JP7344849B2 - Durability evaluation method and durability evaluation device of waterproof coating film - Google Patents

Durability evaluation method and durability evaluation device of waterproof coating film Download PDF

Info

Publication number
JP7344849B2
JP7344849B2 JP2020115659A JP2020115659A JP7344849B2 JP 7344849 B2 JP7344849 B2 JP 7344849B2 JP 2020115659 A JP2020115659 A JP 2020115659A JP 2020115659 A JP2020115659 A JP 2020115659A JP 7344849 B2 JP7344849 B2 JP 7344849B2
Authority
JP
Japan
Prior art keywords
coating film
waterproof coating
graph
relationship
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020115659A
Other languages
Japanese (ja)
Other versions
JP2022013241A (en
Inventor
環 和田
大輔 藤井
瑞恵 澤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP2020115659A priority Critical patent/JP7344849B2/en
Publication of JP2022013241A publication Critical patent/JP2022013241A/en
Application granted granted Critical
Publication of JP7344849B2 publication Critical patent/JP7344849B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Description

特許法第30条第2項適用 日本建築学会大会学術講演梗概集(北陸)2019年9月、第1295~1296頁Application of Article 30, Paragraph 2 of the Patent Act Architectural Institute of Japan Conference Academic Lecture Abstracts (Hokuriku) September 2019, pp. 1295-1296

本発明は、防水塗膜の耐久性評価方法及び耐久性評価装置に関し、特に、現実の環境下にある建物に形成される防水塗膜の耐久性評価方法及び耐久性評価装置に関する。 The present invention relates to a method and device for evaluating the durability of waterproof coatings, and particularly to a method and device for evaluating the durability of waterproof coatings formed on buildings in real environments.

建物においては、コンクリート躯体の目地やひび割れからの漏水を防止するために、従来、建物の表面に防水塗膜を塗布することにより防水がなされてきた。しかし、防水塗膜が塗布された場合においても、目地部やひび割れ部の伸縮変動によって目地やひび割れ直上の防水塗膜に繰り返しの変形がかかり、防水塗膜に亀裂が生じるという問題があった。そのため、防水塗膜は建物の寿命に大きな影響を与えるものであり、十分な延伸性や機械的強度が要請されるとともに、建物の寿命を評価する上で防水塗膜の耐久性を正確に評価することが求められる。 In buildings, in order to prevent water leakage from joints and cracks in concrete frames, waterproofing has conventionally been achieved by applying a waterproof coating to the surface of the building. However, even when a waterproof coating film is applied, there is a problem in that the waterproof coating film directly above the joints or cracks is repeatedly deformed due to expansion and contraction changes in the joints and cracks, resulting in cracks in the waterproof coating film. Therefore, waterproof coatings have a significant impact on the lifespan of buildings, and are required to have sufficient extensibility and mechanical strength, as well as accurate evaluation of the durability of waterproof coatings in evaluating the lifespan of buildings. are required to do so.

塗膜の評価方法として、非特許文献1には、主に鉄筋コンクリート造建物の屋根及び外壁などの防水工事に用いる防水塗膜について、引張試験による伸び率や破断強度の機械的物性によって評価されることが記載されている。また、非特許文献2には、コンクリート構造物の補修に使用する表面被覆材について、ひび割れ追従性試験方法によって評価することが記載されている。ここで、ひび割れ追従性とは、表面被覆材がその延伸性によって、コンクリートのひび割れとは無関係にその被覆性を担保する性能のことをいう。 As a method for evaluating paint films, Non-Patent Document 1 states that waterproof paint films mainly used for waterproofing work on roofs and outer walls of reinforced concrete buildings are evaluated by mechanical properties such as elongation rate and breaking strength in a tensile test. It is stated that. Furthermore, Non-Patent Document 2 describes that surface covering materials used for repairing concrete structures are evaluated by a crack followability test method. Here, the crack followability refers to the ability of the surface covering material to ensure coverage regardless of cracks in the concrete due to its extensibility.

上記の非特許文献1や非特許文献2の塗膜の評価方法は、主として1回の引張荷重によって機械的特性を評価するものであるのに対し、繰り返しの荷重をかけて疲労耐久性を評価することもなされてきた。非特許文献3には、屋根防水材料において、被膜材料が下地の不連続部の動きにより疲労して破断する問題の指摘を受けて、被膜のシート材が下地板の中央部の不連続部の上となるように接着又は塗布された試験体を、疲労試験装置に掛けて繰り返しの動き(ムーブメント)を与えて、シート状材料又は塗布して用いる液状材料の硬化物(塗膜)の疲労に対する抵抗性を評価するための試験方法の規定が記載されている。また、非特許文献4には、防水層下地の接合部、または下地に発生するクラック(ひび割れ)の動きに対する抵抗性を評価する疲労試験方法が記載されている。 The coating film evaluation methods described in Non-Patent Document 1 and Non-Patent Document 2 above mainly evaluate mechanical properties using a single tensile load, whereas fatigue durability is evaluated by applying repeated loads. It has also been done. Non-Patent Document 3 states that in response to the problem of roof waterproofing materials in which the coating material fatigues and breaks due to the movement of the discontinuous part of the base plate, the sheet material of the coating is broken at the discontinuous part in the center of the base plate. The test specimen, which is glued or coated with the top side facing upwards, is placed in a fatigue testing device and given repeated movements (movement) to test the fatigue resistance of the cured product (coating film) of the sheet-like material or the liquid material used by coating. It contains specifications for test methods for evaluating resistance. Furthermore, Non-Patent Document 4 describes a fatigue test method for evaluating resistance to movement of cracks generated at the joints of the waterproof layer base or the base.

JIS A 6021:2011「建築用塗膜防水材」(財団法人日本規格協会)JIS A 6021:2011 “Waterproof coating materials for construction” (Japan Standards Association) JSCE-K532-1999「コンクリート標準示方書[標準編]」2007年制定(公益社団法人土木学会)JSCE-K532-1999 “Concrete Standard Specification [Standard Edition]” established in 2007 (Japan Society of Civil Engineers) JIS A 1436「建築用被膜上材料の下地不連続部における耐疲労性試験方法」(財団法人日本規格協会)JIS A 1436 “Fatigue resistance test method for discontinuous base materials of architectural coating materials” (Japanese Standards Association) JASS8 T-501 メンブレン防水材の性能評価試験方法 3.3疲労試験(建築工事標準仕様書・同解説 防水工事 日本建築学会)JASS8 T-501 Performance evaluation test method for membrane waterproofing materials 3.3 Fatigue test (Architectural work standard specifications/commentary, Waterproofing work, Architectural Institute of Japan)

上記非特許文献1~4に記載された塗膜の評価方法は、塗膜の強度・延伸性・疲労に対する抵抗性などの機械的物性から塗膜の耐久性を評価しようとするものではあるが、いずれも、温度や荷重などの試験条件と実環境との関係性が明確でないため、様々な要素が絡む現実の環境下にある建物に形成される防水塗膜の耐久性を評価するものではない。しかしながら、現実の建物は、それぞれ異なる環境下にあり、建物に形成された塗膜の耐久性(寿命)は、環境の影響を受けることで、同じ種類の塗膜であっても異なる。したがって、従来の評価手法では、現実の建物に形成された防水塗膜の耐久性を正確に評価することができなかった。 The coating film evaluation methods described in Non-Patent Documents 1 to 4 above attempt to evaluate the durability of the coating film from mechanical properties such as strength, extensibility, and resistance to fatigue. In both of these methods, the relationship between test conditions such as temperature and load and the actual environment is not clear, so they cannot evaluate the durability of waterproof coatings formed on buildings in the actual environment where various factors are involved. do not have. However, actual buildings are in different environments, and the durability (lifespan) of paint films formed on buildings differs even for the same type of paint film due to the influence of the environment. Therefore, conventional evaluation methods have not been able to accurately evaluate the durability of waterproof coatings formed on actual buildings.

本発明は、現実の環境下にある建物に形成される防水塗膜の耐久性を環境下ごとに評価する耐久性評価方法及び耐久性評価装置を提供することを目的とする。 An object of the present invention is to provide a durability evaluation method and a durability evaluation device for evaluating the durability of a waterproof coating film formed on a building in a real environment for each environment.

上記の課題を解決するため、本発明の防水塗膜の耐久性評価方法においては、特定の建物に形成される防水塗膜の耐久性の評価方法であって、前記防水塗膜のひび割れ追従性試験により、1回の荷重を受けて前記防水塗膜が破断する変動幅を求めるステップ1と、前記防水塗膜の疲労試験により、変動幅と所定の繰り返し荷重を受けて破断に至る破断回数との関係を求めるステップ2と、前記ステップ1及びステップ2で得られる結果に基づいて、変動幅と、破断回数が1回の場合も含まれる破断回数との関係についてのS-N図を作成するステップ3と、前記特定の建物に形成される防水塗膜が、前記特定の建物における1年間のムーブメントから所定の変動幅の荷重をni回受けるものとするとき、前記ステップ3で求めたS-N図から、前記所定の変動幅に対する、破断に至る破断回数Niを求め、次の式(1)により、前記特定の建物に形成される防水塗膜の推定耐久年数Yを求めるステップ4と、を含む、防水塗膜の耐久性評価方法であることを特徴とする。以下において、上記の防水塗膜の耐久性評価方法を第1の発明の評価方法と呼ぶ。
[数1]

Y=1/(Σni/Ni) ・・・式(1)
In order to solve the above-mentioned problems, the durability evaluation method of a waterproof coating film of the present invention is a method for evaluating the durability of a waterproof coating film formed on a specific building, which comprises: Step 1: determining the fluctuation range at which the waterproof coating film breaks under one load through a test, and determining the fluctuation range and the number of times the waterproof coating will break under a predetermined repeated load through a fatigue test of the waterproof coating film. Based on the results obtained in Step 1 and Step 2, create an SN diagram for the relationship between the fluctuation range and the number of breaks, including the case where the number of breaks is one. Step 3: S-- Step 4: from the N diagram, calculate the number of breaks Ni for the predetermined fluctuation range leading to breakage, and use the following equation (1) to calculate the estimated durability Y of the waterproof coating film formed on the specific building; The present invention is characterized by being a durability evaluation method of a waterproof coating film. Hereinafter, the above method for evaluating the durability of a waterproof coating film will be referred to as the evaluation method of the first invention.
[Number 1]

Y=1/(Σni/Ni) ...Formula (1)

この第1の発明の評価方法は、特定の建物の現に建造されている場所の現実の環境下における1年間のムーブメントから、前記特定の建物に形成される防水塗膜がNi回受ければ破断する所定の変動幅の荷重をni回(i=1,2,3・・・・)受けるものであることを勘案している。したがって、単に、塗膜の耐久性(耐久年数)を実験室での実験によって評価するものではなく、特定の建物に形成される防水塗膜の現実の環境下での耐久性(耐久年数)を評価するものであり、従来の評価方法では得られない正確な評価結果を得ることができるものである。 The evaluation method of the first invention is such that the waterproof coating film formed on the specific building is broken if it is subjected to Ni times of movement over a period of one year under the actual environment of the location where the specific building is currently being constructed. It is taken into consideration that the load is subjected to a load having a predetermined fluctuation range ni times (i=1, 2, 3, . . . ). Therefore, the durability (durability) of a paint film is not simply evaluated through laboratory experiments, but rather the durability (durability) of a waterproof paint film formed on a specific building under the actual environment. It is an evaluation method that can obtain accurate evaluation results that cannot be obtained with conventional evaluation methods.

また、上記の第1の発明の評価方法においては、変動幅と破断回数との関係についてのS-N図に、破断回数が1回の場合のデータも含まれる。通常の機械装置や器具等の疲労破壊試験においては、1回の荷重を受けて破断に至るような大きな荷重が掛かることは想定されていないため、S-N図に破断回数が1回の場合のデータを含める意義もない。しかし、建物においては、自然環境下で地震や台風・洪水などによって1~数回の荷重で塗膜が破断に至るような大きな荷重を受けることが当然に起こり得る。したがって、1~数回の荷重で塗膜が破断に至るような大きな荷重を受けた場合における正確なデータも重要であるといえる。したがって、本発明の上記の評価方法において、ステップ1で防水塗膜のひび割れ追従性試験により、1回の荷重を受けて前記防水塗膜が破断する変動幅を求め、このデータをS-N図に取り込むことは、自然環境下で荷重を受ける建物に形成されている塗膜に特有な事項であるといえる。 Furthermore, in the evaluation method of the first invention described above, the SN diagram regarding the relationship between the fluctuation range and the number of breaks includes data when the number of breaks is one. In normal fatigue fracture tests of mechanical devices and instruments, it is not assumed that a load so large as to cause a fracture will be applied once, so if the number of fractures is one in the S-N diagram. There is no point in including this data. However, it is natural for buildings to be subjected to large loads such as earthquakes, typhoons, floods, etc. in the natural environment that can cause paint films to break in one to several loads. Therefore, it can be said that accurate data is also important when the coating film is subjected to such a large load that it breaks after one to several loads. Therefore, in the above evaluation method of the present invention, in Step 1, the range of variation in which the waterproof coating film breaks under one load is determined by a crack followability test of the waterproof coating film, and this data is used in the S-N diagram. This can be said to be a matter specific to coatings formed on buildings that are subjected to loads in the natural environment.

次に、本発明の別の態様の防水塗膜の耐久性評価方法においては、特定の建物に形成される防水塗膜の耐久性の評価方法であって、防水塗膜の塗膜片を用いて行われた複数の測定周波数での動的粘弾性測定によって得られた、測定周波数ごとの温度分散の貯蔵弾性率E’のグラフから、基準温度を設定して周波数分散の貯蔵弾性率E’のグラフを作成するステップ1’と、前記周波数分散の貯蔵弾性率E’のグラフから、貯蔵弾性率E’と1回の荷重を受けて前記防水塗膜が破断する変動幅との関係のグラフ、及び、貯蔵弾性率E’と所定の変動幅の繰り返し荷重を受けて破断に至る破断回数との関係のグラフを作成するステップ2’と、前記貯蔵弾性率E’と1回の荷重を受けて前記防水塗膜が破断する変動幅との関係のグラフ、及び、貯蔵弾性率E’と所定の変動幅の繰り返し荷重を受けて破断に至る破断回数との関係のグラフから、変動幅と破断回数との関係についてのS-N図を作成するステップ3’と、前記特定の建物に形成される防水塗膜が、前記特定の建物における1年間のムーブメントから所定の変動幅の荷重をni回受けるものとするとき、前記ステップ3’で求めたS-N図から、前記所定の変動幅に対する、破断に至る破断回数Niを求め、前記の式(1)により、前記特定の建物に形成される防水塗膜の推定耐久年数Yを求めるステップ4’と、を含む、ことを特徴とする。以下において、この防水塗膜の耐久性評価方法を第2の発明の評価方法と呼ぶ。 Next, in another aspect of the present invention, there is a method for evaluating the durability of a waterproof coating film formed on a specific building, which uses coating pieces of the waterproof coating film. From the graph of the storage modulus E' of temperature dispersion for each measurement frequency obtained by dynamic viscoelasticity measurements at multiple measurement frequencies, a reference temperature is set and the storage modulus E' of frequency dispersion is calculated. Step 1' of creating a graph of the storage elastic modulus E' of the frequency dispersion, and a graph of the relationship between the storage elastic modulus E' and the range of variation at which the waterproof coating film ruptures when subjected to one load. , and a step 2' of creating a graph of the relationship between the storage modulus E' and the number of times of rupture when subjected to repeated loading of a predetermined fluctuation range, and From the graph of the relationship between the fluctuation width at which the waterproof coating film ruptures and the graph of the relationship between the storage modulus E' and the number of fractures that occur when subjected to a repeated load of a predetermined fluctuation range, it is possible to determine the fluctuation width and the rupture. Step 3' of creating an S-N diagram regarding the relationship with the number of times, and the waterproof coating film formed on the specific building receives a load of a predetermined fluctuation range from the movement of the specific building over a period of ni times. When the number of fractures Ni is determined to occur in the specific building, the number of fractures Ni for the predetermined variation range is determined from the SN diagram determined in step 3', and the number of fractures Ni that will occur in the specific building is calculated using the formula (1) above. step 4' of determining the estimated durability Y of the waterproof coating film. Hereinafter, this waterproof coating film durability evaluation method will be referred to as the evaluation method of the second invention.

この第2の発明の評価方法によれば、ステップ1で塗膜の動的粘弾性を測定すれば、動的粘弾性より得られた貯蔵弾性率E’を用いることで、簡易に耐久性(耐久年数)を得られる。より具体的には、塗膜評価ごとに都度のひび割れ追従性試験や疲労試験を行うことなく、同じ樹脂系の材料において、動的粘弾性測定で得られた貯蔵弾性率E’の値と、そこからのデータ変換により導いた情報(ひび割れ追従幅、疲労破断の回数)とを使ってS-N図を作成することができる。S-N図を作成した後は、前記の防水塗膜の耐久性評価方法と全く同様な方法で推定耐久年数Yを求めることができる。すなわち、S-N図から、所定の変動幅に対する、破断に至る破断回数Niを求め、前記の式(1)により、前記特定の建物に形成される防水塗膜の推定耐久年数Yを求めることができる。 According to the evaluation method of the second invention, if the dynamic viscoelasticity of the coating film is measured in step 1, the durability ( durability). More specifically, without conducting a crack followability test or a fatigue test for each coating film evaluation, the value of the storage modulus E' obtained by dynamic viscoelasticity measurement for the same resin material, An SN diagram can be created using the information derived from data conversion (crack tracking width, number of fatigue fractures). After creating the SN diagram, the estimated durability Y can be determined in exactly the same manner as the above-mentioned method for evaluating the durability of waterproof coatings. That is, from the SN diagram, find the number of breaks Ni for a predetermined fluctuation range, and use the above formula (1) to find the estimated durability Y of the waterproof coating film formed on the specific building. Can be done.

したがって、この第2の発明の評価方法は、前記の評価方法と同様に、単に、塗膜の耐久性(耐久年数)を実験室での実験によって評価するものではなく、特定の建物に形成される防水塗膜の現実の環境下での耐久性(耐久年数)を評価するものであり、従来の評価方法では得られない正確な評価結果を得ることができるものであるとともに、前記の評価方法のような、塗膜評価ごとに都度のひび割れ追従性試験や疲労試験を行うことなく、より簡易に塗膜の耐久性(耐久年数)を評価することができるものである。 Therefore, like the above-mentioned evaluation method, the evaluation method of this second invention does not simply evaluate the durability (durability) of a paint film through laboratory experiments, but rather This method evaluates the durability (durability period) of waterproof coating films under real environments, and it is possible to obtain accurate evaluation results that cannot be obtained with conventional evaluation methods. It is possible to more easily evaluate the durability (duration of life) of a paint film without having to perform a crack followability test or a fatigue test for each paint film evaluation.

次に、本発明においては、上記の第1の発明の評価方法及び第2の発明の評価方法を実施するための評価装置についても特定する。評価方法のみではなく、評価装置をも特定することによって、評価方法を実施するための評価装置の構成が明確になり、その実現性がより向上するといえる。 Next, in the present invention, an evaluation device for implementing the evaluation method of the first invention and the evaluation method of the second invention described above is also specified. By specifying not only the evaluation method but also the evaluation device, the configuration of the evaluation device for implementing the evaluation method becomes clear, and it can be said that its feasibility is further improved.

本発明において、第1の発明の評価方法を実施する評価装置は、特定の建物に形成される防水塗膜の耐久性の評価装置であって、前記防水塗膜のひび割れ追従性試験によって得られた、1回の荷重を受けて前記防水塗膜が破断する変動幅のデータを取得する破断変動幅データ取得部と、前記防水塗膜の疲労試験により得られた変動幅と、所定の繰り返し荷重を受けて破断に至る破断回数のデータを取得する繰り返し荷重-破断回数関係データ取得部と、前記破断変動幅データ取得部が取得した1回の荷重を受けて前記防水塗膜が破断する変動幅のデータと、前記繰り返し荷重-破断回数関係データ取得部が取得した、所定の繰り返し荷重を受けて破断に至る破断回数のデータ、に基づいて、変動幅と、破断回数が1回の場合も含まれる破断回数との関係についてのS-N図を作成するS-N図作成部と、前記特定の建物に形成される防水塗膜が、前記特定の建物における1年間のムーブメントから所定の変動幅の荷重をni回受けるものとするとき、前記S-N図作成部が作成したS-N図から、前記所定の変動幅に対する、破断に至る破断回数Niを求め、前記の式(1)により、前記特定の建物に形成される防水塗膜の推定耐久年数Yを算出する推定耐久年数算出部と、を備える評価装置である。 In the present invention, an evaluation device that implements the evaluation method of the first invention is an evaluation device for the durability of a waterproof coating film formed on a specific building, and the evaluation device is an evaluation device for evaluating the durability of a waterproof coating film formed on a specific building. Further, a rupture fluctuation width data acquisition unit that acquires data on a fluctuation width at which the waterproof coating film ruptures when subjected to a single load, a fluctuation width obtained by a fatigue test of the waterproof coating film, and a predetermined repeated load. a repeated load-failure frequency relationship data acquisition unit that acquires data on the number of times the waterproof coating ruptures when subjected to a single load, and a fluctuation range at which the waterproof coating film ruptures when subjected to one load, which is acquired by the rupture fluctuation width data acquisition unit; Based on the data on the number of fractures resulting in fracture under a predetermined repeated load, which is acquired by the repeated load-number of fracture relationship data acquisition unit, the fluctuation range and the number of fractures, including the case where the number of fractures is one, are determined. An SN diagram creation unit that creates an SN diagram regarding the relationship between the number of failures and the waterproof coating film formed on the specific building, and a waterproof coating film formed on the specific building, When the load is applied ni times, from the SN diagram created by the SN diagram creation section, find the number of breaks Ni for the predetermined fluctuation range, and use the equation (1) above to calculate the number of breaks Ni. and an estimated durability calculation unit that calculates an estimated durability Y of a waterproof coating film formed on the specific building.

本発明において、第2の発明の評価方法を実施する評価装置は、特定の建物に形成される防水塗膜の耐久性の評価装置であって、防水塗膜の塗膜片を用いて行われた複数の測定周波数での動的粘弾性測定によって得られた、測定周波数ごとの温度分散の貯蔵弾性率E’のグラフから、基準温度を設定して周波数分散の貯蔵弾性率E’のグラフを作成する周波数分散貯蔵弾性率E’グラフ作成部と、前記周波数分散貯蔵弾性率E’グラフ作成部が作成した周波数分散の貯蔵弾性率のグラフから、貯蔵弾性率E’と1回の荷重を受けて前記防水塗膜が破断する変動幅との関係のグラフ、及び、貯蔵弾性率E’と所定の変動幅の繰り返し荷重を受けて破断に至る破断回数との関係のグラフを作成する貯蔵弾性率E’-変動幅関係グラフ及び貯蔵弾性率E’-変動幅に対する破断回数関係グラフ作成部と、前記貯蔵弾性率E’-変動幅関係グラフ及び貯蔵弾性率E’-変動幅に対する破断回数関係グラフ作成部が作成した、貯蔵弾性率E’と1回の荷重を受けて前記防水塗膜が破断する変動幅との関係のグラフ、及び、貯蔵弾性率E’ と所定の変動幅の繰り返し荷重を受けて破断に至る破断回数との関係のグラフから、変動幅と破断回数との関係についてのS-N図を作成するS-N図作成部と、前記特定の建物に形成される防水塗膜が、前記特定の建物における1年間のムーブメントから所定の変動幅の荷重をni回受けるものとするとき、前記S-N図作成部が作成したS-N図から、前記所定の変動幅に対する、破断に至る破断回数Niを求め、前記の式(1)により、前記特定の建物に形成される防水塗膜の推定耐久年数Yを算出する推定耐久年数算出部と、を備える評価装置である。 In the present invention, an evaluation device that implements the evaluation method of the second invention is an evaluation device for the durability of a waterproof coating film formed on a specific building, and is an evaluation device for evaluating the durability of a waterproof coating film formed on a specific building. From the graph of the storage modulus E' of temperature dispersion for each measurement frequency obtained by dynamic viscoelasticity measurements at multiple measurement frequencies, we set the reference temperature and created a graph of the storage modulus E' of frequency dispersion. From the graph of the frequency dispersion storage modulus E' created by the frequency dispersion storage modulus E' graph creation section and the frequency dispersion storage modulus created by the frequency dispersion storage modulus E' graph creation section, the storage modulus E' and the storage modulus under one load are calculated. and a graph of the relationship between the storage elastic modulus E' and the number of times the waterproof coating breaks when subjected to a repeated load of a predetermined variation range. E'-fluctuation range relationship graph and storage elastic modulus E'-fluctuation frequency relationship graph creation unit; storage elastic modulus E'-fluctuation width relationship graph and storage elastic modulus E'-fluctuation frequency relationship graph for the fluctuation width; A graph of the relationship between the storage elastic modulus E' and the variation range at which the waterproof coating film breaks after receiving one load, and a graph of the relationship between the storage elastic modulus E' and the repeated load of the predetermined variation range, created by the production department. an S-N diagram creation unit that creates an S-N diagram regarding the relationship between the fluctuation width and the number of fractures from a graph of the relationship between the number of fractures that occur and the number of fractures that occur, and a waterproof coating film formed on the specific building; is subjected to a load with a predetermined fluctuation range ni times from the movement of one year in the specific building, and from the SN diagram created by the SN diagram creation department, for the predetermined fluctuation range, The evaluation device includes an estimated durable life calculation unit that calculates the number of breaks Ni that lead to breakage and calculates the estimated durable years Y of the waterproof coating film formed on the specific building using the above equation (1).

なお、本発明の評価方法及び評価装置は、現実の環境下にある建物に形成された防水塗膜の耐久性の評価方法及び評価装置であるが、まだ建造されていない計画段階の建物であっても、建物の建造される環境(場所)がわかっていれば、その環境の1年間のムーブメントを知ることによって、適用することができるものである。 The evaluation method and evaluation device of the present invention are a method and device for evaluating the durability of a waterproof coating film formed on a building in a real environment. However, if the environment (location) in which a building is constructed is known, it can be applied by knowing the movement of that environment over a one-year period.

このように、本発明は、単に、塗膜の耐久性(耐久年数)を実験室での実験によって評価するものではなく、特定の建物に形成される防水塗膜の現実の環境下での耐久性(耐久年数)を評価するものであり、従来の評価方法では得られない正確な評価結果を得ることができるという効果を有するものである。特に、第1の発明の評価方法では、建物においては、自然環境下で地震や台風・洪水などによって1~数回の荷重で塗膜が破断に至るような大きな荷重を受けることが当然に起こり得る自然環境に対応することができる。また、第2の発明の評価方法では、塗膜評価ごとに都度のひび割れ追従性試験や疲労試験を行うことなく、より簡易に塗膜の耐久性(耐久年数)を評価することができる。さらに、評価方法のみではなく、評価装置をも特定することによって、評価方法を実施するための評価装置の構成が明確になり、その実現性がより向上するといえる。 In this way, the present invention does not simply evaluate the durability (durability) of a paint film through laboratory experiments, but rather evaluates the durability of a waterproof paint film formed on a specific building in the actual environment. This method evaluates the durability (durability) and has the effect of being able to obtain accurate evaluation results that cannot be obtained with conventional evaluation methods. In particular, in the evaluation method of the first invention, it is natural for buildings to be subjected to large loads such as earthquakes, typhoons, floods, etc. in the natural environment that can cause paint films to break in one to several loads. be able to respond to the natural environment available. Furthermore, in the evaluation method of the second invention, the durability (durability period) of the paint film can be evaluated more easily without conducting a crack followability test or a fatigue test for each paint film evaluation. Furthermore, by specifying not only the evaluation method but also the evaluation device, the configuration of the evaluation device for implementing the evaluation method becomes clear, and it can be said that its feasibility is further improved.

ひび割れ追従性試験及び疲労試験で用いる塗装試験体の形態を示す図である。FIG. 3 is a diagram showing the form of a painted specimen used in a crack followability test and a fatigue test. JIS A 6909防水形複層塗材EのS-N図である。It is an SN diagram of JIS A 6909 waterproof multi-layer coating material E. JIS A 6021アクリルゴム系のS-N図である。It is an SN diagram of JIS A 6021 acrylic rubber system. 測定周波数ごとの温度分散の貯蔵弾性率E’のグラフである。It is a graph of storage elastic modulus E' of temperature dispersion for each measurement frequency. 周波数分散の貯蔵弾性率E’の曲線(マスターカーブ)のグラフである。It is a graph of a curve (master curve) of storage elastic modulus E' of frequency dispersion. 横軸を貯蔵弾性率E’とし、縦軸をひび割れ追従性とするグラフである。It is a graph in which the horizontal axis represents storage modulus E' and the vertical axis represents crack followability. 横軸を貯蔵弾性率E’とし、縦軸を変動幅に対する破断回数とするグラフである。It is a graph in which the horizontal axis is the storage modulus E' and the vertical axis is the number of breaks with respect to the fluctuation range. 実施例1の評価方法のフローを示したフロー図である。2 is a flow diagram showing the flow of the evaluation method of Example 1. FIG. 実施例2の評価方法のフローを示したフロー図である。3 is a flow diagram showing the flow of an evaluation method in Example 2. FIG. 実施例1の評価装置の機能ブロックを示した機能ブロック図である。2 is a functional block diagram showing functional blocks of the evaluation device of Example 1. FIG. 実施例2の評価装置の機能ブロックを示した機能ブロック図である。FIG. 2 is a functional block diagram showing functional blocks of an evaluation device according to a second embodiment.

以下、本発明の第1の発明の実施例1及び第2の発明の実施例2の評価方法について、詳細に説明する。 Hereinafter, the evaluation method of Example 1 of the first invention and Example 2 of the second invention of the present invention will be described in detail.

まず初めに、実施例1について、ひび割れ追従性試験と疲労試験の実験例を踏まえて説明する。
(塗装材料)
評価に使用した試験体の種類と疲労試験の変動幅の水準を表1に示す。JIS A 6909の防水形複層塗材E、およびJIS A 6021のアクリルゴム系の2種類の塗膜を対象とした。
First, Example 1 will be described based on experimental examples of a crack followability test and a fatigue test.
(painting material)
Table 1 shows the types of test specimens used in the evaluation and the level of variation in fatigue tests. Two types of coatings were targeted: waterproof multi-layer coating material E according to JIS A 6909 and acrylic rubber-based coating according to JIS A 6021.

Figure 0007344849000001
Figure 0007344849000001

(試験体)
図1にひび割れ追従性試験と疲労試験で用いる試験体の形状を示す。JIS A 5430に規定されるフレキシブル板(200×80×4mm)に主材を膜厚1mmとなるように平滑に塗り付け、試験体とした。
(Test specimen)
Figure 1 shows the shape of the specimen used in the crack followability test and fatigue test. A test specimen was prepared by applying the main material smoothly to a film thickness of 1 mm on a flexible board (200 x 80 x 4 mm) specified in JIS A 5430.

(ひび割れ追従性試験)
第1の発明のステップ1に関する試験である。
図1の試験体を室内養生後、塗膜を破断せずにフレキブル板中央の切込みに沿って、フレキシブル板に亀裂を入れた。その試験体の両端を万能試験機で亀裂と垂直な方向に1mm/minで引張り、塗膜にピンホールが生じた時の伸び量を記録した。
(Crack followability test)
This is a test related to step 1 of the first invention.
After the test specimen shown in FIG. 1 was cured indoors, a crack was made in the flexible board along the notch in the center of the flexible board without breaking the coating. Both ends of the test piece were pulled at 1 mm/min in a direction perpendicular to the crack using a universal testing machine, and the amount of elongation when a pinhole appeared in the coating was recorded.

(疲労試験)
第1の発明のステップ2に関する試験である。
試験はJASS8 疲労試験機を用いて行った。ひび割れ追従性試験と同様に試験体を養生し、フレキシブル板に亀裂を入れた。疲労試験の変動幅は、複数の水準を設定し実施した。繰り返し疲労は一定の周期で行い、塗膜にピンホールが生じた時点の繰り返し回数、および塗膜が破断した時点の繰り返し回数をそれぞれ記録した。実施例1では表1に示す変動幅の水準で、1回/minの周期で実施した。
(Fatigue test)
This is a test related to step 2 of the first invention.
The test was conducted using a JASS8 fatigue testing machine. The test piece was cured in the same way as the crack followability test, and a crack was made in the flexible board. Multiple levels of variation were set for the fatigue test. Repeated fatigue was carried out at regular intervals, and the number of repetitions at the point when a pinhole appeared in the coating film and the number of repetitions at the point at which the coating film broke were recorded. In Example 1, testing was carried out at the level of fluctuation range shown in Table 1 at a cycle of 1 time/min.

(ひび割れ追従性試験の実験結果)
第1の発明のステップ1に関する試験の結果である。
表2に各試験体のひび割れ追従性試験の結果を示す。この結果を、1回の荷重を受けて塗膜が破断する変動幅とした。
(Experimental results of crack followability test)
These are the test results regarding step 1 of the first invention.
Table 2 shows the results of the crack followability test for each specimen. This result was defined as the variation range in which the coating film was broken after receiving one load.

Figure 0007344849000002
Figure 0007344849000002

(疲労試験の実験結果)
第1の発明のステップ2に関する試験の結果である。
表3に塗膜にピンホールが生じた時点の繰り返し回数を示す。この結果を、変動幅と所定の変動幅の繰り返し荷重を受けて破断に至る破断回数との関係とした。
(Fatigue test results)
These are the test results regarding step 2 of the first invention.
Table 3 shows the number of repetitions at which pinholes were formed in the coating film. This result was defined as the relationship between the fluctuation range and the number of times the specimen would break under repeated loads of a predetermined fluctuation range.

Figure 0007344849000003
Figure 0007344849000003

(変動幅と変動回数の関係図(S-N図)作成)
第1の発明のステップ3に関するグラフ作成処理である。
ひび割れ追従性試験の結果から得られたデータと、疲労試験の実験結果から得られたデータから、変動幅と、破断回数が1回の場合も含まれる破断回数との関係についてのS-N図を作成した。図2にJIS A 6909の防水形複層塗材Eを、図3にJIS A 6021のアクリルゴム系のS-N図を示す。
(Create a relationship diagram (S-N diagram) between fluctuation range and number of fluctuations)
This is a graph creation process related to step 3 of the first invention.
Based on the data obtained from the results of the crack followability test and the data obtained from the experimental results of the fatigue test, an S-N diagram of the relationship between the fluctuation range and the number of fractures, including the case where the number of fractures is one, was created. It was created. Figure 2 shows the JIS A 6909 waterproof multi-layer coating material E, and Figure 3 shows the JIS A 6021 acrylic rubber SN diagram.

(線形累積損傷則)
第1の発明のステップ4に関する法則である。
線形累積損傷則とは、材料がある応力幅(変動幅の荷重)をN回受けて疲労破壊する場合に、その応力幅を1回受けると1/Nだけ寿命が失われ、N/N=1となったときに破壊するという経験に基づいた理論であり、材料や接着の疲労劣化の評価に利用される。本発明では、特定の建物の現に建造されている場所の現実の環境下における、目地部やひび割れ部の伸縮変動を応力幅(変動幅と変動回数)としている。
(linear cumulative damage law)
This is a law regarding step 4 of the first invention.
The linear cumulative damage law states that if a material undergoes fatigue failure after being subjected to a certain stress range (load with a variable range) N times, then if it is subjected to that stress range once, its life will be lost by 1/N, and N/N = This is a theory based on experience that it will break when it reaches 1, and is used to evaluate fatigue deterioration of materials and adhesives. In the present invention, the stress width (fluctuation width and number of fluctuations) is the expansion and contraction fluctuation of joints and cracks under the actual environment of the location where a specific building is currently being constructed.

(耐久年数の算出)
第1の発明のステップ4に関する算出処理である。
ここで、特定の建物の現に建造されている場所の現実の環境下における1年間のムーブメントから、前記特定の建物に形成される防水塗膜がNi回受ければ破断する所定の変動幅の荷重をni回(i=1,2,3・・・)受けるものであるとするとき、前記特定の建物が1年間に失われる寿命は、Σni/Ni(i=1,2,3・・・)となる。そうすると、前記特定の建物に形成される防水塗膜の寿命Yは、次の式(1)で求まることがわかる。
[数2]

Y=1/(Σni/Ni) ・・・式(1)
(Calculation of durability life)
This is calculation processing related to step 4 of the first invention.
Here, from one year's movement under the actual environment of the location where the specific building is currently being constructed, a load with a predetermined fluctuation range that will break if the waterproof coating formed on the specific building is subjected to Ni times is calculated. Assuming that the specific building is exposed to ni times (i=1, 2, 3...), the lifespan lost in one year is Σni/Ni (i=1, 2, 3...) becomes. Then, it can be seen that the lifespan Y of the waterproof coating film formed on the specific building is determined by the following equation (1).
[Number 2]

Y=1/(Σni/Ni) ...Formula (1)

(年間ムーブメント)
第1の発明のステップ4に関する項目である。
なお、式(1)から、前記特定の建物に形成される防水塗膜の寿命Yを求めるためには、前記特定の建物の年間のムーブメントのデータが必要となる。年間のムーブメントは、RC躯体のひび割れ部のムーブメントを想定しており、既往文献調査や、実際の建物のひび割れ部のセンシングによる計測から得られる。既往文献調査では、例えば、外気温変化に起因する温度収縮による1日の変動幅を得ることができ、365日分のデータとして年間ムーブメントを推測することができることや、前記特定の建物のコンクリートの乾燥収縮率、線膨張係数などを参考に過去の気象情報より年間のムーブメントを推測することができる。また、建物のひび割れ部のセンシングによる計測データを用いることでムーブメントの履歴から残存耐久年数も推測することができる。
(annual movement)
This is an item related to step 4 of the first invention.
Note that, from equation (1), in order to determine the lifespan Y of the waterproof coating film formed on the specific building, annual movement data of the specific building is required. The annual movement is assumed to be movement in the cracks of the RC frame, and is obtained from a survey of past literature and measurements by sensing the cracks in actual buildings. A survey of existing literature has shown that, for example, it is possible to obtain the daily fluctuation range due to temperature contraction caused by changes in outside temperature, and it is possible to estimate the annual movement from 365 days' worth of data. Annual movement can be estimated from past weather information by referring to drying shrinkage rate, linear expansion coefficient, etc. Furthermore, by using measurement data obtained by sensing cracks in buildings, it is possible to estimate the remaining lifespan of the movement from its history.

第1の発明においては、変動幅と破断回数との関係についてのS-N図に、破断回数が1回の場合のデータも含まれる。通常の機械装置や器具等の疲労破壊試験においては、1回の荷重を受けて破断に至るような大きな荷重が掛かることは想定されていないため、S-N図に破断回数が1回の場合のデータを含める意義もない。しかし、建物においては、自然環境下で地震や台風・洪水などによって1~数回の荷重で塗膜が破断に至るような大きな荷重を受けることが起こり得るため、過去のデータなどからその確率としてのデータを含める必要がある。したがって、1~数回の荷重で塗膜が破断に至るような大きな荷重を受けた場合における正確なデータも重要であるといえる。 In the first invention, the SN diagram regarding the relationship between the fluctuation width and the number of breaks includes data when the number of breaks is one. In normal fatigue fracture tests of mechanical devices and instruments, it is not assumed that a load so large as to cause a fracture will be applied once, so if the number of fractures is one in the S-N diagram. There is no point in including this data. However, in the natural environment, buildings can be subjected to large loads such as earthquakes, typhoons, floods, etc. that can cause the paint film to break in one to several loads, so based on past data, the probability of this happening is data must be included. Therefore, it can be said that accurate data is also important when the coating film is subjected to such a large load that it breaks after one to several loads.

次に、実施例2について、その考え方を中心に説明する。実施例1では、特定の建物の現に建造されている場所の現実の環境下における1年間のムーブメントから、前記特定の建物に形成される防水塗膜がNi回受ければ破断する所定の変動幅の荷重をni回(i=1,2,3・・・・)受けるものであることを勘案することにより、特定の建物に形成される防水塗膜の現実の環境下での耐久性(耐久年数)を評価するものであり、建物に形成されている塗膜の耐久性(耐久年数)について、従来の評価方法では得られない正確な評価結果を得ることができるものである。しかしながら、実施例1の評価方法では、個々の塗膜の耐久性を評価するに際して、その都度、ひび割れ追従性や疲労試験を行う必要があり、塗膜の試験ごとに下地板の準備、下塗り、塗り付け、乾燥、試験前準備などの検査(試験)の手間がかかるものであり、特に、疲労試験は、変動幅毎にデータを取るために長期の時間を必要とする。 Next, Example 2 will be explained with a focus on its concept. In Example 1, the waterproof coating film formed on the specific building is determined to have a predetermined fluctuation range that will break after being subjected to Ni times of movement over a period of one year under the actual environment of the location where the specific building is currently being constructed. By taking into account that the load is applied ni times (i = 1, 2, 3...), we can estimate the durability (durability) of the waterproof coating film formed on a specific building under the actual environment. ), and it is possible to obtain accurate evaluation results regarding the durability (durability) of paint films formed on buildings, which cannot be obtained using conventional evaluation methods. However, in the evaluation method of Example 1, when evaluating the durability of individual paint films, it is necessary to perform crack followability and fatigue tests each time, and for each test of the paint film, preparation of the base plate, undercoat, Inspections (tests) such as painting, drying, and pre-test preparation are time-consuming, and fatigue tests in particular require a long period of time to collect data for each variation range.

本発明者らは、実施例1における上記の検査(試験)手間を省略し、より簡易な検査で、実施例1の評価と同等の評価結果を得られるように実施例2の評価手法を開発した。実施例2の評価手法の概要は、微小な塗膜片のサンプルを用いて動的粘弾性測定(DMA)を行い、塗膜片の動的粘弾性から得られた貯蔵弾性率E’を用い、データ変換を行って変動幅と破断回数の関係であるS―N図を作成するものである。S-N図作成後は、実施例1と同様の方法で、建物に形成されている塗膜の耐久年数を算出する。 The present inventors have developed an evaluation method for Example 2 to omit the above inspection (test) effort in Example 1 and to obtain evaluation results equivalent to those of Example 1 with a simpler test. did. The outline of the evaluation method in Example 2 is to perform dynamic viscoelasticity measurement (DMA) using a sample of a minute piece of paint film, and use the storage modulus E' obtained from the dynamic viscoelasticity of the piece of paint film. , data conversion is performed to create an SN diagram showing the relationship between the fluctuation width and the number of breaks. After creating the SN diagram, use the same method as in Example 1 to calculate the durability of the paint film formed on the building.

まず、上記動的粘弾性測定(DMA)について説明する。動的粘弾性測定(DMA)とは、試料に時間によって変化(振動)する歪みまたは応力を与えて、それによって発生する応力または歪みを測定することにより、試料の力学的な性質を測定する試験方法である。 First, the above-mentioned dynamic viscoelasticity measurement (DMA) will be explained. Dynamic mechanical analysis (DMA) is a test that measures the mechanical properties of a sample by applying strain or stress that changes over time (vibration) to the sample and measuring the resulting stress or strain. It's a method.

(動的粘弾性測定試験及び結果)
第2の発明のステップ1’に関する試験及び試験結果である。
次に、実施例2に関して行った動的粘弾性試験及びその試験結果について説明する。実施例2で使用した試験体の種類を表4に示す。試験体は、材料を乾燥膜厚1mmとなるように離型紙などの剥がしやすい下地に平滑に塗り付けた塗膜を用いる。試験体を室内養生した後、切断して、厚さ1mm×長さ25~45mm×幅5~10mm程度の微小なサンプルとし、動的粘弾性試験装置で、0.5,1,2,5,10Hzの測定周波数において、2℃/minの昇温速度で-100℃~100℃で動的粘弾性を測定する。結果を図4に示す。図4は、測定周波数ごとの温度分散の貯蔵弾性率E’のグラフである。
(Dynamic viscoelasticity measurement test and results)
These are tests and test results regarding step 1' of the second invention.
Next, the dynamic viscoelasticity test conducted for Example 2 and the test results will be explained. Table 4 shows the types of test specimens used in Example 2. The test specimen uses a coating film in which the material is applied smoothly onto an easily peelable base such as release paper so that the dry film thickness is 1 mm. After the specimen was cured indoors, it was cut into small samples with a thickness of 1 mm, a length of 25 to 45 mm, and a width of 5 to 10 mm. The dynamic viscoelasticity is measured from -100°C to 100°C at a temperature increase rate of 2°C/min at a measurement frequency of , 10Hz. The results are shown in Figure 4. FIG. 4 is a graph of the storage modulus E' of temperature dispersion for each measurement frequency.

Figure 0007344849000004
Figure 0007344849000004

(マスターカーブの作成)
第2の発明のステップ1’に関するデータ処理・グラフ作成である。
次に、図4の測定周波数ごとの温度分散の貯蔵弾性率E’のグラフを周波数分散の貯蔵弾性率E’との関係を示す曲線(マスターカーブ)のグラフに変換する。この変換は、WLF(Wiliams-Landel-Ferry)の式を用い、所定基準温度を設定して導出する。このWLFの式は、時間温度重ね合わせの原理に関連する公知の経験式であるため、ここでは詳述を割愛する。図5に、図4から変換されたマスターカーブを示す。
(Creating a master curve)
This is data processing and graph creation regarding step 1' of the second invention.
Next, the graph of the storage modulus E' of temperature dispersion for each measurement frequency in FIG. 4 is converted into a graph of a curve (master curve) showing the relationship between the storage modulus E' of frequency dispersion. This conversion is derived using the WLF (Williams-Landel-Ferry) equation and by setting a predetermined reference temperature. Since this WLF formula is a well-known empirical formula related to the principle of time-temperature superposition, detailed explanation will be omitted here. FIG. 5 shows the master curve converted from FIG. 4.

(変動幅及び変動回数の検量線)
第2の発明のステップ2’に関するデータ処理・グラフ作成である。
ここで、ひび割れ追従性試験の引張り速度:1mm/minを試験条件として、貯蔵弾性率E’に対するひび割れ追従性(変動幅)及び変動幅に対する破断回数の検量線を作成する。前記ひび割れ追従性試験の結果から、“1/(破断するまでに要した時間sec)=周波数”を試験体毎に算出する。試験体毎に算出した周波数における貯蔵弾性率E’に対するひび割れ追従性(変動幅)の検量線、及び1回/min=0.0167Hzにおける貯蔵弾性率E’に対する所定の変動幅の破断回数の検量線を作成する。1回/min=0.0167Hzにおける貯蔵弾性率E’に対する破断回数の検量線は変動幅毎に作成する。こうして、動的粘弾性測定で得られた貯蔵弾性率E’をもとに、防水塗膜のひび割れ追従性と、疲労試験での所定の変動幅に対する破断回数を推定し、図6、図7に示す検量線を得る。
(Calibration curve of fluctuation range and number of fluctuations)
This is data processing and graph creation regarding step 2' of the second invention.
Here, using a tensile speed of 1 mm/min for the crack followability test as a test condition, a calibration curve of the crack followability (fluctuation range) against the storage modulus E' and the number of breaks against the fluctuation range is created. From the results of the crack followability test, "1/(time sec required to break)=frequency" is calculated for each test piece. Calibration curve of crack followability (fluctuation width) against storage elastic modulus E' at the frequency calculated for each test specimen, and calibration of the number of fractures in a predetermined fluctuation range against storage elastic modulus E' at 1 time/min = 0.0167 Hz. Create a line. A calibration curve of the number of breaks versus the storage modulus E' at 1 time/min = 0.0167 Hz is created for each variation range. In this way, based on the storage modulus E' obtained from the dynamic viscoelasticity measurement, we estimated the crack followability of the waterproof coating film and the number of fractures for a predetermined fluctuation range in the fatigue test. Obtain the calibration curve shown in .

(S-N図作成)
第2の発明のステップ3’に関するグラフ作成処理である。
図6は、横軸を貯蔵弾性率E’とし、縦軸をひび割れ追従性とするグラフであり、図7は、横軸を貯蔵弾性率E’とし、縦軸を変動幅に対する破断回数とするグラフである。両グラフは横軸が共通の貯蔵弾性率E’であることから、図6、図7をもとに、破断回数(変動回数、横軸)とひび割れ追従性(変動幅、縦軸)のグラフ、すなわち、S-N図を作成することができる。これまでの手順をまとめると、(1)動的粘弾性測定、(2)測定周波数ごとに温度分散(横軸:温度)の弾性貯蔵率E’のグラフ作成、(3)周波数分散(横軸:周波数)の弾性貯蔵率E’のグラフ(マスターカーブ)作成、(4)横軸を貯蔵弾性率E’とし縦軸をひび割れ追従性とするグラフ、及び、横軸を貯蔵弾性率E’とし縦軸を変動幅に対する破断回数とするグラフの作成、(5)S-N図の作成となる。すなわち、(1)動的粘弾性測定、以外は、全てデータ変換でグラフを作成することができるものである。そして、(1)動的粘弾性測定は、実施例1で行ったひび割れ追従性試験、疲労耐久性試験に比べて簡易な試験で済むことを勘案すると、実施例2は、実施例1に比べて、きわめて簡易にS-N図を得ることができる方法であるといえる。
(S-N diagram creation)
This is a graph creation process related to step 3' of the second invention.
FIG. 6 is a graph in which the horizontal axis is the storage modulus E' and the vertical axis is the crack followability, and FIG. 7 is a graph in which the horizontal axis is the storage modulus E' and the vertical axis is the number of fractures with respect to the fluctuation range. It is a graph. Since both graphs have a common storage modulus E' on the horizontal axis, we created a graph of the number of fractures (number of fluctuations, horizontal axis) and crack followability (width of fluctuation, vertical axis) based on Figures 6 and 7. In other words, an SN diagram can be created. To summarize the steps so far, (1) dynamic viscoelasticity measurement, (2) creating a graph of the elastic storage modulus E' of temperature dispersion (horizontal axis: temperature) for each measurement frequency, (3) frequency dispersion (horizontal axis: (4) Create a graph (master curve) of the elastic storage modulus E' for (frequency), (4) Create a graph where the horizontal axis is the storage modulus E' and the vertical axis is the crack followability, and the horizontal axis is the storage modulus E'. Create a graph with the vertical axis representing the number of breaks versus the fluctuation range, and (5) create an SN diagram. That is, except for (1) dynamic viscoelasticity measurement, all graphs can be created by data conversion. (1) Considering that the dynamic viscoelasticity measurement is a simpler test than the crack followability test and fatigue durability test conducted in Example 1, Example 2 is more effective than Example 1. Therefore, it can be said that this is a method that can obtain an SN diagram extremely easily.

(耐久年数の算出)
第2の発明のステップ4’に関する算出処理である。
S-N図を得た後、建物に形成されている塗膜の耐久年数を算出する方法は、実施例1における手法と変わらない。すなわち、特定の建物の現に建造されている場所の現実の環境下における1年間のムーブメントから、前記特定の建物に形成される防水塗膜がNi回受ければ破断する所定の変動幅の荷重をni回(i=1,2,3・・・・)受けるものであるとするとき、前記S-N図を用いて、ある変動幅の荷重に対する破断回数を読み取り、線形累積損傷則を用いて、前記特定の建物に形成される防水塗膜が1年間に失われる寿命は、Σni/Ni(i=1,2,3・・・)となる。そうすると、前記特定の建物に形成される防水塗膜の寿命Yは、次の式(1)で求まる。
[数3]

Y=1/(Σni/Ni) ・・・式(1)
(Calculation of durability life)
This is a calculation process related to step 4' of the second invention.
After obtaining the SN diagram, the method for calculating the durability of the paint film formed on the building is the same as the method in Example 1. In other words, from one year's movement under the actual environment of the location where the specific building is currently being constructed, the waterproof coating film formed on the specific building will be subject to a load with a predetermined fluctuation range that will break if it is subjected to Ni times. (i = 1, 2, 3...), use the SN diagram to read the number of failures for a load of a certain fluctuation range, and use the linear cumulative damage law to calculate The life span of the waterproof coating film formed on the specific building lost per year is Σni/Ni (i=1, 2, 3...). Then, the lifespan Y of the waterproof coating film formed on the specific building is determined by the following equation (1).
[Number 3]

Y=1/(Σni/Ni) ...Formula (1)

実施例1,2において、塗膜の試料として、アクリルゴムを主成分としたものを用いてきた。防水塗膜の現状として、アクリルゴム系が主流となっており、JIS A 6909、JIS A 6021にて規定される多くの製品がアクリルゴムを主成分としているためである。しかし、アクリルゴム系塗膜以外のウレタン樹脂系塗膜であっても、塗膜材の種類を問わず、同じ方法論を適用することが可能である。 In Examples 1 and 2, coating film samples containing acrylic rubber as a main component were used. This is because acrylic rubber-based waterproof coatings are currently mainstream, and many products specified by JIS A 6909 and JIS A 6021 have acrylic rubber as their main component. However, the same methodology can be applied to urethane resin coatings other than acrylic rubber coatings, regardless of the type of coating material.

次に、実施例1の評価方法の概略のフローを示したフロー図を図8に、実施例2の評価方法の概略のフローを示したフロー図を図9に示す。図8に示すように、実施例1の評価方法は、ひび割れ追従性試験(ステップS1)、疲労試験(ステップS2)、破断回数が1回の場合も含まれるS-N図作成(ステップS3)及び建物に形成される防水塗膜の推定耐久年数Yの算出(ステップS4)の各ステップからなる。これに対応するように図9の実施例2の評価方法は、動的粘弾性測定により周波数分散の貯蔵弾性率E’のグラフ作成(ステップS1’)、貯蔵弾性率E’と変動幅との関係グラフ、貯蔵弾性率E’と変動幅に対する破断回数との関係グラフの作成(ステップS2’)、S-N図作成(ステップS3’)及び建物に形成される防水塗膜の推定耐久年数Yの算出(ステップS4’)の各ステップからなる。対比するとわかるように、実施例1の評価方法では、ステップS1及びステップS2が実際の試験を要するのに対して、実施例1の評価方法では、ステップS1’に試験が含まれるが、ステップS2’はデータ変換処理のみである。また、実施例1のステップS3と実施例2のステップS3’、及び、実施例1のステップS4と実施例2のステップS4’は、それぞれ、略同じ処理をしているステップであるといえる。 Next, FIG. 8 is a flowchart showing a schematic flow of the evaluation method of Example 1, and FIG. 9 is a flowchart showing a schematic flow of the evaluation method of Example 2. As shown in FIG. 8, the evaluation method of Example 1 includes a crack followability test (step S1), a fatigue test (step S2), and an SN diagram creation (step S3) that includes the case where the number of fractures is one. and calculating the estimated durability Y of the waterproof coating film formed on the building (step S4). In order to correspond to this, the evaluation method of Example 2 shown in FIG. Creation of a relationship graph, a relationship graph between the storage elastic modulus E' and the number of ruptures with respect to the fluctuation range (step S2'), creation of an SN diagram (step S3'), and estimated durability Y of the waterproof coating film formed on the building (step S4'). As can be seen from the comparison, in the evaluation method of Example 1, step S1 and step S2 require an actual test, whereas in the evaluation method of Example 1, step S1' includes a test, but step S2 ' is only a data conversion process. Further, it can be said that step S3 of the first embodiment and step S3' of the second embodiment, and step S4 of the first embodiment and step S4' of the second embodiment are steps in which substantially the same processing is performed.

次に、実施例1の評価装置の概略の機能ブロック図を図10に、実施例2の評価装置の概略の機能ブロック図を図11に示す。図10及び図11に示すように、両者は、試験等から得たデータを、データ入力装置2,2’により、評価装置1,1’に入力し、評価装置での処理結果をグラフ等にして表示装置3,3’に表示しながら評価を進めていくものである点で、共通した構成となっている。評価装置の構成としては、図10に示すように、実施例1の評価装置1が、破断変動幅データ取得部11、繰り返し荷重-破断回数関係データ取得部12、S-N図作成部13及び推定耐久年数算出部14からなるのに対応して、図11に示すように、実施例2の評価装置1’は、周波数分散貯蔵弾性率E’グラフ作成部11’、貯蔵弾性率E’-変動幅関係グラフ及び貯蔵弾性率E’-変動幅に対する破断回数関係グラフ作成部12’、S-N図作成部13’及び推定耐久年数算出部14’からなる。両者は、S-N図作成部13,13’及び推定耐久年数算出部14,14’を有する点で共通する。 Next, FIG. 10 shows a schematic functional block diagram of the evaluation device of Example 1, and FIG. 11 shows a schematic functional block diagram of the evaluation device of Example 2. As shown in FIGS. 10 and 11, both parties input data obtained from tests, etc. into evaluation devices 1 and 1' using data input devices 2 and 2', and graph the processing results of the evaluation devices. They have a common configuration in that the evaluation proceeds while displaying the information on the display devices 3 and 3'. As shown in FIG. 10, the evaluation device 1 includes a fracture fluctuation width data acquisition unit 11, a repeated load-rupture frequency relationship data acquisition unit 12, an SN diagram creation unit 13, and As shown in FIG. 11, the evaluation device 1' of the second embodiment includes a frequency dispersion storage modulus E' graph creation section 11', a storage modulus E'- It consists of a fluctuation width relationship graph and a storage elastic modulus E'-fluctuation width vs. rupture frequency relationship graph creation section 12', an SN diagram creation section 13', and an estimated durability life calculation section 14'. Both have in common that they have an SN diagram creation section 13, 13' and an estimated durability life calculation section 14, 14'.

最後に、本発明の、従来技術からは想定し得ない有利な効果についてまとめる。本発明の実施例1、2の評価方法は、特定の建物の現実の環境下での年間ムーブメントを考慮して塗膜の耐久性(耐久年数)を評価するものであり、建物環境の現実に則した評価結果を得ることができるものであり、従来の評価方法からは予測し得ない顕著な効果を奏するものである。また、実施例1の評価方法においては、破断回数1回の場合のデータも追加されていることから、特定の建物において自然環境下で地震や台風・洪水などによって1~数回の荷重で塗膜が破断に至るような大きな荷重を受けることが当然に起こり得ることにも対応し得るという、当業者においても想定外の顕著な作用効果を奏する。さらに、実施例2の評価方法においては、試験片の動的粘弾性測定のみを行えば、あとはデータ変換を行うだけで、S-N図を得ることができ、きわめて簡易に耐久性評価をすることができるという作用効果を奏するものである。 Finally, we will summarize the advantageous effects of the present invention that could not be expected from the prior art. The evaluation method of Examples 1 and 2 of the present invention evaluates the durability (durability) of a paint film by considering the annual movement under the actual environment of a specific building, and is based on the actual building environment. It is possible to obtain a consistent evaluation result, and it has remarkable effects that cannot be predicted from conventional evaluation methods. In addition, in the evaluation method of Example 1, data for the case where the number of failures is one is also added, so it is possible to apply a load of one to several times in a specific building due to an earthquake, typhoon, flood, etc. in a natural environment. Even those skilled in the art have a remarkable effect that is unexpected even for those skilled in the art, in that it can cope with the situation where the membrane is subjected to a large load that may cause it to break. Furthermore, in the evaluation method of Example 2, it is possible to obtain an S-N diagram by simply measuring the dynamic viscoelasticity of the test piece and then converting the data, making it extremely easy to evaluate durability. It has the effect of being able to.

以上、本発明の評価方法及び評価装置の実施に関して、実施態様について実施例1,2を用いて説明したが、本発明はこうした実施例1,2の評価方法及び評価装置の実施態様に何ら限定されるものではなく、本発明の趣旨を逸脱しない範囲内において、種々なる態様で実施できるものであることは勿論である。また、防水塗膜は、現実の環境下にある建物におけるものだけでなく、まだ建造されていない計画段階の建物であっても、建物の建造される環境(場所)を知ることよって適用することができるものである。 The embodiments of the evaluation method and evaluation apparatus of the present invention have been described above using Examples 1 and 2. However, the present invention is not limited to the evaluation method and evaluation apparatus of Examples 1 and 2. It goes without saying that the present invention is not limited to this, and that it can be implemented in various ways without departing from the spirit of the present invention. In addition, waterproof coatings can be applied not only to buildings in the actual environment, but also to buildings in the planning stage that have not yet been constructed, based on knowledge of the environment (location) in which the building will be constructed. It is something that can be done.

1 評価装置
11 破断変動幅データ取得部
12 繰り返し荷重-破断回数関係データ取得部
13 S-N図作成部
14 推定耐久年数算出部
2 データ入力装置
3 表示装置
1’ 評価装置
11’ 周波数分散貯蔵弾性率E’グラフ作成部
12’ 貯蔵弾性率E’-変動幅関係グラフ及び貯蔵弾性率E’-変動幅に対する破断回数関係グラフ作成部
13’ S-N図作成部
14’ 推定耐久年数算出部
2’ データ入力装置
3’ 表示装置
1 Evaluation device 11 Fracture fluctuation width data acquisition unit 12 Repeated load-rupture frequency relationship data acquisition unit 13 S-N diagram creation unit 14 Estimated durability life calculation unit 2 Data input device 3 Display device 1' Evaluation device 11' Frequency dispersion storage elasticity Rate E' graph creation section 12' Storage elastic modulus E'-fluctuation range relationship graph and storage elastic modulus E'-fluctuation frequency relationship graph creation section 13' S-N diagram creation section 14' Estimated durability life calculation section 2 'Data input device 3' Display device

Claims (4)

特定の建物に形成される防水塗膜の耐久性の評価方法であって、
前記防水塗膜のひび割れ追従性試験により、1回の荷重を受けて前記防水塗膜が破断する変動幅を求めるステップ1と、
前記防水塗膜の疲労試験により、変動幅と所定の繰り返し荷重を受けて破断に至る破断回数との関係を求めるステップ2と、
前記ステップ1及びステップ2で得られる結果に基づいて、変動幅と、破断回数が1回の場合も含まれる破断回数との関係についてのS-N図を作成するステップ3と、
前記特定の建物に形成される防水塗膜が、前記特定の建物における1年間のムーブメントから所定の変動幅の荷重をn回受けるものとするとき、前記ステップ3で求めたS-N図から、前記所定の変動幅に対する、破断に至る破断回数Nを求め、次の式(1)により、前記特定の建物に形成される防水塗膜の推定耐久年数Yを求めるステップ4と、
を含む、防水塗膜の耐久性評価方法。
[数1]

Y=1/(Σn/N) ・・・式(1)
A method for evaluating the durability of a waterproof coating film formed on a specific building, the method comprising:
Step 1 of determining the fluctuation range at which the waterproof coating film breaks under one load by a crack followability test of the waterproof coating film;
A step 2 of determining the relationship between the fluctuation range and the number of times of failure under a predetermined repeated load through a fatigue test of the waterproof coating film;
Step 3 of creating an SN diagram regarding the relationship between the fluctuation range and the number of breaks, including the case where the number of breaks is one, based on the results obtained in Steps 1 and 2;
When the waterproof coating film formed on the specific building is assumed to receive a load of a predetermined fluctuation range n i times from the movement of the specific building over the course of one year, from the SN diagram obtained in step 3 above, , a step 4 in which the number of ruptures N i leading to rupture is determined for the predetermined variation range, and the estimated durability Y of the waterproof coating film formed on the specific building is determined using the following equation (1);
A method for evaluating the durability of waterproof coatings, including:
[Number 1]

Y=1/(Σn i /N i )...Formula (1)
特定の建物に形成される防水塗膜の耐久性の評価方法であって、
防水塗膜の塗膜片を用いて行われた複数の測定周波数での動的粘弾性測定によって得られた、測定周波数ごとの温度分散の貯蔵弾性率E’のグラフから、基準温度を設定して周波数分散の貯蔵弾性率E’のグラフを作成するステップ1’と、
前記周波数分散の貯蔵弾性率E’のグラフから、貯蔵弾性率E’と1回の荷重を受けて前記防水塗膜が破断する変動幅との関係のグラフ、及び、貯蔵弾性率E’と所定の変動幅の繰り返し荷重を受けて破断に至る破断回数との関係のグラフを作成するステップ2’と、
前記貯蔵弾性率E’と1回の荷重を受けて前記防水塗膜が破断する変動幅との関係のグラフ、及び、貯蔵弾性率E’と所定の変動幅の繰り返し荷重を受けて破断に至る破断回数との関係のグラフから、変動幅と破断回数との関係についてのS-N図を作成するステップ3’と、
前記特定の建物に形成される防水塗膜が、前記特定の建物における1年間のムーブメントから所定の変動幅の荷重をn回受けるものとするとき、前記ステップ3’で求めたS-N図から、前記所定の変動幅に対する、破断に至る破断回数Nを求め、次の式(1)により、前記特定の建物に形成される防水塗膜の推定耐久年数Yを求めるステップ4’と、を含む、防水塗膜の耐久性評価方法。
[数2]

Y=1/(Σn/N) ・・・式(1)
A method for evaluating the durability of a waterproof coating film formed on a specific building, the method comprising:
The reference temperature was set from the graph of the storage modulus E' of the temperature dispersion for each measurement frequency, which was obtained by dynamic viscoelasticity measurements at multiple measurement frequencies using a piece of the waterproof coating film. Step 1' of creating a graph of the frequency dispersion storage modulus E';
From the graph of the storage elastic modulus E' of the frequency dispersion, a graph of the relationship between the storage elastic modulus E' and the fluctuation width at which the waterproof coating film breaks under one load, and a graph of the relationship between the storage elastic modulus E' and the predetermined step 2' of creating a graph of the relationship between the number of times of failure and the number of times of failure when subjected to a repeated load with a variation range;
A graph of the relationship between the storage elastic modulus E' and the variation range in which the waterproof coating film breaks after receiving a single load, and a graph showing the relationship between the storage elastic modulus E' and the variation range in which the waterproof coating film breaks after receiving a repeated load in a predetermined variation range. Step 3' of creating an SN diagram regarding the relationship between the fluctuation width and the number of breaks from the graph of the relationship with the number of breaks;
When the waterproof coating film formed on the specific building is assumed to receive a load of a predetermined fluctuation range n i times from the movement of the specific building over the course of one year, the SN diagram obtained in step 3' Step 4': find the number of breaks N i that leads to breakage for the predetermined fluctuation range, and calculate the estimated durability Y of the waterproof coating film formed on the specific building using the following equation (1); A method for evaluating the durability of waterproof coatings, including:
[Number 2]

Y=1/(Σn i /N i )...Formula (1)
特定の建物に形成される防水塗膜の耐久性の評価装置であって、
前記防水塗膜のひび割れ追従性試験に得られた、1回の荷重を受けて前記防水塗膜が破断する変動幅のデータを取得する破断変動幅データ取得部と、
前記防水塗膜の疲労試験により得られた変動幅と、所定の繰り返し荷重を受けて破断に至る破断回数のデータを取得する繰り返し荷重-破断回数関係データ取得部と、
前記破断変動幅データ取得部が取得した1回の荷重を受けて前記防水塗膜が破断する変動幅のデータと、前記繰り返し荷重-破断回数関係データ取得部が取得した、所定の繰り返し荷重を受けて破断に至る破断回数のデータ、に基づいて、変動幅と、破断回数が1回の場合も含まれる破断回数との関係についてのS-N図を作成するS-N図作成部と、
前記特定の建物に形成される防水塗膜が、前記特定の建物における1年間のムーブメントから所定の変動幅の荷重をni回受けるものとするとき、前記S-N図作成部が作成したS-N図から、前記所定の変動幅に対する、破断に至る破断回数Niを求め、次の式(1)により、前記特定の建物に形成される防水塗膜の推定耐久年数Yを算出する推定耐久年数算出部と、を備える評価装置。
[数3]

Y=1/(Σni/Ni) ・・・式(1)
A device for evaluating the durability of a waterproof coating film formed on a specific building,
a rupture fluctuation width data acquisition unit that acquires data of a fluctuation range in which the waterproof coating film ruptures when subjected to one load, which is obtained in a crack followability test of the waterproof coating film;
a cyclic load-number of rupture relationship data acquisition unit that obtains data on the fluctuation range obtained by the fatigue test of the waterproof coating film and the number of ruptures that result in rupture under a predetermined cyclic load;
Data on the fluctuation width at which the waterproof coating film breaks when subjected to one load, which is acquired by the fracture fluctuation width data acquisition section, and when subjected to a predetermined repeated load, which is acquired by the repeated load-number-of-rupture relationship data acquisition section. an SN diagram creation unit that creates an SN diagram regarding the relationship between the fluctuation width and the number of fractures, including the case where the number of fractures is one, based on the data of the number of fractures leading to fracture;
When the waterproof coating formed on the specific building is assumed to receive a load of a predetermined fluctuation range ni times from the movement of the specific building over the course of one year, the S-- From the N diagram, calculate the number of ruptures Ni for the predetermined fluctuation range, and use the following formula (1) to calculate the estimated durability Y of the waterproof coating film formed on the specific building. An evaluation device comprising a calculation unit.
[Number 3]

Y=1/(Σni/Ni) ...Formula (1)
特定の建物に形成される防水塗膜の耐久性の評価装置であって、
防水塗膜の塗膜片を用いて行われた複数の測定周波数での動的粘弾性測定によって得られた、測定周波数ごとの温度分散の貯蔵弾性率E’のグラフから、基準温度を設定して周波数分散の貯蔵弾性率E’のグラフを作成する周波数分散貯蔵弾性率E’グラフ作成部と、
前記周波数分散貯蔵弾性率E’グラフ作成部が作成した周波数分散の貯蔵弾性率のグラフから、貯蔵弾性率E’と1回の荷重を受けて前記防水塗膜が破断する変動幅との関係のグラフ、及び、貯蔵弾性率E’と所定の変動幅の繰り返し荷重を受けて破断に至る破断回数との関係のグラフを作成する貯蔵弾性率E’-変動幅関係グラフ及び貯蔵弾性率E’-破断回数関係グラフ作成部と、
前記貯蔵弾性率E’-変動幅関係グラフ及び貯蔵弾性率E’-変動幅に対する破断回数関係グラフ作成部が作成した、貯蔵弾性率E’と1回の荷重を受けて前記防水塗膜が破断する変動幅との関係のグラフ、及び、貯蔵弾性率E’ と所定の変動幅の繰り返し荷重を受けて破断に至る破断回数との関係のグラフから、変動幅と破断回数との関係についてのS-N図を作成するS-N図作成部と、
前記特定の建物に形成される防水塗膜が、前記特定の建物における1年間のムーブメントから所定の変動幅の荷重をni回受けるものとするとき、前記S-N図作成部が作成したS-N図から、前記所定の変動幅に対する、破断に至る破断回数Niを求め、次の式(1)により、前記特定の建物に形成される防水塗膜の推定耐久年数Yを算出する推定耐久年数算出部と、を備える評価装置。
[数4]

Y=1/(Σni/Ni) ・・・式(1)
A device for evaluating the durability of a waterproof coating film formed on a specific building,
The reference temperature was set from the graph of the storage modulus E' of the temperature dispersion for each measurement frequency, which was obtained by dynamic viscoelasticity measurements at multiple measurement frequencies using a piece of the waterproof coating film. a frequency dispersion storage modulus E' graph creation unit that creates a graph of the frequency dispersion storage modulus E';
From the graph of the frequency dispersion storage modulus created by the frequency dispersion storage modulus E' graph creation section, it is possible to determine the relationship between the storage modulus E' and the range of variation at which the waterproof coating film ruptures when subjected to one load. Create a graph and a graph of the relationship between the storage modulus E' and the number of fractures that occur after receiving a repeated load of a predetermined fluctuation range Storage modulus E'-variation range relationship graph and storage modulus E'- A breakage frequency relationship graph creation section,
The storage elastic modulus E'-variation range relationship graph and the storage elastic modulus E'-variation width versus rupture frequency relationship graph created by the storage elastic modulus E' and the waterproof coating film ruptured under one load. From the graph of the relationship between the fluctuation width and the graph of the relationship between the storage elastic modulus E' and the number of fractures that occur when subjected to a repeated load of a predetermined fluctuation range, S about the relationship between the fluctuation width and the number of fractures - an S-N diagram creation unit that creates an N diagram;
When the waterproof coating formed on the specific building is assumed to receive a load of a predetermined fluctuation range ni times from the movement of the specific building over the course of one year, the S-- From the N diagram, calculate the number of ruptures Ni for the predetermined fluctuation range, and use the following formula (1) to calculate the estimated durability Y of the waterproof coating film formed on the specific building. An evaluation device comprising a calculation unit.
[Number 4]

Y=1/(Σni/Ni) ...Formula (1)
JP2020115659A 2020-07-03 2020-07-03 Durability evaluation method and durability evaluation device of waterproof coating film Active JP7344849B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020115659A JP7344849B2 (en) 2020-07-03 2020-07-03 Durability evaluation method and durability evaluation device of waterproof coating film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020115659A JP7344849B2 (en) 2020-07-03 2020-07-03 Durability evaluation method and durability evaluation device of waterproof coating film

Publications (2)

Publication Number Publication Date
JP2022013241A JP2022013241A (en) 2022-01-18
JP7344849B2 true JP7344849B2 (en) 2023-09-14

Family

ID=80169406

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020115659A Active JP7344849B2 (en) 2020-07-03 2020-07-03 Durability evaluation method and durability evaluation device of waterproof coating film

Country Status (1)

Country Link
JP (1) JP7344849B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004333378A (en) 2003-05-09 2004-11-25 Kawasaki Heavy Ind Ltd Information acquiring device, service life arithmetic unit and evaluation equipment
JP2019211015A (en) 2018-06-05 2019-12-12 株式会社ブリヂストン Hose and management system of hose

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0727671A (en) * 1993-07-08 1995-01-31 Mazda Motor Corp Method and apparatus for deciding deteriorated state of article

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004333378A (en) 2003-05-09 2004-11-25 Kawasaki Heavy Ind Ltd Information acquiring device, service life arithmetic unit and evaluation equipment
JP2019211015A (en) 2018-06-05 2019-12-12 株式会社ブリヂストン Hose and management system of hose

Also Published As

Publication number Publication date
JP2022013241A (en) 2022-01-18

Similar Documents

Publication Publication Date Title
ElBatanouny et al. Early corrosion detection in prestressed concrete girders using acoustic emission
Rachwał et al. Fatigue damage of the gesso layer in panel paintings subjected to changing climate conditions
Kouroussis et al. Assessment of timber element mechanical properties using experimental modal analysis
Johnson et al. Structural properties and durability of a sprayed waterproofing membrane for tunnels
Thevenet et al. Experimental analysis of the behavior of adhesively bonded joints under tensile/compression–shear cyclic loadings
Duncan et al. Characterisation of flexible adhesives for design.
Perkowski et al. Description of behaviour of timber-concrete composite beams including interlayer slip, uplift, and long-term effects: Formulation of the model and coefficient inverse problem
JP7344849B2 (en) Durability evaluation method and durability evaluation device of waterproof coating film
Delucchi et al. Crack-bridging ability and liquid water permeability of protective coatings for concrete
Croom et al. Modeling of asphalt roof shingle-sealant structures for prediction of local delamination under high wind loads
Korswagen et al. Monitoring and quantifying crack-based light damage in masonry walls with Digital Image Correlation
Breysse et al. How to improve the quality of concrete assessment by combining several NDT measurements
Labuz et al. Local damage detection in beam-column connections using a dense sensor network
Hojo Durability of wooden member reinforced by carbon-fiber
KR101432428B1 (en) Mechanoluminescent paint by using acrylic resin
Carbary et al. Implementing ASTM C1735 into Conventional Methods for Assessing Durability of Sealants
Riahinezhad et al. Overview of Durability and Methods of Service Life Prediction for Building Adhesive and Sealant Products
Huff Nondestructive Field Testing of Installed Weatherproofing Sealant Joints
Yaya et al. Computation of Cauchy heterogeneous stress field in a cruciform specimen subjected to equibiaxial tensile within parameter identification of isotropic hyperelastic materials
Nizina et al. Method of quantitative assessment of changes in “critical” levels of elastic-strength parameters of epoxy polymers in the process of natural climatic aging
Chang et al. Applying strain-sensing technology for monitoring and diagnosing peel-based deterioration of tiled exterior walls
de Freitas et al. Durability assessment of adhesive systems for bonding ceramic tiles on façades: the research and the practice
Phares et al. Development of a Smart Timber Bridge (Phase III)
Weber et al. Time and Temperature-Dependent Modulus Concept for Plastics
Stodůlka et al. Analysis of the causes of defects due to quality roofing membranes mechanical anchoring

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20200728

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230829

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230830

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230904

R150 Certificate of patent or registration of utility model

Ref document number: 7344849

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150