JP7347125B2 - Porous coordination polymers, gas sensing materials and gas sensing sheets - Google Patents

Porous coordination polymers, gas sensing materials and gas sensing sheets Download PDF

Info

Publication number
JP7347125B2
JP7347125B2 JP2019198085A JP2019198085A JP7347125B2 JP 7347125 B2 JP7347125 B2 JP 7347125B2 JP 2019198085 A JP2019198085 A JP 2019198085A JP 2019198085 A JP2019198085 A JP 2019198085A JP 7347125 B2 JP7347125 B2 JP 7347125B2
Authority
JP
Japan
Prior art keywords
porous coordination
coordination polymer
gas
gas detection
color
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019198085A
Other languages
Japanese (ja)
Other versions
JP2021070647A (en
Inventor
友彦 加藤
尚吾 眞貝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2019198085A priority Critical patent/JP7347125B2/en
Publication of JP2021070647A publication Critical patent/JP2021070647A/en
Application granted granted Critical
Publication of JP7347125B2 publication Critical patent/JP7347125B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Description

本発明は、多孔性配位高分子、ガス検知材およびガス検知シートに関する。 The present invention relates to a porous coordination polymer, a gas sensing material, and a gas sensing sheet.

近年、多種多様な製品に使用されているリチウムイオン二次電池には、角型、円筒型およびパウチ型などの製品形態がある。その中でも、パウチ型リチウムイオン二次電池はアルミラミネートフィルムなどで形成されたパウチ型容器を使用するため、軽くて多様な形態に製造することができ、製造工程も単純であるという長所がある一方、容器の密閉性が不十分である場合や、容器にピンホールなどが発生した際に、電解液の溶媒として一般的に用いられているエチレンカーボネートのような環状カーボネートやジエチルカーボネートのような鎖状カーボネートなどの一部が蒸気となって揮発し、容器から漏れだすことによる異臭や、特性の低下などが発生し易いという問題がある。 Lithium ion secondary batteries, which have been used in a wide variety of products in recent years, have product forms such as square, cylindrical, and pouch shapes. Among these, pouch-type lithium-ion secondary batteries use a pouch-type container made of aluminum laminate film, etc., so they have the advantage of being lightweight, can be manufactured in a variety of shapes, and have a simple manufacturing process. , when the sealing of the container is insufficient or when pinholes occur in the container, cyclic carbonates such as ethylene carbonate and chains such as diethyl carbonate, which are commonly used as solvents for electrolyte solutions, may be used. There is a problem in that a portion of carbonate, etc. becomes vapor and volatilizes, which tends to leak out of the container and cause unpleasant odors and deterioration of properties.

密閉容器からの漏えいガスの検査方法はこれまでにも種々提案されており、特許文献1では多孔性配位高分子を用いて漏えいガスを検知するという方法が提案されている。しかしながら、大気中の水分の影響により徐々にガスの検知感度が低下するなど、使用環境や使用方法によっては耐湿性に対する要求を満たすことができなかった。 Various methods for inspecting gas leaking from a closed container have been proposed so far, and Patent Document 1 proposes a method of detecting gas leaking using a porous coordination polymer. However, the gas detection sensitivity gradually decreased due to the influence of moisture in the atmosphere, and depending on the usage environment and usage method, the requirement for moisture resistance could not be met.

WO2016/047232号WO2016/047232

本発明は、上記問題点に鑑みてなされたものであって、多孔性配位高分子に吸着しているアセトニトリルおよびHOの量を制御することにより、ガス検知感度が良好で、かつ耐湿性に優れた多孔性配位高分子、ガス検知材およびガス検知シートを提供することを目的としている。 The present invention has been made in view of the above problems, and by controlling the amounts of acetonitrile and H 2 O adsorbed on a porous coordination polymer, the present invention provides good gas detection sensitivity and moisture resistance. The purpose of the present invention is to provide a porous coordination polymer with excellent properties, a gas sensing material, and a gas sensing sheet.

本発明者らは鋭意検討し、一般式(1)で表され、アセトニトリル吸着量が1.5wt%以上9.5wt%以下の範囲であり、さらにはHO吸着量が1.5wt%以上7.0wt%以下の範囲であることを特徴とする低スピン状態の多孔性配位高分子を用いることにより、上記目的を達成することができることを見出し、本発明に至った。
Fe (ピラジン)[Ni1-y(CN)] ・・・(1)
(0.93≦x≦1.1、M=Pd、Ptから選ばれた少なくとも一種、0≦y<0.15)
The present inventors have conducted extensive studies, and found that the acetonitrile adsorption amount is in the range of 1.5 wt% or more and 9.5 wt% or less, and the H 2 O adsorption amount is 1.5 wt% or more, which is represented by the general formula (1). The inventors have discovered that the above object can be achieved by using a porous coordination polymer with a low spin state characterized by a spin content of 7.0 wt% or less, leading to the present invention.
Fe x (pyrazine) [Ni 1-y M y (CN) 4 ] ... (1)
(0.93≦x≦1.1, M=at least one selected from Pd and Pt, 0≦y<0.15)

すなわち、本発明によれば、以下のものが提供される。
〔1〕一般式(1)で表され、アセトニトリル吸着量が1.5wt%以上9.5wt%以下、さらにはHO吸着量が1.5wt%以上7.0wt%以下であることを特徴とする低スピン状態の多孔性配位高分子。
Fe (ピラジン)[Ni1-y(CN)] ・・・(1)
(0.93≦x≦1.1、M=Pd、Ptから選ばれた少なくとも一種、0≦y<0.15)
〔2〕アセトニトリル吸着量(A)とHO吸着量(B)の質量割合(A/B)が、0.33以上6.00以下であることを特徴とする〔1〕に記載の多孔性配位高分子。
〔3〕〔1〕または〔2〕に記載の多孔性配位高分子を用いたガス検知材。
〔4〕〔1〕または〔2〕に記載の多孔性配位高分子を支持体に担持したガス検知シート。
That is, according to the present invention, the following are provided.
[1] It is represented by the general formula (1), and is characterized by having an acetonitrile adsorption amount of 1.5 wt% or more and 9.5 wt% or less, and a H 2 O adsorption amount of 1.5 wt% or more and 7.0 wt% or less A porous coordination polymer with a low spin state.
Fe x (pyrazine) [Ni 1-y M y (CN) 4 ] ... (1)
(0.93≦x≦1.1, M=at least one selected from Pd and Pt, 0≦y<0.15)
[2] The porous material according to [1], wherein the mass ratio (A/B) of the acetonitrile adsorption amount (A) and the H 2 O adsorption amount (B) is 0.33 or more and 6.00 or less. coordination polymer.
[3] A gas sensing material using the porous coordination polymer described in [1] or [2].
[4] A gas sensing sheet in which the porous coordination polymer according to [1] or [2] is supported on a support.

本発明により、ガス検知感度が良好で、かつ耐湿性に優れた多孔性配位高分子、ガス検知材およびガス検知シートを提供することができる。 According to the present invention, it is possible to provide a porous coordination polymer, a gas sensing material, and a gas sensing sheet that have good gas sensing sensitivity and excellent moisture resistance.

本発明に係る多孔性配位高分子の基本的な化学構造を示す模式図。FIG. 1 is a schematic diagram showing the basic chemical structure of a porous coordination polymer according to the present invention. 実施例2、実施例5、および比較例2の多孔性配位高分子の赤外吸収スペクトル。Infrared absorption spectra of porous coordination polymers of Example 2, Example 5, and Comparative Example 2. 本発明に係るガス検知シートを示す模式図。FIG. 1 is a schematic diagram showing a gas detection sheet according to the present invention.

本発明を実施するための形態(実施形態)につき、図面を参照しながら詳細に説明する。以下の実施形態に記載した内容により本発明が限定されるものではない。 DESCRIPTION OF THE PREFERRED EMBODIMENTS Modes (embodiments) for carrying out the present invention will be described in detail with reference to the drawings. The present invention is not limited to the contents described in the following embodiments.

本実施形態の多孔性配位高分子は、式(1)で表され、
Fe (ピラジン)[Ni1-y(CN)] ・・・(1)
(0.93≦x≦1.1、M=Pd、Ptから選ばれた少なくとも一種、0≦y<0.15)
低スピン状態であり、アセトニトリル吸着量が1.5wt%以上9.5wt%以下、さらにはHO吸着量が1.5wt%以上7.0wt%以下である。
The porous coordination polymer of this embodiment is represented by formula (1),
Fe x (pyrazine) [Ni 1-y M y (CN) 4 ] ... (1)
(0.93≦x≦1.1, M=at least one selected from Pd and Pt, 0≦y<0.15)
It is in a low spin state, and the acetonitrile adsorption amount is 1.5 wt% or more and 9.5 wt% or less, and the H 2 O adsorption amount is 1.5 wt% or more and 7.0 wt% or less.

図1に示すように、本発明の多孔性配位高分子1は、鉄イオン2に、テトラシアノニッケル酸イオン3とピラジン4が自己集合的に規則的に配位してジャングルジム型の骨格が広がった構造を持ち、内部の空間に様々な分子などを吸着することができる。また、ニッケルの一部がパラジウムおよび白金の少なくとも1つで置換されていてもよい。 As shown in FIG. 1, the porous coordination polymer 1 of the present invention has a jungle gym-shaped skeleton in which iron ions 2, tetracyanonickelate ions 3, and pyrazine 4 are regularly coordinated in a self-assembled manner. It has an expanded structure and can adsorb various molecules into the internal space. Further, a portion of nickel may be replaced with at least one of palladium and platinum.

多孔性配位高分子1には、鉄イオンの持つ電子配置が、熱、圧力、分子の吸着などの外部刺激によって高スピン状態と低スピン状態と呼ばれる2つの状態間を変化する、スピンクロスオーバーと呼ばれる現象が見られる。スピン変化は一般に数十ナノ秒と言われており、非常に速い応答速度を持つことが特徴である。 Porous coordination polymer 1 has spin crossover, in which the electron configuration of iron ions changes between two states called a high spin state and a low spin state due to external stimuli such as heat, pressure, and molecular adsorption. A phenomenon called. The spin change is generally said to take several tens of nanoseconds, and is characterized by an extremely fast response speed.

高スピン状態とは、錯体中の鉄イオンのd電子の5つの軌道にフント則に従ってスピン角運動量が最大となるように電子が配置された状態を指し、低スピン状態とは、スピン角運動量が最小となるように電子が配置された状態を指し、それぞれ電子状態や格子間距離が異なるため、2つの状態間で錯体の色や磁性が異なる。すなわち、多孔性配位高分子への分子の吸着によるスピンクロスオーバー現象を利用すれば、特定の分子を素早く検知する検知材として利用することが可能となる。 A high spin state refers to a state in which electrons are arranged in the five orbits of d electrons of iron ions in a complex so that the spin angular momentum is maximized according to Hund's law, and a low spin state is a state in which the spin angular momentum is maximum. Refers to the state in which electrons are arranged to be the minimum, and because the electronic states and interstitial distances are different, the color and magnetism of the complex differ between the two states. That is, by utilizing the spin crossover phenomenon caused by the adsorption of molecules onto porous coordination polymers, it becomes possible to use the material as a sensing material that quickly detects specific molecules.

高スピン状態の多孔性配位高分子は橙色であり、液体窒素などで十分に冷却すると低スピン状態の赤紫色へと変化する。また、アセトニトリルやアクリロニトリルなどの特定の有機化合物のガスに晒されると、ガスを結晶内部に吸着し、低スピン状態となる。低スピン状態で赤紫色の多孔性配位高分子を、高スピン状態を誘起する有機化合物のガスに晒すと、ジャングルジム型の骨格内部にガスを取り込み、スピンクロスオーバー現象により高スピン状態の橙色となる。これらの有機化合物のガスとしては、例えば、有機可燃性ガスや揮発性有機溶剤の蒸気などが挙げられる。すなわち、低スピン状態の多孔性配位高分子は、ジメチルカーボネート(以下、DMC)、ジエチルカーボネート(以下、DEC)およびエチルメチルカーボネート(以下、EMC)などのリチウムイオン二次電池用電解液のガスや、前記電解液が分解して発生するエチレンおよびプロピレンなどのガスが存在する雰囲気において、これらガスを吸着し、高スピン状態の橙色へと変化する。以上のように、色調を視覚で確認することや、多孔性配位高分子の吸着したガスの重量変化を確認することや、多孔性配位高分子内部に吸着したガスを分析することなどにより、ガス検知材として用いることができる。 The porous coordination polymer in a high-spin state is orange in color, and when cooled sufficiently with liquid nitrogen, it changes to a reddish-purple color in a low-spin state. Furthermore, when exposed to a specific organic compound gas such as acetonitrile or acrylonitrile, the gas is adsorbed inside the crystal, resulting in a low spin state. When a porous coordination polymer, which is reddish-purple in a low spin state, is exposed to a gas of an organic compound that induces a high spin state, the gas is taken into the jungle gym-shaped skeleton, and the orange color of the high spin state is caused by a spin crossover phenomenon. becomes. Examples of the gases of these organic compounds include organic combustible gases and vapors of volatile organic solvents. That is, the porous coordination polymer in a low spin state is a gas in an electrolyte for lithium ion secondary batteries such as dimethyl carbonate (hereinafter referred to as DMC), diethyl carbonate (hereinafter referred to as DEC), and ethyl methyl carbonate (hereinafter referred to as EMC). In an atmosphere where gases such as ethylene and propylene generated by decomposition of the electrolytic solution are present, these gases are adsorbed and the color turns orange with a high spin state. As mentioned above, by visually checking the color tone, checking the weight change of the gas adsorbed by the porous coordination polymer, and analyzing the gas adsorbed inside the porous coordination polymer, etc. , can be used as a gas detection material.

本実施形態の多孔性配位高分子の組成については、ICP発光分光分析、炭素硫黄分析および酸素窒素水素分析などを用いることにより確認することができる。 The composition of the porous coordination polymer of this embodiment can be confirmed by using ICP emission spectrometry, carbon-sulfur analysis, oxygen-nitrogen-hydrogen analysis, and the like.

本実施形態の多孔性配位高分子のスピン状態は、超伝導量子干渉型磁束計(SQUID)や振動試料型磁力計(VSM)を用いて、磁場に対する磁化の応答を見ることで確認することができる。 The spin state of the porous coordination polymer of this embodiment can be confirmed by observing the response of magnetization to a magnetic field using a superconducting quantum interference magnetometer (SQUID) or a vibrating sample magnetometer (VSM). I can do it.

本実施形態の多孔性配位高分子に吸着されているガス種に関しては、ダブルショットパイロライザーを備えたガスクロマトグラフ質量分析計などを用いて、発生したガスの質量数を確認して特定することができる。 The gas species adsorbed on the porous coordination polymer of this embodiment can be identified by checking the mass number of the generated gas using a gas chromatograph mass spectrometer equipped with a double-shot pyrolyzer. I can do it.

本実施形態の多孔性配位高分子に吸着されているガス量に関しては、熱重量分析を用いて、アルミニウムパン中に試料を10mg秤量し、リファレンスとして10mgのアルミナ粉末を用いて、窒素ガスフロー中、昇温速度10℃/minの条件にて220℃までの重量減少量より、特定のガスの発生温度域での重量減少量を確認することで、試料の重量あたりのガス吸着量を求めることができる。 Regarding the amount of gas adsorbed on the porous coordination polymer of this embodiment, thermogravimetric analysis was used to weigh 10 mg of the sample in an aluminum pan, use 10 mg of alumina powder as a reference, and measure the nitrogen gas flow. Determine the amount of gas adsorption per weight of the sample by checking the amount of weight loss in a specific gas generation temperature range from the amount of weight loss up to 220 degrees Celsius under the conditions of medium temperature increase rate of 10 degrees Celsius/min. be able to.

本実施形態の多孔性配位高分子が低スピン状態であるということは、温度25℃、湿度40%の環境下において多孔性配位高分子の55%以上が低スピン状態であることを意味する。また、単一粒子内の一部が高スピン状態となっていてもよい。低スピン状態の割合の求め方としては、フーリエ変換赤外分光法(FT-IR:Fourier Transform Infrared Spectroscopy )を用い、以下の測定条件による測定において波数815~830cm-1にある低スピン状態に起因するピークの強度と波数794~814cm-1にある高スピン状態に起因するピークの強度との割合により求める。図2に多孔性配位高分子の赤外吸収スペクトルを示す。
<測定条件>
・装置 : Nicolet i S10(Thermo Scientific社製)
・検知器 : DTGS KBr
・パージ : 窒素ガス
・分解能 : 1cm-1
・積算回数 : 16回
・測定方法 : 減衰全反射(ATR)法
・測定波長 : 4,000~600cm-1
・ATR結晶: ダイヤモンド
The porous coordination polymer of this embodiment being in a low spin state means that 55% or more of the porous coordination polymer is in a low spin state in an environment of a temperature of 25°C and a humidity of 40%. do. Further, a part of a single particle may be in a high spin state. To determine the proportion of low spin states, Fourier Transform Infrared Spectroscopy (FT-IR) was used to determine the proportion of low spin states at wave numbers 815 to 830 cm -1 in measurements under the following measurement conditions. It is determined by the ratio of the intensity of the peak caused by the high spin state at wave numbers 794 to 814 cm -1 . Figure 2 shows the infrared absorption spectrum of the porous coordination polymer.
<Measurement conditions>
・Device: Nicolet i S10 (manufactured by Thermo Scientific)
・Detector: DTGS KBr
・Purge: Nitrogen gas ・Resolution: 1cm -1
・Number of integration: 16 times ・Measurement method: Attenuated total reflection (ATR) method ・Measurement wavelength: 4,000 to 600 cm -1
・ATR crystal: Diamond

本実施形態の多孔性配位高分子は、アセトニトリル吸着量が1.5wt%以上9.5wt%以下であり、さらにはHO吸着量が1.5wt%以上7.0wt%以下である。アセトニトリル吸着量が1.5wt%以上9.5wt%以下の範囲であると低スピン状態が安定となる傾向がみられ、さらにはHO吸着量が1.5wt%以上7.0wt%以下の範囲であると大気中の水分に対して安定化する傾向がみられる。そのため、高湿度環境下においても低スピン状態を維持し、耐湿性が向上すると推察される。HO吸着量が1.5wt%未満の時は耐湿性が不十分となる傾向がみられ、7.0wt%より大きい時は多孔性配位高分子が低スピン状態を維持するのが困難となり、ガス検知感度が低下する傾向がみられる。より好ましいアセトニトリル吸着量は2.0wt%以上8.0wt%以下である。さらにはより好ましいHOの吸着量は2.0wt%以上6.0wt%以下である。 The porous coordination polymer of this embodiment has an acetonitrile adsorption amount of 1.5 wt% or more and 9.5 wt% or less, and a H 2 O adsorption amount of 1.5 wt% or more and 7.0 wt% or less. When the acetonitrile adsorption amount is in the range of 1.5 wt % or more and 9.5 wt% or less, there is a tendency for the low spin state to become stable. Within this range, there is a tendency for it to be stabilized against atmospheric moisture. Therefore, it is presumed that a low spin state is maintained even in a high humidity environment, and moisture resistance is improved. When the amount of H 2 O adsorption is less than 1.5 wt%, moisture resistance tends to be insufficient, and when it is more than 7.0 wt%, it is difficult for the porous coordination polymer to maintain a low spin state. Therefore, there is a tendency for gas detection sensitivity to decrease. A more preferable amount of acetonitrile adsorption is 2.0 wt% or more and 8.0 wt% or less. Furthermore, the adsorption amount of H 2 O is more preferably 2.0 wt% or more and 6.0 wt% or less.

アセトニトリル吸着量の制御方法については特に制限はないが、多孔性配位高分子をアセトニトリル蒸気の充満した容器中での静置、減圧乾燥や大気、窒素、アルゴンおよびそれら混合ガス等の雰囲気中での加熱などの方法がある。また、HO吸着量の制御方法については特に制限はないが、多孔性配位高分子を適切な温度および湿度に設定した容器中での静置、減圧乾燥や大気、窒素、アルゴンおよびそれら混合ガス等の雰囲気中での加熱などの方法がある。 There are no particular restrictions on the method of controlling the amount of acetonitrile adsorbed, but the porous coordination polymer may be left standing in a container filled with acetonitrile vapor, dried under reduced pressure, or placed in an atmosphere of air, nitrogen, argon, or a mixture thereof. There are methods such as heating. There are no particular restrictions on the method of controlling the amount of H 2 O adsorption, but the porous coordination polymer may be allowed to stand still in a container set at an appropriate temperature and humidity, dried under reduced pressure, or exposed to air, nitrogen, argon, etc. There are methods such as heating in an atmosphere of mixed gas or the like.

本実施形態の多孔性配位高分子のアセトニトリル吸着量(A)とHO吸着量(B)の質量割合(A/B)が0.33以上6.00以下であることにより、ガス検知感度が良好で、より優れた耐湿性を有するができる。A/Bが、0.33以上6.00以下の場合、発生ガス分析および熱分析の結果から低温でのアセトニトリルの脱離が抑制され、アセトニトリルが多孔性配位高分子内のより安定な空孔の位置に移動するものと推察される。また、一部のHOが多孔性配位高分子粒子の表面近傍に吸着することにより耐湿性が向上するものと推察される。 Since the mass ratio (A/B) of the acetonitrile adsorption amount (A) and H 2 O adsorption amount (B) of the porous coordination polymer of this embodiment is 0.33 or more and 6.00 or less, gas detection is possible. It has good sensitivity and better moisture resistance. When A/B is 0.33 or more and 6.00 or less, the results of generated gas analysis and thermal analysis show that the desorption of acetonitrile at low temperatures is suppressed, and acetonitrile becomes a more stable vacancy within the porous coordination polymer. It is presumed that it moves to the position of the hole. Further, it is presumed that the moisture resistance is improved by adsorbing some H 2 O near the surface of the porous coordination polymer particles.

本実施形態の多孔性配位高分子の製造方法は、第一に二価の鉄塩と、酸化防止剤と、テトラシアノニッケル酸塩、必要に応じて、さらにテトラシアノパラジウム酸塩および/またはテトラシアノ白金酸塩とを適当な溶媒中で反応させ、中間体を得る。第二に中間体を適当な溶媒に分散させ、ピラジンをこの分散液に加えることで沈殿物が析出し、沈殿物を濾過、乾燥することで多孔性配位高分子を得ることができる。 The method for producing a porous coordination polymer according to the present embodiment includes first adding a divalent iron salt, an antioxidant, a tetracyanonickelate, and optionally a tetracyanopalladate and/or An intermediate is obtained by reacting with tetracyanoplatinate in a suitable solvent. Second, the intermediate is dispersed in a suitable solvent, and pyrazine is added to this dispersion to form a precipitate, and the precipitate is filtered and dried to obtain a porous coordination polymer.

二価の鉄塩としては、硫酸第二鉄・七水和物、硫酸アンモニウム鉄・六水和物などを用いることができる。酸化防止剤としては、L-アスコルビン酸などを用いることができる。テトラシアノニッケル酸塩としては、テトラシアノニッケル酸カリウム・水和物などを用いることができる。テトラシアノパラジウム酸塩としては、テトラシアノパラジウム酸カリウム・水和物などを用いることができる。テトラシアノ白金酸塩としては、テトラシアノ白金酸カリウム・水和物などを用いることができる。 As the divalent iron salt, ferric sulfate heptahydrate, ammonium iron sulfate hexahydrate, etc. can be used. As the antioxidant, L-ascorbic acid and the like can be used. As the tetracyanonickelate, potassium tetracyanonickelate hydrate, etc. can be used. As the tetracyanopalladate, potassium tetracyanopalladate hydrate, etc. can be used. As the tetracyanoplatinate, potassium tetracyanoplatinate hydrate and the like can be used.

溶媒としては、メタノール、エタノール、プロパノール、アセトニトリルおよび水などや、またはこれらの混合溶媒などを使用することができる。 As the solvent, methanol, ethanol, propanol, acetonitrile, water, or a mixed solvent thereof can be used.

本実施形態の多孔性配位高分子をガス検知材として用いることにより、低濃度の対象ガスに対しても、ガス吸着による色調変化や重量変化などを検出することで、温度や湿度環境の影響を大きく受けず、感度良く対象ガスを検知することが可能となる。 By using the porous coordination polymer of this embodiment as a gas detection material, it is possible to detect changes in color tone and weight due to gas adsorption even for low-concentration target gases, thereby detecting the effects of temperature and humidity environments. It becomes possible to detect the target gas with high sensitivity without being affected greatly by the

図3は、本実施形態に係るガス検知シートの模式図である。図3において、ガス検知シート5は、多孔性配位高分子6と支持体7からなる。低スピン状態で赤紫色の多孔性配位高分子は、DECなどのガスを吸着し、赤紫色から橙色へと変化する。以上のように、検知対象ガス存在下において本実施形態のガス検知シート5を用いれば、色調の変化を視覚的に確認することによって、容易にガスの存在を検知することができる。 FIG. 3 is a schematic diagram of the gas detection sheet according to this embodiment. In FIG. 3, the gas detection sheet 5 is composed of a porous coordination polymer 6 and a support 7. The porous coordination polymer, which is reddish-purple in a low spin state, adsorbs a gas such as DEC and changes its color from reddish-purple to orange. As described above, if the gas detection sheet 5 of this embodiment is used in the presence of the gas to be detected, the presence of the gas can be easily detected by visually confirming the change in color tone.

本実施形態のガス検知シートは、面積当たりの多孔性配位高分子の担持量の異なる2つ以上の領域が支持体に形成されていてもよい。面積当たりの多孔性配位高分子の担持量の異なる2つ以上の領域は、支持体の同一面上、もしくは支持体の表面と裏面に形成されていてもよい。面積当たりの多孔性配位高分子の担持量の異なる2つ以上の領域が形成されていることにより、同一条件下でガスを検知する際に、初めに担持量が少ない領域の色調が変化し、変化していない担持量が多い領域との色と比較することで視認性が向上する。さらには、支持体に多孔性配位高分子が担持されていない領域があってもよい。 In the gas detection sheet of this embodiment, two or more regions having different amounts of porous coordination polymer supported per area may be formed on the support. Two or more regions having different amounts of porous coordination polymer supported per area may be formed on the same surface of the support, or on the front and back surfaces of the support. By forming two or more regions with different amounts of porous coordination polymer supported per area, when gas is detected under the same conditions, the color tone of the region with the smaller amount supported changes first. , visibility is improved by comparing the color with that of a region with a large amount of loading that has not changed. Furthermore, the support may have a region where no porous coordination polymer is supported.

支持体7は、特に限定されないが、例えばシリコン基板、金属基板、プラスチック基板、濾紙などのセルロース系厚紙やペーパーフィルターなどを使用することができる。また、支持体の色は、多孔性配位高分子が検知ガスを吸着することによる変化後の色と補色の関係となる色、もしくは白色、灰色および黒色の時に、多孔性配位高分子の色変化の視認性が向上するためより好ましい。さらに、支持体の膜厚は特に限定されないが、ガス検知器の製造時や使用時の取り扱い易さから50~1000μmが好ましい。 The support 7 is not particularly limited, and for example, a silicon substrate, a metal substrate, a plastic substrate, a cellulose-based cardboard such as a filter paper, a paper filter, etc. can be used. In addition, the color of the support is a color that is complementary to the color after the change due to the porous coordination polymer adsorbing the sensing gas, or when it is white, gray, or black, the color of the porous coordination polymer is This is more preferable because the visibility of color change is improved. Furthermore, the film thickness of the support is not particularly limited, but is preferably 50 to 1000 μm from the viewpoint of ease of handling during production and use of the gas detector.

多孔性配位高分子の支持体への担持方法は特に限定されないが、濾過法、スプレー塗布法、刷毛塗布法およびディップコート法などが挙げられる。また、本実施形態のガス検知シートに担持されている多孔性配位高分子の担持量に関しては、蛍光X線分析法の薄膜Fundamental Parametet Methods法を用い、多孔性配位高分子が担持されている領域の10箇所を測定して得られた平均のFe元素の面積当たりの担持量から計算し求める。装置は株式会社リガク製ZSX100eを用い、測定スポット径を3mmΦ(5mmΦSUS製マスクホルダ)にて測定し、支持体のブランク測定値を基準に差分強度で除去して、Fe元素の面積当たりの担持量を算出する。得られたFeの担持量と組成分析により求めた多孔性配位高分子組成式中のFeの含有割合から、多孔性配位高分子の担持量を求めることができる。さらに、ガス検知シートに担持されている多孔性配位高分子の重量あたりのガス吸着量については、同様の方法で作製した支持体に多孔性配位高分子を担持させないブランクのガス検知シートに対して前述の発生ガス分析および熱重量分析を用いて含まれるガスの種類と量を求め、差し引くことにより、求めることができる。 The method for supporting the porous coordination polymer on the support is not particularly limited, and examples include filtration, spray coating, brush coating, and dip coating. In addition, regarding the amount of the porous coordination polymer supported on the gas detection sheet of this embodiment, the porous coordination polymer was It is calculated from the average amount of Fe element supported per area obtained by measuring 10 locations in the area. The device used was ZSX100e manufactured by Rigaku Co., Ltd. The measurement spot diameter was measured with a 3 mmΦ (5 mmΦ SUS mask holder), and the support was removed using the differential intensity based on the blank measurement value of the support to determine the amount of Fe element supported per area. Calculate. The supported amount of the porous coordination polymer can be determined from the obtained supported amount of Fe and the content ratio of Fe in the porous coordination polymer composition formula determined by compositional analysis. Furthermore, regarding the amount of gas adsorbed per weight of the porous coordination polymer supported on the gas detection sheet, the amount of gas adsorption per weight of the porous coordination polymer supported on the gas detection sheet was compared to that of a blank gas detection sheet in which no porous coordination polymer was supported on the support prepared in the same manner. On the other hand, it can be determined by determining the type and amount of gas contained using the above-mentioned generated gas analysis and thermogravimetric analysis, and subtracting it.

本実施形態のガス検知シートを用いることにより、色が変化するまでの時間や色が変化した箇所を確認することで簡易的におおよそのガス濃度やガス発生箇所を特定することが可能となる。 By using the gas detection sheet of this embodiment, it is possible to easily identify the approximate gas concentration and gas generation location by checking the time it takes for the color to change and the location where the color has changed.

以下本発明をさらに詳細な実施例に基づき説明するが、本発明はこれら実施例に限定されるものではない。 The present invention will be described below based on more detailed examples, but the present invention is not limited to these examples.

<実施例1>
(多孔性配位高分子の製造)
硫酸アンモニウム鉄(II)・六水和物0.48g、L-アスコルビン酸0.2gおよびテトラシアノニッケル(II)酸カリウム・一水和物0.3gを蒸留水およびエタノールの混合溶媒240mLの入った三角フラスコ中で撹拌し、沈殿した中間体粒子を回収した。得られた中間体粒子0.2gをアセトニトリル中で分散させ、撹拌しながらピラジン0.14gを20分かけて投入した。撹拌を停止後、沈殿物を吸引濾過し、減圧乾燥することで濾紙上に赤紫色の粉末が得られた。得られた粉末を温度22℃、湿度45%に設定した恒温槽中で30時間保持し、さらに、温度25℃、湿度40%の環境下に1時間静置することにより多孔性配位高分子を製造した。
<Example 1>
(Production of porous coordination polymer)
0.48 g of ammonium iron (II) sulfate hexahydrate, 0.2 g of L-ascorbic acid, and 0.3 g of potassium tetracyanonickel (II) monohydrate were added to 240 mL of a mixed solvent of distilled water and ethanol. The mixture was stirred in an Erlenmeyer flask and precipitated intermediate particles were collected. 0.2 g of the obtained intermediate particles were dispersed in acetonitrile, and 0.14 g of pyrazine was added over 20 minutes while stirring. After stopping the stirring, the precipitate was suction filtered and dried under reduced pressure to obtain a reddish-purple powder on the filter paper. The obtained powder was kept in a constant temperature bath set at a temperature of 22°C and a humidity of 45% for 30 hours, and then left for 1 hour in an environment of a temperature of 25°C and a humidity of 40% to form a porous coordination polymer. was manufactured.

(多孔性配位高分子のスピン状態評価)
得られた多孔性配位高分子について、前述の方法によりスピン状態を評価した。波数815~830cm-1にある低スピン状態に起因するピークの強度と波数794~814cm-1にある高スピン状態に起因するピークの強度より低スピン状態の割合を求めたところ68%であった。
(Evaluation of spin state of porous coordination polymer)
The spin state of the obtained porous coordination polymer was evaluated by the method described above. The percentage of the low spin state was determined from the intensity of the peak due to the low spin state at wave numbers 815 to 830 cm -1 and the intensity of the peak due to the high spin state at wave numbers 794 to 814 cm -1 , and it was found to be 68%. .

(多孔性配位高分子の吸着ガスおよび吸着量測定)
得られた多孔性配位高分子について、ダブルショットパイロライザーを備えたガスクロマトグラフ質量分析計を用いて220℃までに発生したガス成分を確認したところ、アセトニトリルと水のみが検出された。熱重量分析を用いて前述の方法によりガスの吸着量を求めたところ、アセトニトリル吸着量(A)は2.0%、HO吸着量(B)は6.0%であり、質量割合A/B=0.33であった。
(Measurement of adsorbed gas and adsorption amount of porous coordination polymer)
When the obtained porous coordination polymer was checked for gas components generated up to 220° C. using a gas chromatograph mass spectrometer equipped with a double shot pyrolyzer, only acetonitrile and water were detected. When the amount of gas adsorption was determined by the method described above using thermogravimetric analysis, the amount of acetonitrile adsorption (A) was 2.0%, the amount of H 2 O adsorption (B) was 6.0%, and the mass ratio A /B=0.33.

(ガス検知シートの作製)
得られた多孔性配位高分子10mgを35mlのアセトニトリル中に分散させた分散溶液をSUS製バットに入れ、そこに厚さが0.5mmのロールペーパーを浸漬させ、SUS製バットを振動させた後に、1分間静置した。その後、ゆっくり分散溶液からロールペーパーを取り出し、5分間風乾させた後、温度22℃、湿度45%に設定した恒温槽中で30時間保持し、さらに温度25℃、湿度40%の環境下に1時間静置し、ガス検知シートを完成させた。
(Preparation of gas detection sheet)
A dispersion solution in which 10 mg of the obtained porous coordination polymer was dispersed in 35 ml of acetonitrile was placed in a SUS vat, a roll paper with a thickness of 0.5 mm was immersed therein, and the SUS vat was vibrated. Afterwards, it was allowed to stand for 1 minute. Thereafter, the roll paper was slowly taken out from the dispersion solution, air-dried for 5 minutes, kept in a constant temperature bath set at 22°C and 45% humidity for 30 hours, and then placed in an environment of 25°C and 40% humidity for 1 hour. After leaving it for a while, the gas detection sheet was completed.

(ジエチルカーボネートガスの検知試験)
5リットル用テドラーバッグ中に得られた多孔性配位高分子およびガス検知シートを入れ、これに20ppmの濃度となるようにDECガスを含む窒素を送り込んで満たしたところ、20分後に多孔性配位高分子およびガス検知シートが橙色に変化したことを色見本と比較し確認できた。一方で、窒素のみを送り込んだ場合は、色調変化は確認できなった。これにより、多孔性配位高分子もしくはガス検知シートの色調変化を評価することによりDECガスを検知できることが確認された。
(Diethyl carbonate gas detection test)
The obtained porous coordination polymer and gas detection sheet were placed in a 5-liter Tedlar bag, and the bag was filled with nitrogen containing DEC gas to a concentration of 20 ppm. After 20 minutes, the porous coordination polymer It was confirmed by comparison with the color sample that the polymer and gas detection sheet had changed to orange. On the other hand, when only nitrogen was introduced, no change in color tone could be observed. This confirmed that DEC gas can be detected by evaluating the change in color of the porous coordination polymer or gas detection sheet.

(その他のガスの検知)
ジエチルカーボネートの替わりに、エチレン、プロピレン、トルエン、キシレン、アセトン、酢酸エチル、テトラヒドロフラン、メタノール、エタノール、n-プロパノール、イソプロパノール、アンモニア、ジメチルアミン、トリメチルアミン、トリエチルアミン、酢酸、ホルムアルデヒド、アセトアルデヒド、ジエチルエーテル、プロピオン酸エチル、プロピオン酸プロピル、ジオキサン、イソブタン、プロパン、テトラフルオロエタン、ジフルオロメタン、ペンタフルオロエタン、DMCおよびEMCを用いて、同様に多孔性配位高分子およびガス検知シートの色調変化を確認したところ、多孔性配位高分子およびガス検知シートが橙色に変化したことを色見本と比較し確認できた。
(Detection of other gases)
Instead of diethyl carbonate, use ethylene, propylene, toluene, xylene, acetone, ethyl acetate, tetrahydrofuran, methanol, ethanol, n-propanol, isopropanol, ammonia, dimethylamine, trimethylamine, triethylamine, acetic acid, formaldehyde, acetaldehyde, diethyl ether, propion. When ethyl acid, propyl propionate, dioxane, isobutane, propane, tetrafluoroethane, difluoromethane, pentafluoroethane, DMC and EMC were used, the color tone change of the porous coordination polymer and gas detection sheet was similarly confirmed. It was confirmed by comparison with the color sample that the porous coordination polymer and gas detection sheet had changed to orange.

(耐湿性試験)
得られた多孔性配位高分子およびガス検知シートを温度25℃、湿度50%に設定した恒温槽に入れて、50時間経過後、前述のジエチルカーボネートガスの検知試験を行ったところ、20分後に多孔性配位高分子およびガス検知シートが橙色に変化したことを色見本と比較し確認できた。
<実施例2>
(Moisture resistance test)
The obtained porous coordination polymer and gas detection sheet were placed in a constant temperature bath set at a temperature of 25°C and a humidity of 50%, and after 50 hours, the above-mentioned diethyl carbonate gas detection test was performed. Afterwards, it was confirmed by comparison with the color sample that the porous coordination polymer and gas detection sheet had turned orange.
<Example 2>

多孔性配位高分子の製造工程における減圧乾燥後の粉末、およびガス検知シートの作製工程における分散溶液から取り出し、5分間風乾させたロールペーパーを温度23℃、湿度47%に設定した恒温槽中で60時間保持したこと以外は、実施例1と同様にして多孔性配位高分子、およびガス検知シートを作製した。実施例1と同様にして求めたアセトニトリル吸着量、HOの吸着量、A/B値、DECガス検知試験結果および耐湿性試験結果を表1に示す。
<実施例3>
The powder after drying under reduced pressure in the manufacturing process of a porous coordination polymer, and the roll paper taken out from the dispersion solution in the manufacturing process of a gas detection sheet and air-dried for 5 minutes, in a constant temperature bath set at a temperature of 23 ° C. and a humidity of 47%. A porous coordination polymer and a gas sensing sheet were produced in the same manner as in Example 1, except that the mixture was held for 60 hours. Table 1 shows the acetonitrile adsorption amount, H 2 O adsorption amount, A/B value, DEC gas detection test results, and moisture resistance test results obtained in the same manner as in Example 1.
<Example 3>

多孔性配位高分子の製造工程における減圧乾燥後の粉末、およびガス検知シートの作製工程における分散溶液から取り出し、5分間風乾させたロールペーパーを温度23℃、湿度45%に設定した恒温槽中で30時間保持したこと以外は、実施例1と同様にして多孔性配位高分子、およびガス検知シートを作製した。実施例1と同様にして求めたアセトニトリル吸着量、HO吸着量、A/B値、DECガス検知試験結果および耐湿性試験結果を表1に示す。
<実施例4>
The powder after drying under reduced pressure in the manufacturing process of porous coordination polymers, and the roll paper taken out from the dispersion solution in the manufacturing process of gas detection sheets and air-dried for 5 minutes, in a constant temperature bath set at a temperature of 23 ° C. and a humidity of 45%. A porous coordination polymer and a gas sensing sheet were produced in the same manner as in Example 1, except that the mixture was held for 30 hours. Table 1 shows the acetonitrile adsorption amount, H 2 O adsorption amount, A/B value, DEC gas detection test results, and moisture resistance test results obtained in the same manner as in Example 1.
<Example 4>

多孔性配位高分子の製造工程における減圧乾燥後の粉末、およびガス検知シートの作製工程における分散溶液から取り出し、5分間風乾させたロールペーパーを温度22℃、湿度43%に設定した恒温槽中で15時間保持したこと以外は、実施例1と同様にして多孔性配位高分子、およびガス検知シートを作製した。実施例1と同様にして求めたアセトニトリル吸着量、HO吸着量、A/B値、DECガス検知試験結果および耐湿性試験結果を表1に示す。
<実施例5>
Powder after drying under reduced pressure in the manufacturing process of porous coordination polymers, and rolled paper taken out from the dispersion solution in the manufacturing process of gas detection sheets and air-dried for 5 minutes in a constant temperature bath set at a temperature of 22°C and a humidity of 43%. A porous coordination polymer and a gas sensing sheet were produced in the same manner as in Example 1, except that the mixture was held for 15 hours. Table 1 shows the acetonitrile adsorption amount, H 2 O adsorption amount, A/B value, DEC gas detection test results, and moisture resistance test results obtained in the same manner as in Example 1.
<Example 5>

多孔性配位高分子の製造工程における減圧乾燥後の粉末、およびガス検知シートの作製工程における分散溶液から取り出し、5分間風乾させたロールペーパーを温度22℃、湿度43%に設定した恒温槽中で8時間保持したこと以外は、実施例1と同様にして多孔性配位高分子、およびガス検知シートを作製した。実施例1と同様にして求めたアセトニトリル吸着量、HO吸着量、A/B値、DECガス検知試験結果および耐湿性試験結果を表1に示す。
<実施例6>
Powder after drying under reduced pressure in the manufacturing process of porous coordination polymers, and rolled paper taken out from the dispersion solution in the manufacturing process of gas detection sheets and air-dried for 5 minutes in a constant temperature bath set at a temperature of 22°C and a humidity of 43%. A porous coordination polymer and a gas detection sheet were produced in the same manner as in Example 1, except that the mixture was held for 8 hours. Table 1 shows the acetonitrile adsorption amount, H 2 O adsorption amount, A/B value, DEC gas detection test results, and moisture resistance test results obtained in the same manner as in Example 1.
<Example 6>

多孔性配位高分子の製造工程における減圧乾燥後の粉末、およびガス検知シートの作製工程における分散溶液から取り出し、5分間風乾させたロールペーパーを温度22℃、湿度43%に設定した恒温槽中で3時間保持したこと以外は、実施例1と同様にして多孔性配位高分子、およびガス検知シートを作製した。実施例1と同様にして求めたアセトニトリル吸着量、HO吸着量、A/B値、DECガス検知試験結果および耐湿性試験結果を表1に示す。
<実施例7>
Powder after drying under reduced pressure in the manufacturing process of porous coordination polymers, and rolled paper taken out from the dispersion solution in the manufacturing process of gas detection sheets and air-dried for 5 minutes in a constant temperature bath set at a temperature of 22°C and a humidity of 43%. A porous coordination polymer and a gas sensing sheet were produced in the same manner as in Example 1, except that the mixture was held for 3 hours. Table 1 shows the acetonitrile adsorption amount, H 2 O adsorption amount, A/B value, DEC gas detection test results, and moisture resistance test results obtained in the same manner as in Example 1.
<Example 7>

多孔性配位高分子の製造工程における減圧乾燥後の粉末、およびガス検知シートの作製工程における分散溶液から取り出し、5分間風乾させたロールペーパーを温度22℃、湿度40%に設定した恒温槽中で1時間保持したこと以外は、実施例1と同様にして多孔性配位高分子、およびガス検知シートを作製した。実施例1と同様にして求めたアセトニトリル吸着量、HO吸着量、A/B値、DECガス検知試験結果および耐湿性試験結果を表1に示す。
<実施例8>
The powder after drying under reduced pressure in the manufacturing process of porous coordination polymers, and the roll paper taken out from the dispersion solution in the manufacturing process of gas detection sheets and air-dried for 5 minutes, in a constant temperature bath set at a temperature of 22 ° C. and a humidity of 40%. A porous coordination polymer and a gas detection sheet were produced in the same manner as in Example 1, except that the mixture was held for 1 hour. Table 1 shows the acetonitrile adsorption amount, H 2 O adsorption amount, A/B value, DEC gas detection test results, and moisture resistance test results obtained in the same manner as in Example 1.
<Example 8>

多孔性配位高分子の製造工程における減圧乾燥後の粉末、およびガス検知シートの作製工程における分散溶液から取り出し、5分間風乾させたロールペーパーを温度21℃、湿度42%に設定した恒温槽中で15時間保持したこと以外は、実施例1と同様にして多孔性配位高分子、およびガス検知シートを作製した。実施例1と同様にして求めたアセトニトリル吸着量、HO吸着量、A/B値、DECガス検知試験結果および耐湿性試験結果を表1に示す。
<比較例1>
The powder after drying under reduced pressure in the manufacturing process of a porous coordination polymer, and the roll paper taken out from the dispersion solution in the manufacturing process of a gas detection sheet and air-dried for 5 minutes, in a constant temperature bath set at a temperature of 21°C and a humidity of 42%. A porous coordination polymer and a gas sensing sheet were produced in the same manner as in Example 1, except that the mixture was held for 15 hours. Table 1 shows the acetonitrile adsorption amount, H 2 O adsorption amount, A/B value, DEC gas detection test results, and moisture resistance test results obtained in the same manner as in Example 1.
<Comparative example 1>

多孔性配位高分子の製造工程における減圧乾燥後の粉末、およびガス検知シートの作製工程における分散溶液から取り出し、5分間風乾させたロールペーパーを温度30℃、湿度60%に設定した恒温槽中で100時間保持したこと以外は、実施例1と同様にして多孔性配位高分子、およびガス検知シートを作製した。実施例1と同様にして求めたアセトニトリル吸着量、HO吸着量、A/B値、DECガス検知試験結果および耐湿性試験結果を表1に示す。
<比較例2>
Powder after drying under reduced pressure in the manufacturing process of porous coordination polymers, and rolled paper taken out from the dispersion solution in the manufacturing process of gas detection sheets and air-dried for 5 minutes in a constant temperature bath set at a temperature of 30°C and humidity of 60%. A porous coordination polymer and a gas detection sheet were produced in the same manner as in Example 1, except that the mixture was held for 100 hours. Table 1 shows the acetonitrile adsorption amount, H 2 O adsorption amount, A/B value, DEC gas detection test results, and moisture resistance test results obtained in the same manner as in Example 1.
<Comparative example 2>

多孔性配位高分子の製造工程における減圧乾燥後の粉末、およびガス検知シートの作製工程における分散溶液から取り出し、5分間風乾させたロールペーパーを温度30℃、湿度55%に設定した恒温槽中で200時間保持したこと以外は、実施例1と同様にして多孔性配位高分子、およびガス検知シートを作製した。実施例1と同様にして求めたアセトニトリル吸着量、HO吸着量、A/B値、DECガス検知試験結果および耐湿性試験結果を表1に示す。
<比較例3>
Powder after drying under reduced pressure in the manufacturing process of porous coordination polymers, and roll paper taken out from the dispersion solution in the manufacturing process of gas detection sheets and air-dried for 5 minutes in a constant temperature bath set at a temperature of 30 ° C. and a humidity of 55%. A porous coordination polymer and a gas sensing sheet were produced in the same manner as in Example 1, except that the mixture was held for 200 hours. Table 1 shows the acetonitrile adsorption amount, H 2 O adsorption amount, A/B value, DEC gas detection test results, and moisture resistance test results obtained in the same manner as in Example 1.
<Comparative example 3>

多孔性配位高分子の製造工程における減圧乾燥後の粉末、およびガス検知シートの作製工程における分散溶液から取り出し、5分間風乾させたロールペーパーを温度25℃、湿度40%の環境下で1時間保持したこと以外は、実施例1と同様にして多孔性配位高分子、およびガス検知シートを作製した。実施例1と同様にして求めたアセトニトリル吸着量、HO吸着量、A/B値、DECガス検知試験結果および耐湿性試験結果を表1に示す。 The powder after drying under reduced pressure in the manufacturing process of porous coordination polymers and the roll paper taken out from the dispersion solution in the manufacturing process of gas sensing sheets and air-dried for 5 minutes were dried in an environment of 25°C and 40% humidity for 1 hour. A porous coordination polymer and a gas detection sheet were produced in the same manner as in Example 1, except that the conditions were maintained. Table 1 shows the acetonitrile adsorption amount, H 2 O adsorption amount, A/B value, DEC gas detection test results, and moisture resistance test results obtained in the same manner as in Example 1.

Figure 0007347125000001
Figure 0007347125000001

(多孔性配位高分子のスピン状態評価)
実施例2~8および比較例1~3の多孔性配位高分子について、実施例1と同様に低スピン状態の割合を求めた。実施例2~8および比較例3の多孔性配位高分子の低スピン状態の割合は55%以上であった。比較例1および2の多孔性配位高分子の低スピン状態の割合はそれぞれ3%と8%であった。
(Evaluation of spin state of porous coordination polymer)
For the porous coordination polymers of Examples 2 to 8 and Comparative Examples 1 to 3, the proportion of low spin states was determined in the same manner as in Example 1. The proportion of the low spin state of the porous coordination polymers of Examples 2 to 8 and Comparative Example 3 was 55% or more. The proportions of the low spin state in the porous coordination polymers of Comparative Examples 1 and 2 were 3% and 8%, respectively.

(ジエチルカーボネートガスの検知試験)
実施例2~8および比較例1~3の多孔性配位高分子およびガス検知シートについて、実施例1と同様にDECガスによる検知試験を行った。実施例2の多孔性配位高分子およびガス検知シートについて、28分後に橙色に変化したことを色見本と比較し確認できた。実施例3~8および比較例3の多孔性配位高分子およびガス検知シートについて、20~23分後に橙色に変化したことを色見本と比較し確認できた。比較例1および2の多孔性配位高分子およびガス検知シートについては試験前にすでに橙色の色見本に近い色を呈しており、60分経過後も色の変化を視認することが出来なかった。
(Diethyl carbonate gas detection test)
A detection test using DEC gas was conducted in the same manner as in Example 1 for the porous coordination polymers and gas detection sheets of Examples 2 to 8 and Comparative Examples 1 to 3. It was confirmed by comparison with the color sample that the porous coordination polymer and gas detection sheet of Example 2 changed to orange after 28 minutes. It was confirmed by comparison with the color sample that the porous coordination polymers and gas detection sheets of Examples 3 to 8 and Comparative Example 3 changed to orange after 20 to 23 minutes. The porous coordination polymers and gas detection sheets of Comparative Examples 1 and 2 had already exhibited a color close to the orange color sample before the test, and no change in color was visible even after 60 minutes had passed. .

(耐候性試験)
実施例2~8および比較例1~3の多孔性配位高分子およびガス検知シートについて、実施例1と同様に耐湿性試験を行った。実施例2の多孔性配位高分子およびガス検知シートについて、DECガスの検知試験の結果、29分後に橙色に変化したことを色見本と比較し確認できた。実施例3~8の多孔性配位高分子およびガス検知シートについて、DECガスの検知試験の結果、20~25分後に橙色に変化したことを色見本と比較し確認できた。比較例1~3の多孔性配位高分子およびガス検知シートについては、温度25℃、湿度50%に設定した恒温槽で50時間経過後に橙色の色見本に近い色を呈しており、DECガスの検知試験の結果、60分経過後も色の変化を視認することが出来なかった。
(Weather resistance test)
A moisture resistance test was conducted in the same manner as in Example 1 for the porous coordination polymers and gas detection sheets of Examples 2 to 8 and Comparative Examples 1 to 3. Regarding the porous coordination polymer and gas detection sheet of Example 2, as a result of a DEC gas detection test, it was confirmed by comparison with a color sample that the color changed to orange after 29 minutes. As a result of a DEC gas detection test for the porous coordination polymers and gas detection sheets of Examples 3 to 8, it was confirmed that the color changed to orange after 20 to 25 minutes by comparison with a color sample. The porous coordination polymers and gas detection sheets of Comparative Examples 1 to 3 exhibited a color close to the orange color sample after 50 hours in a constant temperature bath set at a temperature of 25°C and a humidity of 50%. As a result of the detection test, no color change could be visually recognized even after 60 minutes.

<実施例9~18および比較例4~6>
表2記載の組成となるように硫酸アンモニウム鉄(II)・六水和物、テトラシアノニッケル(II)酸カリウム・一水和物、テトラシアノパラジウム酸カリウム・水和物およびテトラシアノ白金酸カリウム・水和物を秤量した以外は、実施例1と同様にして求めたアセトニトリル吸着量、HO吸着量、A/B値、DECガス検知試験結果および耐湿性試験結果を表2に示す。
<Examples 9 to 18 and Comparative Examples 4 to 6>
Ammonium iron(II) sulfate hexahydrate, potassium tetracyanonickel(II) monohydrate, potassium tetracyanopalladate hydrate, and potassium tetracyanoplatinate water so as to have the compositions listed in Table 2. Table 2 shows the acetonitrile adsorption amount, H 2 O adsorption amount, A/B value, DEC gas detection test results, and moisture resistance test results obtained in the same manner as in Example 1, except that the hydrate was weighed.

Figure 0007347125000002
Figure 0007347125000002

(多孔性配位高分子のスピン状態評価)
実施例9~18および比較例4~6の多孔性配位高分子について、実施例1と同様に低スピン状態の割合を求めた。実施例9~18の多孔性配位高分子の低スピン状態の割合は55%以上であった。比較例4~6の多孔性配位高分子の低スピン状態の割合はそれぞれ12%、6%と5%であった。
(Evaluation of spin state of porous coordination polymer)
For the porous coordination polymers of Examples 9 to 18 and Comparative Examples 4 to 6, the proportion of low spin states was determined in the same manner as in Example 1. The proportion of the low spin state of the porous coordination polymers of Examples 9 to 18 was 55% or more. The proportions of the low spin state in the porous coordination polymers of Comparative Examples 4 to 6 were 12%, 6%, and 5%, respectively.

(ジエチルカーボネートガスの検知試験)
実施例9~18および比較例4~6の多孔性配位高分子およびガス検知シートについて、実施例1と同様にジエチルカーボネートガスによる検知試験を行った。実施例9および12~17の多孔性配位高分子およびガス検知シートについて、21~24分後に橙色に変化したことを色見本と比較し確認できた。実施例10、11および18の多孔性配位高分子およびガス検知シートについて、DECガスの検知試験の結果、28~30分後に橙色に変化したことを色見本と比較し確認できた。比較例4~6の多孔性配位高分子およびガス検知シートについては試験前にすでに橙色の色見本に近い色を呈しており、60分経過後も色の変化を視認することが出来なかった。
(Diethyl carbonate gas detection test)
A detection test using diethyl carbonate gas was conducted in the same manner as in Example 1 for the porous coordination polymers and gas detection sheets of Examples 9 to 18 and Comparative Examples 4 to 6. It was confirmed by comparison with the color sample that the porous coordination polymers and gas detection sheets of Examples 9 and 12 to 17 turned orange after 21 to 24 minutes. As a result of a DEC gas detection test for the porous coordination polymers and gas detection sheets of Examples 10, 11, and 18, it was confirmed by comparison with the color sample that the color changed to orange after 28 to 30 minutes. The porous coordination polymers and gas detection sheets of Comparative Examples 4 to 6 had already exhibited a color close to the orange color sample before the test, and no change in color was visible even after 60 minutes had passed. .

(耐候性試験)
実施例9~18および比較例4~6の多孔性配位高分子およびガス検知シートについて、実施例1と同様に耐湿性試験を行った。実施例9および12~16の多孔性配位高分子およびガス検知シートについて、DECガスの検知試験の結果、22~25分後に橙色に変化したことを色見本と比較し確認できた。実施例10、11、17および18の多孔性配位高分子およびガス検知シートについて、DECガスの検知試験の結果、29~32分後に橙色に変化したことを色見本と比較し確認できた。比較例4~6の多孔性配位高分子およびガス検知シートについては、温度25℃、湿度50%に設定した恒温槽で50時間経過後に橙色の色見本に近い色を呈しており、DECガスの検知試験の結果、60分経過後も色の変化を視認することが出来なかった。
(Weather resistance test)
A moisture resistance test was conducted in the same manner as in Example 1 for the porous coordination polymers and gas detection sheets of Examples 9 to 18 and Comparative Examples 4 to 6. As a result of a DEC gas detection test for the porous coordination polymers and gas detection sheets of Examples 9 and 12 to 16, it was confirmed by comparison with the color sample that the color changed to orange after 22 to 25 minutes. As a result of the DEC gas detection test for the porous coordination polymers and gas detection sheets of Examples 10, 11, 17, and 18, it was confirmed by comparison with the color sample that the color changed to orange after 29 to 32 minutes. The porous coordination polymers and gas detection sheets of Comparative Examples 4 to 6 exhibited a color close to the orange color sample after 50 hours in a constant temperature bath set at a temperature of 25°C and a humidity of 50%. As a result of the detection test, no color change could be visually recognized even after 60 minutes.

以上の結果から、実施例の多孔性配位高分子は優れたガス検知性能を有し、かつ優れた耐湿性を有したガス検知材として用いることができる。また、実施例の多孔性配位高分子を用いて作製したガス検知材シートは耐湿性に優れ、かつ感度良くガス検知することができる。 From the above results, the porous coordination polymer of the example has excellent gas detection performance and can be used as a gas detection material having excellent moisture resistance. Further, the gas sensing material sheet produced using the porous coordination polymer of the example has excellent moisture resistance and can detect gases with high sensitivity.

1…多孔性配位高分子
2…鉄イオン
3…テトラシアノニッケル酸イオン
4…ピラジン
5…ガス検知シート
6…多孔性配位高分子
7…支持体
1...Porous coordination polymer 2...Iron ion 3...Tetracyanonickelate ion 4...Pyrazine 5...Gas detection sheet 6...Porous coordination polymer 7...Support

Claims (4)

一般式(1)で表され、アセトニトリルおよびH Oが吸着している多孔性配位高分子であり、アセトニトリル吸着量が1.5~9.5wt%、さらにはHO吸着量が1.5~7.0wt%であることを特徴とする低スピン状態の多孔性配位高分子。
Fe (ピラジン)[Ni1-y(CN)] ・・・(1)
(0.93≦x≦1.1、M=Pd、Ptから選ばれた少なくとも一種、0≦y<0.15)
It is a porous coordination polymer represented by the general formula (1) in which acetonitrile and H 2 O are adsorbed, and the amount of acetonitrile adsorbed is 1.5 to 9.5 wt%, and furthermore, the amount of H 2 O adsorbed is 1. A porous coordination polymer in a low spin state, characterized in that the content is .5 to 7.0 wt%.
Fe x (pyrazine) [Ni 1-y M y (CN) 4 ] ... (1)
(0.93≦x≦1.1, M=at least one selected from Pd and Pt, 0≦y<0.15)
アセトニトリル吸着量(A)とHO吸着量(B)の質量割合(A/B)が、0.33以上6.00以下であることを特徴とする請求項1記載の多孔性配位高分子。 The porous coordination height according to claim 1, wherein the mass ratio (A/B) of the acetonitrile adsorption amount (A) and the H 2 O adsorption amount (B) is 0.33 or more and 6.00 or less. molecule. 請求項1または2記載の多孔性配位高分子を用いたガス検知材。 A gas sensing material using the porous coordination polymer according to claim 1 or 2. 請求項1または2記載の多孔性配位高分子を支持体に担持したガス検知シート。 A gas sensing sheet comprising the porous coordination polymer according to claim 1 or 2 supported on a support.
JP2019198085A 2019-10-31 2019-10-31 Porous coordination polymers, gas sensing materials and gas sensing sheets Active JP7347125B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019198085A JP7347125B2 (en) 2019-10-31 2019-10-31 Porous coordination polymers, gas sensing materials and gas sensing sheets

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019198085A JP7347125B2 (en) 2019-10-31 2019-10-31 Porous coordination polymers, gas sensing materials and gas sensing sheets

Publications (2)

Publication Number Publication Date
JP2021070647A JP2021070647A (en) 2021-05-06
JP7347125B2 true JP7347125B2 (en) 2023-09-20

Family

ID=75712424

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019198085A Active JP7347125B2 (en) 2019-10-31 2019-10-31 Porous coordination polymers, gas sensing materials and gas sensing sheets

Country Status (1)

Country Link
JP (1) JP7347125B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020165958A (en) * 2019-03-26 2020-10-08 Tdk株式会社 Ammonia sensing material and ammonia detector

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016047232A1 (en) 2014-09-25 2016-03-31 Tdk株式会社 Gas detection material, gas detection tape, and lithium ion secondary battery
JP2017039674A (en) 2015-08-21 2017-02-23 Tdk株式会社 Porous coordination polymer, gas detection material and lithium ion secondary battery with gas detection material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016047232A1 (en) 2014-09-25 2016-03-31 Tdk株式会社 Gas detection material, gas detection tape, and lithium ion secondary battery
JP2017039674A (en) 2015-08-21 2017-02-23 Tdk株式会社 Porous coordination polymer, gas detection material and lithium ion secondary battery with gas detection material

Also Published As

Publication number Publication date
JP2021070647A (en) 2021-05-06

Similar Documents

Publication Publication Date Title
JP6645307B2 (en) Gas detector and electrochemical device equipped with gas detector
Kim et al. Au@ ZIF-8 SERS paper for food spoilage detection
Liu et al. In situ growth of continuous thin metal–organic framework film for capacitive humidity sensing
US10056652B2 (en) Porous coordination polymer, gas detecting material and lithium ion secondary battery having the same
DeCoste et al. The effect of water adsorption on the structure of the carboxylate containing metal–organic frameworks Cu-BTC, Mg-MOF-74, and UiO-66
Guo et al. A high-sensitive room temperature gas sensor based on cobalt phthalocyanines and reduced graphene oxide nanohybrids for the ppb-levels of ammonia detection
Yeung et al. Strain-based chemical sensing using metal–organic framework nanoparticles
Davoodi et al. Cobalt metal–organic framework-based ZIF-67 for the trace determination of herbicide molinate by ion mobility spectrometry: investigation of different morphologies
Kumar et al. Highly sensitive chemo-resistive ammonia sensor based on dodecyl benzene sulfonic acid doped polyaniline thin film
JP7347125B2 (en) Porous coordination polymers, gas sensing materials and gas sensing sheets
US10222358B2 (en) Gas detection sheet
Sel et al. NH3 gas sensing applications of metal organic frameworks
Lu et al. A highly selective and fast-response photoluminescence humidity sensor based on F− decorated NH 2-MIL-53 (Al) nanorods
Saini et al. Phthalocyanine based nanowires and nanoflowers as highly sensitive room temperature Cl 2 sensors
Hu et al. Nondestructive Monitoring of Kiwi Ripening Process Using Colorimetric Ethylene Sensor.
Tian et al. Synthesis of large and uniform Cu 3 TCPP truncated quadrilateral nano-flake and its humidity sensing properties
WO2017188340A1 (en) Method for measuring concentration of rarefied gas
WO2019146564A1 (en) Gas detection sheet, and electrochemical element comprising gas detection sheet
Mokrushin et al. Effect of platinum nanoparticles on the chemoresistive gas sensitive properties of the ZnO/Pt composite
Samanta et al. Sensing of higher alcohols and selective sensing of iso-amyl alcohol by poly (o-phenylenediamine) nanofiber
Wang et al. Hydrophobic metal organic framework for enhancing performance of acoustic wave formaldehyde sensor based on polyethyleneimine and bacterial cellulose nanofilms
Zor et al. QCM humidity sensors based on organic/inorganic nanocomposites of water soluble-conductive poly (diphenylamine sulfonic acid)
US20220324882A1 (en) Functionalized metals, syntheses thereof, and uses thereof
Shi et al. [Fe (CN) 6] 4− decorated mesoporous gelatin thin films for colorimetric detection and as sorbents of heavy metal ions
Hirayama et al. Colorimetric response to mercury-induced abstraction of triethylene glycol ligands from a gold nanoparticle surface

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220704

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230425

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230615

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20230615

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230808

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230821

R150 Certificate of patent or registration of utility model

Ref document number: 7347125

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150