JP7344541B2 - Composite optical resonator, temperature sensor, optical resonator device - Google Patents

Composite optical resonator, temperature sensor, optical resonator device Download PDF

Info

Publication number
JP7344541B2
JP7344541B2 JP2019124798A JP2019124798A JP7344541B2 JP 7344541 B2 JP7344541 B2 JP 7344541B2 JP 2019124798 A JP2019124798 A JP 2019124798A JP 2019124798 A JP2019124798 A JP 2019124798A JP 7344541 B2 JP7344541 B2 JP 7344541B2
Authority
JP
Japan
Prior art keywords
optical resonator
temperature
optical
composite
composite optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019124798A
Other languages
Japanese (ja)
Other versions
JP2021012902A (en
Inventor
モルジンスキー ピオトル
哲也 井戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Information and Communications Technology
Original Assignee
National Institute of Information and Communications Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Information and Communications Technology filed Critical National Institute of Information and Communications Technology
Priority to JP2019124798A priority Critical patent/JP7344541B2/en
Publication of JP2021012902A publication Critical patent/JP2021012902A/en
Application granted granted Critical
Publication of JP7344541B2 publication Critical patent/JP7344541B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、複合光共振器、温度センサ、及び光共振器装置に関する。 The present invention relates to a composite optical resonator, a temperature sensor, and an optical resonator device.

原子や分子の遷移周波数を利用する原子時計に使用される光共振器は、スペーサに形成された空洞と、この空洞の両端に設けられた一対の反射鏡とを有する。共振周波数(共鳴周波数)は一対の反射鏡間の距離(共振器長)に依存するので、光共振器は、周波数変動のないようにするために、温度変動による熱膨張、気圧変化による影響、及び機械的振動を極力皆無とするように構成される。 An optical resonator used in an atomic clock that utilizes the transition frequency of atoms or molecules has a cavity formed in a spacer and a pair of reflecting mirrors provided at both ends of the cavity. The resonant frequency depends on the distance between a pair of reflecting mirrors (resonator length), so in order to prevent frequency fluctuations, optical resonators are designed to prevent thermal expansion due to temperature fluctuations, atmospheric pressure changes, and is configured to eliminate mechanical vibration as much as possible.

スペーサの熱膨張を抑制するために、スペーサを超低熱膨張材料で形成すると共に、温度調整機能を有する真空恒温チャンバに光共振器を収容し、さらに真空恒温チャンバと光共振器の間に熱遮蔽材を設けて、マイクロケルビン単位で温度管理される(非特許文献1~3)。また、反射鏡にスペーサと同じ材料からなる補償部材を取り付けて、温度変動による反射鏡の撓みを抑制した光共振器が開示されている(特許文献1)。また、複数の光共振器の並列動作によってそれぞれの帰還光の周波数を平均化して、熱振動による影響を軽減する装置が開示されている(特許文献2)。また、光共振器は、機械的振動を抑制するために除振台に搭載される。さらに、一体のスペーサを共有する複数の光共振器を加速度センサに利用して、その出力の負帰還によって駆動する台に搭載されて能動的に除振する装置が開示されている(特許文献3)。 In order to suppress the thermal expansion of the spacer, the spacer is made of an ultra-low thermal expansion material, the optical resonator is housed in a vacuum constant temperature chamber with a temperature adjustment function, and a thermal shield is provided between the vacuum constant temperature chamber and the optical resonator. The temperature is controlled in microkelvin units (Non-Patent Documents 1 to 3). Further, an optical resonator is disclosed in which a compensation member made of the same material as the spacer is attached to the reflecting mirror to suppress deflection of the reflecting mirror due to temperature fluctuations (Patent Document 1). Furthermore, a device has been disclosed that reduces the influence of thermal vibration by averaging the frequencies of the respective feedback lights by operating a plurality of optical resonators in parallel (Patent Document 2). Further, the optical resonator is mounted on a vibration isolation table to suppress mechanical vibration. Furthermore, a device has been disclosed that uses a plurality of optical resonators sharing a single spacer as an acceleration sensor and is mounted on a stand driven by negative feedback of the output to actively isolate vibrations (Patent Document 3). ).

独国特許出願公開第102008049367号明細書German Patent Application No. 102008049367 特許第6284176号公報Patent No. 6284176 特許第6256876号公報Patent No. 6256876

J.Keller, S. Ignatovich, S. A. Webster, T. E. Mehlstaubler, "Simple vibration insensitive cavity for laser stabilization at the 10-16 level", Applied Physics B 116, 203 (2014), 2013J. Keller, S. Ignatovich, S. A. Webster, T. E. Mehlstaubler, "Simple vibration insensitive cavity for laser stabilization at the 10-16 level", Applied Physics B 116, 203 (2014), 2013 D.R. Leibrandt, J. C. Bergquist, T. Rosenband, "Cavity-stabilized laser with acceleration sensitivity below 10-12 g-1", Physical Review A 87, 023829 (2013), 2013D.R. Leibrandt, J. C. Bergquist, T. Rosenband, "Cavity-stabilized laser with acceleration sensitivity below 10-12 g-1", Physical Review A 87, 023829 (2013), 2013 J.Alnis, A. Matveev, N. Kolachevsky, Th. Udem, T. W. Hansch, "Subhertz linewidth diode lasers by stabilization to vibrationally and thermally compensated ultralow-expansion glass Fabry-Perot cavities", Physical Review A 77, 053809 (2008), 2008J. Alnis, A. Matveev, N. Kolachevsky, Th. Udem, T. W. Hansch, "Subhertz linewidth diode lasers by stabilization to vibrationally and thermally compensated ultralow-expansion glass Fabry-Perot cavities", Physical Review A 77, 053809 (2008) , 2008

しかし、光共振器は、周波数の不確かさ(確度)を10-15未満として良好に維持するためには、ナノケルビン程度以下の温度安定性が必要とされ、現在の標準温度センサでは達成不可能である。このような温度センサの精度未満の温度変動をも抑制するために、光共振器は、大型化、精密化した恒温チャンバに、厚みのある、または二重以上の熱遮蔽材を介在して収容されるが、十分な温度管理は不可能である。 However, in order to maintain a good frequency uncertainty (accuracy) of less than 10 -15 , optical resonators require temperature stability on the order of nanokelvin or less, which cannot be achieved with current standard temperature sensors. It is. In order to suppress temperature fluctuations that are less than the accuracy of such temperature sensors, the optical resonator is housed in a larger and more precise constant temperature chamber with a thick or double or more heat shielding material interposed. However, sufficient temperature control is not possible.

本発明は、前記問題点に鑑みてなされたものであり、ナノケルビンオーダーの高精度な温度センサ、及びこの温度センサを構成する複合光共振器、並びに、光共振器の10-15未満の周波数の確度を実現可能な光共振器装置を提供することを課題とする。 The present invention has been made in view of the above-mentioned problems, and provides a highly accurate temperature sensor on the order of nanokelvin, a composite optical resonator constituting this temperature sensor, and a frequency of less than 10 -15 of the optical resonator. An object of the present invention is to provide an optical resonator device that can achieve the accuracy of .

本発明に係る複合光共振器は、スペーサの一面から他面まで貫通する空洞と前記空洞の両端に設けられた反射鏡とを備える光共振器を、前記スペーサに前記空洞が並行するように複数設けた複合光共振器であって、一部の前記光共振器の反射鏡と他の前記光共振器の反射鏡とは熱膨張率が異なる構成である。 The composite optical resonator according to the present invention includes a plurality of optical resonators each including a cavity penetrating from one surface to the other surface of a spacer and reflecting mirrors provided at both ends of the cavity, such that the cavities are parallel to the spacer. In the provided composite optical resonator, the reflecting mirrors of some of the optical resonators and the reflecting mirrors of the other optical resonators have different coefficients of thermal expansion.

また、本発明に係る別の複合光共振器は、スペーサの一面から他面まで貫通する空洞と前記空洞の両端に設けられた反射鏡とを備える光共振器を、前記スペーサに前記空洞が並行するように複数設けた複合光共振器であって、一部の前記光共振器が、前記反射鏡よりも熱膨張率が低い補整部材を、前記反射鏡の前記空洞に対向する側の反対側に接続して備えるものである。 Further, another composite optical resonator according to the present invention includes an optical resonator including a cavity penetrating from one surface to the other surface of a spacer and reflecting mirrors provided at both ends of the cavity, the cavity being parallel to the spacer. A plurality of composite optical resonators are provided such that some of the optical resonators have a compensating member having a lower coefficient of thermal expansion than the reflecting mirror on a side opposite to the side of the reflecting mirror facing the cavity. It is provided by connecting to.

かかる構成により、複合光共振器は、温度が変動したときに、一部の光共振器と他の光共振器とで共振器長の変化量が異なる。したがって、前記一部の光共振器と他の光共振器との共振周波数同士の差を計測することによって、温度変動を検知することができる。 With this configuration, in the composite optical resonator, when the temperature changes, the amount of change in the resonator length differs between some optical resonators and other optical resonators. Therefore, temperature fluctuations can be detected by measuring the difference between the resonant frequencies of some of the optical resonators and the other optical resonators.

本発明に係る温度センサは、前記のいずれかの複合光共振器と、前記複合光共振器のそれぞれの光共振器にレーザー光を導入するレーザー光源と、前記一部の光共振器と他の前記光共振器との共振周波数同士の差である共振周波数差を計測する周波数比較手段と、を備え、前記共振周波数差が所定値となるときの前記複合光共振器の温度を基準温度として、前記周波数比較手段が計測した共振周波数差と前記所定値との差から、前記複合光共振器の温度と前記基準温度との差を検出する構成である。 The temperature sensor according to the present invention includes any one of the above-mentioned composite optical resonators, a laser light source that introduces laser light into each optical resonator of the above-mentioned composite optical resonators, and a part of the above-mentioned optical resonators and another optical resonator. a frequency comparing means for measuring a resonance frequency difference that is a difference between resonance frequencies of the optical resonator, the temperature of the composite optical resonator when the resonance frequency difference reaches a predetermined value as a reference temperature; The configuration is such that the difference between the temperature of the composite optical resonator and the reference temperature is detected from the difference between the resonant frequency difference measured by the frequency comparison means and the predetermined value.

かかる構成により、温度センサは、一部の光共振器の温度感度が相対的に高い複合光共振器を備えて、さらに、前記一部の光共振器の共振周波数を他の光共振器の共振周波数との差として算出する周波数比較手段によって、複合光共振器の温度を高精度で検知することができる。 With this configuration, the temperature sensor includes a composite optical resonator in which some of the optical resonators have relatively high temperature sensitivity, and further, the resonant frequency of some of the optical resonators is adjusted to the resonance frequency of the other optical resonators. The temperature of the composite optical resonator can be detected with high precision by the frequency comparison means that calculates the difference from the frequency.

本発明に係る光共振器装置は、前記のいずれかの複合光共振器と、前記複合光共振器のそれぞれの光共振器にレーザー光を導入するレーザー光源と、前記一部の光共振器と他の前記光共振器との共振周波数同士の差である共振周波数差を計測する周波数比較手段と、前記複合光共振器の温度を制御する温度制御手段と、を備え、前記温度制御手段は、前記共振周波数差が一定の値となるように、前記周波数比較手段が計測した共振周波数差に基づいて、前記複合光共振器の温度のフィードバック制御を行う構成である。 An optical resonator device according to the present invention includes any one of the above-mentioned composite optical resonators, a laser light source that introduces laser light into each optical resonator of the above-mentioned composite optical resonator, and some of the above-mentioned optical resonators. A frequency comparison means for measuring a resonance frequency difference, which is a difference between the resonance frequencies of the other optical resonators, and a temperature control means for controlling the temperature of the composite optical resonator, the temperature control means comprising: The configuration is such that feedback control of the temperature of the composite optical resonator is performed based on the resonance frequency difference measured by the frequency comparing means so that the resonance frequency difference becomes a constant value.

かかる構成により、光共振器装置は、複合光共振器について、熱遮蔽材のような受動的な温度保持手段のみによらずに、また、別途温度センサを接触設置することなく、温度を所定温度に高精度で管理することができる。 With this configuration, the optical resonator device can maintain the temperature of the composite optical resonator at a predetermined temperature without relying solely on passive temperature maintaining means such as a heat shielding material, or without installing a separate temperature sensor in contact with the composite optical resonator. can be managed with high precision.

本発明に係る別の光共振器装置は、前記のいずれかの複合光共振器と、前記複合光共振器のそれぞれの光共振器にレーザー光を導入するレーザー光源と、前記一部の光共振器と他の前記光共振器との共振周波数同士の差である共振周波数差を計測する周波数比較手段と、前記複合光共振器の一つの光共振器に共振した光の波長をシフトさせる波長シフト手段と、を備え、前記波長シフト手段は、前記周波数比較手段が計測した共振周波数差に基づいて、前記一つの光共振器の共振周波数の変動を打ち消すフィードフォワード制御を行う構成である。 Another optical resonator device according to the present invention includes any one of the above-described composite optical resonators, a laser light source that introduces a laser beam into each optical resonator of the composite optical resonator, and a part of the optical resonator. a frequency comparison means for measuring a difference in resonance frequency between the resonant frequency of the optical resonator and the other optical resonator; and a wavelength shifter for shifting the wavelength of light resonating in one of the optical resonators of the composite optical resonator. The wavelength shifting means is configured to perform feedforward control to cancel fluctuations in the resonant frequency of the one optical resonator based on the resonant frequency difference measured by the frequency comparing means.

かかる構成により、光共振器装置は、温度の微小な変動によって生じる共振周波数のドリフトを補償することができる。 With such a configuration, the optical resonator device can compensate for drifts in the resonant frequency caused by minute fluctuations in temperature.

本発明によれば、ナノケルビンオーダーの高精度な温度センサ、及びこの温度センサを構成する複合光共振器、並びに、光共振器の10-15未満の周波数の確度を実現可能な光共振器装置が得られる。 According to the present invention, a highly accurate temperature sensor on the nanokelvin order, a composite optical resonator constituting this temperature sensor, and an optical resonator device capable of realizing frequency accuracy of less than 10 -15 of the optical resonator is obtained.

本発明の実施形態に係る光共振器装置の構造を説明するブロック図である。FIG. 1 is a block diagram illustrating the structure of an optical resonator device according to an embodiment of the present invention. 本発明の実施形態に係る複合光共振器の構造を模式的に説明する外観図である。FIG. 1 is an external view schematically illustrating the structure of a composite optical resonator according to an embodiment of the present invention. 図2AのIIB-IIB線における部分断面図である。FIG. 2B is a partial cross-sectional view taken along line IIB-IIB in FIG. 2A. 図1に示す光共振器装置の波長安定化装置の構造を説明するブロック図である。2 is a block diagram illustrating the structure of a wavelength stabilizing device of the optical resonator device shown in FIG. 1. FIG. 図1に示す光共振器装置の同調器の構造を説明するブロック図である。2 is a block diagram illustrating the structure of a tuner of the optical resonator device shown in FIG. 1. FIG. 本発明に係る複合光共振器の温度変化による変形を誇張して模式的に説明する部分断面図である。FIG. 3 is a partial cross-sectional view schematically exaggerating deformation due to temperature change of the composite optical resonator according to the present invention. 複合光共振器における光共振器毎の共振周波数の温度依存性を表すグラフである。3 is a graph showing the temperature dependence of the resonant frequency of each optical resonator in a composite optical resonator.

本発明に係る複合光共振器、温度センサ、及び光共振器装置を実施するための形態について、図を参照して説明する。図面に示す複合光共振器及びその要素は、説明を明確にするために、大きさや位置関係等を誇張していることがあり、また、形状を単純化していることがある。また、同一構造の要素については、同じ符号を付して表す。 Embodiments for implementing a composite optical resonator, a temperature sensor, and an optical resonator device according to the present invention will be described with reference to the drawings. The composite optical resonator and its elements shown in the drawings may be exaggerated in size, positional relationship, etc., or simplified in shape for clarity of explanation. In addition, elements having the same structure are denoted by the same reference numerals.

〔光共振器装置〕
図1に示すように、本発明の実施形態に係る光共振器装置100は、複数の光共振器11,12,13を有する複合光共振器10と、光共振器11,12,13にレーザー光を導入するレーザー光源3と、光共振器12の共振周波数f2と光共振器13の共振周波数f1との差(共振周波数差)を計測する周波数比較器(周波数比較手段)7と、複合光共振器10の温度を所定温度に制御する温度制御装置(温度制御手段)81を備える真空恒温チャンバ8と、波長シフタ(波長シフト手段)9と、を備え、光共振器11に共振した光を、温度変動による周波数ドリフト(変動)を波長シフタ9で打ち消して出力する。光共振器装置100はさらに、光アイソレータ61と、レーザー光源3が照射したレーザー光L0を分岐させるビームスプリッタ62,63,65と、ミラー64,66と、レーザー光源3の発振波長を安定化する波長安定化装置4と、光共振器13,12に導入するレーザー光L1,L2をそれぞれ波長安定化する同調器5,5と、を備える。また、真空恒温チャンバ8がその真空容器内に複合光共振器10を収容して、除振台(図示省略)に搭載されている。光共振器装置100が出力した光L0corrは、外部の光周波数カウンタ(図示省略)等に入力される。なお、図1、及び後記図3及び図4において、実線の矢印で電気信号を、ハッチングを付した矢印で光を、白抜き矢印で環境(温度及び圧力)の制御を、それぞれ表す。以下、各要素について詳細に説明する。
[Optical resonator device]
As shown in FIG. 1, an optical resonator device 100 according to an embodiment of the present invention includes a composite optical resonator 10 having a plurality of optical resonators 11, 12, and 13, and a laser beam in the optical resonators 11, 12, and 13. A laser light source 3 that introduces light, a frequency comparator (frequency comparison means) 7 that measures the difference (resonant frequency difference) between the resonant frequency f2 of the optical resonator 12 and the resonant frequency f1 of the optical resonator 13, and a composite light A vacuum constant temperature chamber 8 is provided with a temperature control device (temperature control means) 81 that controls the temperature of the resonator 10 to a predetermined temperature, and a wavelength shifter (wavelength shift means) 9, and the light resonant in the optical resonator 11 is , frequency drift (fluctuation) due to temperature fluctuation is canceled out by the wavelength shifter 9 and output. The optical resonator device 100 further includes an optical isolator 61, beam splitters 62, 63, 65 that split the laser light L0 emitted by the laser light source 3, mirrors 64, 66, and stabilizes the oscillation wavelength of the laser light source 3. It includes a wavelength stabilizing device 4 and tuners 5, 5 that stabilize the wavelengths of the laser beams L1, L2 introduced into the optical resonators 13, 12, respectively. Further, a vacuum constant temperature chamber 8 accommodates a composite optical resonator 10 in its vacuum container and is mounted on a vibration isolation table (not shown). The light L0 corr output by the optical resonator device 100 is input to an external optical frequency counter (not shown) or the like. In FIG. 1 and FIGS. 3 and 4 described later, solid arrows represent electrical signals, hatched arrows represent light, and white arrows represent control of the environment (temperature and pressure), respectively. Each element will be explained in detail below.

(複合光共振器)
複合光共振器10は、スペーサの上面から下面まで貫通する空洞とこの空洞の両端に設けられた反射鏡とを有する光共振器を、それぞれの空洞が並行するように複数設ける。すなわち、これらの光共振器はそれぞれ、空洞を光路とするファブリペロー共振器であり、一つのスペーサを共有する。本実施形態に係る複合光共振器10は、図2Aに示すように、3つの光共振器11,12,13が一列に並んで設けられている。そのために、複合光共振器10は、3本の空洞1cが形成されたスペーサ1、スペーサ1の空洞1c毎に両端に向かい合って設けられた反射鏡21,22、反射鏡23,24、及び反射鏡25,26、並びに、反射鏡21,22のそれぞれに接合した補整部材27を備える。複合光共振器10を構成するこれらの部材は、低熱膨張材料で形成され、また、経年劣化し難い材料が好ましい。
(composite optical resonator)
The composite optical resonator 10 includes a plurality of optical resonators each having a cavity penetrating from the upper surface to the lower surface of the spacer and reflecting mirrors provided at both ends of the cavity so that the cavities are parallel to each other. That is, each of these optical resonators is a Fabry-Perot resonator whose optical path is a cavity, and they share one spacer. As shown in FIG. 2A, the composite optical resonator 10 according to this embodiment includes three optical resonators 11, 12, and 13 arranged in a line. For this purpose, the composite optical resonator 10 includes a spacer 1 in which three cavities 1c are formed, reflective mirrors 21 and 22, reflective mirrors 23 and 24, and reflective mirrors 21 and 22 provided facing each other at both ends of each cavity 1c of the spacer 1. It includes mirrors 25, 26 and a compensating member 27 joined to each of the reflecting mirrors 21, 22. These members constituting the composite optical resonator 10 are preferably made of a material with low thermal expansion, and a material that does not easily deteriorate over time.

光共振器11は、その共振周波数でレーザー光源3の発振波長を安定化させる参照光共振器であり、かつ、周波数基準とする主光共振器として使用される。そのために、光共振器11は、共振周波数の安定性に特に優れるように構成される。さらに、光共振器11は、温度感度が、他の光共振器の少なくとも一つよりも低く、すなわち光共振器12よりも低くなるように構成される。このような光共振器11は、スペーサ1の中心に形成された1本の空洞1c、及びその両端で向かい合う一対の反射鏡21,22、並びに補整部材27,27で構成される。光共振器12及び光共振器13は、これら2つが組み合わされて温度センサに使用される。そのために、光共振器12が光共振器13よりも温度感度が高くなるように構成される。また、光共振器13は、温度感度がより低くなるように構成されることが好ましい。光共振器12は、1本の空洞1c、及びその両端で向かい合う一対の反射鏡23,24で構成される。同様に、光共振器13は、1本の空洞1c、及びその両端で向かい合う一対の反射鏡25,26で構成される。 The optical resonator 11 is a reference optical resonator that stabilizes the oscillation wavelength of the laser light source 3 at its resonant frequency, and is used as a main optical resonator that is used as a frequency reference. For this purpose, the optical resonator 11 is configured to have particularly excellent stability of the resonance frequency. Furthermore, the optical resonator 11 is configured such that its temperature sensitivity is lower than at least one of the other optical resonators, that is, lower than the optical resonator 12. Such an optical resonator 11 is composed of a single cavity 1c formed at the center of the spacer 1, a pair of reflecting mirrors 21 and 22 facing each other at both ends of the cavity 1c, and compensation members 27 and 27. The optical resonator 12 and the optical resonator 13 are used in combination as a temperature sensor. For this purpose, the optical resonator 12 is configured to have higher temperature sensitivity than the optical resonator 13. Further, it is preferable that the optical resonator 13 is configured to have lower temperature sensitivity. The optical resonator 12 is composed of one cavity 1c and a pair of reflecting mirrors 23 and 24 facing each other at both ends of the cavity 1c. Similarly, the optical resonator 13 is composed of one cavity 1c and a pair of reflecting mirrors 25 and 26 facing each other at both ends of the cavity 1c.

スペーサ1は、外形が、双円錐台(樽型)で、さらに径の太い部分に鍔状に張り出した支持部を有する回転体である。この回転体の回転の軸をスペーサ1の中心軸と称する。スペーサ1は、一面から他面まで中心軸方向に貫通する空洞1cが3本形成されている。空洞1cは円柱形状である。空洞1cは、3本が一方向に等間隔で並んで形成され、中央の1本の中心軸がスペーサ1の中心軸と一致する。スペーサ1の形状は、空洞1cを含めて回転対称性を有することが好ましい。また、スペーサ1の中心軸が特に機械的振動等の影響を受け難い位置であることから、中央の空洞1cが光共振器11に適用される。なお、空洞1c内は、高真空であり、真空吸引のために、スペーサ1の外周面で開放するように、スペーサ1に形成された図示しない貫通孔と連通している。スペーサ1は、熱膨張係数が特に小さい材料(超低熱膨張材料)で形成される。具体的には、零膨脹率になる温度(Zero-Crossing温度)が室温に近いULE(Ultra-Low-Expansion、登録商標、Corning社)ガラスやゼロデュア(Zerodur、登録商標、Schott社)が挙げられ、クリープが小さいことからULEガラスが特に好ましい。 The spacer 1 is a rotating body that has a biconical truncated (barrel-shaped) outer shape and has a support portion projecting like a brim at a thicker diameter portion. The axis of rotation of this rotating body is called the central axis of the spacer 1. In the spacer 1, three cavities 1c are formed which penetrate in the direction of the central axis from one surface to the other surface. The cavity 1c has a cylindrical shape. The cavities 1c are formed by lining up three cavities 1c at equal intervals in one direction, and the central axis of the central one coincides with the central axis of the spacer 1. The shape of the spacer 1 preferably has rotational symmetry including the cavity 1c. Furthermore, since the central axis of the spacer 1 is at a position that is not particularly susceptible to mechanical vibrations, the central cavity 1c is applied to the optical resonator 11. Note that the inside of the cavity 1c is in a high vacuum and communicates with a through hole (not shown) formed in the spacer 1 so as to be open at the outer peripheral surface of the spacer 1 for vacuum suction. The spacer 1 is made of a material with a particularly small coefficient of thermal expansion (ultra-low thermal expansion material). Specifically, examples include ULE (Ultra-Low-Expansion, registered trademark, Corning Inc.) glass whose zero expansion rate (Zero-Crossing temperature) is close to room temperature, and Zerodur (registered trademark, Schott Inc.). , ULE glass is particularly preferred because of its low creep.

反射鏡21及び反射鏡22は、光共振器11において、空洞1cの両端の開口部を塞ぐように、オプティカルコンタクトによってスペーサ1と接合されている。図2Bに示すように、反射鏡21,22は、それぞれ、反射面を構成する反射膜2aと、これを支持する基板2bとからなる。そして、反射鏡21,22は、基板2b上における空洞1cに対向する領域に、反射膜2aを成膜してなる。反射膜2aは、例えば、SiO2とTa25の誘電体多層膜である。反射鏡21,22は、ブラウン運動による共振周波数の変動を抑制するために、熱雑音の少ない基板2bを備えることが好ましい。このような基板2bとして、石英ガラスが挙げられる。また、反射鏡21は平面鏡、反射鏡22は凹面(球面)鏡であり、それぞれの形状に基板2bが加工されている。あるいは、反射鏡21と反射鏡22とは、凸面鏡と凹面鏡の組合せでもよいし、両方が凹面鏡でもよい。 In the optical resonator 11, the reflecting mirror 21 and the reflecting mirror 22 are joined to the spacer 1 by optical contact so as to close the openings at both ends of the cavity 1c. As shown in FIG. 2B, the reflecting mirrors 21 and 22 each include a reflecting film 2a forming a reflecting surface and a substrate 2b supporting the reflecting film 2a. The reflective mirrors 21 and 22 are formed by forming a reflective film 2a on a region of the substrate 2b that faces the cavity 1c. The reflective film 2a is, for example, a dielectric multilayer film of SiO 2 and Ta 2 O 5 . It is preferable that the reflecting mirrors 21 and 22 include a substrate 2b with low thermal noise in order to suppress fluctuations in resonance frequency due to Brownian motion. An example of such a substrate 2b is quartz glass. Further, the reflecting mirror 21 is a plane mirror, and the reflecting mirror 22 is a concave (spherical) mirror, and the substrate 2b is processed into the respective shapes. Alternatively, the reflecting mirror 21 and the reflecting mirror 22 may be a combination of a convex mirror and a concave mirror, or both may be concave mirrors.

反射鏡23,25は反射鏡21と、反射鏡24,26は反射鏡22と、それぞれ同一形状であり、これらは反射鏡21,22と同様に、空洞1cの両端の開口部を塞ぐようにスペーサ1と接合されている。光共振器12の反射鏡23,24は、それぞれ、反射面を構成する反射膜2aと、これを支持する基板2cとからなる。光共振器13の反射鏡25,26は、それぞれ、反射面を構成する反射膜2aと、これを支持する基板2dとからなる。反射鏡23,24と反射鏡25,26とは、互いに熱膨張係数が異なる。そのために、反射鏡23,24及び反射鏡25,26のそれぞれの大部分を占める部材である基板2cと基板2dとは、互いに熱膨張係数の異なる材料で形成される。詳しくは、温度感度が高い光共振器12の反射鏡23,24の基板2cの方が、熱膨張係数が高い材料とする。さらに、熱膨張係数の低い基板2dは、スペーサ1と同じ熱膨張係数であることが好ましく、すなわち、スペーサ1と同じ材料で形成されることが好ましい。例えば、スペーサ1がULEガラスで形成されている場合、反射鏡25,26の基板2dが同じくULEガラスで形成され、これに対して、反射鏡23,24の基板2cが石英ガラスやBK7(ホウケイ酸クラウンガラス)で形成される。なお、光共振器12の反射鏡23及び反射鏡24は、少なくとも一方が反射鏡25,26よりも熱膨張係数が高ければよい。例えば、反射鏡24が熱膨張係数の高い基板2cを有し、かつ、反射鏡23が光共振器13の反射鏡25と同じ基板2dを有していてもよい。このような構成により、光共振器12は、反射鏡23,24の両方が基板2cを有する場合よりも温度感度が低くなる。光共振器12は、後記するように、必要とする温度感度に応じて、反射鏡23,24を設計される。 The reflecting mirrors 23 and 25 have the same shape as the reflecting mirror 21, and the reflecting mirrors 24 and 26 have the same shape as the reflecting mirror 22, respectively, and like the reflecting mirrors 21 and 22, they are designed to close the openings at both ends of the cavity 1c. It is joined to the spacer 1. The reflecting mirrors 23 and 24 of the optical resonator 12 each include a reflecting film 2a forming a reflecting surface and a substrate 2c supporting the reflecting film 2a. The reflecting mirrors 25 and 26 of the optical resonator 13 each include a reflecting film 2a forming a reflecting surface and a substrate 2d supporting the reflecting film 2a. The reflective mirrors 23 and 24 and the reflective mirrors 25 and 26 have different coefficients of thermal expansion. For this reason, the substrates 2c and 2d, which are members that occupy the majority of each of the reflecting mirrors 23, 24 and 25, 26, are formed of materials having different coefficients of thermal expansion. Specifically, the substrate 2c of the reflecting mirrors 23 and 24 of the optical resonator 12, which has a higher temperature sensitivity, is made of a material with a higher coefficient of thermal expansion. Further, the substrate 2d having a low coefficient of thermal expansion preferably has the same coefficient of thermal expansion as the spacer 1, that is, it is preferably formed of the same material as the spacer 1. For example, when the spacer 1 is made of ULE glass, the substrates 2d of the reflecting mirrors 25 and 26 are also made of ULE glass, whereas the substrates 2c of the reflecting mirrors 23 and 24 are made of quartz glass or BK7 (borosilicate glass). Acid crown glass). Note that it is sufficient that at least one of the reflecting mirror 23 and the reflecting mirror 24 of the optical resonator 12 has a higher coefficient of thermal expansion than the reflecting mirrors 25 and 26. For example, the reflecting mirror 24 may have a substrate 2c with a high coefficient of thermal expansion, and the reflecting mirror 23 may have the same substrate 2d as the reflecting mirror 25 of the optical resonator 13. With such a configuration, the optical resonator 12 has lower temperature sensitivity than when both the reflecting mirrors 23 and 24 have the substrate 2c. The optical resonator 12 has reflecting mirrors 23 and 24 designed depending on the required temperature sensitivity, as will be described later.

補整部材27は、熱変動による光共振器11の共振周波数の変化を抑制するために設けられる。前記したように、反射鏡21,22の基板2bは、石英ガラスが好適であるが、スペーサ1を構成するULEガラスよりも熱膨張係数が高い。そこで、反射鏡21,22及びスペーサ1の熱膨張差による変形を抑制するために、反射鏡21,22のスペーサ1との接合面と反対側に、基板2bよりも熱膨張係数の低い材料からなる補整部材27を接合する。補整部材27は、スペーサ1と反射鏡21,22との接合と同様に、オプティカルコンタクトによって反射鏡21,22(基板2b)と接合されている。補整部材27は、スペーサ1と同じ熱膨張係数であることが好ましく、すなわち、スペーサ1と同じ材料で形成されることが好ましい。補整部材27は、光共振器11に導入されるレーザー光の光路を避けて、空洞1cの延長上に貫通孔を有する円環柱形状に形成される。また、補整部材27は、反射鏡21,22を、スペーサ1と共に両面から挟んでその撓みを抑制するために、厚さ及び反射鏡21,22との接合面積が十分に大きいことが好ましい。 The compensation member 27 is provided to suppress changes in the resonant frequency of the optical resonator 11 due to thermal fluctuations. As described above, the substrate 2b of the reflecting mirrors 21 and 22 is preferably made of quartz glass, which has a higher coefficient of thermal expansion than the ULE glass forming the spacer 1. Therefore, in order to suppress deformation due to the difference in thermal expansion between the reflecting mirrors 21 and 22 and the spacer 1, a material having a lower coefficient of thermal expansion than the substrate 2b is made on the side of the reflecting mirrors 21 and 22 opposite to the joint surface with the spacer 1. The compensating member 27 is joined. The compensation member 27 is joined to the reflecting mirrors 21 and 22 (substrate 2b) by optical contact, similar to the joining between the spacer 1 and the reflecting mirrors 21 and 22. It is preferable that the compensation member 27 has the same thermal expansion coefficient as the spacer 1, that is, it is preferably made of the same material as the spacer 1. The compensation member 27 is formed in the shape of a circular column having a through hole on an extension of the cavity 1c, avoiding the optical path of the laser beam introduced into the optical resonator 11. Further, it is preferable that the compensation member 27 has a sufficiently large thickness and a sufficiently large joint area with the reflecting mirrors 21 and 22 in order to sandwich the reflecting mirrors 21 and 22 together with the spacer 1 from both sides and suppress the deflection thereof.

光共振器11,12,13は、平面鏡である反射鏡21,23,25の側からレーザー光を導入されることが好ましく、また、光路が重力方向であることが好ましい。したがって、複合光共振器10は、図2Aに示すように、空洞1cの貫通方向を鉛直方向に向けて、真空恒温チャンバ8の真空容器内に設置される。その際、複合光共振器10は、スペーサ1の鉛直方向中心に設けられた鍔状の支持部における等間隔な3、4点で、例えば環状の台座に取り付けられた柱によって支持されて、支持点以外を非接触とする。光共振器11,12,13への機械的振動等の影響を低減するために、支持点は、空洞1cからの距離が長い箇所とすることが好ましい。また、複合光共振器10は、室温近傍(例えば、25℃)で使用されることが好ましい。 It is preferable that laser light is introduced into the optical resonators 11, 12, 13 from the side of reflecting mirrors 21, 23, 25, which are plane mirrors, and the optical path is preferably in the direction of gravity. Therefore, as shown in FIG. 2A, the composite optical resonator 10 is installed in the vacuum container of the vacuum constant temperature chamber 8 with the penetration direction of the cavity 1c facing the vertical direction. At this time, the composite optical resonator 10 is supported by pillars attached to an annular pedestal, for example, at three or four equally spaced points on a collar-shaped support provided at the vertical center of the spacer 1. Points other than the points are non-contact. In order to reduce the influence of mechanical vibration etc. on the optical resonators 11, 12, 13, the support point is preferably located at a long distance from the cavity 1c. Further, the composite optical resonator 10 is preferably used near room temperature (for example, 25° C.).

(レーザー光源、光学素子)
レーザー光源3は、光共振器11,12,13に導入するレーザー光の光源である。レーザー光源3は、供給する電流を変化させる等により、発振波長を僅かに変化させることができる。図1に示すように、レーザー光源3が照射したレーザー光L0は、光アイソレータ61を透過し、ビームスプリッタ62,63及びミラー64によって分岐されて、波長安定化装置4または同調器5を経由して光共振器11,12,13に導入される。レーザー光L0はさらに、ビームスプリッタ65によって分岐されて、外部に出力される。光アイソレータ61は、レーザー光源3の発振動作の戻り光による擾乱を防止するものである。
(laser light source, optical element)
The laser light source 3 is a light source of laser light introduced into the optical resonators 11, 12, and 13. The laser light source 3 can slightly change the oscillation wavelength by, for example, changing the supplied current. As shown in FIG. 1, the laser light L0 emitted by the laser light source 3 passes through an optical isolator 61, is split by beam splitters 62 and 63 and a mirror 64, and then passes through a wavelength stabilizer 4 or a tuner 5. and introduced into optical resonators 11, 12, and 13. The laser beam L0 is further split by a beam splitter 65 and output to the outside. The optical isolator 61 prevents the oscillation operation of the laser light source 3 from being disturbed by returned light.

(波長安定化装置)
波長安定化装置4は、レーザー光源3の発振波長を、光共振器11の共振波長(共振周波数f0)にロックするPDH法(Pound-Drever-Hall method)によって安定化する。波長安定化装置4は、一例として、図3に示すように、レーザー光の位相を変調する光変調器42と、発振器43と、半波長板(λ/2板、HWP)47と、PBS(偏光ビームスプリッタ)48と、4分の1波長板(λ/4板、QWP)49と、光検出器(PD、Photodetector)44と、同期検波器45と、PID(Proportional-Integral-Differential、比例積微分)制御器46と、を備える。
(wavelength stabilization device)
The wavelength stabilizing device 4 stabilizes the oscillation wavelength of the laser light source 3 using the PDH method (Pound-Drever-Hall method), which locks the oscillation wavelength of the laser light source 3 to the resonant wavelength (resonant frequency f0) of the optical resonator 11. For example, as shown in FIG. 3, the wavelength stabilizing device 4 includes an optical modulator 42 that modulates the phase of laser light, an oscillator 43, a half-wave plate (λ/2 plate, HWP) 47, and a PBS ( a polarizing beam splitter) 48, a quarter wavelength plate (λ/4 plate, QWP) 49, a photodetector (PD) 44, a synchronous detector 45, and a PID (Proportional-Integral-Differential). (integral/differential) controller 46.

光変調器42は、レーザー光源3から照射されて光アイソレータ61を透過したレーザー光L0を、発振器43からの信号に基づいて位相変調して側帯波を立てる。変調されたレーザー光は、その光量が半波長板47及びPBS48で調整されて、4分の1波長板49を経由して光共振器11に入射する。光共振器11から出力した光Lout0は、4分の1波長板49を経由し、PBS48によって光検出器44に入力する。光検出器44は、光Lout0を電気信号に変換する。同期検波器45は、この電気信号を発振器43からの信号で同期検波して、帰還信号を出力し、この帰還信号をPID制御器46が平滑化する。平滑化された帰還信号SFbは、レーザー光源3に帰還する。この帰還ループによって、レーザー光源3の出力波長を光共振器11の共振(共鳴)スペクトルにロックすることができる。 The optical modulator 42 phase-modulates the laser beam L0 emitted from the laser light source 3 and transmitted through the optical isolator 61 based on the signal from the oscillator 43 to generate sideband waves. The modulated laser beam has its light intensity adjusted by a half-wave plate 47 and a PBS 48, and enters the optical resonator 11 via a quarter-wave plate 49. The light L out 0 output from the optical resonator 11 passes through a quarter-wave plate 49 and is input to the photodetector 44 by the PBS 48 . The photodetector 44 converts the light L out 0 into an electrical signal. The synchronous detector 45 synchronously detects this electrical signal with the signal from the oscillator 43 and outputs a feedback signal, which is smoothed by the PID controller 46. The smoothed feedback signal S Fb is fed back to the laser light source 3. This feedback loop allows the output wavelength of the laser light source 3 to be locked to the resonance spectrum of the optical resonator 11.

(同調器)
同調器5は、レーザー光源3から照射されたレーザー光L0を、光共振器12の共振波長(共振周波数f2)にロックすることによって、波長安定化したレーザー光L2を得る。また、同調器5は、レーザー光L0を光共振器13の共振波長(共振周波数f1)にロックすることによって、波長安定化したレーザー光L1を得る。同調器5は、一例として、図4に示すように、波長を可変とする波長シフタ51と、レーザー光の位相を変調する光変調器52と、発振器53と、半波長板47と、PBS48と、4分の1波長板49と、光検出器(PD、Photodetector)54と、同期検波器55と、PID制御器56と、VCO(電圧制御発振器)57と、オフセット電圧源58と、を備える。なお、図4では、光共振器12にレーザー光L2を導入する同調器5を示すが、光共振器13にレーザー光L1を導入する同調器5も同様の構成である。
(tuner)
The tuner 5 locks the laser beam L0 emitted from the laser light source 3 to the resonant wavelength (resonant frequency f2) of the optical resonator 12, thereby obtaining wavelength-stabilized laser beam L2. Further, the tuner 5 locks the laser beam L0 to the resonant wavelength (resonant frequency f1) of the optical resonator 13, thereby obtaining a wavelength-stabilized laser beam L1. For example, as shown in FIG. 4, the tuner 5 includes a wavelength shifter 51 that makes the wavelength variable, an optical modulator 52 that modulates the phase of the laser beam, an oscillator 53, a half-wave plate 47, and a PBS 48. , a quarter wavelength plate 49, a photodetector (PD) 54, a synchronous detector 55, a PID controller 56, a VCO (voltage controlled oscillator) 57, and an offset voltage source 58. . Although FIG. 4 shows the tuner 5 that introduces the laser beam L2 into the optical resonator 12, the tuner 5 that introduces the laser beam L1 into the optical resonator 13 has a similar configuration.

波長シフタ51は、音響光学素子(AOM)等を備え、レーザー光L0を、補正信号Scorr2に基づいた波長にシフトさせる。光変調器52は、波長がシフトしたレーザー光を、発振器53からの信号に基づいて位相変調して側帯波を立てる。変調されたレーザー光は、その光量が半波長板47及びPBS48で調整されて、4分の1波長板49を経由して光共振器12に入射する。光共振器12から出力した光Lout2は、4分の1波長板49を経由し、PBS48によって光検出器54に入力する。光検出器54は、光Lout2を電気信号に変換する。同期検波器55は、この電気信号を発振器53からの信号で同期検波して、帰還信号を出力し、この帰還信号をPID制御器56が平滑化する。VCO57は、平滑化された帰還信号を、その強度に応じた周波数の交流信号を含む補正信号Scorr2に変換する。前記周波数のオフセットは、オフセット電圧源58の電圧を調整することで設定することができる。同調器5は、光共振器12(または光共振器13)の共振波長を基準としたレーザー光の波長変動を反映した信号Scorr2(または信号Scorr1)を出力する。ここで、PDH法のための変調は、独立な光変調器52を利用して行う以外に、波長安定化装置4で安定化されたレーザー光源3からの変調されているレーザー光を利用することもできる。また、VCO57の代わりに、シンセサイザ方式の信号発生器を用いることができる。 The wavelength shifter 51 includes an acousto-optic element (AOM) and the like, and shifts the laser beam L0 to a wavelength based on the correction signal S corr 2. The optical modulator 52 phase-modulates the wavelength-shifted laser light based on the signal from the oscillator 53 to generate sideband waves. The modulated laser beam has its light intensity adjusted by a half-wave plate 47 and a PBS 48, and enters the optical resonator 12 via a quarter-wave plate 49. The light L out 2 output from the optical resonator 12 passes through a quarter-wave plate 49 and is input to the photodetector 54 by the PBS 48 . Photodetector 54 converts the light L out 2 into an electrical signal. The synchronous detector 55 synchronously detects this electric signal with the signal from the oscillator 53 and outputs a feedback signal, which is smoothed by the PID controller 56. The VCO 57 converts the smoothed feedback signal into a correction signal S corr 2 that includes an alternating current signal with a frequency corresponding to its intensity. The frequency offset can be set by adjusting the voltage of the offset voltage source 58. The tuner 5 outputs a signal S corr 2 (or signal S corr 1) that reflects the wavelength fluctuation of the laser beam with reference to the resonant wavelength of the optical resonator 12 (or optical resonator 13). Here, the modulation for the PDH method is performed not only by using the independent optical modulator 52 but also by using the modulated laser light from the laser light source 3 stabilized by the wavelength stabilizing device 4. You can also do it. Furthermore, instead of the VCO 57, a synthesizer type signal generator can be used.

(周波数比較器)
周波数比較器7は、光共振器13の共振周波数f1と光共振器12の共振周波数f2との差(共振周波数差)Δf2-1(=|f2-f1|)を計測して、電気信号として出力する。周波数比較器7が、温度変動によって相対的に変化し易い共振周波数f2を、共振周波数f1との差として計測することによって、共振周波数f2の変化量を高精度で検出することができる。後記するように、複合光共振器10において、光共振器12,13の共振周波数差Δf2-1は数100MHzである。光共振器装置100においては、光共振器11や光共振器13の周波数の確度を10-15未満に維持するために、周波数比較器7が、共振周波数差Δf2-1を1Hz未満の分解能で計測する。ここで、光共振器13,12に導入されるレーザー光L1,L2を波長安定化する同調器5が出力する補正信号Scorr1,Scorr2(図1、図4参照)は、それぞれ周波数が、共振周波数f1,f2と光共振器11の共振周波数f0との周波数差である。したがって、補正信号Scorr1,Scorr2間の周波数差(絶対値)は、光共振器12,13の共振周波数差Δf2-1と一致する。そこで、図1に示すように、光共振器装置100においては、周波数比較器7に、同調器5から補正信号Scorr1,Scorr2を入力する。このような周波数比較器7は、二重平衡混合器(DBM)等の周波数混合器71と、低周波域濾波器(LPF)72と、周波数-電圧変換器(FVC)73と、を備える。周波数混合器71は信号Scorr1と信号Scorr2とを混合し、その低周波数側の側帯波信号成分をLPF72が選択する。この選択された信号は、周波数が共振周波数差Δf2-1であり、FVC73が、周波数に対応した電圧の信号Sdiffに変換して出力する。
(frequency comparator)
The frequency comparator 7 measures the difference (resonance frequency difference) Δf 2-1 (=|f2−f1|) between the resonant frequency f1 of the optical resonator 13 and the resonant frequency f2 of the optical resonator 12, and outputs an electrical signal. Output as . The frequency comparator 7 measures the difference between the resonant frequency f2, which is relatively easy to change due to temperature fluctuations, and the resonant frequency f1, so that the amount of change in the resonant frequency f2 can be detected with high accuracy. As will be described later, in the composite optical resonator 10, the resonance frequency difference Δf 2-1 between the optical resonators 12 and 13 is several hundred MHz. In the optical resonator device 100, in order to maintain the frequency accuracy of the optical resonator 11 and the optical resonator 13 to less than 10 -15 , the frequency comparator 7 converts the resonance frequency difference Δf 2-1 to a resolution of less than 1 Hz. Measure with. Here, the correction signals S corr 1 and S corr 2 (see FIGS. 1 and 4) output by the tuner 5 that stabilizes the wavelength of the laser beams L1 and L2 introduced into the optical resonators 13 and 12 have respective frequencies is the frequency difference between the resonant frequencies f1, f2 and the resonant frequency f0 of the optical resonator 11. Therefore, the frequency difference (absolute value) between the correction signals S corr 1 and S corr 2 matches the resonance frequency difference Δf 2-1 between the optical resonators 12 and 13. Therefore, as shown in FIG. 1, in the optical resonator device 100, the correction signals S corr 1 and S corr 2 are inputted from the tuner 5 to the frequency comparator 7. Such a frequency comparator 7 includes a frequency mixer 71 such as a double balanced mixer (DBM), a low frequency filter (LPF) 72, and a frequency-voltage converter (FVC) 73. The frequency mixer 71 mixes the signal S corr 1 and the signal S corr 2, and the LPF 72 selects the sideband signal component on the low frequency side. This selected signal has a resonance frequency difference Δf 2-1 in frequency, and the FVC 73 converts it into a voltage signal S diff corresponding to the frequency and outputs it.

(真空恒温チャンバ)
真空恒温チャンバ8は、内部を設定された温度に保持し、また、所定の圧力の真空状態とする。そのために、図1に示すように、真空恒温チャンバ8は、内部を外部環境から遮断する真空容器(図示省略)、真空容器内の温度を制御する温度制御装置81、及び真空容器内を真空排気する真空排気系82等を備える。光共振器装置100において、真空恒温チャンバ8は、真空容器に複合光共振器10を収容して、その温度を設定温度に保持すると共に、複合光共振器10の空洞1cを高真空とする。真空容器は、高真空に対応した構造で、アルミニウム合金やステンレス鋼等で形成され、また、外部からレーザー光L0,L2,L1を複合光共振器10の光共振器11,12,13に導入するために、ARコート(Anti-reflection coating)等が形成された窓を備える。真空排気系82は、高真空ポンプ、圧力計及び流量計等を備える。温度制御装置81は、ペルチェ素子等を有する熱電冷却システム、これを制御する制御部、及び白金測温抵抗体等を用いた温度センサ等を備える。さらに、温度制御装置81は、複合光共振器10全体を均一な温度にするために、例えば、アルミニウム合金等で形成された通気孔を有する筐体を真空容器内に設置して備え、この筐体に複合光共振器10を収容して、筐体の外面に取り付けた熱電冷却システムで加熱、冷却する。あるいは、温度制御装置81は、真空容器を外側から加熱、冷却してもよい。また、真空恒温チャンバ8は、真空容器内に熱遮蔽材を備えていてもよい。
(vacuum constant temperature chamber)
The vacuum constant temperature chamber 8 maintains its interior at a set temperature and is in a vacuum state at a predetermined pressure. For this purpose, as shown in FIG. 1, the vacuum constant temperature chamber 8 includes a vacuum container (not shown) that isolates the inside from the outside environment, a temperature control device 81 that controls the temperature inside the vacuum container, and a vacuum exhaust system that evacuates the inside of the vacuum container. A vacuum evacuation system 82 and the like is provided. In the optical resonator device 100, the vacuum constant temperature chamber 8 accommodates the composite optical resonator 10 in a vacuum container, maintains its temperature at a set temperature, and places the cavity 1c of the composite optical resonator 10 in a high vacuum. The vacuum container has a structure compatible with high vacuum and is made of aluminum alloy, stainless steel, etc., and also introduces laser beams L0, L2, and L1 from the outside into the optical resonators 11, 12, and 13 of the composite optical resonator 10. In order to do this, a window is provided with an AR coating (Anti-reflection coating) or the like. The vacuum evacuation system 82 includes a high vacuum pump, a pressure gauge, a flow meter, and the like. The temperature control device 81 includes a thermoelectric cooling system including a Peltier device, a control unit for controlling the thermoelectric cooling system, a temperature sensor using a platinum resistance temperature detector, and the like. Further, the temperature control device 81 includes a casing made of, for example, an aluminum alloy and having ventilation holes installed in a vacuum container in order to maintain a uniform temperature in the entire composite optical resonator 10. The composite optical resonator 10 is housed in the housing and heated and cooled by a thermoelectric cooling system attached to the outer surface of the housing. Alternatively, the temperature control device 81 may heat and cool the vacuum container from the outside. Further, the vacuum constant temperature chamber 8 may include a heat shielding material inside the vacuum container.

(波長シフタ)
波長シフタ9は、同調器5の波長シフタ51と同様の構成を有し、レーザー光L0を、入力された信号に基づいた波長にシフトさせる。光共振器装置100において、光共振器11に共振した光であるレーザー光L0を出力する際に、波長シフタ9が、レーザー光L0の温度変動による周波数ドリフトを補償する。そのために、波長シフタ9は、レーザー光L0を、周波数比較器7が出力した信号Sdiffに基づいた波長にシフトさせて、光L0corrとして出力する。
(wavelength shifter)
The wavelength shifter 9 has a similar configuration to the wavelength shifter 51 of the tuner 5, and shifts the laser light L0 to a wavelength based on the input signal. In the optical resonator device 100, when outputting the laser beam L0, which is the light that resonates in the optical resonator 11, the wavelength shifter 9 compensates for the frequency drift of the laser beam L0 due to temperature fluctuations. For this purpose, the wavelength shifter 9 shifts the laser light L0 to a wavelength based on the signal S diff output by the frequency comparator 7, and outputs it as light L0 corr .

〔温度センサ、光共振器装置の運転方法〕
本発明に係る光共振器装置の運転方法、及び本発明に係る温度センサについて説明する。まず、図5及び図6を参照して、複合光共振器における光共振器の共振周波数の温度依存性について説明する。
[How to operate temperature sensor and optical resonator device]
A method of operating an optical resonator device according to the present invention and a temperature sensor according to the present invention will be explained. First, the temperature dependence of the resonant frequency of the optical resonator in the composite optical resonator will be explained with reference to FIGS. 5 and 6.

光共振器の共振周波数f0は、共振器長(光路長)lに依存する。共振器長の変化と共振周波数の変化の関係は下式(1)で表される。dlは共振器長の変化量、dfは共振周波数の変化量である。光共振器の共振器長lとは、一対の反射鏡(光共振器11においては反射鏡21,22)の反射面同士の距離である。また、スペーサは、温度変動によって熱膨張(収縮)すると、共振器長が下式(2)のように変化する。αはスペーサの熱膨張係数、dTはスペーサの温度変化量である。
df/f0=dl/l ・・・(1)
dl=αl・dT ・・・(2)
The resonant frequency f 0 of the optical resonator depends on the resonator length (optical path length) l. The relationship between the change in the resonator length and the change in the resonant frequency is expressed by the following equation (1). dl is the amount of change in the resonator length, and df is the amount of change in the resonant frequency. The resonator length l of the optical resonator is the distance between the reflecting surfaces of a pair of reflecting mirrors (reflecting mirrors 21 and 22 in the optical resonator 11). Further, when the spacer thermally expands (contracts) due to temperature fluctuation, the resonator length changes as shown in equation (2) below. α is the coefficient of thermal expansion of the spacer, and dT is the amount of temperature change of the spacer.
df/f 0 =dl/l...(1)
dl=αl・dT...(2)

したがって、超低熱膨張材料で形成されたスペーサ1及び反射鏡25,26(基板2d)からなる光共振器13は、温度に比例して(熱膨張係数が一定であると仮定した場合)、僅かながらも共振器長が変化し、その結果、図6に実線で示すように、共振周波数f1が変化する。なお、スペーサ1及び基板2dの熱膨張係数は、図6に示す温度域において正とする。一方、スペーサ1よりも熱膨張係数の高い基板2cを有する反射鏡23,24を備える光共振器12は、温度が上昇すると、図5に示すように、反射鏡23,24がスペーサ1との接合面を凹ますように撓んで変形する。このように、光共振器12は、温度変動によって、スペーサ1の膨張に反射鏡23,24の変形が加わるので、共振器長の変化量が光共振器13よりも大きい。これに対して、光共振器12と同様に熱膨張係数の高い基板2bを有する反射鏡21,22を備える光共振器11は、熱膨張係数の低い補整部材27によって反射鏡21,22の変形が抑制される。なお、図5では、上下を図2Bと逆にして、平面鏡である反射鏡21,23,25の側を示す。その結果、図6に破線で示すように、光共振器12の共振周波数f2は、光共振器13の共振周波数f1よりも温度依存性が大きく、すなわち、光共振器12は温度感度が高い。 Therefore, the optical resonator 13 consisting of the spacer 1 and the reflecting mirrors 25 and 26 (substrate 2d) made of an ultra-low thermal expansion material has a small However, the resonator length changes, and as a result, the resonant frequency f1 changes as shown by the solid line in FIG. Note that the thermal expansion coefficients of the spacer 1 and the substrate 2d are positive in the temperature range shown in FIG. On the other hand, as shown in FIG. It bends and deforms so that the joint surface is concave. In this way, the optical resonator 12 has a larger amount of change in resonator length than the optical resonator 13 because the spacer 1 expands and the reflecting mirrors 23 and 24 deform due to temperature fluctuations. On the other hand, in the optical resonator 11, which is equipped with reflecting mirrors 21 and 22 having a substrate 2b with a high coefficient of thermal expansion, like the optical resonator 12, the reflecting mirrors 21 and 22 are deformed by the compensating member 27 with a low coefficient of thermal expansion. is suppressed. In addition, in FIG. 5, the top and bottom are reversed to FIG. 2B, and the side of reflecting mirrors 21, 23, and 25 which are plane mirrors is shown. As a result, as shown by the broken line in FIG. 6, the resonant frequency f2 of the optical resonator 12 has greater temperature dependence than the resonant frequency f1 of the optical resonator 13, that is, the optical resonator 12 has higher temperature sensitivity.

さらに、基板2cの熱膨張係数がスペーサ1や基板2dに対して大きいほど、共振周波数f1,f2間の温度依存性の差も大きい。また、光共振器12の反射鏡23,24の両方が基板2cを有する方が、一方が基板2dを有する構造よりも、温度感度が高い。共振周波数f1,f2の各温度依存性df1/dT,df2/dTは、予め、スペーサ1、反射鏡25,26及び反射鏡23,24の各材料や寸法等に基づいて、シミュレーションで算出することができる。共振周波数f2の温度依存性は、共振周波数f1の温度依存性よりも1μKあたり5Hz以上大きいことが好ましく、10Hz以上大きいことがさらに好ましい。 Furthermore, the larger the coefficient of thermal expansion of the substrate 2c is relative to the spacer 1 and the substrate 2d, the larger the difference in temperature dependence between the resonance frequencies f1 and f2. Furthermore, when both of the reflecting mirrors 23 and 24 of the optical resonator 12 have the substrate 2c, the temperature sensitivity is higher than when one of them has the substrate 2d. The temperature dependencies df1/dT and df2/dT of the resonance frequencies f1 and f2 should be calculated in advance by simulation based on the materials and dimensions of the spacer 1, the reflecting mirrors 25 and 26, and the reflecting mirrors 23 and 24. Can be done. The temperature dependence of the resonance frequency f2 is preferably greater than the temperature dependence of the resonance frequency f1 by 5 Hz or more per μK, and more preferably by 10 Hz or more.

ここで、複合光共振器10において、光共振器11,12,13は、同一形状に設計されていても、スペーサ1や反射鏡21~26の加工精度上、各共振器長に微小な誤差を有する。そのため、数100THzである共振周波数f0,f2,f1は、数100MHz程度の範囲でバラツキを有する。図6においては、f1<f2とする。この場合、光共振器13,12の共振周波数差Δf2-1(=|f2-f1|)は、温度が高いほど比例して大きくなる。一方、f1>f2の場合には、温度が高いほど小さくなる。 Here, in the composite optical resonator 10, even if the optical resonators 11, 12, and 13 are designed to have the same shape, there may be slight errors in the length of each resonator due to the processing accuracy of the spacer 1 and the reflecting mirrors 21 to 26. has. Therefore, the resonance frequencies f0, f2, and f1, which are several hundred THz, have variations within a range of about several hundred MHz. In FIG. 6, f1<f2. In this case, the resonance frequency difference Δf 2-1 (=|f2−f1|) between the optical resonators 13 and 12 increases proportionally as the temperature increases. On the other hand, in the case of f1>f2, the higher the temperature, the smaller it becomes.

このことから、光共振器13,12の共振周波数差Δf2-1を計測することによって、複合光共振器10の温度Tを導出することができる。例えば、共振周波数差Δf2-1がある所定値(以下、参照値と称する)Δfrefとなるときの複合光共振器10の温度を基準温度Trefに設定する。図6においては、このとき、f1=f0、f2=f0+Δfrefとする(f1<f2)。なお、複合光共振器10がある温度(基準温度)Trefであるときの共振周波数差Δf2-1を参照値Δfrefに設定してもよいし、光共振器11の共振周波数f0を基準にして参照値Δfref及び基準温度Trefを設定してもよい。共振周波数差Δf2-1の、参照値Δfrefとの大小関係を含む差(Δf2-1-Δfref)から、共振周波数f1,f2の温度依存性df1/dT,df2/dTに基づいて、複合光共振器10の温度Tを基準温度Trefとの差(T-Tref)として算出することができる。光共振器装置100においては、前記したように、周波数比較器7が、共振周波数差Δf2-1に対応した電圧の信号Sdiffを出力するので、信号Sdiffの電圧から、複合光共振器10の温度Tの基準温度Trefとの差(T-Tref)を算出することができる。 From this, the temperature T of the composite optical resonator 10 can be derived by measuring the resonance frequency difference Δf 2-1 between the optical resonators 13 and 12. For example, the temperature of the composite optical resonator 10 at which the resonance frequency difference Δf 2-1 reaches a certain predetermined value (hereinafter referred to as a reference value) Δf ref is set as the reference temperature T ref . In FIG. 6, at this time, f1=f 0 and f2=f 0 +Δf ref (f1<f2). Note that the resonant frequency difference Δf 2-1 when the composite optical resonator 10 is at a certain temperature (reference temperature) T ref may be set as the reference value Δf ref , or the resonant frequency f0 of the optical resonator 11 may be set as the reference value. The reference value Δf ref and the reference temperature T ref may be set as follows. Based on the difference (Δf 2-1 - Δf ref ) including the magnitude relationship between the resonance frequency difference Δf 2-1 and the reference value Δf ref , based on the temperature dependence df1/dT and df2/dT of the resonance frequencies f1 and f2. , the temperature T of the composite optical resonator 10 can be calculated as the difference (TT ref ) from the reference temperature T ref . In the optical resonator device 100, as described above , the frequency comparator 7 outputs the voltage signal S diff corresponding to the resonant frequency difference Δf 2-1 . The difference (TT ref ) between the temperature T of 10 and the reference temperature T ref can be calculated.

このように、スペーサ1を共有し、かつ反射鏡の熱膨張係数が異なる光共振器13,12を備える複合光共振器10によれば、共振周波数差Δf2-1を計測することによって、複合光共振器10の温度Tを基準温度Trefとの差として検出することができる。特に、共振周波数差Δf2-1を1Hz未満で計測することによって、光共振器装置100をナノケルビンオーダーの温度センサとして使用することができる。 As described above, according to the composite optical resonator 10 including the optical resonators 13 and 12 that share the spacer 1 and have different coefficients of thermal expansion of the reflecting mirrors, by measuring the resonant frequency difference Δf 2-1 , the composite The temperature T of the optical resonator 10 can be detected as a difference from the reference temperature T ref . In particular, by measuring the resonance frequency difference Δf 2-1 at less than 1 Hz, the optical resonator device 100 can be used as a temperature sensor on the nano-Kelvin order.

また、光共振器11について、共振周波数f0の温度依存性df0/dTを光共振器12,13と同様に予め算出しておくことにより、共振周波数差Δf2-1から、複合光共振器10の温度変動に伴う共振周波数f0の変動(ドリフト)量を推測することができる。そこで、光共振器装置100は、周波数比較器7が出力した信号Sdiffを波長シフタ9に入力するように構成され、外部に出力されるレーザー光L0を、波長シフタ9が信号Sdiffの電圧に応じた波長にシフトする。波長シフタ9によって波長をシフトされた光L0corrは、推測による基準温度Trefにおける共振周波数を有する。このように、光共振器装置100は、温度感度の互いに異なる光共振器12と光共振器13とによって、光共振器12よりも温度感度の低い光共振器11について、その共振した光の温度変動による周波数ドリフトを打ち消すフィードフォワード制御を可能とする。その結果、光共振器11の共振周波数の長期安定度を改善することができる。 In addition, by calculating the temperature dependence df0/dT of the resonant frequency f0 for the optical resonator 11 in advance in the same manner as for the optical resonators 12 and 13, from the resonant frequency difference Δf 2-1 , the composite optical resonator 10 It is possible to estimate the amount of variation (drift) in the resonant frequency f0 due to temperature variation. Therefore, the optical resonator device 100 is configured to input the signal S diff output by the frequency comparator 7 to the wavelength shifter 9, and the wavelength shifter 9 converts the laser beam L0 outputted to the outside into the voltage of the signal S diff . Shift to the wavelength according to the wavelength. The light L0 corr whose wavelength has been shifted by the wavelength shifter 9 has a resonant frequency at the estimated reference temperature T ref . In this way, the optical resonator device 100 uses the optical resonator 12 and the optical resonator 13, which have different temperature sensitivities, to adjust the temperature of the resonant light for the optical resonator 11, which has lower temperature sensitivity than the optical resonator 12. Enables feedforward control that cancels frequency drift due to fluctuations. As a result, the long-term stability of the resonant frequency of the optical resonator 11 can be improved.

〔変形例〕
光共振器装置100において、周波数比較器7が共振周波数差Δf2-1≠Δfrefを算出した場合には、T≠Trefであることが検出される。そこで、(Δf2-1-Δfref)に応じて温度制御装置81を駆動して、真空恒温チャンバ8の真空容器内の温度を上昇または降下させることにより、Δf2-1=Δfrefに補整、すなわち複合光共振器10の温度Tを基準温度Trefに補整することができる。そのために、光共振器装置100は、周波数比較器7が出力した信号Sdiffを温度制御装置81に入力するように構成されてもよい。温度制御装置81の制御部が信号Sdiffの電圧に応じて熱電冷却システムを駆動して、温度を上昇、降下、または維持する。このように、光共振器装置100は、温度感度の互いに異なる光共振器12と光共振器13とによって、温度の高精度なフィードバック制御を可能とし、光共振器12よりも温度感度の低い光共振器11について、共振周波数の長期安定度を改善することができる。したがって、光共振器装置100は、レーザー光L0を、温度変動による周波数ドリフトのない、光共振器11に共振した光として、直接に出力することができ、波長シフタ9が不要となる。
[Modified example]
In the optical resonator device 100, when the frequency comparator 7 calculates the resonance frequency difference Δf 2-1 ≠Δf ref , it is detected that T≠T ref . Therefore, by driving the temperature control device 81 according to (Δf 2-1 - Δf ref ) and increasing or decreasing the temperature inside the vacuum container of the vacuum constant temperature chamber 8, compensation is made to Δf 2-1 =Δf ref . That is, the temperature T of the composite optical resonator 10 can be corrected to the reference temperature T ref . For this purpose, the optical resonator device 100 may be configured to input the signal S diff output by the frequency comparator 7 to the temperature control device 81 . A control section of the temperature control device 81 drives the thermoelectric cooling system according to the voltage of the signal S diff to raise, lower, or maintain the temperature. In this way, the optical resonator device 100 enables highly accurate feedback control of temperature by using the optical resonator 12 and the optical resonator 13, which have different temperature sensitivities. For the resonator 11, the long-term stability of the resonant frequency can be improved. Therefore, the optical resonator device 100 can directly output the laser light L0 as light that resonates in the optical resonator 11 without frequency drift due to temperature fluctuations, and the wavelength shifter 9 becomes unnecessary.

前記のように、基準温度Trefに補整するために温度制御装置81が温度を上昇または降下させたとき、光共振器11,12,13の各共振周波数が基準温度Trefにおける値に推移する、すなわちΔf2-1=Δfrefに補整されるまでには時間がかかる場合がある。そこで、光共振器装置100は、波長シフタ9によるレーザー光L0の周波数のフィードフォワード制御と温度制御装置81による温度のフィードバック制御とが併用されてもよい。そのために、光共振器装置100は、周波数比較器7が出力した信号Sdiffを、波長シフタ9と温度制御装置81とに入力するように構成される。このような構成により、光共振器装置100は、短期的には、波長シフタ9によってレーザー光L0の周波数ドリフトを補償して出力しつつ、中長期的には、温度制御装置81によって周波数ドリフトのないレーザー光L0を得ることができる。 As described above, when the temperature control device 81 raises or lowers the temperature to compensate for the reference temperature T ref , each resonance frequency of the optical resonators 11, 12, and 13 changes to the value at the reference temperature T ref . , that is, it may take some time to adjust to Δf 2-1 =Δf ref . Therefore, in the optical resonator device 100, feedforward control of the frequency of the laser beam L0 by the wavelength shifter 9 and feedback control of the temperature by the temperature control device 81 may be used together. For this purpose, the optical resonator device 100 is configured to input the signal S diff output by the frequency comparator 7 to the wavelength shifter 9 and the temperature control device 81 . With such a configuration, the optical resonator device 100 outputs the laser beam L0 with the frequency drift compensated for by the wavelength shifter 9 in the short term, while in the medium to long term, the temperature control device 81 compensates for the frequency drift of the laser beam L0. It is possible to obtain laser light L0 that is not present.

複合光共振器10は、温度センサのみに使用される場合には、光共振器12と光共振器13の2つのみを設けた構造としてもよい。また、光共振器13は、超低熱膨張材料からなる基板2dによらずに、光共振器11のように補整部材27を備えて、反射鏡25,26の変形を抑制する構成としてもよい。さらにこのことから、光共振器13に代えて光共振器11を、光共振器12と組み合わせて温度センサに使用することができる。このように、複合光共振器10は、2つの光共振器11,12(または光共振器12,13)を備える場合には、ダミーの光共振器を1つ備える構成としてもよいし、スペーサ1に中心軸で対称に2本の空洞1cを形成してもよい。また、光共振器12について、熱膨張係数の高い基板2cを有する反射鏡23,24の一方に、補整部材27を接合して、温度感度を低く調整してもよい。 When the composite optical resonator 10 is used only as a temperature sensor, it may have a structure in which only two optical resonators 12 and 13 are provided. Further, the optical resonator 13 may be configured to include a compensating member 27 like the optical resonator 11 to suppress deformation of the reflecting mirrors 25 and 26 instead of using the substrate 2d made of an ultra-low thermal expansion material. Further, for this reason, the optical resonator 11 can be used in place of the optical resonator 13 in combination with the optical resonator 12 as a temperature sensor. In this way, when the composite optical resonator 10 includes two optical resonators 11 and 12 (or optical resonators 12 and 13), it may be configured to include one dummy optical resonator, or may include a spacer. Two cavities 1c may be formed symmetrically about the central axis. Further, in the optical resonator 12, the temperature sensitivity may be adjusted to be low by bonding the compensation member 27 to one of the reflecting mirrors 23 and 24 having the substrate 2c having a high coefficient of thermal expansion.

光共振器装置100において、光共振器11と光共振器12の共振周波数差を計測して複合光共振器10の温度変動を検出する場合には、光共振器12に導入するレーザー光L2を波長安定化する同調器5の補正信号Scorr2のみを、周波数比較器7のFVC73に入力して信号Sdiffに変換すればよい。前記したように、補正信号Scorr2は、周波数が、光共振器12の共振周波数f2と光共振器11の共振周波数f0との周波数差である。 In the optical resonator device 100, when detecting the temperature fluctuation of the composite optical resonator 10 by measuring the resonance frequency difference between the optical resonator 11 and the optical resonator 12, the laser beam L2 introduced into the optical resonator 12 is It is sufficient to input only the wavelength-stabilized correction signal S corr 2 of the tuner 5 to the FVC 73 of the frequency comparator 7 and convert it into the signal S diff . As described above, the frequency of the correction signal S corr 2 is the frequency difference between the resonant frequency f2 of the optical resonator 12 and the resonant frequency f0 of the optical resonator 11.

図1に示す光共振器装置100においては、1台のレーザー光源3が照射したレーザー光L0を分岐させて光共振器11,12,13に導入しているが、レーザー光源3を2台ないし3台備えて、それぞれに波長安定化装置4を設けて独立したレーザー光を導入してもよい。この場合、周波数比較器7は、一例として、周波数混合器71に代えて光検出器を備える。光共振器装置100は、光共振器13,12から波長安定化装置4または同調器5に入力する出力光Lout1,Lout2を、それぞれビームスプリッタ(図示せず)で分岐させて、周波数比較器7の光検出器にも入力するように構成される。そして、光検出器上で出力光Lout1,Lout2を干渉させてビート周波数を有する電気信号を抽出する。 In the optical resonator device 100 shown in FIG. 1, the laser light L0 emitted by one laser light source 3 is branched and introduced into the optical resonators 11, 12, 13, but if two or more laser light sources 3 are used, Three units may be provided, each provided with a wavelength stabilizing device 4, and independent laser beams may be introduced. In this case, the frequency comparator 7 includes, for example, a photodetector instead of the frequency mixer 71. The optical resonator device 100 splits the output lights L out 1 and L out 2 that are input from the optical resonators 13 and 12 to the wavelength stabilization device 4 or the tuner 5 using a beam splitter (not shown), respectively. It is configured to also be input to the photodetector of the frequency comparator 7. Then, the output lights L out 1 and L out 2 are caused to interfere on the photodetector to extract an electrical signal having a beat frequency.

複合光共振器10は、温度感度の高い光共振器を2以上備えてもよい。例えば、光共振器13を光共振器12と同様に温度感度の高い構造として、光共振器11との共振周波数差を計測する。このような複合光共振器10においては、光共振器12,13の各共振周波数の平均(特許文献2参照)と光共振器11の共振周波数との差を計測して、温度変動を検出する。あるいは、光共振器13と光共振器11の共振周波数差、光共振器12と光共振器11の共振周波数差をそれぞれ計測してもよい。さらにこの場合、光共振器12と光共振器13とで温度感度の異なる構成として、光共振器11を含めて3段階の温度感度としてもよい。このような構成は、基板2b,2c,2dを、3段階に異なる熱膨張係数とすることによって得られる。あるいは、光共振器12の反射鏡23,24は両方共に熱膨張係数の高い構成とし、光共振器13の反射鏡25,26は一方のみ熱膨張係数の高い構成とするか補整部材27を設ける。また、複合光共振器10は、4以上の光共振器を備えて、温度センサ以外の用途を追加されてもよい(例えば、特許文献3参照)。 The composite optical resonator 10 may include two or more optical resonators with high temperature sensitivity. For example, the optical resonator 13 is made to have a structure with high temperature sensitivity like the optical resonator 12, and the difference in resonance frequency with the optical resonator 11 is measured. In such a composite optical resonator 10, temperature fluctuations are detected by measuring the difference between the average of the resonant frequencies of the optical resonators 12 and 13 (see Patent Document 2) and the resonant frequency of the optical resonator 11. . Alternatively, the resonant frequency difference between the optical resonator 13 and the optical resonator 11 and the resonant frequency difference between the optical resonator 12 and the optical resonator 11 may be measured. Further, in this case, the optical resonator 12 and the optical resonator 13 may have three levels of temperature sensitivity including the optical resonator 11, so that the optical resonator 12 and the optical resonator 13 have different temperature sensitivities. Such a configuration is obtained by making the substrates 2b, 2c, and 2d have three different thermal expansion coefficients. Alternatively, the reflecting mirrors 23 and 24 of the optical resonator 12 are both configured to have a high coefficient of thermal expansion, and only one of the reflecting mirrors 25 and 26 of the optical resonator 13 is configured to have a high coefficient of thermal expansion, or a compensating member 27 is provided. . Further, the composite optical resonator 10 may include four or more optical resonators and may be used for purposes other than temperature sensors (for example, see Patent Document 3).

以上、本発明に係る複合光共振器、温度センサ、及び光共振器装置を実施するための各実施形態について述べてきたが、本発明はこれらの実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能である。 Although the embodiments for implementing the composite optical resonator, temperature sensor, and optical resonator device according to the present invention have been described above, the present invention is not limited to these embodiments, and the claims Various changes are possible within the range shown in .

100 光共振器装置
10 複合光共振器
1 スペーサ
11,12,13 光共振器
1c 空洞
21,23,25 反射鏡
22,24,26 反射鏡
27 補整部材
2a 反射膜
2b,2c,2d 基板
3 レーザー光源
4 波長安定化装置
5 同調器
7 周波数比較器(周波数比較手段)
8 真空恒温チャンバ
81 温度制御装置(温度制御手段)
9 波長シフタ(波長シフト手段)
100 Optical resonator device 10 Composite optical resonator 1 Spacer 11, 12, 13 Optical resonator 1c Cavity 21, 23, 25 Reflector 22, 24, 26 Reflector 27 Compensating member 2a Reflector film 2b, 2c, 2d Substrate 3 Laser Light source 4 Wavelength stabilizer 5 Tuner 7 Frequency comparator (frequency comparison means)
8 Vacuum constant temperature chamber 81 Temperature control device (temperature control means)
9 Wavelength shifter (wavelength shifting means)

Claims (6)

スペーサの一面から他面まで貫通する空洞と前記空洞の両端に設けられた反射鏡とを備える光共振器を、前記スペーサに前記空洞が並行するように複数設けて、それぞれの前記光共振器にレーザー光を導入して一部の前記光共振器と他の前記光共振器との共振周波数同士の差である共振周波数差を計測する複合光共振器であって、
前記一部の光共振器の反射鏡と他の前記光共振器の反射鏡とは熱膨張率が異なることを特徴とする複合光共振器。
A plurality of optical resonators each having a cavity penetrating from one surface of the spacer to the other surface and reflecting mirrors provided at both ends of the cavity are provided in the spacer so that the cavities are parallel to each other. A composite optical resonator that measures a resonant frequency difference that is a difference between the resonant frequencies of some of the optical resonators and other optical resonators by introducing a laser beam,
A composite optical resonator, wherein the reflecting mirrors of some of the optical resonators and the reflecting mirrors of the other optical resonators have different coefficients of thermal expansion.
スペーサの一面から他面まで貫通する空洞と前記空洞の両端に設けられた反射鏡とを備える光共振器を、前記スペーサに前記空洞が並行するように複数設けて、それぞれの前記光共振器にレーザー光を導入して一部の前記光共振器と他の前記光共振器との共振周波数同士の差である共振周波数差を計測する複合光共振器であって、
前記一部の光共振器は、前記反射鏡よりも熱膨張率が低い補整部材を、前記反射鏡の前記空洞に対向する側の反対側に接続して備えることを特徴とする複合光共振器。
A plurality of optical resonators each having a cavity penetrating from one surface of the spacer to the other surface and reflecting mirrors provided at both ends of the cavity are provided in the spacer so that the cavities are parallel to each other. A composite optical resonator that measures a resonant frequency difference that is a difference between the resonant frequencies of some of the optical resonators and other optical resonators by introducing a laser beam,
A composite optical resonator characterized in that some of the optical resonators are provided with a compensating member having a coefficient of thermal expansion lower than that of the reflecting mirror, connected to the opposite side of the reflecting mirror to the side facing the cavity. .
前記一部の光共振器の反射鏡の基板が前記スペーサと同じ材料で形成されている請求項1に記載の複合光共振器。 2. The composite optical resonator according to claim 1, wherein a substrate of a reflecting mirror of said part of the optical resonator is formed of the same material as said spacer. 請求項1乃至請求項3のいずれか一項に記載の複合光共振器と、前記複合光共振器のそれぞれの光共振器に前記レーザー光を導入するレーザー光源と、前記共振周波数差を計測する周波数比較手段と、を備え、
前記共振周波数差が所定値となるときの前記複合光共振器の温度を基準温度として、前記周波数比較手段が計測した共振周波数差と前記所定値との差から、前記複合光共振器の温度と前記基準温度との差を検出する温度センサ。
A composite optical resonator according to any one of claims 1 to 3, a laser light source for introducing the laser light into each optical resonator of the composite optical resonator, and measuring the resonance frequency difference. comprising frequency comparison means;
The temperature of the composite optical resonator when the resonance frequency difference reaches a predetermined value is set as a reference temperature, and the temperature of the composite optical resonator is calculated from the difference between the resonance frequency difference measured by the frequency comparison means and the predetermined value. A temperature sensor that detects a difference from the reference temperature.
請求項1乃至請求項3のいずれか一項に記載の複合光共振器と、前記複合光共振器のそれぞれの光共振器に前記レーザー光を導入するレーザー光源と、前記共振周波数差を計測する周波数比較手段と、前記複合光共振器の温度を制御する温度制御手段と、を備え、
前記温度制御手段は、前記共振周波数差が一定の値となるように、前記周波数比較手段が計測した共振周波数差に基づいて、前記複合光共振器の温度のフィードバック制御を行う光共振器装置。
A composite optical resonator according to any one of claims 1 to 3, a laser light source for introducing the laser light into each optical resonator of the composite optical resonator, and measuring the resonance frequency difference. comprising a frequency comparison means and a temperature control means for controlling the temperature of the composite optical resonator,
The temperature control means is an optical resonator device that performs feedback control of the temperature of the composite optical resonator based on the resonance frequency difference measured by the frequency comparison means so that the resonance frequency difference becomes a constant value.
請求項1乃至請求項3のいずれか一項に記載の複合光共振器と、前記複合光共振器のそれぞれの光共振器に前記レーザー光を導入するレーザー光源と、前記共振周波数差を計測する周波数比較手段と、前記複合光共振器の一つの光共振器に共振した光の波長をシフトさせる波長シフト手段と、を備え、
前記波長シフト手段は、前記周波数比較手段が計測した共振周波数差に基づいて、前記一つの光共振器の共振周波数の変動を打ち消すフィードフォワード制御を行う光共振器装置。
A composite optical resonator according to any one of claims 1 to 3, a laser light source for introducing the laser light into each optical resonator of the composite optical resonator, and measuring the resonance frequency difference. comprising a frequency comparing means and a wavelength shifting means for shifting the wavelength of the light resonating in one of the optical resonators of the composite optical resonator,
The wavelength shifting means is an optical resonator device that performs feedforward control to cancel fluctuations in the resonant frequency of the one optical resonator based on the resonant frequency difference measured by the frequency comparing means.
JP2019124798A 2019-07-03 2019-07-03 Composite optical resonator, temperature sensor, optical resonator device Active JP7344541B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019124798A JP7344541B2 (en) 2019-07-03 2019-07-03 Composite optical resonator, temperature sensor, optical resonator device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019124798A JP7344541B2 (en) 2019-07-03 2019-07-03 Composite optical resonator, temperature sensor, optical resonator device

Publications (2)

Publication Number Publication Date
JP2021012902A JP2021012902A (en) 2021-02-04
JP7344541B2 true JP7344541B2 (en) 2023-09-14

Family

ID=74227873

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019124798A Active JP7344541B2 (en) 2019-07-03 2019-07-03 Composite optical resonator, temperature sensor, optical resonator device

Country Status (1)

Country Link
JP (1) JP7344541B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114552333B (en) * 2022-04-25 2022-08-19 武汉华日精密激光股份有限公司 Miniature self-locking structure crystal temperature control device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060192970A1 (en) 2005-02-25 2006-08-31 Bruce Tiemann Apparatus and method for stabilizing lasers using dual etalons
JP2007532871A (en) 2004-04-08 2007-11-15 ザ カウンシル フォー ザ セントラル ラボラトリー オブ ザ リサーチ カウンシルズ Optical sensor
DE102008049367B3 (en) 2008-09-26 2009-10-08 Bundesrepublik Deutschland, vertr. durch d. Bundesministerium f. Wirtschaft und Technologie, dieses vertreten durch d. Präsidenten d. Physikalisch-Technischen Bundesanstalt Mirror component for optical resonator, has mirror element made of quartz glass for reflecting light and spacer made of titanium silica glass with zero crossover in thermal coefficients of expansion
JP2013205473A (en) 2012-03-27 2013-10-07 Toshiba Corp Resonator system, light source device, and frequency filter
JP2015032700A (en) 2013-08-02 2015-02-16 独立行政法人情報通信研究機構 Narrow line-width light source averaging optical frequency with parallel operation of external optical resonators
JP2015184115A (en) 2014-03-24 2015-10-22 国立研究開発法人情報通信研究機構 Acceleration sensor and active vibration removing device using the same
JP2016535620A (en) 2013-10-25 2016-11-17 ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. Catheter system and method for determining blood flow by optical sensing
WO2017173472A1 (en) 2016-04-06 2017-10-12 Technische Universität Wien Method and device for producing a reference frequency

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0197821A (en) * 1987-10-09 1989-04-17 Sharp Corp Measuring device of temperature
JPH02143114A (en) * 1988-11-25 1990-06-01 Fujikura Ltd Optical sensor

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007532871A (en) 2004-04-08 2007-11-15 ザ カウンシル フォー ザ セントラル ラボラトリー オブ ザ リサーチ カウンシルズ Optical sensor
US20060192970A1 (en) 2005-02-25 2006-08-31 Bruce Tiemann Apparatus and method for stabilizing lasers using dual etalons
DE102008049367B3 (en) 2008-09-26 2009-10-08 Bundesrepublik Deutschland, vertr. durch d. Bundesministerium f. Wirtschaft und Technologie, dieses vertreten durch d. Präsidenten d. Physikalisch-Technischen Bundesanstalt Mirror component for optical resonator, has mirror element made of quartz glass for reflecting light and spacer made of titanium silica glass with zero crossover in thermal coefficients of expansion
JP2013205473A (en) 2012-03-27 2013-10-07 Toshiba Corp Resonator system, light source device, and frequency filter
JP2015032700A (en) 2013-08-02 2015-02-16 独立行政法人情報通信研究機構 Narrow line-width light source averaging optical frequency with parallel operation of external optical resonators
JP2016535620A (en) 2013-10-25 2016-11-17 ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. Catheter system and method for determining blood flow by optical sensing
JP2015184115A (en) 2014-03-24 2015-10-22 国立研究開発法人情報通信研究機構 Acceleration sensor and active vibration removing device using the same
WO2017173472A1 (en) 2016-04-06 2017-10-12 Technische Universität Wien Method and device for producing a reference frequency

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
李瑛、外7名,"超狭線幅クロックレーザーの開発",情報通信研究機構季報,2010年,第56巻,第3/4号,p.161-171

Also Published As

Publication number Publication date
JP2021012902A (en) 2021-02-04

Similar Documents

Publication Publication Date Title
Alnis et al. Subhertz linewidth diode lasers by stabilization to vibrationally and thermally compensated ultralow-expansion glass Fabry-Pérot cavities
US7471710B2 (en) Narrow linewidth semiconductor laser device
US7327471B2 (en) Apparatus and method for stabilizing lasers using dual etalons
US9389081B1 (en) Three-laser resonator fiber optic gyroscope with enhanced frequency reference cavity
US11699891B2 (en) Laser device
JP5570905B2 (en) Frequency stabilized laser light source and wavelength calibration method
JP7344541B2 (en) Composite optical resonator, temperature sensor, optical resonator device
US11048047B1 (en) Housing an etalon in a frequency reference system
JP2015519010A (en) Method and apparatus for locking and scanning output frequency from laser cavities
Nevsky et al. A Nd: YAG Laser with short-term frequency stability at the Hertz-level
Casado et al. High stability in near-infrared spectroscopy: part 1, adapting clock techniques to optical feedback
Xiao et al. Transportable 30 cm optical cavity based ultrastable lasers with beating instability of 2× 10-16
Schreiber et al. Precision stabilization of the optical frequency in a large ring laser gyroscope
JP6256876B2 (en) Accelerometer and active vibration isolator using the same
Boyd et al. A basic introduction to ultrastable optical cavities for laser stabilization
JP6284176B2 (en) Narrow linewidth light source with optical frequency averaging achieved by parallel operation of external optical resonators
US20230275394A1 (en) Methods and Apparatuses for Laser Stabilization
US11353827B1 (en) Optical local oscillator for all-optical time scales, and associated timekeeping methods
Alnis et al. Sub-Hz line width diode lasers by stabilization to vibrationally and thermally compensated ULE Fabry-Perot cavities
JP2017011680A (en) Atomic oscillator
US3534288A (en) Stabilized laser system
Yu Cryogenic silicon Fabry-Perot resonator with Al0. 92Ga0. 08As/GaAs mirror coatings
RU217047U1 (en) Optical resonator for adjusting and stabilizing the wavelength of laser radiation
Lim et al. Chasing thermodynamic noise limit in microlasers
Trad Nery Power Stabilization Via Radiation Pressure—Experimental Results

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220608

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230404

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230605

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230623

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230815

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230828

R150 Certificate of patent or registration of utility model

Ref document number: 7344541

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150