JP7343966B2 - Fire alarm equipment and disaster prevention equipment - Google Patents

Fire alarm equipment and disaster prevention equipment Download PDF

Info

Publication number
JP7343966B2
JP7343966B2 JP2018227168A JP2018227168A JP7343966B2 JP 7343966 B2 JP7343966 B2 JP 7343966B2 JP 2018227168 A JP2018227168 A JP 2018227168A JP 2018227168 A JP2018227168 A JP 2018227168A JP 7343966 B2 JP7343966 B2 JP 7343966B2
Authority
JP
Japan
Prior art keywords
fire
detectors
alarms
fire alarm
alarm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018227168A
Other languages
Japanese (ja)
Other versions
JP2020087389A (en
Inventor
賢昭 外村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hochiki Corp
Original Assignee
Hochiki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hochiki Corp filed Critical Hochiki Corp
Publication of JP2020087389A publication Critical patent/JP2020087389A/en
Application granted granted Critical
Publication of JP7343966B2 publication Critical patent/JP7343966B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、トンネル内に設置した火災検知器を防災受信盤に接続してトンネル内の火災を監視する火災報知設備及び監視領域における異常を検知器により監視する防災設備に関する。
The present invention relates to fire alarm equipment that monitors fires in tunnels by connecting fire detectors installed in tunnels to disaster prevention receivers, and disaster prevention equipment that uses detectors to monitor abnormalities in monitoring areas.

従来、自動車専用道路等のトンネルには、トンネル内で発生する火災事故から人身及び車両を守るため、非常用設備が設置されている。このような非常用施設は、トンネル長手方向に所定間隔で設置された火災検知器が防災受信盤から引き出された信号線に接続され、トンネル内で発生する火災を監視している。 Conventionally, emergency equipment has been installed in tunnels such as motorways to protect people and vehicles from fire accidents that occur inside the tunnel. In such emergency facilities, fire detectors installed at predetermined intervals along the length of the tunnel are connected to a signal line drawn out from a disaster prevention receiver panel to monitor fires occurring within the tunnel.

火災検知器は左右の両方向に検知エリアを持ち、透光性窓を介してトンネル内で発生する火災炎からの放射線、例えば赤外線を監視しており、トンネルの長手方向に沿って、隣接して配置される火災検知器との検知エリアが相互補完的に重なるように、例えば、25m間隔、或いは50m間隔で連続的に配置されている。 The fire detector has detection areas on both the left and right sides, and monitors radiation, such as infrared rays, from fire flames generated inside the tunnel through a transparent window. The fire detectors and fire detectors are successively arranged, for example, at intervals of 25 m or 50 m so that the detection areas of the fire detectors overlap each other in a complementary manner.

車両事故等に伴いトンネル内で火災が発生した場合、火災検知器からの火災検知信号を受信して防災受信盤は火災警報を出力すると共に、トンネル進入口に設置された電光掲示板等により侵入禁止警報を行い、トンネル内に走行中の車両を進入させないようにする。 If a fire breaks out in a tunnel due to a vehicle accident, etc., the disaster prevention receiver will receive a fire detection signal from the fire detector and output a fire alarm, and an electronic bulletin board installed at the tunnel entrance will prohibit entry. A warning is issued to prevent vehicles from entering the tunnel.

特開2018-147373号公報JP 2018-147373 Publication 特開2016-128796号公報Japanese Patent Application Publication No. 2016-128796 特開2002-246962号公報Japanese Patent Application Publication No. 2002-246962

しかしながら、このような火災検知器により火災を監視している火災報知設備にあっては、頻発する火災検知器の非火災報によるトンネル侵入禁止警報が問題となっている。このうち非火災報の原因が判明した場合には、非火災報の原因を解消する修理等の対応をとることで解決可能であるが、調査を行っても対応困難な非火災報が存在しており、稼働時間が長くなるほど対応困難な非火災報が発生しやすくなる傾向は見られるが、対応困難な非火災報の発生を予測することが困難であり、非火災報による侵入禁止警報の問題が依然として残されている。
However, in fire alarm equipment that monitors fires using such fire detectors, there is a problem in that tunnel entry prohibition alarms are frequently issued due to non-fire alarms from the fire detectors. If the cause of a non-fire alarm is found, it can be resolved by taking measures such as repairs to eliminate the cause of the non-fire alarm, but there are some non-fire alarms that are difficult to respond to even after investigation. However, it is difficult to predict the occurrence of non-fire alarms that are difficult to respond to, and it is difficult to predict the occurrence of non-fire alarms that are difficult to respond to. Problems still remain.

また、監視領域の火災を火災感知器により監視する一般的な防災設備においても、トンネル非常用設備における対応困難な非火災報と同様に、対応困難な非火災報による誤報で不要な混乱を招くという問題が生じており、その解決が課題として残されている。 In addition, even in general disaster prevention equipment that monitors fires in the monitoring area using fire detectors, false alarms due to non-fire alarms that are difficult to respond to can cause unnecessary confusion, similar to the non-fire alarms that are difficult to respond to in tunnel emergency equipment. This problem has arisen, and its solution remains an issue.

本発明は、対応困難な非火災報によるトンネル侵入禁止警報を抑制防止する火災報知設備及び対応困難な誤報による警報を抑制防止する防災設備を提供することを目的とする。
An object of the present invention is to provide fire alarm equipment that suppresses and prevents tunnel entry prohibition alarms caused by non-fire alarms that are difficult to respond to, and disaster prevention equipment that suppresses and prevents alarms caused by false alarms that are difficult to respond to.

火災報知設備
本発明は、監視領域に火災を検知する複数の火災検知器設置し、火災検知器を受信盤接続して火災を監視する火災報知設備であって
火災検知器の設置台数監視領域における非火災報の発生履歴により設定された火災検知器の故障率基づき、火災検知器の稼働時間に応じた非火災報発生台数を予測する予測手段と、
予測手段で予測した非火災報発生台数に基づいた報知を行う報知手段と、
を備えたことを特徴とする。
( Fire alarm equipment )
The present invention is a fire alarm system that monitors fire by installing a plurality of fire detectors in a monitoring area and connecting the fire detectors to a receiver panel, comprising :
A prediction means for predicting the number of fire detectors that will generate non-fire alarms according to the operating time of the fire detectors, based on the number of fire detectors installed and the failure rate of the fire detectors set based on the history of occurrence of non-fire alarms in the monitoring area. ,
a notification means for making a notification based on the number of non-fire alarms predicted by the prediction means;
It is characterized by having the following .

(故障率、非火災報発生割合、非火災報発生台数)
予測手段は、
非火災報発生割合を、火災検知器所定の非火災報発生台数を所定の非火災報発生件数で割った値として求め、
火災検知器の故障率を、監視領域における過去の非火災報の平均発生間隔の逆数と非火災報発生割合を掛け合わせた値を過去の実績における火災検知器の設置台数で割った値として求め、
非火災報発生台数を、火災検知器の設置台数、火災検知器の故障率、及び火災検知器の稼働時間を掛け合わせた値として予測する。
(Failure rate, ratio of non-fire alarms, number of non-fire alarms)
The prediction means are
The non-fire alarm occurrence rate is calculated by dividing the predetermined number of non-fire alarm fire detectors by the predetermined number of non-fire alarm occurrences.
The fire detector failure rate is calculated by multiplying the reciprocal of the past average interval of non-fire alarms in the monitoring area by the non-fire alarm occurrence rate, divided by the number of fire detectors installed in the past. seek,
The number of non-fire alarms is predicted as the product of the number of installed fire detectors , the failure rate of fire detectors, and the operating time of fire detectors .

(累積設置台数の非火災報発生予測)
予測手段は、
所定時期ごとに増加する火災検知器の設置台数を加算した累積設置台数を管理しており、
累積設置台数に含まれる所定時期ごとの設置台数に対応した非火災報発生台数の総和を、累積設置台数の非火災報発生台数として予測する。
(Prediction of non-fire alarm occurrence based on cumulative number of installed units)
The prediction means are
We manage the cumulative number of fire detectors installed by adding up the number of fire detectors installed, which increases each predetermined period.
The total number of non-fire alarm units corresponding to the number of units installed at each predetermined period included in the cumulative number of installed units is predicted as the number of non-fire alarm units of the cumulative number of installed units.

(非火災報発生リスクの表示)
報知手段は、予測手段で予測した非火災報発生台数に基づいて、所定の非火災報発生のリスクが高まった旨を表示して火災検知器の点検又は交換を促す。
(Indication of non-fire alarm risk)
The notification means displays a message that the risk of a predetermined non-fire alarm occurrence has increased, based on the number of non-fire alarms predicted by the prediction means, and prompts inspection or replacement of the fire detector.

(R型設備)
監視領域に設置された火災検知器は固有のアドレスが設定され
受信盤はアドレスを指定して火災検知器との間で信号を送受信する。
(R type equipment)
Fire detectors installed in the monitoring area are assigned a unique address and
The receiving board sends and receives signals to and from the fire detector by specifying an address.

(防災設備)
本発明の別の形態にあっては、監視領域に所定の異常を検知する複数の検知器を設置し、検知器を受信盤接続して異常を監視する防災設備であって
検知器の設置台数、過去の実績により設定された検知器の故障率、及び過去の実績により設定された検知器の誤報発生割合に基づき、検知器の稼働時間に応じた誤報発生台数を予測する予測手段と、
予測手段で予測した誤報発生台数に基づき報知を行う報知手段と、
を備え、
誤報発生割合を、検知器の所定の誤報発生台数を所定の誤報発生件数で割った値として求め、
検知器の故障率を、監視領域における過去の誤報の平均発生間隔の逆数と誤報発生割合を掛け合わせた値を過去の実績における検知器の設置台数で割った値として求め、
誤報発生台数を、検知器の設置台数、検知器の故障率、及び検知器の稼働時間を掛け合わせた値として予測することを特徴とする。

(Disaster prevention equipment)
Another aspect of the present invention is a disaster prevention equipment that installs a plurality of detectors for detecting a predetermined abnormality in a monitoring area, connects the detectors to a receiver panel, and monitors the abnormality,
Predict the number of false alarms depending on the operating time of the detectors based on the number of installed detectors, the failure rate of the detectors set based on past performance, and the false alarm occurrence rate of detectors set based on past performance. a prediction means;
Notification means for making a notification based on the number of false alarms predicted by the prediction means;
Equipped with
The false alarm occurrence rate is calculated as the predetermined number of false alarms of the detector divided by the predetermined number of false alarms,
The failure rate of the detector is calculated by multiplying the reciprocal of the average interval of past false alarms in the monitoring area by the false alarm occurrence rate, divided by the number of installed detectors in the past,
It is characterized by predicting the number of false alarms occurring as a value obtained by multiplying the number of installed detectors, the failure rate of the detectors, and the operating time of the detectors.

(基本的な効果)
本発明は、トンネル長手方向に火災を検知する火災検知器を所定間隔で設置し、火災検知器を受信盤からの信号回線に接続して火災を監視するトンネル非常用設備に於いて、火災検知器の設置台数、過去の実績により設定された火災検知器の故障率、に基づき、火災検知器の稼働時間に応じた非火災報発生台数を予測する予測手段と、予測手段で予測した非火災報発生台数に基づき報知を行う報知手段とが設けられたため、過去の実績に基づき火災検知器の稼働時間に対する所定の、例えば対応困難な非火災報を発生する非火災報発生台数が定数的に予測され、非火災報発生台数の予測結果に基づき必要とする対処が可能となり、非火災報の発生リスクを低減し、非火災報発生時のトンネル進入禁止警報を防止できる。
(basic effect)
The present invention provides fire detection in tunnel emergency equipment in which fire detectors for detecting fire are installed at predetermined intervals in the longitudinal direction of a tunnel, and the fire detectors are connected to a signal line from a receiver panel to monitor fires. A prediction method that predicts the number of non-fire alarms according to the operating time of fire detectors based on the number of installed fire detectors and the failure rate of fire detectors set based on past performance, and the number of non-fire alarms predicted by the prediction method. Since an alarm means for issuing alarms based on the number of fire alarms has been provided, the number of non-fire alarms that generate non-fire alarms that are difficult to respond to is set as a constant based on past results, based on the operating time of fire detectors. It is possible to take necessary measures based on the predicted number of non-fire alarms, reduce the risk of non-fire alarms, and prevent tunnel entry prohibition warnings when non-fire alarms occur.

また、非火災報発生が予測できるため、トンネル非常用設備の維持管理が容易にでき、火災検知器の交換時期も予測できるため、火災検知器の交換を含む設備の維持に係る計画を適切に立案して実行することができ、更に、火災検知器の保証期間を伸ばすことができる。 In addition, since the occurrence of non-fire alarms can be predicted, it is possible to easily maintain and manage tunnel emergency equipment, and it is also possible to predict when fire detectors will be replaced, making it possible to appropriately plan equipment maintenance, including fire detector replacement. It can be planned and executed, and the warranty period of the fire detector can be extended.

また、非火災報発生の予測は、ワイブル曲線や複雑な計算に基づく信頼性工学計算を行わなくても良い簡易な故障予測モデルであるため、高い実用性が得られる。 Furthermore, since the prediction of non-fire alarm occurrences is a simple failure prediction model that does not require reliability engineering calculations based on Weibull curves or complicated calculations, it is highly practical.

(故障率、非火災報発生割合、非火災報発生台数の効果)
また、トンネルの故障率として過去のトンネルにおける非火災報の平均発生間隔の逆数として求め、過去の実績により設定された火災検知器の所定の非火災報発生割合として、火災検知器の所定の非火災報発生台数を所定の非火災報発生件数で割った値として求め、火災検知器の故障率を、トンネルの故障率と非火災報発生割合を掛け合わせた値を過去の実績における前記火災検知器の台数で割った値として求め、非火災報発生台数を、設置台数、火災検知器の故障率、及び稼働時間を掛け合わせた値として予測するようにしたため、過去の実績として過去のトンネルにおける非火災報の平均発生間隔、所定の非火災報発生台数及び所定の非火災報発生件数を取得することで、火災検知器の故障率を求め、火災検知器の故障率、設置台数及び稼働時間を掛け合わせるといった簡単な計算により火災検知器の所定の非火災報発生台数を適確に予測して対処できる。
(Effect of failure rate, proportion of non-fire alarms, and number of non-fire alarms)
In addition, the tunnel failure rate is calculated as the reciprocal of the average interval of non-fire alarms in the tunnel in the past, and the predetermined non-fire alarm occurrence rate of the fire detector is calculated based on past performance. The number of fire alarms is calculated as the number of fire alarms divided by the predetermined number of non-fire alarms, and the failure rate of the fire detector is multiplied by the failure rate of the tunnel and the ratio of non-fire alarms. The number of non-fire alarms is calculated as the value divided by the number of fire detectors, and the number of non-fire alarms is predicted as the value multiplied by the number of installed fire detectors, failure rate of fire detectors, and operating time. By obtaining the average interval of non-fire alarms, the predetermined number of non-fire alarms, and the predetermined number of non-fire alarms, the failure rate of fire detectors is determined, and the failure rate, number of installed units, and operating time of fire detectors are calculated. A simple calculation such as multiplying the number of fire detectors that generate a predetermined non-fire alarm can be accurately predicted and countermeasures can be taken.

例えば、過去の実績からトンネルに設置したN台の火災検知器がY1、Y2,・・・Ynの年間隔でn回故障したとすると、トンネルの平均故障間隔MTBFは、
MTBF=(Y1+Y2+・・・+Yn)/n
で求まり、トンネルの故障率λ’は、
λ’=1/MTBF
で求まる。
For example, if N fire detectors installed in a tunnel fail n times at annual intervals of Y1, Y2, ... Yn based on past performance, the mean failure interval MTBF of the tunnel is:
MTBF=(Y1+Y2+...+Yn)/n
The failure rate λ' of the tunnel is
λ'=1/MTBF
It can be found by

また、火災検知器の非火災報発生割合Pは、
P=(非火災報発生台数Np)/(非火災報発生件数K)
として求まる。
火災検知器の故障率λは、
λ=(トンネルの故障率λ’・非火災報発生割合P)/
過去の実績における前記火災検知器の台数N’
として求まる。
In addition, the non-fire alarm occurrence rate P of the fire detector is
P=(Number of non-fire alarms Np)/(Number of non-fire alarms K)
It can be found as
The failure rate λ of a fire detector is
λ=(Tunnel failure rate λ'/Non-fire alarm occurrence rate P)/
Number of fire detectors N' in past performance
It can be found as

その結果、稼働時間をtとすると、火災検知器の所定の非火災報発生台数xは、
x=λ・N・t
として簡単に求めることができる。
As a result, if the operating time is t, the predetermined number x of non-fire alarm fire detectors is:
x=λ・N・t
can be easily obtained as .

(累積設置台数の非火災報発生予測による効果)
また、予測手段は、年単位に増加する火災検知器の設置台数を加算した累積設置台数を管理しており、累積設置台数に含まれる年別の設置台数に対応した非火災報発生台数の総和を、累積設置台数の非火災報発生台数として予測する。
(Effects of cumulative installed number of non-fire alarm occurrence predictions)
In addition, the prediction method manages the cumulative number of fire detectors installed by adding up the number of fire detectors installed, which increases on a yearly basis, and the total number of non-fire alarms corresponding to the number of installed fire detectors in each year included in the cumulative number of installed fire detectors. is predicted as the cumulative number of non-fire alarm units installed.

火災検知器が設置されたトンネルを含む自動車専用道路は、全線開通までに年数がかかり、その間は一部区間が完成して利用を開始しており、その結果、火災検知器の設置台数は例えば年単位に増加することから、予測手段は、年別の累積設置台数を管理し、年別の累積設置台数に対する非火災報発生台数を予測する必要がある。 It takes several years for motorways including tunnels where fire detectors have been installed to open completely, and during that time some sections have been completed and are now in use.As a result, the number of fire detectors installed has decreased, for example. Since the number of fire alarms increases on a yearly basis, it is necessary for the forecasting means to manage the cumulative number of installed units each year and predict the number of non-fire alarm units relative to the cumulative number of installed units each year.

年別の累積設置台数に対する非火災報発生台数の予測は、累積設置台数に含まれる年別の設置台数の各々につき、異なる稼働年数(稼働時間)により非火災報発生台数を求め、これらの総和を累積設置台数に対する非火災報発生台数として予測する。 To predict the number of non-fire alarm units for the cumulative number of installed units by year, calculate the number of non-fire alarm units for each year of installed units included in the cumulative number of installed units using different operating years (operating hours), and then calculate the sum of these units. is predicted as the number of non-fire alarms generated relative to the cumulative number of installed units.

例えば、設置台数が1年目に300台、2年目に600台、3年目に900台と年毎に300台ずつ増加している場合、例えば、3年目の累積設置台数900台に対する非火災報発生台数は、稼働期間3年の300台、稼働期間2年の300台、及び、稼働期間1年の300台の各々につき非火災報発生台数を求め、これらの総和を累積設置台数900台に対する非火災報発生台数として予測する。 For example, if the number of installed units increases by 300 units each year, such as 300 units in the first year, 600 units in the second year, and 900 units in the third year, for example, if the cumulative number of installed units in the third year is 900 units, For the number of non-fire alarm units, calculate the number of non-fire alarm units for each of 300 units that have been in operation for 3 years, 300 units that have been in operation for 2 years, and 300 units that have been in operation for 1 year, and calculate the total of these units as the cumulative installed number. This is predicted as the number of non-fire alarms compared to 900 vehicles.

(非火災報発生リスクの表示の効果)
また、報知手段は、予測手段で予測した非火災報発生台数に基づいて、所定の非火災報発生のリスクが高まった旨を表示して火災検知器の点検又は交換を促すようにしたため、予測手段で予測した非火災報発生台数が所定値に達する稼動時間に近付いて所定の非火災報発生のリスクが高まったときに、火災検知装置の点検計画や交換計画を立案して対処することで、所定の非火災報が発生するリスクを低減可能とする。
(Effects of displaying non-fire alarm risk)
In addition, the notification means is designed to display that the risk of a predetermined non-fire alarm occurrence has increased based on the number of non-fire alarms predicted by the prediction means, and prompt the inspection or replacement of fire detectors. When the number of non-fire alarms predicted by the method approaches the operating time when the number of non-fire alarms occurs reaches a predetermined value, and the risk of a predetermined non-fire alarm occurrence increases, it is possible to take action by formulating an inspection plan or replacement plan for the fire detection device. , it is possible to reduce the risk of a predetermined non-fire alarm occurring.

(R型設備の効果)
また、トンネル内に設置された火災検知器は固有のアドレスが設定され、受信盤はアドレスを指定して火災検知器との間で信号を送受信するようにしたため、受信盤からトンネル内に引き出された信号回線に複数の火災検知器を接続して火災を監視することでき、受信盤に火災検知器を信号回線により個別に接続するP型設備に比べ信号回線数が低減し、また、受信盤で火災検知器の例えばアナログ検知値を取得して火災判断を行うことが可能となる。
(Effects of R-type equipment)
In addition, the fire detectors installed in the tunnel were set with unique addresses, and the receiver board was designed to send and receive signals to and from the fire detector by specifying the address. It is possible to monitor fires by connecting multiple fire detectors to a signal line connected to the receiver panel, and the number of signal lines is reduced compared to P-type equipment, which connects the fire detectors to the receiver panel individually via signal lines. It becomes possible to make a fire judgment by acquiring, for example, an analog detection value of a fire detector.

(防災設備の効果)
本発明の別の形態にあっては、監視領域に所定の異常を検知する複数の検知器を設置し、検知器を受信盤からの信号回線に接続して異常を監視する防災設備に於いて、
検知器の設置台数、過去の実績により設定された検知器の故障率、及び過去の実績により設定された検知器の誤報発生割合に基づき、検知器の稼働時間に応じた誤報発生台数を予測する予測手段と、予測手段で予測した誤報発生台数に基づき報知を行う報知手段とが設けられたため、トンネル非常用設備以外の一般的な火災感知器やガス漏れ検知器で異常を監視する防災設備についても、過去の実績に基づき火災感知器やガス漏れ検知器等の検知器の稼働時間に対する所定の誤報を発生する誤報発生台数が定数的に予測され、誤報発生台数の予測結果に基づく交換や点検といった必要とする対処が可能となり、不測の混乱を引き起こす対応困難な誤報を抑制防止することを可能とする。
(Effects of disaster prevention equipment)
In another form of the present invention, in disaster prevention equipment, a plurality of detectors for detecting predetermined abnormalities are installed in a monitoring area, and the detectors are connected to a signal line from a receiving board to monitor abnormalities. ,
Predict the number of false alarms depending on the operating time of the detectors based on the number of installed detectors, the failure rate of the detectors set based on past performance, and the false alarm occurrence rate of detectors set based on past performance. Since a prediction means and a notification means that sends an alarm based on the number of false alarms predicted by the prediction means are provided, disaster prevention equipment that monitors abnormalities with general fire detectors and gas leak detectors other than tunnel emergency equipment is now available. Also, based on past results, the number of false alarms that will generate a certain number of false alarms for the operating time of detectors such as fire detectors and gas leak detectors is constantly predicted, and replacement and inspection are performed based on the predicted number of false alarms. This makes it possible to take necessary measures such as this, making it possible to suppress and prevent false alarms that are difficult to handle and cause unexpected confusion.

トンネル非常用設備の概要を示した説明図Explanatory diagram showing an overview of tunnel emergency equipment 図1の中央監視センターに設けられた管理サーバの機能構成を示したブロック図Block diagram showing the functional configuration of the management server installed in the central monitoring center in Figure 1 非火災報発生台数の予測を行うトンネル非常用設備の火災検知器の設置状況と予測結果を一覧で示した説明図An explanatory diagram showing a list of the installation status and prediction results of fire detectors in tunnel emergency equipment that predict the number of non-fire alarms. 図3の年別の設置台数に対する年別の非火災報発生台数の予測値の詳細を一覧で示した説明図An explanatory diagram showing a list of details of the predicted value of the number of non-fire alarms generated by year in relation to the number of installed units by year in Figure 3 過去の故障実績を入力して故障率と非火災報発生割合を求める非火災報予測画面を示した説明図Explanatory diagram showing a non-fire alarm prediction screen that inputs past failure records and calculates the failure rate and non-fire alarm occurrence rate 経過年数10年の累積設置台数に基づく非火災報発生台数と非火災報発生件数の予測結果が表示された非火災報予測画面を示した説明図Explanatory diagram showing a non-fire alarm prediction screen displaying the prediction results of the number of non-fire alarms and the number of non-fire alarms based on the cumulative number of installed units over the past 10 years. 図6の予測結果に基づく非火災報の発生リスクがグラフ表示された非火災報予測画面を示した説明図An explanatory diagram showing a non-fire alarm prediction screen in which the risk of non-fire alarm occurrence is graphically displayed based on the prediction results in Figure 6. トンネル平面図を用いて経過年数の累積設置台数に基づく非火災報発生件数の予測結果が表示された非火災報予測画面を示した説明図An explanatory diagram showing a non-fire alarm prediction screen that displays the predicted number of non-fire alarms based on the cumulative number of installed units over the years using a tunnel floor plan.

[トンネル非常用設備]
図1はトンネル非常用設備の概要を示した説明図である。
[Tunnel emergency equipment]
FIG. 1 is an explanatory diagram showing an overview of tunnel emergency equipment.

(実施形態の基本的概念)
本実施形態によるトンネル非常用設備は、トンネル長手方向に火災を検知する火災検知器14を所定間隔で設置し、火災検知器14を受信盤として機能する防災受信盤10からの信号回線12に接続して火災を監視する。
(Basic concept of embodiment)
The tunnel emergency equipment according to this embodiment has fire detectors 14 for detecting fire installed at predetermined intervals in the longitudinal direction of the tunnel, and the fire detectors 14 are connected to a signal line 12 from a disaster prevention receiving board 10 that functions as a receiving board. and monitor the fire.

トンネル非常用設備として設置された火災検知器14は、運用中に対応困難な非火災報を発生する場合があり、本実施形態は、例えば管理サーバ36に設けられた予測部の機能により、火災検知器14の設置台数N、過去の実績により設定された火災検知器14の故障率λ、及び過去の実績により設定された火災検知器14の非火災報発生割合Pに基づき、火災検知器14の稼働時間t、例えば稼働年数に応じた非火災報発生台数x、即ち年度毎の非火災報発生台数xを予測し、報知部の機能により予測部で予測した非火災報発生台数xに基づき火災判断の閾値や回数を変更して火災検知器14の非火災報を抑制するように対処するものである。 The fire detector 14 installed as tunnel emergency equipment may generate non-fire alarms that are difficult to respond to during operation. Based on the installed number N of the detectors 14, the failure rate λ of the fire detectors 14 set based on past results, and the non-fire alarm generation rate P of the fire detectors 14 set based on past results, the fire detector 14 For example, predict the number of non-fire alarm units x according to the number of operating years, that is, the number of non-fire alarm units x for each year, and use the function of the alarm unit to predict the number of non-fire alarm units x predicted by the prediction unit. This is a measure to suppress non-fire alarms from the fire detector 14 by changing the threshold value and number of fire determinations.

例えば、新規に運用を開始する自動車専用道路のトンネルに設置されている所定の設置台数Nの火災検知器14を対象に、例えば稼働年数毎に対応困難な非火災報を発生する非火災報発生台数xが定数的に予測され、運用中に火災検知器14が対応困難な非火災報を発生するリスクを知り、リスクが高まる稼働年数に近付いたときに、火災検知器14の点検強化や交換計画の立案といった対処を可能とし、対応困難な非火災報によりトンネル通行禁止警報が頻発することを抑制防止することを可能とする。 For example, if a predetermined number N of fire detectors 14 are installed in a tunnel of a newly started motorway, a non-fire alarm occurs that is difficult to respond to depending on the number of years of operation. The number x is predicted as a constant, and the risk of the fire detector 14 generating a non-fire alarm that is difficult to respond to during operation is known, and when the number of fire detectors 14 approaches the number of years of operation when the risk increases, inspections of the fire detector 14 can be strengthened or replaced. This makes it possible to take measures such as formulating plans, and to suppress and prevent the frequent occurrence of tunnel traffic prohibition warnings due to non-fire alarms that are difficult to respond to.

ここで、非火災報発生台数を予測する対象は、例えば、特定の自動車専用道路のトンネルに設置されている火災検知器14であり、且つ、同じ製造メーカの火災検知器14とする。例えば特定の自動車専用道路のトンネルに設置されている火災検知器14の総台数が9000台であり、製造メーカがA社、B社、C社の3社であり、それぞれの設置台数が3000台ずつであったとすると、A社の3000台、B社の3000台、C社の3000台に分けて、各社の設置台数3000台の例えば稼働年数毎の故障原因の不明な非火災報発生台数を予測する。 Here, it is assumed that the target for predicting the number of non-fire alarms is, for example, fire detectors 14 installed in a tunnel of a specific motorway, and fire detectors 14 of the same manufacturer. For example, the total number of fire detectors 14 installed in a tunnel on a specific motorway is 9,000, and there are three manufacturers, A, B, and C, each with 3,000 installed. If the total number of units is 3,000 units for Company A, 3,000 units for Company B, and 3,000 units for Company C, calculate the number of non-fire alarm units with unknown failure causes for each year of operation of the 3,000 units installed by each company. Predict.

この場合の予測に使用される過去の実績に基づく火災検知器の故障率λと非火災報発生割合Pは、各社が過去に設置している火災検知器の非火災報発生の実績に応じて求めた値を使用する。 The failure rate λ and non-fire alarm occurrence rate P of fire detectors based on past results used for prediction in this case are based on the past performance of non-fire alarm occurrences of fire detectors installed by each company. Use the determined value.

これによって自動車専用道路を管理運用する企業体は、運用管理を開始している自動車専用道路の路線毎に、製造メーカ毎の火災検知器の設置台数Nと稼働年数(稼働時間t)に基づき、運用を開始した場合の各年度毎の非火災報発生台数xを予測し、非火災報の発生によりトンネル進入禁止警報を出してしまうリスクを認識し、このリスクが高まったときに点検強化や交換計画の立案等を行ってリスクを低減することが可能となる。 As a result, corporate entities that manage and operate expressways will be able to determine the number of installed fire detectors N and the number of years of operation (operating time t) for each manufacturer for each line of expressway for which they have started operation and management. When operation begins, predict the number x of non-fire alarms for each fiscal year, recognize the risk of issuing a tunnel entry warning due to the occurrence of non-fire alarms, and strengthen inspections or replace when this risk increases. It becomes possible to reduce risks by making plans, etc.

また、企業体による自動車専用道路の建設と運用は、全線開通までにある程度の年数がかかり、その間に、一部区間の工事が完了して運用を開始している。このため管理対象となる自動車専用道路に設置される火災検知器14の設置台数は最初の区間運用を開始したときから全線開通までの間、年度が進むにつれて設置台数が増加し、年度毎の累積設置台数が増して行く。 Furthermore, it takes a certain number of years for the construction and operation of a motorway by a corporation to open the entire line, and during that time, some sections of the road have been completed and put into operation. For this reason, the number of fire detectors 14 installed on motorways that are subject to management increases as the year progresses, from the time the first section of operation begins until the entire line is opened, and the cumulative number of fire detectors 14 installed each year increases. The number of installed units will increase.

この場合の火災検知器14の非火災報発生台数は、年度毎に増加する累積設置台数を対象に予測する必要があり、累積設置台数に含まれる異なる年度の設置台数の各々につき、異なる稼動年数(稼働時間)により非火災報発生台数を求め、これらの総和を累積設置台数に対する非火災報発生台数として予測する。 In this case, the number of non-fire alarm fire detectors 14 needs to be predicted based on the cumulative number of installed units that increases every year, and each number of installed units in different years included in the cumulative number of installed units has a different number of operating years. (operating time) to determine the number of non-fire alarm units and predict the sum of these as the number of non-fire alarm units relative to the cumulative number of installed units.

(トンネル非常用設備の概要)
図1に示すように、自動車専用道路のトンネルとして、上り線トンネル1aと下り線トンネル1bが構築され、上り線トンネル1aと下り線トンネル1bは避難連絡坑2でつながっている。
(Summary of tunnel emergency equipment)
As shown in FIG. 1, an up-line tunnel 1a and a down-line tunnel 1b are constructed as tunnels for a motorway, and the up-line tunnel 1a and the down-line tunnel 1b are connected by an evacuation connecting shaft 2.

上り線トンネル1aと下り線トンネル1bの内部には、トンネル長手方向の壁面に沿って例えば50メートル間隔で火災検知器14が設置されている。火災検知器14は左右50メートルとなる両側に検知エリアを相互に重複して設定し、火災による炎を検知して火災発報する。 Inside the up-line tunnel 1a and the down-line tunnel 1b, fire detectors 14 are installed, for example, at intervals of 50 meters along the wall surface in the longitudinal direction of the tunnel. The fire detector 14 has overlapping detection areas on both sides of 50 meters on both sides, detects flames caused by a fire, and issues a fire alarm.

なお、上り線トンネル1aと下り線トンネル1bの内部には、監視員通路の壁面に沿って例えば50メートル間隔で消火栓設備の消火栓装置、水噴霧設備の自動弁装置等が設置されている。 In addition, inside the up-line tunnel 1a and the down-line tunnel 1b, fire hydrant devices for fire hydrant equipment, automatic valve devices for water spray equipment, etc. are installed at intervals of, for example, 50 meters along the wall of the lifeguard passage.

上り線トンネル1aと下り線トンネル1bに設置された火災検知器14は、監視センター等に設置された防災受信盤10から引き出された信号回線12に接続され、R型火災監視設備として信号のやり取りを行う。 The fire detectors 14 installed in the upstream tunnel 1a and the downstream tunnel 1b are connected to a signal line 12 drawn out from a disaster prevention receiver 10 installed at a monitoring center, etc., and exchange signals as R-type fire monitoring equipment. I do.

R型火災監視設備にあっては、火災検知器14に固有のアドレスが設定されており、防災受信盤10は所定周期毎にアドレスを順次指定した呼出信号の送信を繰り返しており、火災検知器14は自己アドレスを指定した呼出信号を受信すると、火災検出情報や障害情報等を含む応答信号を送信する。防災受信盤10は火災検知器14からの応答信号により火災を判断すると、所定の火災警報動作を行う。 In the R-type fire monitoring equipment, a unique address is set for the fire detector 14, and the disaster prevention receiver 10 repeatedly transmits a call signal specifying the address in sequence at a predetermined period. 14, upon receiving a call signal specifying its own address, transmits a response signal containing fire detection information, failure information, etc. When the disaster prevention receiver panel 10 determines that there is a fire based on the response signal from the fire detector 14, it performs a predetermined fire alarm operation.

また、R型火災監視設備は、火災検知器14側で火災を判断して火災検出情報を防災受信盤10に送信して火災警報を出力させる方式と、火災検知器14では火災判断を行わず、アナログ的に検知された火災検知信号を防災受信盤10に送信し、防災受信盤10で火災を判断して火災警報を出力させる方式があり、本実施形態は何れか一方の方式を使用する。 In addition, the R-type fire monitoring equipment has a method in which the fire detector 14 side judges a fire and sends fire detection information to the disaster prevention receiver 10 to output a fire alarm, and a method in which the fire detector 14 does not make a fire judgment. There is a method in which a fire detection signal detected in an analog manner is transmitted to the disaster prevention receiving board 10, and the disaster prevention receiving board 10 determines a fire and outputs a fire alarm.This embodiment uses either method. .

またトンネルの非常用設備としては、これ以外に、消火ポンプ設備16、換気設備18、警報表示板設備20、ラジオ再放送設備22、TV監視設備24及び照明設備26、IG子局設備28等が設けられており、IG子局設備28がデータ伝送回線で接続する点を除き、それ以外の設備は信号回線群15により防災受信盤10に個別に接続している。 In addition, emergency equipment for the tunnel includes fire pump equipment 16, ventilation equipment 18, alarm display board equipment 20, radio rebroadcast equipment 22, TV monitoring equipment 24, lighting equipment 26, IG slave station equipment 28, etc. Except for the IG slave station equipment 28 which is connected via a data transmission line, the other equipment is individually connected to the disaster prevention receiving board 10 via a signal line group 15.

換気設備18は、トンネル内の天井側に設置しているジェットファンの運転による高い吹き出し風速によってトンネル内の空気にエネルギーを与えて、トンネル長手方向に換気の流れを起こす設備である。 The ventilation equipment 18 is equipment that generates a ventilation flow in the longitudinal direction of the tunnel by giving energy to the air in the tunnel by high blowing wind velocity generated by the operation of a jet fan installed on the ceiling side of the tunnel.

警報表示板設備20は、トンネル入口に設置された電光掲示板にトンネル進入禁止警報を表示して知らせ、また、トンネル内の利用者に対して、トンネル内の火災発生や水噴霧開始等を電光表示板に表示して知らせる設備である。 The warning display board equipment 20 displays a tunnel entry prohibition warning on an electronic bulletin board installed at the tunnel entrance to notify users of the tunnel, and also displays an electronic display to notify users of the occurrence of a fire in the tunnel, the start of water spray, etc. This is a facility that notifies you by displaying it on a board.

ラジオ再放送設備22は、トンネル内で運転者等が道路管理者からの情報を受信できるようにするための設備である。TV監視設備24は、火災の規模や位置を確認したり、水噴霧設備の作動、避難誘導を行う場合のトンネル内の状況を把握するための設備である。照明設備26はトンネル内の照明機器を駆動して管理する設備である。 The radio rebroadcasting equipment 22 is equipment that allows drivers and the like to receive information from road administrators inside the tunnel. The TV monitoring equipment 24 is equipment for checking the scale and location of a fire, operating water spray equipment, and grasping the situation inside the tunnel when conducting evacuation guidance. The lighting equipment 26 is equipment that drives and manages lighting equipment in the tunnel.

IG子局設備28は、防災受信盤10と遠方管理を行う中央監視センタ-32の情報機器を、ネットワーク30を経由して結ぶ通信設備である。 The IG slave station equipment 28 is a communication equipment that connects the disaster prevention receiver 10 and information equipment of the central monitoring center 32 that performs remote management via the network 30.

中央監視センター32には、プロキシサーバ34、管理サーバ36及び管理端末38等が設けられる。プロキシサーバ34はネットワーク30とセンター内のLAN回線40を接続し、LAN回線40には管理サーバ36と管理端末38が接続されている。プロキシサーバ34はネットワーク30とLAN回線40との間のプロトコル変換により相互にパケット信号を送受信する。 The central monitoring center 32 is provided with a proxy server 34, a management server 36, a management terminal 38, and the like. The proxy server 34 connects the network 30 and the LAN line 40 within the center, and the LAN line 40 is connected to a management server 36 and a management terminal 38. The proxy server 34 mutually transmits and receives packet signals between the network 30 and the LAN line 40 through protocol conversion.

管理サーバ36はネットワーク30を介して接続されたトンネル監視センターの防災受信盤10の監視情報を受信して火災警報、障害警報等の警報出力や必要とする管理情報の表示を行う。 The management server 36 receives monitoring information from the disaster prevention receiving board 10 of the tunnel monitoring center connected via the network 30, and outputs alarms such as fire alarms and failure alarms, and displays necessary management information.

また、管理サーバ36は図示のトンネルを含む複数のトンネルを管理対象としており、各トンネルに設置された防災受信盤10に通信接続して全体的な管理処理を行っている。管理端末38はクライアントとして機能し、監視サーバ36にアクセスしてトンネル管理情報を利用することができる。 Further, the management server 36 manages a plurality of tunnels including the illustrated tunnel, and performs overall management processing by being communicatively connected to the disaster prevention receiving panel 10 installed in each tunnel. The management terminal 38 functions as a client and can access the monitoring server 36 and use tunnel management information.

本実施形態にあっては、中央管理センター32に設けた管理サーバ36に、予測手段として機能する予測部と、報知部が設けられている。 In this embodiment, a management server 36 provided in the central management center 32 is provided with a prediction unit that functions as a prediction unit and a notification unit.

[管理サーバ]
図2は図1の中央監視センターに設けられた管理サーバの機能構成を示したブロック図である。
[Management server]
FIG. 2 is a block diagram showing the functional configuration of a management server provided in the central monitoring center of FIG. 1.

図2に示すように、管理サーバ36には、通信制御部42、サーバ制御部44、タッチパネル付きのディスプレイ46、キーボード、マウス等の操作部48及び記憶部50が設けられ、例えばCPU、メモリ、各種の入出力ポート等を備えたコンピュータ回路で構成される。 As shown in FIG. 2, the management server 36 is provided with a communication control unit 42, a server control unit 44, a display 46 with a touch panel, an operation unit 48 such as a keyboard and a mouse, and a storage unit 50, and includes, for example, a CPU, memory, It consists of a computer circuit equipped with various input/output ports.

サーバ制御部44にはCPUによるプログラムの実行により実現される機能として、管理制御部52、予測部54及び報知部56が設けられる。管理制御部52は管理対象とする複数のトンネルに設置された防災受信盤10からの監視情報を取得して必要とする管理情報の生成、表示、記憶、通報といった処理制御を行う。 The server control unit 44 is provided with a management control unit 52, a prediction unit 54, and a notification unit 56 as functions realized by executing programs by the CPU. The management control unit 52 acquires monitoring information from the disaster prevention receivers 10 installed in a plurality of tunnels to be managed, and performs processing control such as generation, display, storage, and notification of necessary management information.

予測部54は予測手段して機能し、中央監視センター32で管理しているトンネルに設置された火災検知器14の設置台数N、過去の実績により設定された火災検知器14の故障率λ、及び過去の実績により設定された火災検知器14の対応困難な非火災報発生割合Pに基づき、火災検知器14の稼働時間tに応じた非火災報発生台数xを予測する制御を行う。 The prediction unit 54 functions as a prediction means, and calculates the number N of fire detectors 14 installed in tunnels managed by the central monitoring center 32, the failure rate λ of the fire detectors 14 set based on past performance, Control is performed to predict the number x of non-fire alarms generated according to the operating time t of the fire detectors 14, based on the ratio P of non-fire alarms that are difficult for the fire detectors 14 to respond to, which is set based on past performance.

また、報知部56は、予測部54で予測した非火災報発生台数xが所定値に達する稼動時間に近付いたときに、対応困難な非火災報発生のリスクが高まった旨を報知し、火災検知器14の点検計画や交換計画を立案して対処することで、対応困難な非火災報が発生するリスクを低減可能とする制御を行う。 In addition, when the number x of non-fire alarms predicted by the prediction unit 54 approaches the operating time when the number x of non-fire alarms occurs reaches a predetermined value, the alarm unit 56 notifies that the risk of non-fire alarms that are difficult to respond to has increased, and By formulating and dealing with an inspection plan and a replacement plan for the detector 14, control is performed that can reduce the risk of non-fire alarms occurring that are difficult to respond to.

[非火災報発生台数の予測]
予測部54は、管理対象としているトンネルに設置している火災検知器14の過去の故障実績に基づき、次式により火災検知器14の非火災報発生台数xを予測する。
x=λ・N・t (式1)
λ=(λ’・P)/N’ (式1’)
ここで、
λ’:トンネルの故障率(件/hr)
P :非火災報1件あたりの非火災報出力台数(台/件)
N’:λ’の算出に用いたトンネルにおける火災検知器14の設置台数(台)
λ :火災検知器14の故障率(/hr)
N :火災検知器14の設置台数(台)
t :火災検知器14の稼働時間(hr)
を意味する。
[Prediction of number of non-fire alarms]
The prediction unit 54 predicts the number x of non-fire alarms of the fire detectors 14 based on the past failure record of the fire detectors 14 installed in the tunnel to be managed using the following equation.
x=λ・N・t (Formula 1)
λ=(λ'・P)/N' (Formula 1')
here,
λ': Tunnel failure rate (cases/hr)
P: Number of non-fire alarm outputs per non-fire alarm (units/case)
N': Number of fire detectors 14 installed in the tunnel used for calculation of λ' (units)
λ: failure rate of fire detector 14 (/hr)
N: Number of installed fire detectors 14 (units)
t: Operating time of fire detector 14 (hr)
means.

(トンネルの故障率λ’)
トンネルの故障率λ’は、トンネルに火災検知器14を設置してから1又は複数回の対応困難な非火災報が発生する平均故障間隔MTBFの逆数として次式により求められる。
λ’=1/MTBF (式2)
例えば、トンネルの過去の故障実績として、設置から6.8年で対応困難な非火災報が発生し、その後、4.1年で再度対応困難な非火災報が発生していたとすると、平均故障間隔MTBFは、
MTBF=(6.8年+4.1年)/2回=5.5年/1回
となる。このときの平均故障間隔MTBFを時間で表すと、5.5年/1回=48,180hr/1回であることからトンネルの故障率λ’は、
λ’=1/48,180=0.000022(件/hr)
となる。
(Tunnel failure rate λ')
The tunnel failure rate λ' is determined by the following equation as the reciprocal of the mean failure interval MTBF at which one or more difficult-to-handle non-fire alarms occur after the fire detector 14 is installed in the tunnel.
λ'=1/MTBF (Formula 2)
For example, as a tunnel's past failure record, if a non-fire alarm that was difficult to respond to occurred 6.8 years after installation, and then another non-fire alarm that was difficult to respond to occurred 4.1 years later, the average failure The interval MTBF is
MTBF = (6.8 years + 4.1 years)/2 times = 5.5 years/1 time. Expressing the mean time between failures MTBF at this time in terms of time, it is 5.5 years/1 time = 48,180 hr/1 time, so the tunnel failure rate λ' is:
λ'=1/48,180=0.000022 (cases/hr)
becomes.

(非火災報1件あたりの非火災報出力台数P)
非火災報1件あたりの非火災報出力台数Pは、非火災報発生件数K当りの非火災報発生台数Npであり、次式で与えられる。
P=(非火災報発生台数Np)/(非火災報発生件数K) (式3)
(Number of non-fire alarm output units P per non-fire alarm)
The number P of non-fire alarm output devices per non-fire alarm event is the number Np of non-fire alarm output devices per number K of non-fire alarm events, and is given by the following equation.
P=(Number of non-fire alarms Np)/(Number of non-fire alarms K) (Formula 3)


例えば、過去の故障実績から
非火災報発生台数Np=3台
非火災報発生件数K=3件
であったとすると、
P=3台/3件=1台/件
が求まる。

For example, assuming that the number of non-fire alarms occurring Np = 3 and the number of non-fire alarms occurring K = 3 based on past failure records,
P = 3 units/3 cases = 1 unit/case is found.

なお、非火災報発生台数Npと非火災報発生件数Kは基本的に同じ値となるが、一度の非火災報発生時に複数の火災検知器14で非火災報が発生した場合は、非火災報発生台数Npが非火災報発生件数Kより大きい値となる。 Note that the number of non-fire alarms Np and the number of non-fire alarms K are basically the same value, but if a non-fire alarm occurs in multiple fire detectors 14 when a non-fire alarm occurs, The number of alarms Np is larger than the number K of non-fire alarms.

(火災検知器14の故障率λ)
このように過去の実績に基づき前記(式2)及び(式3)から
λ’=0.000022(件/hr)
P=1(台/件)
が求められ、また例えば、トンネルの故障率λ’の算出に用いたトンネルにおける火災検知器の設置台数=3421台
であったとすると、火災検知器14の故障率λは前記(式1’)に基づき
λ={0.000022(件/hr)/1(台/件)}/3421台
=6.6・(10-9
が求まる。
(Failure rate λ of fire detector 14)
Based on the past performance, from the above (Formula 2) and (Formula 3), λ' = 0.000022 (cases/hr)
P=1 (unit/case)
For example, if the number of fire detectors installed in the tunnel used to calculate the tunnel failure rate λ' is 3421, then the failure rate λ of the fire detector 14 is calculated by the above (Equation 1'). Based on λ={0.000022 (cases/hr)/1 (units/case)}/3421 units=6.6・(10 -9 )
is found.

(非火災報発生台数の予測)
このように過去の実績に基づき前記(式1’)から
λ=6.6・(10-9
が求められたならば、特定の自動車専用道路のトンネルに設置しているN台の火災検知器14を対象に、前記(式1)に基づき、その稼働時間tに対する非火災報発生台数xを予測することできる。
(Prediction of number of non-fire alarms)
In this way, based on past performance, from the above (formula 1'), λ=6.6・(10 -9 )
Once obtained, calculate the number x of non-fire alarms for the operating time t based on the above (Equation 1) for the N fire detectors 14 installed in the tunnel of a specific motorway. It can be predicted.

(非火災報発生台数の予測例)
図3は非火災報発生台数の予測を行うトンネル非常用設備の火災検知器の設置状況と予測結果を一覧で示した説明図、図4は図3の経過年別の設置台数に対する年別の非火災報発生台数の予測値の詳細を一覧で示した説明図である。
(Example of prediction of number of non-fire alarms)
Figure 3 is an explanatory diagram showing a list of the installation status and prediction results of fire detectors in tunnel emergency equipment, which predicts the number of fire detectors that will generate non-fire alarms. It is an explanatory diagram showing a list of details of the predicted value of the number of non-fire alarms.

図3に示すように、予測対象設備は、1年目から10年目の累積設置台数に示すように、年毎に火災検知器14の設置台数が300台ずつ増加している。 As shown in FIG. 3, in the prediction target equipment, the number of installed fire detectors 14 increases by 300 units every year, as shown in the cumulative number of installed units from the first year to the 10th year.

このため各年の非火災報発生台数をx1,x2,・・・・x10とすると、各年の稼働時間は300台毎に異なり、稼働時間の異なる300台毎の非火災報発生台数を求め、これらの総和を求めることになる。 Therefore, if the number of non-fire alarm units in each year is x1, x2, ... x10, the operating hours for each year will vary for each 300 units, and the number of non-fire alarm units for each 300 units with different operating hours will be calculated. , we will find the sum of these.

まず1年目は設置台数N=300台で稼働時間t=1年間=8760hrであることから、1年目の非火災報発生台数x1は、
x1=6.6・(10-9)・(300台)・(8760hr)
=0.0173
となり、小数点以下第二位以下を四捨五入すると
x1≒0.0
となる。
First, in the first year, the number of installed units N = 300 units and the operating time t = 1 year = 8760 hr, so the number of non-fire alarm units in the first year x1 is:
x1=6.6・( 10-9 )・(300 units)・(8760hr)
=0.0173
So, rounding off to the second decimal place, x1≒0.0
becomes.

2年目の非火災報発生台数は、累積設置台数が600台で稼動期間は300台が1年間、残り300台が2年間となることから、2年目の非火災報発生台数x2は、
x2=6.6・(10-9)・(300台)・(8760hr)
+6.6・(10-9)・(300台)・(17520hr)
=0.0519≒0.1
となる。これは
x2=x1+2・x1=3・x1
となり、x1の級数として表現できる。
The cumulative number of non-fire alarm units in the second year is 600 units, and the operating period is 300 units for one year and the remaining 300 units for two years, so the number of non-fire alarm units in the second year x2 is:
x2=6.6・( 10-9 )・(300 units)・(8760hr)
+6.6・(10 -9 )・(300 units)・(17520hr)
=0.0519≒0.1
becomes. This is x2=x1+2・x1=3・x1
and can be expressed as a series of x1.

従って、3~10年目の非火災報発生台数x3~x10は次付で与えられる。
x3 = 6・x1=0.1048≒0.1
x4 =10・x1=0.1730≒0.2
x5 =15・x1=0.2595≒0.3
x6 =21・x1=0.3633≒0.4
x7 =28・x1=0.4844≒0.5
x8 =36・x1=0.6288≒0.6
x9 =45・x1=0.7785≒0.8
x10=55・x1=0.9515≒1.0
Therefore, the numbers x3 to x10 of non-fire alarms for the 3rd to 10th years are given in the following appendix.
x3 = 6・x1=0.1048≒0.1
x4 =10・x1=0.1730≒0.2
x5 =15・x1=0.2595≒0.3
x6 =21・x1=0.3633≒0.4
x7 =28・x1=0.4844≒0.5
x8 =36・x1=0.6288≒0.6
x9 =45・x1=0.7785≒0.8
x10=55・x1=0.9515≒1.0

図4は非火災報発生台数x1~x10を総和として求める場合の各経過年の設置台数に対する年度別非火災報発生台数を2元的に表示している。例えば1年目については、
N=300台、
λ=0.000022(hr/1回)
P=0.00030(/件)
とし、1~10年度の稼働時間t1~t10を
t1=8760hr
t2=17520hr
t3=26280hr
・・・
t10=87600hr
として前記(式1)から1~10年目の年度別非火災報発生台数0.0017~0.0173を算出している。同様にして、2~10年目についても、1~10年目の年度別非火災報発生台数を算出している。
FIG. 4 shows the number of non-fire alarm units by year in a binary manner with respect to the number of installed units for each elapsed year when the number x1 to x10 of non-fire alarm units is calculated as a summation. For example, for the first year,
N=300 units,
λ=0.000022 (hr/1 time)
P=0.00030 (/case)
The operating time t1 to t10 for fiscal years 1 to 10 is t1 = 8760 hr.
t2=17520hr
t3=26280hr
...
t10=87600hr
From the above (Formula 1), the number of non-fire alarms generated by year for the 1st to 10th years is calculated from 0.0017 to 0.0173. Similarly, for the 2nd to 10th years, the number of non-fire alarms generated by year for the 1st to 10th years is calculated.

このようにして求めた1~10年目の年度別非火災報発生台数を経過年1~10年(列方向)について各々加算して総和を求めると、これが1~10年度の非火災報発生台数x1~x10の値となる。 If you add up the number of non-fire alarms by year for the 1st to 10th years calculated in this way for each elapsed year 1 to 10 (column direction) and find the total, this is the number of non-fire alarms for the 1st to 10th years. The value is the number of units x1 to x10.

(非火災報生件数)
このように予測された1~10年度の非火災報発生台数x1~x10は、0~1の間の小数値をもつことで非火災報の発生度合(尤度)を示す軟判定値となるが、非火災報発生予測リスクを明確に示すためには、0,1の硬判定値とすることが望ましいことから、図4に示すように、非火災報発生台数x1~x10を小数点以下を四捨五入した整数値を非火災報発生件数Kxとする。
(Number of non-fire alarms)
The number of non-fire alarms x1 to x10 predicted in this way for fiscal years 1 to 10 is a soft decision value that indicates the degree (likelihood) of non-fire alarm occurrences by having a decimal value between 0 and 1. However, in order to clearly indicate the predicted risk of non-fire alarm occurrence, it is desirable to use a hard decision value of 0 or 1. Therefore, as shown in Figure 4, the number of non-fire alarm occurrence vehicles x1 to x10 is calculated below the decimal point. Let the rounded integer value be the number of non-fire alarm occurrences Kx.

その結果、1~7年目は非火災報発生件数Kx=0件であるが、8~10年目は非火災報発生件数Kx=1件となり、7年目に入る前に、非火災報発生を抑制防止するための対処が必要になることが分かる。 As a result, in the 1st to 7th years, the number of non-fire alarm incidents Kx = 0, but in the 8th to 10th years, the number of non-fire alarm incidents Kx = 1, and before entering the 7th year, It can be seen that measures are needed to control and prevent the occurrence.

(当初から設置台数が固定された場合)
図3にあっては、経過年数に応じて火災検知器の設置台数が増加する場合の非火災報発生台数の予測を例にとっているが、全線開通により運用を開始する自動車専用道路については、図3における累積設置台数を当初の設置台数に固定した状態で、1~10年目の非火災報発生台数を予測して対処することになる。
(If the number of installed units is fixed from the beginning)
Figure 3 takes as an example the prediction of the number of non-fire alarms when the number of installed fire detectors increases with the number of years that have passed. With the cumulative number of installed units in 3 fixed at the initial number of installed units, the number of non-fire alarm units in the 1st to 10th years will be predicted and dealt with.

[管理サーバによる非火災報発生予測の処理]
図5は過去の故障実績を入力して故障率と非火災報発生割合を求める非火災報予測画面を示した説明図、図6は経過年数10年の累積設置台数に基づく非火災報発生台数と非火災報発生件数の予測結果が表示された非火災報予測画面を示した説明図、図7は図6の予測結果に基づく非火災報の発生リスクがグラフ表示された非火災報予測画面を示した説明図、図8はトンネル平面図を用いて経過年数の累積設置台数に基づく非火災報発生件数の予測結果が表示された非火災報予測画面を示した説明図である。
[Processing of non-fire alarm occurrence prediction by management server]
Figure 5 is an explanatory diagram showing a non-fire alarm prediction screen that calculates the failure rate and non-fire alarm occurrence rate by inputting past failure records, and Figure 6 is the number of non-fire alarm occurrence units based on the cumulative number of installed units over the past 10 years. Figure 7 is an explanatory diagram showing a non-fire alarm prediction screen where the predicted number of non-fire alarms is displayed, and Figure 7 is a non-fire alarm prediction screen where the risk of non-fire alarm occurrence is displayed graphically based on the prediction results of Figure 6. FIG. 8 is an explanatory diagram showing a non-fire alarm prediction screen in which a prediction result of the number of non-fire alarm occurrences based on the cumulative number of installed units over the years has been displayed using a tunnel plan view.

図2に示した管理サーバ36のサーバ制御部44に設けた予測部54は、火災検知器14の非火災報発生台数の予測処理を開始すると図5に示す非火災報予測画面60-1をディスプレイ46に表示する。 When the prediction unit 54 provided in the server control unit 44 of the management server 36 shown in FIG. It is displayed on the display 46.

図5の非火災報予測画面60-1は、過去の実績に基づく火災検知器14の故障率λと非火災報発生割合Pの算出に使用する。非火災報予測画面60-1の上部には、対象路線選択部62と対象メーカ選択部64が設けられ、右側の三角印で示すダイヤログを開くことで、対象路線として例えば「〇〇自動車道」が選択され、また、対象メーカとして例えば「A社」が選択される。 The non-fire alarm prediction screen 60-1 in FIG. 5 is used to calculate the failure rate λ of the fire detector 14 and the non-fire alarm occurrence rate P based on past performance. At the top of the non-fire alarm prediction screen 60-1, a target route selection section 62 and a target manufacturer selection section 64 are provided. " is selected, and "Company A", for example, is selected as the target manufacturer.

管理サーバ36は、運用管理している自動車専用道路毎に、トンネルに設置された火災検知器14のメーカ毎の設置台数、非火災報発生台数Np、非火災報発生件数K等の道路管理情報を記憶管理しており、対象路線及び対象メーカが選択されると、その下の非火災報発生実績66に、設置台数68として「3241」台が表示され、また、非火災報の1~6回の発生回数に対する故障間隔70-1~70-6の内、過去の実績に基づき1回目の故障間隔70-1に「6.8」年が表示され、また、2回目の故障間隔70-2に「4.1」年が表示され、更に、非火災報発生台数72として「3」台、非火災報発生件数74として「3」件が表示される。 The management server 36 stores road management information such as the number of fire detectors 14 installed in tunnels by manufacturer, the number Np of non-fire alarms, and the number K of non-fire alarms for each motorway under operational management. When a target route and target manufacturer are selected, "3241" vehicles are displayed as the number of installed vehicles 68 in the non-fire alarm occurrence record 66, and non-fire alarms 1 to 6 are displayed. Among the failure intervals 70-1 to 70-6 for the number of occurrences, "6.8" years is displayed for the first failure interval 70-1 based on past results, and "6.8" years is displayed for the second failure interval 70- 2, "4.1" year is displayed, "3" is displayed as the number 72 of non-fire alarm occurrences, and "3" is displayed as the number 74 of non-fire alarm occurrences.

なお、非火災報発生実績66による設置台数68、故障間隔70-1~70-6、非火災報発生台数72、及び非火災報発生件数74は利用者がキーボード等の操作部48により手入力することもできる。 In addition, the number of installed units 68, the failure interval 70-1 to 70-6, the number of non-fire alarm units 72, and the number of non-fire alarm units 74 based on the non-fire alarm record 66 are manually input by the user using the operation unit 48 such as a keyboard. You can also.

非火災報発生実績66による設置台数、故障間隔、非火災報発生台数、及び非火災報発生件数の設定が確認できたならば、利用者が予測実行釦76をタッチ操作すると前記(式2)(式3)による故障率λと非火災報発生割合Pの演算が実行され、故障率78及び非火災報発生割合80に演算結果として例えば「0.000022」、「0.003」が表示される。 After confirming the settings for the number of installed units, failure interval, number of non-fire alarm units, and number of non-fire alarm incidents based on the non-fire alarm occurrence record 66, when the user touches the prediction execution button 76, the above (formula 2) is executed. The calculation of the failure rate λ and the non-fire alarm occurrence ratio P is performed using (Equation 3), and for example, "0.000022" and "0.003" are displayed as the calculation results in the failure rate 78 and the non-fire alarm occurrence ratio 80. Ru.

続いて利用者が「NEXT」釦82-1をタッチ操作すると図6の非火災報予測画面60-2に遷移する。図6の非火災報予測画面60-2には、予測結果84として、経過年と累積設置台数に対応して前記(式1)に基づき図4に示した算出結果から得られた非火災報発生台数と非火災報発生件数が一覧表示される。 Next, when the user touches the "NEXT" button 82-1, the screen changes to the non-fire alarm prediction screen 60-2 shown in FIG. The non-fire alarm prediction screen 60-2 in FIG. 6 shows the non-fire alarm prediction result 84 obtained from the calculation results shown in FIG. The number of fire alarms and the number of non-fire alarms are displayed in a list.

一覧表示された予測結果84の中で、非火災報発生件数が1件となる欄は、斜線で示す所定の背景色を表示することでリスク領域86として示され、非火災報発生のリスクが高くなっていることを強調表示する。 Among the displayed prediction results 84, a column in which the number of non-fire alarm occurrences is 1 is indicated as a risk area 86 by displaying a predetermined background color indicated by diagonal lines, indicating that the risk of non-fire alarm occurrence is Highlight that it is high.

利用者が非火災予測画面60-2の「NEXT」釦82-2をタッチ操作すると図7の非火災報予測画面60-3に遷移する。図7の非火災報予測画面60-3は、横軸を稼働年数とし、縦軸を非火災報発生台数と非火災報発生件数としたグラフ88が表示される。 When the user touches the "NEXT" button 82-2 on the non-fire prediction screen 60-2, the screen transitions to the non-fire prediction screen 60-3 shown in FIG. The non-fire alarm prediction screen 60-3 in FIG. 7 displays a graph 88 in which the horizontal axis is the number of operating years and the vertical axis is the number of non-fire alarms and the number of non-fire alarms.

グラフ88には、図6の非火災報予測画面60-2に示した予測結果84による非火災報発生台数xが点線で示され、非火災報発生件数Kxが実線で示される。点線の非火災報発生台数xは1~10年の稼働年数の増加に応じて0.0~1.0と非線形に増加し、非火災報発生のリスクが稼働年数に応じて増加していく様子が把握できる。 In the graph 88, the number x of non-fire alarm occurrences based on the prediction result 84 shown in the non-fire alarm prediction screen 60-2 of FIG. 6 is shown as a dotted line, and the number Kx of non-fire alarm occurrences is shown as a solid line. The number x of non-fire alarms (dotted line) increases non-linearly from 0.0 to 1.0 as the number of years of operation increases from 1 to 10, and the risk of non-fire alarms increases as the number of years of operation increases. I can understand the situation.

また、実線の非火災報発生件数Kxは、7年目までは0件であるが、7年目から8年目の間で1件に増加し、非火災報の発生リスクが7~8年目に増加することが分かる。 In addition, the solid line, the number of non-fire alarms, Kx, is 0 until the 7th year, but increases to 1 between the 7th and 8th years, and the risk of non-fire alarm occurrences increases from 7 to 8 years. You can see that it increases.

また、非火災報予測画面60-3の下側には、予告対処ガイダンス90として、7年目から非火災報の発生リスクが高まる点と、点検強化と火災検知器を交換する交換計画の策定を促す表示を行い、利用者に対処を促す。 In addition, at the bottom of the non-fire alarm prediction screen 60-3, as advance notice response guidance 90, the risk of non-fire alarm occurrence increases from the seventh year onwards, and the formulation of a replacement plan for strengthening inspections and replacing fire detectors. Display prompts to prompt users to take action.

なお、図5~図7に示した管理サーバ36における非火災報予測画面60-1~60-3の表示は一例であり、これに限定されず、必要に応じて適宜の表示とすることができる。 It should be noted that the displays of the non-fire alarm prediction screens 60-1 to 60-3 on the management server 36 shown in FIGS. can.

一方、図8の非火災報予測画面60-4は、上り線トンネル94と下り線トンネル96の平面図の中に設置区間A~Dに分ける。例えば、A区間は検知器150台を設置してから9年目が経過した場所であり、B区間は検知器150台を設置してから6年目が経過した場所であり、C区間は検知器150台を設置してから3年目が経過した場所であり、D区間は検知器300台を設置してから3年目が経過した場所である。あらかじめトンネル地図と火災検知器の設置場所を紐付けられている。 On the other hand, the non-fire alarm prediction screen 60-4 in FIG. 8 is divided into installation sections A to D in the plan view of the up-line tunnel 94 and the down-line tunnel 96. For example, section A is a place where 9 years have passed since 150 detectors were installed, section B is a place where 6 years have passed since 150 detectors were installed, and section C is a place where 150 detectors have been installed. This is the location where 3 years have passed since 150 detectors were installed, and Section D is the location where 3 years have passed since 300 detectors were installed. The tunnel map and fire detector installation locations are linked in advance.

地図の下に、経過年、設置台数及び非火災報予測台数を含む非火災報予測情報98を表示している。このような表示により、トンネル内の設置区画と非火災報予測台数の関係を視覚的に把握することができる。 Below the map, non-fire alarm prediction information 98 is displayed including the elapsed years, the number of installed units, and the predicted number of non-fire alarm units. With such a display, it is possible to visually grasp the relationship between the installation section in the tunnel and the predicted number of non-fire alarm vehicles.

[防災設備の検知器誤報予測]
本発明による他の実施形態にあっては、監視領域に所定の異常を検知する複数の検知器を設置し、検知器を受信盤からの信号回線に接続して異常を監視する防災設備について、監視領域に設置している検知器を対象に誤報発生の予測を行う。
[Detector false alarm prediction for disaster prevention equipment]
In another embodiment of the present invention, a disaster prevention facility is provided in which a plurality of detectors for detecting a predetermined abnormality are installed in a monitoring area, and the detectors are connected to a signal line from a receiving board to monitor abnormalities. Predicts the occurrence of false alarms from detectors installed in monitoring areas.

このような防災設備は、例えば、監視領域に火災感知器が設置された火災報知設備があり、図2の監視サーバ36に設けられた予測部54と報知部56の機能が火災受信機の制御部に設けられる。 Such disaster prevention equipment includes, for example, fire alarm equipment in which a fire detector is installed in a monitoring area, and the functions of the prediction unit 54 and notification unit 56 provided in the monitoring server 36 in FIG. 2 control the fire receiver. provided in the department.

火災受信機からの信号回線には、伝送機能を備え且つ固有のアドレスが設定されたアナログ火災感知器が接続され、アナログ火災感知器から煙濃度又は温度のアナログ検出データを火災受信機に送信して火災を判断するR型火災報知設備を対象とする。 An analog fire detector equipped with a transmission function and set with a unique address is connected to the signal line from the fire receiver, and the analog fire detector transmits analog detection data of smoke concentration or temperature to the fire receiver. This applies to R-type fire alarm equipment, which determines fire based on

火災受信機の制御部に設けられた予測部54は、火災感知器の設置台数N、過去の実績により設定された火災感知器の故障率λ、及び過去の実績により設定された火災感知器の誤報発生割合Pに基づき、火災感知器の稼働時間に応じた誤報発生台数xを予測する。 A prediction unit 54 provided in the control unit of the fire receiver calculates the number N of fire detectors installed, the failure rate λ of the fire detectors set based on past performance, and the failure rate λ of fire detectors set based on past performance. Based on the false alarm occurrence rate P, the number x of fire detectors where false alarms will occur is predicted according to the operating time of the fire detectors.

また火災受信機の制御部に設けられた報知部56は、予測部54で予測した火災感知器の誤報発生台数xに基づき火災感知器の誤報を抑制するための対処として、点検の強化、火災感知器の交換計画の立案等の対処を利用者に促す旨の表示を行う。 In addition, the notification unit 56 provided in the control unit of the fire receiver takes measures to suppress false alarms of fire detectors based on the number of false alarms of fire detectors predicted by the prediction unit A message will be displayed urging the user to take measures such as creating a plan to replace the sensor.

なお、検知器の誤報発生を予測する防災設備としては、火災報知設備以外に、ガス漏れ警報器によりガス漏れを監視するガス漏れ監視設備、盗難センサにより侵入者を検知して警報するセキュリティ設備等についても、同様に適用することができる。 In addition to fire alarm equipment, disaster prevention equipment that predicts the occurrence of false alarms from detectors includes gas leak monitoring equipment that monitors gas leaks using gas leak alarms, and security equipment that detects intruders using a theft sensor and issues an alarm. The same can be applied to .

[定期試験時の反応時間の変化による故障判定]
上記の実施形態は、トンネルに設置した火災検知器の誤報発生台数xを、
x=Σ(λ・t・N)
として予測するものであるが、定期試験時等の火災検知器の反応時間を取り込んだ故障判定を行うようにしても良い。これは時間がかかる程に故障発生台数が上昇するという要素を取り込んだ判定となる。
[Failure determination based on changes in reaction time during periodic tests]
In the above embodiment, the number of false alarms x of fire detectors installed in a tunnel is
x=Σ(λ・t・N)
However, it is also possible to make a failure determination that incorporates the reaction time of a fire detector during periodic tests. This judgment takes into account the fact that the longer it takes, the more failures occur in the number of machines.

即ち、ある処理を行う標準時間STに対する反応時間RTの割合(RT/ST)をΣ(λ・t・N)に取込み、誤報発生台数xを
x=Σ{λ・t・N・Σ(RT/ST)}
により予測する。
That is, the ratio of reaction time RT to standard time ST for a certain process (RT/ST) is incorporated into Σ(λ・t・N), and the number of false alarms x is expressed as x=Σ{λ・t・N・Σ(RT /ST)}
Predict by

[本発明の変形例]
(管理サーバの非火災報予測)
上記の実施形態は、自動車専用道路を運用管理する企業体の管理サーバに火災検知器の非火災報発生を予測して対処する予測部と報知部を設けているが、これに限定されず、例えば、火災検知器の製造メーカが保有するサーバ等に予測部と報知部を設けて、自社の設置済みの火災検知器に対する非火災報発生を予測してリスク管理を行うようにしても良い。
[Modification of the present invention]
(Non-fire alarm prediction by management server)
In the above embodiment, the management server of a corporate entity that operates and manages a motorway is provided with a prediction unit and a notification unit that predict and deal with the occurrence of non-fire alarms from fire detectors, but the present invention is not limited to this. For example, a prediction unit and a notification unit may be provided in a server or the like owned by a manufacturer of fire detectors to predict the occurrence of non-fire alarms for fire detectors already installed in the company and perform risk management.

また、図1に示したトンネルに設置された防災受信盤10と通信接続していない適宜のパーソナルコンピュータやタブレット等の情報端末に、非火災報発生を予測して対処する予測部と報知部を設けても良い。 In addition, a prediction unit and a notification unit that predict and respond to non-fire alarm occurrences are installed in appropriate information terminals such as personal computers and tablets that are not communicatively connected to the disaster prevention receiving board 10 installed in the tunnel shown in Figure 1. It may be provided.

非火災報発生台数を予測するタイミングとして、年ごと、定期試験時、検知器の交換等を行った時など適宜に行って良い。 The number of non-fire alarms may be predicted at any appropriate time, such as annually, during periodic tests, or when detectors are replaced.

所定の非火災報として、対応困難な非火災報だけでなく、原因毎に非火災報を集計し、所定の原因毎に非火災報発生台数を予測しても良い。 As the predetermined non-fire alarms, not only non-fire alarms that are difficult to respond to, but also non-fire alarms may be aggregated for each cause, and the number of non-fire alarms generated may be predicted for each predetermined cause.

上記の実施形態は、年度ごとに累積設置台数をカウントしたが、火災検知器の設置工事時期ごとに累積設置台数をカウントしても良い。この構成とすればより正確な非火災報発生予測が可能となる。さらに、トンネル地図と火災検知器の設置場所を紐付け、工事時期ごとに非火災報発生件数を予測して地図と同時に表示するようにしても良い。この構成によれば工事時期の古さと火災検知器の台数から、トンネルの内どの部分に対処が必要なのか判断する助けとすることができる。 In the above embodiment, the cumulative number of installed fire detectors is counted for each year, but the cumulative number of installed fire detectors may be counted for each installation period of fire detectors. With this configuration, it becomes possible to more accurately predict the occurrence of non-fire alarms. Furthermore, the tunnel map and the installation location of fire detectors may be linked, and the number of non-fire alarms may be predicted for each construction period and displayed at the same time as the map. With this configuration, it is possible to help determine which part of the tunnel needs to be dealt with based on the age of the construction and the number of fire detectors.

(火災検知器の内部情報取得)
また、防災受信盤は火災検知器の内部情報を取得するようにしても良い。防災受信盤による内部情報の取得のタイミングは、例えば、通信試験等の試験時のような定常的なタイミングや当該区画における非火災報発生台数が所定値を上回ったとき等の非定常なタイミングのいずれで行っても良い。
(Acquisition of internal information of fire detector)
Further, the disaster prevention reception board may acquire internal information of the fire detector. The timing at which internal information is acquired by the disaster prevention receiving board may be regular timing, such as during a communication test, or irregular timing, such as when the number of non-fire alarm units in the area exceeds a predetermined value. You can go either way.

火災検知器の内部情報はシリアル番号、定期試験結果、火災判定履歴等の種々の情報である。 The internal information of the fire detector includes various information such as a serial number, periodic test results, and fire judgment history.

火災検知器は複数の条件を満たすことにより火災を検出して発報するが、火災判定履歴等の内部情報の取得とその確認により、発報に至らなかったが発報するためのいくつかの条件を満たした回数を火災検知器ごとに把握可能となる。発報に至らなかったが発報するためのいくつかの条件を満たした回数が多い火災感知器については、対応困難な非火災報についても発生が高くなると予測される。 A fire detector detects a fire and issues an alarm when multiple conditions are met. However, by acquiring and confirming internal information such as fire judgment history, it is possible to determine whether or not an alarm has been triggered. The number of times the conditions have been met can be ascertained for each fire detector. For fire detectors that did not trigger an alarm, but met a number of conditions for issuing an alarm, it is predicted that the occurrence of non-fire alarms, which are difficult to respond to, would be more likely.

定常的なタイミングで内部情報を取得する場合、火災検知器の故障率に補正を加えるために用いる。所定期間における発報に至らなかったが発報するためのいくつかの条件を満たした回数が所定値を上回る感知器については、火災検知器の故障率λに1以上の補正値αを乗算する。 When acquiring internal information at regular timing, it is used to correct the failure rate of fire detectors. For detectors that did not trigger an alarm in a predetermined period, but the number of times that some conditions for issuing an alarm were met exceeds a predetermined value, the failure rate λ of the fire detector is multiplied by a correction value α of 1 or more. .

所定期間における発報に至らなかったが発報するためのいくつかの条件を満たした回数が所定値を上回らない場合、火災検知器の故障率λに1以下の補正値βを乗算する。 If the number of times that an alarm is not triggered during a predetermined period but some conditions for issuing an alarm are satisfied does not exceed a predetermined value, the failure rate λ of the fire detector is multiplied by a correction value β of 1 or less.

所定期間における発報に至らなかったが発報するためのいくつかの条件を満たした回数が所定値を上回る火災検知器と、上回らない火災検知器による非火災報発生台数を加算した値が当該トンネルにおける非火災報発生台数x’となる。
x’=α・λ・N1・t+β・λ・N2・t
N=N1+N2
ここで、
N1 :所定期間における発報に至らなかったが発報するためのいくつかの条件を満たした回数が所定値を上回る火災検知器14の設置台数(台)。
N2 :所定期間における発報に至らなかったが発報するためのいくつかの条件を満たした回数が所定値を上回らなかった火災検知器14の設置台数(台)。
The value is the sum of the number of non-fire alarms caused by fire detectors that did not generate an alarm but met some conditions for issuing an alarm over a predetermined value, and the number of non-fire alarms caused by fire detectors that did not exceed a predetermined value. The number of non-fire alarm vehicles in the tunnel is x'.
x'=α・λ・N1・t+β・λ・N2・t
N=N1+N2
here,
N1: The number of installed fire detectors 14 (units) in which the number of times that some conditions for issuing an alarm are met exceeds a predetermined value, although the number of times that the alarm does not occur during the predetermined period of time exceeds a predetermined value.
N2: The number of installed fire detectors 14 (units) that did not trigger an alarm during the predetermined period, but the number of times that some conditions for issuing an alarm were met did not exceed a predetermined value.

このように補正を加えた非火災報発生台数予測式を用いることにより、設置されている火災検知器の状態に応じた非火災報発生台数予測が可能となる。 By using the corrected formula for predicting the number of non-fire alarm detectors, it is possible to predict the number of non-fire alarm detectors according to the status of installed fire detectors.

また、補正値α、βの補正要件として、所定期間における発報に至らなかったが発報するためのいくつかの条件を満たした回数のみならず、シリアル番号から製造ロットによる補正や、定期試験結果による補正を行うようにしても良い。 In addition, the correction requirements for the correction values α and β include not only the number of times that an alarm was not issued during a predetermined period but met some conditions for issuing an alarm, but also corrections based on serial numbers and manufacturing lots, and periodic tests. Correction may be performed based on the results.

また、非定常的なタイミングで内部情報を取得する場合、交換や点検を優先すべき火災検知器の抽出に用いる。つまり、所定期間における発報に至らなかったが発報するためのいくつかの条件を満たした回数が所定値以上の火災検知器についてアドレスを表示する、またはトンネル地図上に所定期間における発報に至らなかったが発報するためのいくつかの条件を満たした回数に応じて色等の表示形態を変化させて表示させる。 Additionally, when acquiring internal information at irregular times, it is used to identify fire detectors that should be prioritized for replacement or inspection. In other words, the address of a fire detector that did not trigger an alarm in a predetermined period but met some conditions for triggering is more than a predetermined value, or displays the address on the tunnel map. The display format, such as color, is changed and displayed depending on the number of times that some conditions for issuing an alarm have been met, although not yet.

(その他)
また、本発明は、その目的と利点を損なわない適宜の変形を含み、更に上記の実施形態に示した数値による限定は受けない。
(others)
Furthermore, the present invention includes appropriate modifications that do not impair its objects and advantages, and is not limited by the numerical values shown in the above embodiments.

1a:上り線トンネル
1b:下り線トンネル
10:防災受信盤
12:信号回線
14:火災検知器
16:消火ポンプ設備
18:換気設備
20:警報表示板設備
22:ラジオ再放送設備
24:TV監視設備
26:照明設備
28:IG子局設備
30:ネットワーク
32:中央監視センター
34:プロキシサーバ
36:管理サーバ
38:管理端末
40:LAN回線
42:通信制御部
44:サーバ制御部
46:ディスプレイ
48:操作部
50:記憶部
52:管理制御部
54:予測部
56:報知部
60-1~60-3:非火災報予測画面
1a: Up line tunnel 1b: Down line tunnel 10: Disaster prevention receiving board 12: Signal line 14: Fire detector 16: Fire pump equipment 18: Ventilation equipment 20: Alarm display board equipment 22: Radio rebroadcast equipment 24: TV monitoring equipment 26: Lighting equipment 28: IG slave station equipment 30: Network 32: Central monitoring center 34: Proxy server 36: Management server 38: Management terminal 40: LAN line 42: Communication control unit 44: Server control unit 46: Display 48: Operation Section 50: Storage section 52: Management control section 54: Prediction section 56: Notification section 60-1 to 60-3: Non-fire alarm prediction screen

Claims (6)

監視領域に火災を検知する複数の火災検知器設置し、前記火災検知器を受信盤接続して火災を監視する火災報知設備であって
前記火災検知器の設置台数前記監視領域における非火災報の発生履歴により設定された前記火災検知器の故障率に基づき、前記火災検知器の稼働時間に応じた非火災報発生台数を予測する予測手段と、
前記予測手段で予測した前記非火災報発生台数に基づいた報知を行う報知手段と、
を備えたことを特徴とする火災報知設備
A fire alarm system in which a plurality of fire detectors are installed in a monitoring area to detect fire, and the fire detectors are connected to a receiver panel to monitor fire,
Predicting the number of non-fire alarms according to the operating time of the fire detectors based on the number of installed fire detectors and the failure rate of the fire detectors set based on the history of non-fire alarms in the monitoring area. a prediction means to
Notification means for making a notification based on the number of non-fire alarms predicted by the prediction means;
Fire alarm equipment characterized by being equipped with .
請求項1記載の火災報知設備に於いて、
前記予測手段は、
非火災報発生割合を、前記火災検知器所定の非火災報発生台数を所定の非火災報発生件数で割った値として求め、
前記火災検知器の故障率を、前記監視領域における過去の非火災報の平均発生間隔の逆数と前記非火災報発生割合を掛け合わせた値を過去の実績における前記火災検知器の設置台数で割った値として求め、
前記非火災報発生台数を、前記火災検知器の設置台数、前記火災検知器の故障率、及び前記火災検知器の稼働時間を掛け合わせた値として予測することを特徴とする火災報知設備
In the fire alarm equipment according to claim 1,
The prediction means is
Determine the non-fire alarm occurrence rate as the value obtained by dividing the predetermined number of non-fire alarm occurrences of the fire detector by the predetermined number of non-fire alarm occurrences,
The failure rate of the fire detector is calculated by multiplying the reciprocal of the average interval of past non-fire alarms in the monitoring area by the non-fire alarm occurrence rate, divided by the number of installed fire detectors in the past performance. Find it as a value,
A fire alarm system characterized in that the number of non-fire alarms is predicted as a value obtained by multiplying the number of installed fire detectors , the failure rate of the fire detectors, and the operating time of the fire detectors .
請求項1記載の火災報知設備に於いて、
前記予測手段は、
所定時期ごとの前記火災検知器の設置台数を加算した累積設置台数を管理しており、
前記累積設置台数に含まれる所定時期ごとの設置台数に対応した非火災報発生台数の総和を、前記累積設置台数の非火災報発生台数として予測することを特徴とする火災報知設備
In the fire alarm equipment according to claim 1,
The prediction means is
We manage the cumulative number of installed fire detectors by adding up the number of fire detectors installed at each specified period.
A fire alarm system characterized in that the sum of the number of non-fire alarm generating units corresponding to the number of installed units at each predetermined period included in the cumulative number of installed units is predicted as the number of non-fire alarm generating units of the cumulative installed number.
請求項1記載の火災報知設備に於いて、
前記報知手段は、前記予測手段で予測した前記非火災報発生台数に基づいて、所定の非火災報発生のリスクが高まった旨を表示して前記火災検知器の点検又は交換を促すことを特徴とする火災報知設備
In the fire alarm equipment according to claim 1,
The notification means is characterized by displaying that the risk of a predetermined non-fire alarm occurrence has increased based on the number of non-fire alarm occurrences predicted by the prediction means, and prompting inspection or replacement of the fire detector. fire alarm equipment .
請求項1記載の火災報知設備に於いて、
前記火災検知器は固有のアドレスが設定され、
前記受信盤は、前記アドレスを指定して前記火災検知器との間で信号を送受信することを特徴とする火災報知設備。

In the fire alarm equipment according to claim 1,
The fire detector is set with a unique address ,
The fire alarm equipment is characterized in that the receiver board transmits and receives signals to and from the fire detector by specifying the address.

監視領域に所定の異常を検知する複数の検知器を設置し、前記検知器を受信盤接続して前記異常を監視する防災設備であって
前記検知器の設置台数、過去の実績により設定された前記検知器の故障率、及び前記過去の実績により設定された前記検知器の所定の誤報発生割合に基づき、前記検知器の稼働時間に応じた誤報発生台数を予測する予測手段と、
前記予測手段で予測した前記誤報発生台数に基づき報知を行う報知手段と、
を備え、
前記誤報発生割合を、前記検知器の所定の誤報発生台数を所定の誤報発生件数で割った値として求め、
前記検知器の故障率を、前記監視領域における過去の誤報の平均発生間隔の逆数と前記誤報発生割合を掛け合わせた値を過去の実績における前記検知器の設置台数で割った値として求め、
前記誤報発生台数を、前記検知器の設置台数、前記検知器の故障率、及び前記検知器の稼働時間を掛け合わせた値として予測することを特徴とする防災設備。
Disaster prevention equipment in which a plurality of detectors for detecting a predetermined abnormality are installed in a monitoring area, and the detectors are connected to a receiver panel to monitor the abnormality,
Based on the number of installed detectors, the failure rate of the detector set based on past performance, and a predetermined false alarm occurrence rate of the detector set based on past performance, depending on the operating time of the detector. a prediction means for predicting the number of false alarms generated;
Notifying means for making a notification based on the number of false alarms predicted by the predicting means;
Equipped with
The false alarm occurrence rate is determined as a value obtained by dividing a predetermined number of false alarms of the detectors by a predetermined number of false alarms,
Determining the failure rate of the detector as a value obtained by multiplying the reciprocal of the average occurrence interval of past false alarms in the monitoring area by the false alarm occurrence rate, divided by the number of installed detectors in the past performance,
The disaster prevention equipment is characterized in that the number of false alarms is predicted as a value obtained by multiplying the number of installed detectors, the failure rate of the detectors, and the operating time of the detectors.
JP2018227168A 2018-11-16 2018-12-04 Fire alarm equipment and disaster prevention equipment Active JP7343966B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018215860 2018-11-16
JP2018215860 2018-11-16

Publications (2)

Publication Number Publication Date
JP2020087389A JP2020087389A (en) 2020-06-04
JP7343966B2 true JP7343966B2 (en) 2023-09-13

Family

ID=70908498

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018227168A Active JP7343966B2 (en) 2018-11-16 2018-12-04 Fire alarm equipment and disaster prevention equipment

Country Status (1)

Country Link
JP (1) JP7343966B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021181765A (en) 2020-05-19 2021-11-25 株式会社小松製作所 Piston for diesel engine and diesel engine
JP2022049478A (en) * 2020-09-16 2022-03-29 パナソニックIpマネジメント株式会社 Lighting system
KR102215998B1 (en) * 2020-09-23 2021-02-15 심현주 Apparatus for fire control and method therefor
CN115035672A (en) * 2022-05-31 2022-09-09 中交机电工程局有限公司 Highway tunnel fire plan management system and method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003067861A (en) 2001-08-24 2003-03-07 Hochiki Corp Disaster prevention receiving panel for tunnel
JP2012043373A (en) 2010-08-23 2012-03-01 Hochiki Corp Communication system
US20170061783A1 (en) 2015-09-01 2017-03-02 Honeywell International Inc. System and method providing early prediction and forecasting of false alarms by applying statistical inference models

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003067861A (en) 2001-08-24 2003-03-07 Hochiki Corp Disaster prevention receiving panel for tunnel
JP2012043373A (en) 2010-08-23 2012-03-01 Hochiki Corp Communication system
US20170061783A1 (en) 2015-09-01 2017-03-02 Honeywell International Inc. System and method providing early prediction and forecasting of false alarms by applying statistical inference models

Also Published As

Publication number Publication date
JP2020087389A (en) 2020-06-04

Similar Documents

Publication Publication Date Title
JP7343966B2 (en) Fire alarm equipment and disaster prevention equipment
CN106485871B (en) System and method for providing early prediction and prediction of false alarms by applying statistical inference models
US8542115B2 (en) Environmental sensor with webserver and email notification
US4668939A (en) Apparatus for monitoring disturbances in environmental conditions
US9076321B2 (en) Real time control chart generation and monitoring of safety systems
KR102245887B1 (en) System and method for alarming indoor fire prevention
MacLeod et al. Reliability of fire (point) detection system in office buildings in Australia–A fault tree analysis
WO2014062557A1 (en) Method and apparatus for providing environmental management using smart alarms
KR101775489B1 (en) Monitoring system of power supply apparatus for fire fighting equipment
EP4270344A1 (en) Self-testing fire sensing device for confirming a fire
JP2005209030A (en) Fire sensor and maintenance support system for the same
WO2017125715A1 (en) Building-specific anomalous event detection and alerting system
JP5175881B2 (en) Monitoring device
KR101879943B1 (en) Tunnel traffic safety prevent disasters integrated management apparatus and method
US20200066140A1 (en) System and method for indicating building fire danger ratings
US7877234B1 (en) System and method for statistically monitoring and analyzing sensed conditions
KR20100053128A (en) System based on network for detecting a fire
JP2889063B2 (en) Environmental monitoring device
KR102640451B1 (en) Integrated workplace accident control system and method thereof
EP3836104B1 (en) Identification of cap or cover on a detector
JP7336252B2 (en) Tunnel disaster prevention system
EP4310810A1 (en) Performing a self-clean of a fire sensing device
JP2016224927A (en) Fire receiver and fire monitoring system
JP2023069397A (en) Facility inspection plan creation system and facility inspection plan creation method
JP2023091459A (en) Inspection management device and inspection management program

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230426

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230601

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230816

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230901

R150 Certificate of patent or registration of utility model

Ref document number: 7343966

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150