))に、2012年11月22日付で寄託されている。
UCH001株、UCH003株の形態学的性状、培地上の特徴、生理学的特徴は以下のとおりであり、両株で共通している。
Strains UCH001 and UCH003 have been deposited with the National Institute of Technology and Evaluation (NPMD) (2-5 Kazusa Kamatari, Kisarazu City, Chiba Prefecture, Japan) under accession numbers NITE P-1419 and NITE P-1470, respectively. 8 (zip code 292-0818)) on November 22, 2012.
The morphological properties, medium characteristics, and physiological characteristics of the UCH001 strain and the UCH003 strain are as follows, and are common to both strains.

(a)形態学的性状
湾曲又はらせん状桿菌。
鞭毛を有する。運動性を有する。胞子非形成。
(a) Morphological properties Curved or spiral bacilli.
Has flagella. It has motility. Non-spore forming.

(b)培地の一例
絶対嫌気。フマル酸塩、乳酸塩、酢酸塩を使用する。bicarbonate buffer。pH7.2。H/COの混合ガス(80:20)で培地・培養容器内をガス置換する。
(b) Example of culture medium Absolute anaerobic. Use fumarate, lactate, acetate. bicarbonate buffer. pH 7.2. The inside of the culture medium/culture container is replaced with a mixed gas of H 2 /CO 2 (80:20).

(c)生理学的特徴
嫌気性。硝酸塩やフマル酸等を電子受容体とする呼吸によりエネルギーを獲得する。電子供与体として水素、ギ酸、ピルビン酸、乳酸などを利用。炭素源として酢酸塩等を資化。
増殖温度:30℃
生育pH:pH7.2
(c) Physiological characteristics Anaerobic. Obtains energy through respiration using nitrates, fumarates, etc. as electron acceptors. Hydrogen, formic acid, pyruvic acid, lactic acid, etc. are used as electron donors. Assimilates acetate, etc. as a carbon source.
Growth temperature: 30℃
Growth pH: pH7.2

デハロコッコイデス属細菌の培養に際しては、培養するデハロコッコイデス属細菌の特性に応じて、1種または2種以上の塩素化エチレン類を混合して培地に添加することができる。塩素化エチレン類としては、PCE、TCE、cis-DCE、VCMのいずれか、またはそれらを複数含む組み合わせであることが好ましい。 When culturing Dehalococcoides bacteria, one or more types of chlorinated ethylenes can be mixed and added to the medium depending on the characteristics of the Dehalococcoides bacteria to be cultured. The chlorinated ethylenes are preferably any one of PCE, TCE, cis-DCE, and VCM, or a combination containing a plurality of them.

デハロッコッコイデス属細菌は、絶対嫌気性であるため、培養においては、培地調製時、試薬添加時、菌液接種時、サンプリング時等に、極力空気の混入を減らすことが重要である。例えば、揮発しやすい塩素化エチレン類等の試薬の添加や菌液の接種に用いる滅菌済み注射器は、予め滅菌窒素ガスを用いたガス置換処理をするか、あるいは還元剤で満たし空泡を完全に追い出す処理をしておくことが好ましい。また、加熱できないビタミン溶液等はガス置換とフィルター滅菌処理を行うが、滅菌用フィルターについても、予め滅菌窒素ガスを用いたガス置換処理をするか、あるいは予め内部を還元剤で満たし空気を追い出した後、さらに、ガス置換したビタミン溶液を通し還元剤を追い出す処理をしておくことが好ましい。これらの処理においても、還元剤として加熱滅菌処理した還元型グルタチオンを使用することが好ましい。 Since Deharococcoides bacteria are absolutely anaerobic, it is important to reduce air contamination as much as possible during culture medium preparation, reagent addition, bacterial solution inoculation, sampling, etc. For example, sterilized syringes used for adding easily volatile reagents such as chlorinated ethylene or for inoculating bacterial solutions should be replaced with sterile nitrogen gas or filled with a reducing agent to completely eliminate air bubbles. It is preferable to take steps to expel them. In addition, vitamin solutions that cannot be heated are subjected to gas replacement and filter sterilization treatment, but sterilization filters are also subjected to gas replacement treatment using sterile nitrogen gas, or the inside is filled with a reducing agent and air is expelled. After that, it is preferable to further perform a treatment to expel the reducing agent by passing a gas-substituted vitamin solution. Also in these treatments, it is preferable to use reduced glutathione that has been heat sterilized as a reducing agent.

培養は、静置培養、振盪培養等の各種培養法により行うことができる。培養法、温度、pH、期間等の培養条件は、培養するデハロコッコイデス属細菌に応じて、適宜選択することができる。例えば、通常、培養温度は25℃以上35℃以下、pHは6.5~7.5の範囲、培養期間は2ヶ月程度である。また、培養する際の気体は、通常、H/COの混合ガスの混合ガスを使用するが、炭素源としてピルビン酸を使用する場合は、N/COの混合ガス(pH緩衝剤として重炭酸塩を用いる場合)又はNガス(重炭酸塩以外のpH緩衝剤を用いる場合)を使用することができる。HとCOの体積比は、特に制限されないが、70:30~90:10であることが好ましい。また、NとCOの体積比は、特に制限されないが、70:30~90:10であることが好ましい。 Cultivation can be performed by various culture methods such as static culture and shaking culture. Culture conditions such as culture method, temperature, pH, period, etc. can be appropriately selected depending on the Dehalococcoides bacteria to be cultured. For example, the culture temperature is usually 25°C or higher and 35°C or lower, the pH is in the range of 6.5 to 7.5, and the culture period is about 2 months. In addition, as the gas for culturing, a mixed gas of H 2 /CO 2 is usually used, but when using pyruvic acid as a carbon source, a mixed gas of N 2 /CO 2 (pH buffer (when using bicarbonate as a pH buffer) or N2 gas (when using a pH buffer other than bicarbonate). The volume ratio of H 2 and CO 2 is not particularly limited, but is preferably 70:30 to 90:10. Further, the volume ratio of N 2 and CO 2 is not particularly limited, but is preferably 70:30 to 90:10.

以下、実施例により本発明をさらに具体的に説明する。但し、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be explained in more detail with reference to Examples. However, the present invention is not limited to these.

「実験1:嫌気条件下で加熱処理した還元型グルタチオン水溶液の嫌気を保持する能力の確認」
以下の方法で、水溶液1~3を用意し、レサズリンの色の変化を観察することで、それぞれの水溶液の嫌気状態の評価を行った。なお、レサズリンは、還元状態で透明となり、酸素が存在するとピンク色を呈する。
"Experiment 1: Confirmation of the ability of a reduced glutathione aqueous solution heat-treated under anaerobic conditions to maintain anaerobic conditions"
Aqueous solutions 1 to 3 were prepared in the following manner, and the anaerobic state of each aqueous solution was evaluated by observing the change in the color of resazurin. Note that resazurin is transparent in a reduced state and takes on a pink color in the presence of oxygen.

「実施例1」水溶液1(5mM還元型グルタチオン水溶液を嫌気・加熱処理したもの)
レサズリン10mg/Lを溶かした蒸留水に、還元型グルタチオンを5mM(1.53g/L)になるように溶かし、その還元型グルタチオン水溶液10mlを20ml容バイアル瓶に入れて、窒素ガスで7分間バブリングしガス置換した後、ブチルゴム栓とアルミシールで密栓して、加熱処理(オートクレーブ121℃、20分)した。
"Example 1" Aqueous solution 1 (5mM reduced glutathione aqueous solution subjected to anaerobic heat treatment)
Dissolve reduced glutathione to 5mM (1.53g/L) in distilled water containing 10mg/L of resazurin, put 10ml of the reduced glutathione aqueous solution into a 20ml vial, and bubble with nitrogen gas for 7 minutes. After purging with fresh gas, the container was sealed with a butyl rubber stopper and an aluminum seal, and heat-treated (autoclave at 121° C. for 20 minutes).

「実施例2」水溶液2(嫌気・加熱処理した還元型グルタチオン濃縮液を蒸留水に添加し、5mM還元型グルタチオン水溶液にしたもの)
レサズリン10mg/Lを溶かした蒸留水10mlを20ml容バイアル瓶に入れて、窒素ガスで7分間バブリングしガス置換した後、ブチルゴム栓とアルミシールで密栓して、加熱処理(オートクレーブ121℃、20分)した。このバイアル瓶に、別で用意した嫌気条件下で加熱処理した500mM還元型グルタチオン水溶液100μlを、窒素ガスで置換処理した注射器を使って、封入した。この500mM還元型グルタチオン水溶液は、10mlの蒸留水を20ml容バイアル瓶に入れ、500mMの濃度に相当する還元型グルタチオン1.53gを混ぜ、窒素ガスで7分間バブリングしガス置換した後、ブチルゴム栓とアルミシールで密栓して、加熱処理(オートクレーブ121℃、20分)することで用意した。
"Example 2" Aqueous solution 2 (anaerobic/heat-treated reduced glutathione concentrate was added to distilled water to make a 5mM reduced glutathione aqueous solution)
Pour 10 ml of distilled water in which 10 mg/L of resazurin was dissolved into a 20 ml vial, bubble with nitrogen gas for 7 minutes to replace the gas, seal with a butyl rubber stopper and an aluminum seal, and heat-treat (autoclave at 121°C for 20 minutes). )did. 100 μl of a separately prepared 500 mM reduced glutathione aqueous solution that had been heat-treated under anaerobic conditions was sealed in this vial using a syringe that had been purged with nitrogen gas. To prepare this 500mM reduced glutathione aqueous solution, put 10ml of distilled water into a 20ml vial, mix with 1.53g of reduced glutathione corresponding to a concentration of 500mM, bubble with nitrogen gas for 7 minutes to replace the gas, and then insert a butyl rubber stopper. It was prepared by sealing it with an aluminum seal and heat-treating it (autoclave at 121°C for 20 minutes).

「比較例1」水溶液3(嫌気処理した還元型グルタチオン濃縮液を蒸留水に添加し、5mM還元型グルタチオン水溶液にしたもの)
レサズリン10mg/Lを溶かした蒸留水10mlを20ml容バイアル瓶に入れて、窒素ガスで7分間バブリングしガス置換した後、ブチルゴム栓とアルミシールで密栓して、加熱処理(オートクレーブ121℃、20分)した。このバイアル瓶に、別で用意した嫌気処理のみ行った167mM還元型グルタチオン水溶液300μlを、嫌気処理した注射器を使って、封入した。この167mM還元型グルタチオン水溶液は、10mlの蒸留水を20ml容バイアル瓶に入れ、167mMの濃度に相当する還元型グルタチオン0.51gを混ぜ、窒素ガスで7分間バブリングしガス置換した後、ブチルゴム栓とアルミシールで密栓することで用意した。
"Comparative Example 1" Aqueous Solution 3 (Anaerobically treated reduced glutathione concentrate was added to distilled water to make a 5mM reduced glutathione aqueous solution)
Pour 10 ml of distilled water in which 10 mg/L of resazurin was dissolved into a 20 ml vial, bubble with nitrogen gas for 7 minutes to replace the gas, seal with a butyl rubber stopper and an aluminum seal, and heat-treat (autoclave at 121°C for 20 minutes). )did. Into this vial, 300 μl of a separately prepared 167 mM reduced glutathione aqueous solution that had been subjected to only anaerobic treatment was sealed using an anaerobically treated syringe. To prepare this 167mM reduced glutathione aqueous solution, put 10ml of distilled water into a 20ml vial, mix with 0.51g of reduced glutathione corresponding to a concentration of 167mM, bubble with nitrogen gas for 7 minutes to replace the gas, and then insert a butyl rubber stopper. It was prepared by sealing it with an aluminum seal.

作製後5時間まで、レサズリンの色の変化を観察することで、嫌気状態の評価を行った。また、5時間経過した後に、注射器を使って、10mlの空気を封入し、1時間後のレサズリンの色の変化を観察することで、それぞれの水溶液の嫌気状態の評価を行った。結果を表1、図1に示す。
に示す。
Anaerobic conditions were evaluated by observing changes in the color of resazurin for up to 5 hours after production. Furthermore, after 5 hours had elapsed, 10 ml of air was sealed using a syringe, and the anaerobic state of each aqueous solution was evaluated by observing the change in the color of resazurin after 1 hour. The results are shown in Table 1 and Figure 1.
Shown below.

Figure 0007349051000002
Figure 0007349051000002

水溶液1は、加熱処理後(オートクレーブ処理後)無色となり、5時間後も無色であった。また、空気を封入した後も無色であり、還元状態の持続性に優れていた。
水溶液2は、還元型グルタチオンを添加した直後は濃いピンクであったが、経時で色が薄くなり、5時間後に透明となった。また、空気を封入した後も無色であり、還元状態の持続性に優れていた。
水溶液3は、還元型グルタチオンを添加した直後は濃いピンクであった。2時間後まで少しずつ色が薄くなったが、それ以降は色に変化がなくピンクで留まり、無色にはならなかった。空気を封入した後も、ピンクのままであった。
Aqueous solution 1 became colorless after heat treatment (after autoclave treatment) and remained colorless even after 5 hours. In addition, it remained colorless even after air was encapsulated, and the reduced state had excellent sustainability.
Aqueous solution 2 was deep pink immediately after adding reduced glutathione, but the color became lighter over time and became transparent after 5 hours. In addition, it remained colorless even after air was encapsulated, and the reduced state had excellent sustainability.
Aqueous solution 3 was deep pink immediately after adding reduced glutathione. The color gradually became lighter until 2 hours later, but after that, the color remained pink and did not become colorless. It remained pink even after air was encapsulated.

「実験2:還元型グルタチオン水溶液とシステイン水溶液を嫌気条件下で加熱処理した場合の嫌気を保持する能力の比較」
以下の方法で、水溶液4、5を用意し、レサズリンの色の変化を観察することで、それぞれの水溶液の嫌気状態の評価を行った。
"Experiment 2: Comparison of the ability to maintain anaerobic conditions when a reduced glutathione aqueous solution and a cysteine aqueous solution are heat-treated under anaerobic conditions"
Aqueous solutions 4 and 5 were prepared in the following manner, and the anaerobic state of each aqueous solution was evaluated by observing the change in the color of resazurin.

「実施例3」水溶液4(5mM還元型グルタチオン水溶液を嫌気・加熱処理したもの)
レサズリン10mg/Lを溶かした蒸留水に、還元型グルタチオンを5mM(1.53g/L)になるように溶かし、その還元型グルタチオン水溶液10mlを20ml容バイアル瓶に入れて、窒素ガスで7分間バブリングしガス置換した後、ブチルゴム栓とアルミシールで密栓して、加熱処理(オートクレーブ121℃、20分)した。
"Example 3" Aqueous solution 4 (5mM reduced glutathione aqueous solution subjected to anaerobic heat treatment)
Dissolve reduced glutathione to 5mM (1.53g/L) in distilled water containing 10mg/L of resazurin, put 10ml of the reduced glutathione aqueous solution into a 20ml vial, and bubble with nitrogen gas for 7 minutes. After purging with fresh gas, the container was sealed with a butyl rubber stopper and an aluminum seal, and heat-treated (autoclave at 121° C. for 20 minutes).

「比較例2」水溶液5(5mMシステイン塩酸塩水溶液を嫌気・加熱処理したもの)
レサズリン10mg/Lを溶かした蒸留水に、L-システイン塩酸塩一水和物を5mM(0.878g/L)になるように溶かし、そのシステイン塩酸塩水溶液10mlを20ml容バイアル瓶に入れて、窒素ガスで7分間バブリングしガス置換した後、ブチルゴム栓とアルミシールで密栓して、加熱処理(オートクレーブ121℃、20分)した。
"Comparative Example 2" Aqueous solution 5 (5mM cysteine hydrochloride aqueous solution subjected to anaerobic heat treatment)
Dissolve L-cysteine hydrochloride monohydrate to 5mM (0.878g/L) in distilled water in which 10mg/L of resazurin has been dissolved, and put 10ml of the cysteine hydrochloride aqueous solution into a 20ml vial. After bubbling with nitrogen gas for 7 minutes to replace the gas, the tube was sealed with a butyl rubber stopper and an aluminum seal, and heat-treated (autoclave at 121° C. for 20 minutes).

オートクレーブ後、バイアル瓶が室温まで冷めた後、注射器を使って、10mlの空気を封入し、17時間後のレサズリンの色の変化を観察することで、それぞれの水溶液の嫌気状態の評価を行った。結果を表2、図2に示す。 After the vial had cooled to room temperature after autoclaving, 10 ml of air was sealed using a syringe, and the anaerobic state of each aqueous solution was evaluated by observing the color change of resazurin after 17 hours. . The results are shown in Table 2 and Figure 2.

Figure 0007349051000003
Figure 0007349051000003

還元型グルタチオンを、嫌気条件下で加熱処理した水溶液4は、加熱処理後(オートクレーブ処理後)無色となった。また、空気を封入した後も無色であり、還元状態の持続性に優れていた。
それに対し、システインを、嫌気条件下で加熱処理した水溶液5は、加熱処理後(オートクレーブ処理後)薄いピンク色であった。また、空気を封入した直後も同様の薄いピンク色であったが、時間の経過に従い、徐々にレサズリンの色が濃くなり、17時間後濃いピンクになった。
Aqueous solution 4 in which reduced glutathione was heat-treated under anaerobic conditions became colorless after the heat treatment (after autoclave treatment). In addition, it remained colorless even after air was encapsulated, and the reduced state had excellent sustainability.
On the other hand, aqueous solution 5 in which cysteine was heat-treated under anaerobic conditions was pale pink after the heat treatment (after autoclave treatment). Immediately after air was encapsulated, the same light pink color remained, but as time passed, the color of resazurin gradually became darker, and became dark pink after 17 hours.

「実験3:加熱温度と還元型グルタチオン水溶液の嫌気保持能の関係の確認」
10mlの蒸留水を20ml容バイアル瓶に入れ、167mMの濃度に相当する還元型グルタチオン0.51gを混ぜ、窒素ガスで7分間バブリングしガス置換した後、ブチルゴム栓とアルミシールで密栓し、嫌気処理のみ行い、加熱処理していない還元型グルタチオン水溶液を用意した。
レサズリン10mg/Lを溶かした蒸留水10mlを20ml容バイアル瓶に入れて、窒素ガスで7分間バブリングしガス置換した後、ブチルゴム栓とアルミシールで密栓して、加熱処理(オートクレーブ121℃、20分)した。このバイアル瓶に、上記で用意した167mM還元型グルタチオン水溶液300μlを、嫌気処理した注射器を使って、封入した。
"Experiment 3: Confirmation of the relationship between heating temperature and anaerobic retention capacity of reduced glutathione aqueous solution"
Pour 10 ml of distilled water into a 20 ml vial, mix with 0.51 g of reduced glutathione corresponding to a concentration of 167 mM, bubble with nitrogen gas for 7 minutes to replace the gas, then seal with a butyl rubber stopper and aluminum seal for anaerobic treatment. A reduced glutathione aqueous solution that had not been subjected to heat treatment was prepared.
Pour 10 ml of distilled water in which 10 mg/L of resazurin was dissolved into a 20 ml vial, bubble with nitrogen gas for 7 minutes to replace the gas, seal with a butyl rubber stopper and an aluminum seal, and heat-treat (autoclave at 121°C for 20 minutes). )did. 300 μl of the 167 mM reduced glutathione aqueous solution prepared above was sealed in this vial using an anaerobically treated syringe.

「比較例3」
上記の嫌気処理のみ行った還元型グルタチオン水溶液のバイアル瓶を、作製後5時間静置し、レサズリンの色が濃いピンクのままで変化しなくなったことを確認してから、室温で1時間50分静置した。また、静置後に、注射器を使って、10mlの空気を封入した。
“Comparative Example 3”
The vial containing the reduced glutathione aqueous solution that had been subjected to the above anaerobic treatment was allowed to stand for 5 hours after preparation, and after confirming that the color of resazurin remained deep pink and did not change, it was left at room temperature for 1 hour and 50 minutes. I left it still. After the tube was allowed to stand still, 10 ml of air was sealed using a syringe.

「比較例4」
40℃で20分間静置した後、室温で1時間半静置した以外は、比較例3と同様にした。
「実施例4」
80℃で20分間静置した後、室温で1時間半静置した以外は、比較例3と同様にした。
「実施例5」
120℃で20分間静置した後、室温で1時間半静置した以外は、比較例3と同様にした。
“Comparative Example 4”
The same procedure as Comparative Example 3 was carried out except that the sample was allowed to stand at 40° C. for 20 minutes and then at room temperature for 1.5 hours.
"Example 4"
The same procedure as Comparative Example 3 was carried out except that the sample was allowed to stand at 80° C. for 20 minutes and then at room temperature for 1.5 hours.
“Example 5”
The same procedure as Comparative Example 3 was carried out except that the sample was allowed to stand at 120° C. for 20 minutes and then at room temperature for 1.5 hours.

培養前後の色の変化を観察することで、嫌気状態の評価を行った。また、空気封入してから1時間後のレサズリンの色の変化を観察することで、それぞれの水溶液の嫌気状態の評価を行った。結果を表3に示す。 Anaerobic conditions were evaluated by observing color changes before and after culturing. Furthermore, the anaerobic state of each aqueous solution was evaluated by observing the change in color of resazurin one hour after air was encapsulated. The results are shown in Table 3.

Figure 0007349051000004
Figure 0007349051000004

還元型グルタチオンは、嫌気条件下、80℃以上で加熱処理することにより、還元能が向上することが確認できた。80℃より120℃で加熱することで、空気封入後もレサズリンが無色を維持できる還元状態を持続できることが確認できた。 It was confirmed that the reducing ability of reduced glutathione was improved by heat treatment at 80° C. or higher under anaerobic conditions. It was confirmed that by heating from 80°C to 120°C, a reduced state in which resazurin could remain colorless even after air was encapsulated was confirmed.

「実験4:還元剤別の培養試験」
表4に、使用した重炭酸塩緩衝培地(He, J., Holmes, V.F., Lee, P.K., Alvarez-Cohen, L. "Influence of Vitamin B12 and Cocultures on the Growth of Dehalococcoides Isolates in Defined Medium." Appl. Environ. Microbiol. (2007) 73: p2847-2853.のMineral salts mediumを一部改変)の組成を示す。また、表4中の微量元素溶液、セレナイト・タングステート溶液の組成をそれぞれ下記の表5、6に示す。重炭酸塩緩衝培地の調製は、特許第6103518号の実施例2と同様に行った。
"Experiment 4: Culture test for different reducing agents"
Table 4 shows the bicarbonate buffer medium used (He, J., Holmes, VF, Lee, PK, Alvarez-Cohen, L. "Influence of Vitamin B12 and Cocultures on the Growth of Dehalococcoides Isolates in Defined Medium." Appl The composition of Mineral salts medium (partially modified from Environ. Microbiol. (2007) 73: p2847-2853) is shown. Further, the compositions of the trace element solution and selenite/tungstate solution in Table 4 are shown in Tables 5 and 6 below, respectively. The bicarbonate buffer medium was prepared in the same manner as in Example 2 of Patent No. 6103518.

Figure 0007349051000005
Figure 0007349051000005

Figure 0007349051000006
Figure 0007349051000006

Figure 0007349051000007
Figure 0007349051000007

全量70mlのガラスバイアル瓶に、表4に示す培地(0.1%レサズリンナトリウムを含む)50mlを加え、表7に示す還元剤を0.5g/Lまたは1.0g/Lとなるように添加して密栓し、窒素ガスで培地を10分間パージして滅菌処理(121℃、20分)した。冷却後に、予め滅菌窒素ガスを用いてシリンジ内のガスと置換した注射器を使い、無菌的かつ嫌気的に、表8に示すビタミン溶液10mlとTCE溶液(500mg/L、1ml)を加えて培地を作製した。作製したレザズリンを含む培地はいずれも透明であり、還元状態を示していた。 Add 50 ml of the medium shown in Table 4 (containing 0.1% resazurin sodium) to a glass vial with a total volume of 70 ml, and add the reducing agent shown in Table 7 to a concentration of 0.5 g/L or 1.0 g/L. The culture medium was sterilized by purging with nitrogen gas for 10 minutes (121°C, 20 minutes). After cooling, add 10 ml of the vitamin solution shown in Table 8 and TCE solution (500 mg/L, 1 ml) aseptically and anaerobically using a syringe whose gas inside the syringe has been replaced with sterile nitrogen gas. Created. All of the prepared media containing resazurin were transparent, indicating a reduced state.

Figure 0007349051000008
Figure 0007349051000008

Figure 0007349051000009
Figure 0007349051000009

各培地に、別途培養したUCH007株とUCH001株の共培養液(UCH007株:1.32×10copies/ml)を1ml植菌し、28℃の恒温室で静置培養を開始した。定期的に培養液中の塩素化エチレン類の濃度をGCMS(島津製作所製 GCMS-QP2010 Ultra)により定量した。塩素化エチレン類濃度の経時変化を図3に示す。 Each medium was inoculated with 1 ml of a co-culture solution of separately cultured UCH007 strain and UCH001 strain (UCH007 strain: 1.32×10 6 copies/ml), and static culture was started in a thermostatic chamber at 28° C. The concentration of chlorinated ethylenes in the culture solution was periodically determined by GCMS (GCMS-QP2010 Ultra, manufactured by Shimadzu Corporation). Figure 3 shows the change in chlorinated ethylene concentration over time.

比較例5、6より嫌気条件下で加熱処理したシステインは5.7mM(1.0g/L)の添加量で、比較例7、8より嫌気条件下で加熱処理した硫化ナトリウムは4.2mM(0.5g/L)の添加量で、塩素化エチレン類の脱塩素化を阻害することが確認できた。
それに対し、実施例1~4で用いた嫌気条件下で加熱処理した還元型グルタチオンは、3.3mM(1.0g/L)の濃度でも塩素化エチレン類の脱塩素化を阻害しなかった。また、嫌気条件下で加熱処理した還元型グルタチオンと硫化ナトリウムを併用しても、硫化ナトリウム0.25mM(0.06g/L)以下では、脱塩素化を阻害しないことが確認できた。
From Comparative Examples 5 and 6, the amount of cysteine heat-treated under anaerobic conditions was 5.7mM (1.0g/L), and from Comparative Examples 7 and 8, the amount of sodium sulfide heat-treated under anaerobic conditions was 4.2mM (1.0g/L). It was confirmed that dechlorination of chlorinated ethylenes was inhibited at an addition amount of 0.5 g/L).
In contrast, the reduced glutathione heat-treated under anaerobic conditions used in Examples 1 to 4 did not inhibit the dechlorination of chlorinated ethylenes even at a concentration of 3.3 mM (1.0 g/L). Furthermore, it was confirmed that even when reduced glutathione heat-treated under anaerobic conditions and sodium sulfide were used in combination, dechlorination was not inhibited at sodium sulfide of 0.25 mM (0.06 g/L) or less.

「実験5:嫌気条件下で加熱処理した還元型グルタチオンの濃度がデハロコッコイデス属細菌の培養に及ぼす影響の確認」
デハロコッコイデス属細菌のTCE脱塩素化反応の進行が、培地に含まれる嫌気条件下で加熱処理した還元型グルタチオンの濃度の違いにより、どのように影響を受けるか確認を行った。また、従来の還元剤「硫化ナトリウム・L-システイン・DL-ジチオトレイトール混合液(三種混合還元剤)」を使った条件との比較も行った。
"Experiment 5: Confirmation of the effect of the concentration of reduced glutathione heated under anaerobic conditions on the culture of Dehalococcoides bacteria"
We confirmed how the progress of the TCE dechlorination reaction of bacteria of the genus Dehalococcoides is affected by differences in the concentration of reduced glutathione contained in the culture medium and heated under anaerobic conditions. A comparison was also made with conditions using a conventional reducing agent, ``a mixed solution of sodium sulfide, L-cysteine, and DL-dithiothreitol (mixed reducing agent of three types).''

表9に、使用した重炭酸塩緩衝培地(He, J., Holmes, V.F., Lee, P.K., Alvarez-Cohen, L. "Influence of Vitamin B12 and Cocultures on the Growth of Dehalococcoides Isolates in Defined Medium." Appl. Environ. Microbiol. (2007) 73: p2847-2853.のMineral salts mediumを一部改変した組成を示す。また、表9中の三種混合還元剤の組成を下記表10に示す。 Table 9 shows the bicarbonate buffer medium used (He, J., Holmes, V.F., Lee, P.K., Alvarez-Cohen, L. "Influence of Vitamin B12 and Cocultures on the Growth of Dehalococcoides Isolates in Defined Medium." Appl The composition of the partially modified Mineral salts medium of Environ. Microbiol. (2007) 73: p2847-2853 is shown below. The composition of the three mixed reducing agents in Table 9 is shown in Table 10 below.

培地に加える還元型グルタチオン及び三種混合還元剤の最終濃度を表11に示す。還元型グルタチオンと三種混合還元剤とは培地に加えたタイミングが異なり、還元型グルタチオンが他の培地成分とともに最初から混ぜられたのに対して、三種混合還元剤は還元剤を含まない培地を調製後、最後に滅菌済み注射器を用いて無菌的かつ嫌気的に加えられた。 Table 11 shows the final concentrations of reduced glutathione and three mixed reducing agents added to the medium. Reduced glutathione and the three types of mixed reducing agent are added to the medium at different times; reduced glutathione is mixed with other medium components from the beginning, whereas with the three types of mixed reducing agent, a medium containing no reducing agent is prepared. Finally, it was added aseptically and anaerobically using a sterile syringe.

重炭酸塩緩衝培地の培地の調製は次のとおり行った。
トリクロロエチレンストック溶液、ビタミン溶液、三種混合還元剤以外の成分を混合し(還元型グルタチオンは最初から混合する)、pHを約7.2に調整した。20ml容バイアル瓶に培地を10mlずつ分注し、H/CO(80/20)混合ガスで7分間バブリングしガス置換した後、PTFEライナーゴム栓とアルミシールで密栓してオートクレーブ処理(121℃、20分)した。この培養容器に、予め滅菌窒素ガスを用いてシリンジ内のガスと置換した注射器を使い、無菌的かつ嫌気的に、下記の別途調製したトリクロロエチレンストック溶液、ビタミン溶液、三種混合還元剤を加え、重炭酸塩緩衝培地を調製した(なお、還元型グルタチオンを使う条件では、三種混合還元剤は添加しない)。
Preparation of bicarbonate buffered medium was performed as follows.
Components other than the trichlorethylene stock solution, vitamin solution, and three-part mixed reducing agent were mixed (reduced glutathione was mixed from the beginning), and the pH was adjusted to about 7.2. Dispense 10 ml of the culture medium into 20 ml vials, bubble with H 2 /CO 2 (80/20) mixed gas for 7 minutes to replace the gas, seal with a PTFE liner rubber stopper and an aluminum seal, and autoclave (121 ℃, 20 minutes). Using a syringe that had previously replaced the gas in the syringe with sterilized nitrogen gas, add the following separately prepared trichlorethylene stock solution, vitamin solution, and three-part reducing agent to this culture container in an aseptic and anaerobic manner. A carbonate buffered medium was prepared (note that under the conditions of using reduced glutathione, the three mixed reducing agents were not added).

トリクロロエチレンストック溶液は、50ml容の遮光バイアル瓶に20mlの蒸留水とスターラーバーを入れ、Nガスで置換し、PTFEライナーゴム栓とアルミシールで閉じてオートクレーブした後、ガスタイトシリンジを使って4.5μlのトリクロロエチレンを入れ、終夜攪拌することによって調製した。
三種還元剤は、下記表10に示す組成の溶液を調製し、20ml容バイアル瓶に10mlずつ分注し、Nガスで7分間バブリングしガス置換した後、ブチルゴム栓とアルミシールで密栓してオートクレーブ処理(121℃、15分)した。
The trichlorethylene stock solution was prepared by placing 20 ml of distilled water and a stirrer bar in a 50 ml light-shielding vial, purging it with N2 gas, closing it with a PTFE liner rubber stopper and an aluminum seal, autoclaving it, and using a gas-tight syringe for 4 hours. It was prepared by adding .5 μl of trichlorethylene and stirring overnight.
For the three types of reducing agents, prepare a solution with the composition shown in Table 10 below, dispense 10 ml each into 20 ml vials, bubble with N2 gas for 7 minutes to replace the gas, and then seal the solution with a butyl rubber stopper and an aluminum seal. Autoclave treatment (121°C, 15 minutes) was performed.

Figure 0007349051000010
Figure 0007349051000010

Figure 0007349051000011
Figure 0007349051000011

Figure 0007349051000012
Figure 0007349051000012

20mlのバイアル瓶(ガスクロマトグラフィー用、PTFE加工ブチルゴム栓)に、上記重炭酸塩緩衝培地10mlを分注し、滅菌したシリンジを用いて上記実験4で用いたUCH007株とUCH001株の共培養液を100μl植菌し、30℃の恒温室で静置培養を開始した。培養14日目に培養液中の塩素化エチレン類の濃度を、キャピラリーカラム(Agilent J&W GCカラム DB-624、0.32mm×30m)とFIDを装備したガスクロマトグラフィー(モデル6890N、Agilent Technologies社)を用いて、ヘッドスペース法にて定量した。結果を図4に示す。 Dispense 10 ml of the above bicarbonate buffer medium into a 20 ml vial (for gas chromatography, PTFE-treated butyl rubber stopper), and use a sterilized syringe to collect the co-culture solution of UCH007 strain and UCH001 strain used in Experiment 4 above. 100 μl of the cells were inoculated, and static culture was started in a thermostatic chamber at 30°C. On the 14th day of culture, the concentration of chlorinated ethylenes in the culture solution was measured using a gas chromatography system (Model 6890N, Agilent Technologies) equipped with a capillary column (Agilent J&W GC column DB-624, 0.32 mm x 30 m) and FID. Quantification was carried out using the headspace method. The results are shown in Figure 4.

還元型グルタチオンは、1~10mMのいずれの範囲内でも脱塩素化が進行し、デハロコッコイデス属細菌の増殖が促進していることが示された。還元型グルタチオンを5mM添加した場合に、TCE、cis-DCEの分解が進んでおり、デハロッコッコイデス属細菌が顕著に増加したことが確認できた。また、還元型グルタチオンが10mMでもデハロコッコイデス属細菌は培養できており、培養時に高濃度の還元型グルタチオンを用いてより高い還元状態の維持が可能であることが示された。
なお、UCH007株は、デハロコッコイデス属内の系統グループであるVictoriaグループに属する。我々は、Victoriaグループにとは異なるCornellグループに属する菌株においても本発明に基づく方法で安定的に培養できることを確認しており、このことから本培養法は、デハロコッコイデス属細菌全体に適用できるものと考えられる。
It was shown that dechlorination of reduced glutathione proceeded within the range of 1 to 10 mM, and the growth of Dehalococcoides bacteria was promoted. It was confirmed that when 5mM of reduced glutathione was added, the decomposition of TCE and cis-DCE progressed, and the number of bacteria of the genus Deharococcoides increased significantly. Furthermore, Dehalococcoides bacteria could be cultured even with reduced glutathione at 10 mM, indicating that it is possible to maintain a higher reduced state by using a high concentration of reduced glutathione during culture.
Note that the UCH007 strain belongs to the Victoria group, which is a phylogenetic group within the genus Dehalococcoides. We have confirmed that strains belonging to the Cornell group, which is different from the Victoria group, can be stably cultured using the method based on the present invention, and from this, this culture method can be applied to all bacteria of the genus Dehalococcoides. It is considered possible.

「実験6 本発明を用いることにより、絶対嫌気性デハロコッコイデス属細菌を大容量の容器で培養できることを示す実験」
培養スケールを大きくすると、気密性を高く保つことが難しく空気が混入する可能性が高くなるため、高い嫌気度を要求するデハロコッコイデス属細菌を培養することは困難であった。
還元型グルタチオンを、嫌気条件下で加熱処理するという本発明に基づく方法で、デハロコッコイデス属細菌を安定的に大量培養できるかを確認した。また、従来の還元剤「硫化ナトリウム・L-システイン・DL-ジチオトレイトール混合液(三種混合還元剤)」を使った条件との比較も行った。
"Experiment 6 Experiment showing that obligately anaerobic Dehalococcoides bacteria can be cultured in a large-capacity container by using the present invention"
When the culture scale is increased, it is difficult to maintain high airtightness and there is a high possibility that air will get mixed in, so it has been difficult to culture Dehalococcoides bacteria, which require a high degree of anaerobism.
It was confirmed whether Dehalococcoides bacteria can be stably cultivated in large quantities by the method based on the present invention, in which reduced glutathione is heat-treated under anaerobic conditions. A comparison was also made with conditions using a conventional reducing agent, ``a mixed solution of sodium sulfide, L-cysteine, and DL-dithiothreitol (mixed reducing agent of three types).''

大量培養用の培養容器として、管頭部(蓋)に菌液やガスの採取が可能なサンプリングポートを設ける改造を行った5ガロンのビア樽(コーネリアスタイプ)を使用した。
サンプリングポートは、ビア樽の蓋に12φmm程度の穴を開け、エイブル株式会社製のナット締め付け式φ12電極口(品番:C00000-C005)及びブチルゴム製O-リングを使って隔壁のネジ口を設け、そこに日電理化硝子株式会社製の凍結乾燥用ブチルゴム栓・B(大)を装着し、エイブル株式会社製φ12袋ナット(品番:C00000-C008)で締め付けて固定することで制作した。滅菌済み注射器を用いてブチルゴム栓に注射針を穿刺することで菌液やガスの採取を行った。
As a culture vessel for mass culture, a 5-gallon beer barrel (Cornelius type) was used, which had been modified to include a sampling port on the tube head (lid) to allow collection of bacterial liquid and gas.
For the sampling port, a hole of approximately 12 φ mm was made in the lid of the beer barrel, and a screw port was installed on the bulkhead using a nut tightening type φ 12 electrode port made by ABLE Co., Ltd. (product number: C00000-C005) and a butyl rubber O-ring. It was manufactured by attaching a butyl rubber stopper B (large) for freeze drying manufactured by Nichiden Rika Glass Co., Ltd., and tightening and fixing it with a φ12 cap nut (product number: C00000-C008) manufactured by ABLE Co., Ltd. Bacterial fluid and gas were collected by puncturing the butyl rubber stopper with a sterilized syringe.

「実施例14」還元型グルタチオンを含む培地を使用して大量培養したもの
上記で蓋を改造した5ガロンのビア樽からなる培養容器に、表12に示す還元型グルタチオンを含む培地を10L、15L又は18L入れたものをそれぞれ作製した。なお、表12に示す組成は、蒸留水1Lあたりに対する組成である。還元型グルタチオンを含む培地調製の手順は以下の通り行った。(1)培地をビア樽に入れて、1時間、窒素ガス置換を行った。(2)オートクレーブ滅菌(121℃、20分間)した。(3)オートクレーブ直後から1時間窒素ガス置換した後、さらに、容器を氷水に浸し、容器全体の温度が室温以下になるまで(30分程度)ガス置換した。(4)予め滅菌窒素ガスを用いたガス置換処理した注射器を使い、無菌的かつ嫌気的に、表8に示すビタミン溶液と、TCE又はcis-DCEのストック溶液を加えた。
培地調製後、別途培養していたUCH007株とUCH001株の共培養液を、窒素ガス置換処理した注射器を使って、培地の100分の1量を植菌し、室温で静置培養を開始した。培養中、定期的に培養液中の塩素化エチレン類の濃度を、キャピラリーカラム(Agilent J&W GCカラム DB-624、0.32mm×30m)とFIDを装備したガスクロマトグラフィー(モデル6890N、Agilent Technologies社)を用いて、ヘッドスペース法にて定量した。
"Example 14" Mass culture using a medium containing reduced glutathione 10L and 15L of the medium containing reduced glutathione shown in Table 12 was placed in a culture container consisting of a 5-gallon beer barrel with a modified lid as described above. Or, one containing 18L was prepared. In addition, the composition shown in Table 12 is a composition per 1 L of distilled water. The procedure for preparing a medium containing reduced glutathione was performed as follows. (1) The culture medium was placed in a beer barrel and replaced with nitrogen gas for 1 hour. (2) Autoclave sterilization (121°C, 20 minutes). (3) Immediately after autoclaving, the container was replaced with nitrogen gas for 1 hour, and then the container was further immersed in ice water, and the container was replaced with gas until the temperature of the entire container became below room temperature (about 30 minutes). (4) Using a syringe that had been previously gassed with sterilized nitrogen gas, the vitamin solutions shown in Table 8 and the stock solution of TCE or cis-DCE were added aseptically and anaerobically.
After preparing the medium, a co-culture solution of UCH007 strain and UCH001 strain, which had been cultured separately, was inoculated using a syringe that had been replaced with nitrogen gas in an amount of 1/100 of the medium, and static culture was started at room temperature. . During the culture, the concentration of chlorinated ethylenes in the culture solution was periodically measured using a gas chromatography system (Model 6890N, Agilent Technologies) equipped with a capillary column (Agilent J&W GC column DB-624, 0.32 mm x 30 m) and FID. Quantification was carried out using the headspace method.

Figure 0007349051000013
Figure 0007349051000013

「比較例10」従来の還元剤「硫化ナトリウム・L-システイン・DL-ジチオトレイトール混合液(三種混合還元剤)」を培地に添加して大量培養したもの
蓋を改造した5ガロンのビア樽に還元型グルタチオンを除いた表12に示す培地を10L入れて、上記の還元型グルタチオンを含む培地調製の手順(1)~(4)と同じ様に培地調製を行ったが、手順(4)において、三種混合還元剤を、無菌的かつ嫌気的に、硫化ナトリウム、L-システイン及びDL-ジチオトレイトールを最終濃度0.2mM、0.2mM、0.5mMになるように添加した。この三種混合還元剤の濃度はデハロコッコイデス属細菌を培養するのに適切な濃度であり(非特許文献1)、20ml容のバイアル瓶に10mlの培地を入れるような培養スケールでは、培地に入れたレサズリンの色が透明になり、問題無くデハロコッコイデス属細菌を問題無く培養できることを確認している。
“Comparative Example 10” A conventional reducing agent “sodium sulfide, L-cysteine, DL-dithiothreitol mixture (mixture of three types of reducing agents)” was added to the medium for mass culture 5-gallon beer barrel with modified lid 10 L of the medium shown in Table 12 excluding reduced glutathione was added, and the medium was prepared in the same manner as steps (1) to (4) for preparing a medium containing reduced glutathione, except for step (4). In this step, a three-part mixed reducing agent containing sodium sulfide, L-cysteine, and DL-dithiothreitol was added aseptically and anaerobically to a final concentration of 0.2 mM, 0.2 mM, and 0.5 mM. The concentration of this three-type mixed reducing agent is an appropriate concentration for culturing Dehalococcoides bacteria (Non-patent Document 1), and in a culture scale such as putting 10 ml of medium into a 20 ml vial, it is difficult to It has been confirmed that the color of the resazurin that was added becomes transparent, and Dehalococcoides bacteria can be cultured without any problems.

比較例10では、還元剤を添加しても培地に含まれるレサズリンの色がピンクのまま留まり、デハロコッコイデス属細菌を培養可能な状態まで酸化還元電位を下げることができなかった。
それに対し、還元型グルタチオンを含む培地をガス置換しオートクレーブした実施例14では、培地調製後、常にレサズリンの色が無色となり、培地に添加するVOCの種類がTCE、cis-DCEのいずれの場合でも、また、培地量が10L、15L、18Lのいずれの場合でも、デハロコッコイデス属細菌を安定的に培養できることが確認された。一例として、TCEを使った培地量15Lの場合の塩素化エチレン類の濃度の経時変化を図5に示す。嫌気条件下で加熱処理した還元型グルタチオンからなる還元剤を用いることにより、5ガロンのビア樽を使用した大量培養でもデハロコッコイデス属細菌を安定的に培養できることが確認された。
In Comparative Example 10, even when a reducing agent was added, the color of resazurin contained in the medium remained pink, and the redox potential could not be lowered to a state where Dehalococcoides bacteria could be cultured.
On the other hand, in Example 14, in which the medium containing reduced glutathione was gas replaced and autoclaved, the color of resazurin was always colorless after the medium was prepared, regardless of whether the type of VOC added to the medium was TCE or cis-DCE. Furthermore, it was confirmed that Dehalococcoides bacteria could be stably cultured regardless of the medium volume of 10 L, 15 L, or 18 L. As an example, FIG. 5 shows the change over time in the concentration of chlorinated ethylenes in the case of a medium volume of 15 L using TCE. It was confirmed that by using a reducing agent consisting of reduced glutathione heat-treated under anaerobic conditions, bacteria of the genus Dehalococcoides can be stably cultured even in large-scale culture using 5-gallon beer barrels.

Claims (10)

還元型グルタチオンを、嫌気条件下で80℃以上125℃以下、15分以上25分以下の加熱処理することを特徴とする還元状態の持続性向上方法。 A method for improving sustainability of a reduced state, which comprises heat-treating reduced glutathione under anaerobic conditions at 80°C or more and 125°C or less for 15 minutes or more and 25 minutes or less . 嫌気条件下で80℃以上125℃以下、15分以上25分以下の加熱処理した還元型グルタチオンからなる還元剤。 A reducing agent consisting of reduced glutathione that has been heat-treated under anaerobic conditions at 80°C or more and 125°C or less for 15 minutes or more and 25 minutes or less . 請求項2に記載の還元剤を含むことを特徴とする培地。 A culture medium comprising the reducing agent according to claim 2. 還元型グルタチオンを含む培地を密封容器内で嫌気性ガス置換し、80℃以上125℃以下、15分以上25分以下の加熱処理することを特徴とする培地の製造方法。 A method for producing a culture medium, which comprises replacing a culture medium containing reduced glutathione with anaerobic gas in a sealed container, and heat-treating the culture medium at 80°C or more and 125°C or less for 15 minutes or more and 25 minutes or less . 前記還元型グルタチオンの濃度が、1mM以上10mM以下であることを特徴とする請求項4に記載の培地の製造方法。 5. The method for producing a culture medium according to claim 4, wherein the concentration of the reduced glutathione is 1 mM or more and 10 mM or less. 請求項3に記載の培地を用いることを特徴とする嫌気性微生物の培養方法。 A method for culturing anaerobic microorganisms, comprising using the medium according to claim 3. 前記嫌気性微生物が、デハロコッコイデス(Dehalococcoides)属細菌であることを特徴とする請求項6に記載の培養方法。 7. The culture method according to claim 6, wherein the anaerobic microorganism is a bacterium belonging to the genus Dehalococcoides. 前記還元型グルタチオンの濃度が、1mM以上10mM以下であることを特徴とする請求項6または7に記載の培養方法。 8. The culture method according to claim 6, wherein the concentration of the reduced glutathione is 1 mM or more and 10 mM or less. 前記培地の容量が、10L以上であることを特徴とする請求項6~8のいずれかに記載の培養方法。 The culture method according to any one of claims 6 to 8, characterized in that the volume of the medium is 10 L or more. 前記デハロコッコイデス属細菌が、受託番号NITE P-141として寄託されたUCH007株またはその変異株であることを特徴とする請求項7~9のいずれかに記載の培養方法。 The culture method according to any one of claims 7 to 9, wherein the Dehalococcoides bacterium is strain UCH007 deposited under accession number NITE P- 1471 or a mutant strain thereof.
JP2019135445A 2019-07-23 2019-07-23 Method for improving sustainability of reduced state of reducing agent, reducing agent with improved sustainability, medium containing this reducing agent, and method for culturing anaerobic microorganisms using this medium Active JP7349051B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019135445A JP7349051B2 (en) 2019-07-23 2019-07-23 Method for improving sustainability of reduced state of reducing agent, reducing agent with improved sustainability, medium containing this reducing agent, and method for culturing anaerobic microorganisms using this medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019135445A JP7349051B2 (en) 2019-07-23 2019-07-23 Method for improving sustainability of reduced state of reducing agent, reducing agent with improved sustainability, medium containing this reducing agent, and method for culturing anaerobic microorganisms using this medium

Publications (2)

Publication Number Publication Date
JP2021016369A JP2021016369A (en) 2021-02-15
JP7349051B2 true JP7349051B2 (en) 2023-09-22

Family

ID=74562935

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019135445A Active JP7349051B2 (en) 2019-07-23 2019-07-23 Method for improving sustainability of reduced state of reducing agent, reducing agent with improved sustainability, medium containing this reducing agent, and method for culturing anaerobic microorganisms using this medium

Country Status (1)

Country Link
JP (1) JP7349051B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2024055622A (en) * 2022-10-07 2024-04-18 株式会社テクノスルガ・ラボ Method for culturing Dehalococcoides bacteria and method for purifying chlorinated ethylenes

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003154382A (en) 2001-11-26 2003-05-27 Canon Inc Method for efficiently restoring environment or medium polluted with organic compound in presence of glutathione by microorganism
JP2006288272A (en) 2005-04-11 2006-10-26 Ajinomoto Co Inc Method for obtaining microorganism by using medium containing cysteine
JP2014108061A (en) 2012-11-30 2014-06-12 Taisei Corp New microorganism that dechlorinate volatile organochlorine compounds
JP2018532430A (en) 2015-10-28 2018-11-08 メタボゲン アーベー Methods for adaptation

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4031758A1 (en) * 1990-10-06 1992-04-09 Bayer Ag RESISTANCE GENES
JP2756225B2 (en) * 1993-09-16 1998-05-25 フジッコ株式会社 Method for producing edible gel

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003154382A (en) 2001-11-26 2003-05-27 Canon Inc Method for efficiently restoring environment or medium polluted with organic compound in presence of glutathione by microorganism
JP2006288272A (en) 2005-04-11 2006-10-26 Ajinomoto Co Inc Method for obtaining microorganism by using medium containing cysteine
JP2014108061A (en) 2012-11-30 2014-06-12 Taisei Corp New microorganism that dechlorinate volatile organochlorine compounds
JP2018532430A (en) 2015-10-28 2018-11-08 メタボゲン アーベー Methods for adaptation

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Standards in Genomic Sciences,2015年,Vol.10, No.102,pp.1-7

Also Published As

Publication number Publication date
JP2021016369A (en) 2021-02-15

Similar Documents

Publication Publication Date Title
Marušincová et al. Polyvinyl alcohol biodegradation under denitrifying conditions
CN108130288B (en) Rhodococcus ruber and application thereof in degrading organic pollutants
Davidson et al. Characterization of bromate-reducing bacterial isolates and their potential for drinking water treatment
CN109234191B (en) Lysinibacillus fusiformis with ethanethiol and dimethyl disulfide degradation capacity and application thereof
CN108483638A (en) A kind of method that microorganism co-incubation promotion denitrification process stabilization quickly carries out
JP6103518B2 (en) Novel microorganism capable of dechlorinating volatile organochlorine compounds and use thereof
Bardiya et al. Bioremediation potential of a perchlorate-enriched sewage sludge consortium
Kim et al. Enhancing trichloroethylene degradation using non-aromatic compounds as growth substrates
JP7349051B2 (en) Method for improving sustainability of reduced state of reducing agent, reducing agent with improved sustainability, medium containing this reducing agent, and method for culturing anaerobic microorganisms using this medium
EP1210407B1 (en) Bacterial consortium ebc1000 and a method using the bacterial consortium ebc1000 for remedying biologically recalcitrant toxic chemicals contained in industrial wastewater, waste materials and soils
US11124438B2 (en) Alcaligenes faecalis for degrading ethylene oxide
Mohsin et al. Anoxic growth optimization for metal respiration and photobiological hydrogen production by arsenic‐resistant Rhodopseudomonas and Rhodobacter species
KR100828566B1 (en) 4 Pseudomonas fluorescens K4 having excellent ability of denitrification
JP2021016368A (en) Method of culturing dehalococcoides bacteria, and medium for dehalococcoides bactreia
JP4692039B2 (en) Microbial group culture method, culture solution obtained by the culture method, and groundwater and / or soil purification method
JP5303389B2 (en) Soil or groundwater purification agent and purification method
JP4675695B2 (en) A novel microorganism with the ability to resolve methylthiolated triazines
JP2024015649A (en) Culturing method and medium for dehalococcoides bacteria
CN103614324B (en) Short-chain fatty acid degradation bacteria and application thereof
JP2006254790A (en) Culture medium for anaerobic microorganism and culturing method
KR20140133247A (en) New Alcanivorax spp. degrading petroleum hydrocarbon and Methods of bioremediation by using thereof
JP2005270970A (en) Method for decomposing tetrachloroethylene, and dechlorinating microorganism
De Wildeman et al. Reductive biodegradation of 1, 2-dichloroethane by methanogenic granular sludge: perspectives for in situ remediation
KR101837998B1 (en) Composition of culture medium for hydrogen production, and method of producing hydrogen using the same
JP4530196B2 (en) Method for decomposing tetrachlorethylene contained in pollutants

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220722

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230516

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20230613

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230613

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230801

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230809

R150 Certificate of patent or registration of utility model

Ref document number: 7349051

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150