本発明は、少なくとも3つの問題、(1)低価値炭化水素を高価値燃料へ変換すること、(2)費用効果良く硫黄及び窒素を削減し、該燃料から金属を実質的に除去すること、及び(3)該燃料を海上または陸上用エンジン、燃焼ガスタービン、またはボイラーなどの燃焼式ヒーターで使用できるように適合させること、を対象としている。
特定の炭化水素供給源は、精製所供給原料として望ましくなく、精製所により低評価されることがある。従来の精製所では、全または広範囲の炭化水素を有する原油の各バレルを、複数の燃料製造物及び下流化学品製造物からの原料油に分割しようと努めている。多くの場合、精製所は広範囲の炭化水素を有する供給原料を好む。利鞘が非常に小さいことが多い場での競争では、特定の精製所は、顧客の供給上の制約を満たすだけでなく、全ての単位操作を満たすために必要とされる材料とエネルギーとのバランスを達成するため、原油の全炭素範囲のほとんどを必要とするが、これらの精製所はまた、処理上の問題を引き起こすことのない、または操作コストを引き上げない供給原料を選びがちである。
従来の精製所は、例えば、装置、稼働及び投資コストの問題を引き起こすMaya(メキシコ)、BCF-17(ベネズエラ)、及びOriente(エクアドル)などの非常に重質な原油では、操作上の問題に直面する。このような問題は、有機物が豊富な堆積ケロゲン含有岩石及び凝縮物から得られるオイルシェールの処理でも同様に起こり得る。
従来の精製所はまた、原油と比較して「バレルの底部のほとんどを欠いているもの」として説明されることのあるライトタイトオイルの処理の問題に直面する。ライトタイトオイル(単にタイトオイルとも称される)は、シェール及び砂岩や炭酸塩のような他の低浸透性形成物から製造されるものとして現在広く入手可能である。従来の原油と比較して、タイトオイルは過剰な軽質末端を有するが、精製所で「減圧軽油」範囲または「重質残渣」または「減圧残油」範囲と呼ばれる、それぞれ425℃または565℃より高温で沸騰するか、または「バレルの底部」の重質範囲物質の炭化水素をほとんどまたは全く有さない。非特許文献1参照。
本明細書で使用されている、「タイトオイル」、「ライトタイトオイル」または「LTO」という用語は、(i)ほとんど測定不能またはゼロ(0)重量%~0.2重量%の範囲の硫黄含有量、(ii)密度、38~57度の範囲のAPI(度)、(iii)金属の痕跡及び(iv)炭化水素範囲に基づく供給源の幅広い変動を有する石油井口凝縮物、非随伴天然ガス凝縮物またはシェールガス凝縮物を意味するが、全てが同じではない。異なる供給源からのLTOは、蒸留取り出し留分範囲が異なる。特定の精製所が特徴づけした留分の範囲について使用する説明によれば、LTOの例示的な変動は、(a)5~20重量%の液化石油ガス範囲、(b)10~35重量%のナフサ、(c)15~30重量%の灯油/ジェット範囲、(d)15~25重量%のディーゼル及び重質留分、(e)痕跡レベル~10%以上の減圧軽油、及び(f)ゼロ(0%)~約5重量%以上の重質残渣を有してよい。
このようなライトタイトオイル、特に少量の重質軽油及び実質的にゼロまたは非常に少量の重質残渣を有するものは、軽油内の底部留分中に実質的に重質炭化水素を含有せず、脱硫または他の水素化処理のための処理バランスを提供するための残留物範囲またはプロセス水素生成を維持するために十分な対応する残留物を含有せず、そのような軽質原油の硫黄及び金属を削減し汚染除去するための費用効果の高い水素化処理が可能であり、あるいは特定の種類のエンジンでの使用に十分な潤滑性を有する。例えば、特定のタイトオイルの成分範囲を提供する非特許文献2を参照。原油蒸留塔からの生成物取り出し物の混合物のバランスを取り、多くの精製所の稼働に適合させるために、タイトオイルを重質のアスファルト原油と配合することは、多くの精製所にとって望ましい蒸留プロファイルをもたらすので、意味のあることである。このことは当業者に認識されていることであるが、これを実行すると、アスファルテン不安定化などの互換性の問題にもつながる(非特許文献3)。
原油と比較して、「バレルの底部」の一部または「バレルの上部のほとんどを欠いているもの」の一部であるとして説明されることのある高硫黄燃料油または「HSFO」においても、従来の精製所は処理上の問題に直面する。当技術分野における他の用途では、「高硫黄燃料油」または「HSFO」という用語は、様々な技術記事、特許及び法令において、異なる、時には似ていない、矛盾し、混乱する意味が割り当てられており、その一部は時間と共に変化するものである。広く使用される「高硫黄燃料油」という用語は、燃料での使用以外のものを含む、軽質で低沸点であるが高硫黄(したがって、高煙)灯油から3.5重量%を超える硫黄含有量を有する重質海洋バンカー燃料またはマスト(masut)または他の重質残渣である「バレルの底部」物質まで含む広範な材料を説明するために使用されており、場合によっては、明確なまたは均一に適用される仕様を有していない。特定の指標報告システムは、ISO8217仕様に基づき、HSFOを硫黄分がRMG3.5%である燃料油として使用しているが、他では異なる硫黄含有量が使用されている。
本明細書及び特許請求の範囲で使用されるように、「高硫黄燃料油」または「HSFO」は、0.50%m/m(0.5重量%)を超える硫黄含有量を有する、燃料として使用される物質を意味する。本明細書で使用される「重油」、「重質残留油」、「残渣」、「残留物」または「他の重質油」、「タールサンド」及び「超重質油」という用語は、硫黄含有量が0.50%m/m(0.5重量%)を超える石油由来炭化水素系物質を含む。「高硫黄」という用語は、燃料の目標硫黄含有量限度または適用される法定硫黄限度を上回る値のいずれか低い方を意味する。
他の問題は、高硫黄燃料油の市場が縮小しており、大量のHSFOを配合できないか、輸送できないことである。電力需要を満たすためにHSFOを燃焼する多くの国では、現地供給のために天然ガスを代替している。例えば、2015年にメキシコは、発電所が天然ガスの現地供給に転換したときに、純輸入国からHSFOの輸出国になった。
例えば、米国の一部では、家庭暖房用石油に対する要件を2,000重量ppmまたはそれ以上の硫黄分の代わりに500重量ppm以下の硫黄分に変更した州もある。その結果、特定のパイプライン及び流通網は、特定の地域、特に地方の精製所が低硫黄燃料油を効率的に処理するための供給原料、装置または技術を持たない地域において、高硫黄燃料油の過剰供給による影響に関連して、「高硫黄燃料油」の輸送を拒否している。多くの精製所管理者にとって、必要な出資に対してHSFO投資収益により対処するために残留物の品質を上げるという実際的な選択は、代替投資よりもはるかに低い。タービン燃料としてHSFOを使用すると、腐食及び汚染の問題が発生し、信頼性が失われる。
常圧原油及び/または減圧蒸留ユニット、溶剤分離、水素化処理、ガス化及び多くの他の単位操作を使用する従来技術の精製所設計では、原油供給原料の各バレルを、異なる用途または下流処理ごとにそれぞれ異なる仕様の複数の製造物に分割する。
水素化スキミング精製所では、原油をトッピング精製所に似た複数の製造物に変換するが、典型的には、ディーゼル製造において水素化処理装置により消費される水素も生成する改質装置への重質ナフサの添加が制限される。トッピング精製所のような水素化スキマーは、たった一つの製造物ではなく、典型的には、地元での消費用に広範囲のガソリン、灯油、ディーゼル及び燃料油を作る。別々の直列または並列の水素化処理反応器ゾーンまたは統合した水素化処理反応器ゾーンを含む水素化処理を適合させる様々な態様は、当該技術分野において公知である。Cashらの特許文献1及びその中で引用されている参考文献には、異なる供給原料の統合型水素化分解及び水素化処理が開示されており、別々の水素化処理ゾーンからの水素含有及び液体含有流れは、開示されている方法により分配または組み合わされる。
初期の沸騰型システムはJohansonの特許文献2(1961)及び特許文献3(1965)に記載されており、沸騰床反応器による重質油及び残渣の残留物水素化変換処理は、当該技術分野において公知である。沸騰床反応器は、反応容器内での触媒存在下における重質炭化水素液と水素との流動接触を有し、関連する様々な補助的気液分離器及び水素構成及び再生流れ、及び硫黄含有ガス処理システムは周知であり、当該技術分野で商業的に実践されている。Colyarらの特許文献4は一連の沸騰型反応器を、特許文献5は沸騰型反応器による水素化変換ステップ及び固定床水素化処理器による水素化処理ステップを記載している。Baldassariらによる特許文献6(2014)は、様々な統合型水素化変換、水素化分解及び水素化処理装置を含む、水素化変換、水素化分解及び水素化処理工程と共に、様々な水素化変換、水素化分解及び水素化処理触媒も説明している。Baldassariらはさらに、蒸留及び重油水素化処理のための様々な触媒組成物及び条件範囲を要約し、水素化分解及び残留物水素化変換のための条件を分類している。これらの全ては、水素化処理の技術分野において当業者に公知である。
重質残渣流内のピッチから脱アスファルト化油を抽出し、脱アスファルト化油を水素化処理の原料として使用するための溶剤分離の使用の様々な態様は、複数の製品流れを生成するために使用されるとして、当該技術分野で公知である。例えば、Brierleyらの特許文献7(2010)は、プロパンまたはブタンやペンタンなどの他のパラフィン系溶剤などの液体溶剤への溶解性に基づき供給原料を分離し、クラッキングまたは分解不要の、脱アスファルト化油の製造のための溶剤脱アスファルト化について記載している。ピッチ残留物は、金属及び硫黄を高含有量で含んでいる。Brierleyらによれば、脱アスファルト化油は、ナフサ、灯油、ディーゼル及び残留物を含むいくつかの生成物の製造に関する参考文献に記載されているように、硫黄、窒素及び金属を除去するために水素化分解及び水素化処理される。
Lengletによる特許文献8(2009)は、2つの非アスファルテン油を製造するための原油の予備生成方法及びアスファルテン油の予備蒸留、減圧蒸留、溶媒脱アスファルト化、水素化処理、水素化分解及び残留物水素化変換を有する複数の生成物の作製について記載している。非特許文献4には、水素添加により硫黄を除去し、高活性Ni/Mo触媒の使用により硫黄を8ppm未満にした製造物を製造するためのユニット設計、触媒の選択、水素消費及び他の稼働条件が記載されている。非特許文献5の6頁、高度精製技術、Catalagramの特定版発行No.113/2013もまた、高活性CoMo触媒を使用して立体障害のない硫黄を、高活性NiMo触媒により残存する立体障害硫黄を除去して10ppmまでとする水素化処理を記載している。
このように、従来の精製所では、ライトタイトオイル及び残留物を処理することから生じる技術的問題に対処するために多くの改良がなされてきたが、解決策がないまま、重大な問題が残っている。そのような問題は、技術的な溝を引き起こし、ライトタイトオイル及び高硫黄燃料油の実質的に不十分な利用という結果をもたらしている。
本発明は、従来の原油以外の供給源からの種々の炭化水素系供給原料を、単独でまたは従来の供給原料とともに変換し、広範囲の炭化水素を有する燃料を形成する方法を提供する。変形例では、ライトタイトオイル供給原料及び高硫黄燃料油供給原料により形成される燃料は、上記燃料を形成する上記ライトタイトオイルの最低沸点のものから高硫黄燃料油由来の水素化変換された液体の最大沸点のものまでの広範囲の炭化水素を有し、上記燃料を形成する。
一実施形態では、1つまたは複数の高硫黄燃料油を残留物水素化変換ゾーンに供給し、沸騰床反応器内で触媒の存在下、残留物水素化変換条件において水素と接触させ、(1)水素化変換産物液、及び水素及び硫黄を有するパージガスに分離される水素化変換反応器流出物、及び(2)溶剤分離に向かう未変換油を形成する。そのような未変換油は、(A)供給原料として、別々にまたは添加された高硫黄燃料油供給原料と共に、水素化変換反応器に回収される可溶性脱アスファルト化油及び(B)ピッチ処理に送られる不溶性ピッチを形成する。製造物燃料は、ライトタイトオイルの全てまたは一部を上記水素化変換産物液と組み合わせることによって形成される。一変形例では、該組み合わせの一部として使用する前に、ライトタイトオイルを分留してオーバーヘッド蒸留ガスを除去し、水素化変換ゾーン産物液と組み合わされる分離器底部を残し、燃料を形成する。他の変形例では、溶剤分離への供給原料の一部は、溶剤分離に直接添加されるか、または水素化変換反応器未変換油と組み合わせて溶剤分離に供給される高硫黄全油を有する。また、追加の高硫黄燃料油を上記可溶性脱アスファルト化油と組み合わせて、水素化変換反応器への供給原料の一部として供給することができる。引火点及びその他のものを考慮して、ライトタイトオイルを燃料組み合わせに添加する前に分留し、オーバーヘッド蒸留ガスを除去し、ナフサ範囲の炭化水素及び高沸点底部留分を有する上部ゾーン軽質留分を形成することができる。一変形例では、そのような軽質留分の少なくとも一部はナフサに富んでおり、改質装置または他の芳香油単位操作に送られて、改質条件下で水素と接触して軽質処理流れを形成する。他の変形例では、上記軽質処理流れの全てまたは一部、未処理軽質流れ及び高沸点底部留分を上記水素化変換液と組み合わせて燃料を形成する。さらに他の変形例では、水素化変換反応器からの流出物を分留して、2つ以上の処理液体留分に分離し、目標硫黄含有量より高い硫黄含有量を有する該留分の少なくとも一方を残留物水素化変換反応器への供給原料の一部として、または溶剤分離への供給原料の一部として使用する。
一実施形態では、残留物水素化変換ゾーンは、残留物水素化変換反応器を重油範囲水素化処理装置及び蒸留物範囲水素化処理装置と統合し、気液分離器、水素流、パージガス、硫黄回収工程及び共通処理液体回収の1つまたは複数を統合する。他の変形例では、そのような統合において、処理液体回収を切り離した構成にすることができ、各流れの硫黄含有量の測定及び組み合わせゾーンへの流量の調整をそれぞれ行うことを可能にし、実際の硫黄含有量が目標硫黄含有量以下である燃料を形成する。変形例では、水素化変換反応器ゾーン流出物の上部ゾーンからの処理産物流れを分留して、2つ以上の水素化変換液留分に分離し、上記目標硫黄含有量より高い硫黄含有量を有する該留分の少なくとも一方を別の水素化処理ゾーンに送り、触媒の存在下、水素化処理条件において水素と接触させ、上記目標硫黄含有量未満の硫黄含有量を有する低硫黄水素化処理流れを形成する。次いで、該水素化処理流れを他の水素化変換液留分及び上記ライトタイトオイル由来の未処理流れと組み合わせ、実際の硫黄含有量が目標硫黄含有量以下である燃料を形成する。
一実施形態では、ライトタイトオイル供給原料は45~55度の範囲のAPI密度を有し、上記高硫黄燃料油は14~21度の範囲のAPI密度を有し、上記水素化変換液は26~30度の範囲のAPI密度を有し、上記組み合わせ燃料製造物は37~43度の範囲のAPI密度及び0.5重量%未満の硫黄含有量を有する。本発明の燃料の実際の硫黄含有量は、本明細書に開示されているように、船舶用燃料に対するIMO仕様または燃焼ガスタービンに対するタービン製造業者の仕様以内の目標硫黄含有量を満たすように調整することができる。
本発明の他の実施形態では、原油のライトタイトオイル及び高硫黄燃料油との共処理の方法を提供する。本発明者らは、本明細書及び特許請求の範囲の範囲において、原油の分析または他の測定方法に関連して、x軸として原油の質量%または体積%を、y軸として硫黄含有量をプロットし、「区切り点」を、単位操業あたりの上昇率が高い、硫黄含有量が水平またはそれに近い位置から急激に、または指数関数的に増加し始める点であると定義する。操業の差は留分の単位体積の変化であり、上昇の差は硫黄含有量の変化であり、傾きは操業の上昇量である。このような操業の上昇量に関する傾きは、ゼロ(零)または水平に近い値から急激に0.2を超えて動き、急速に1を超えて、指数関数的な硫黄含有量の増加に向かって動き、区切り点は、蒸留塔への原油または他の供給原料に基づいて変化する。したがって、「区切り点取り出し」または「硫黄区切り点取り出し」は、ナフサの範囲の終点、例えば、安定化されていないワイルド直留ナフサの範囲の終点を超えるが、上記のように、単位操業あたりの上昇率が高く、硫黄含有量が急激に、または指数関数的に増加し始める点である区切り点以下で沸騰する炭化水素含有液体の分割を決定する手段を提供する。
本明細書及び特許請求の範囲において、基底「区切り点取り出し」または基底「硫黄区切り点取り出し」を、留分の硫黄含有量に関して、安定化されていないワイルド直留ナフサの範囲の終点を超えるが、区切り点以下で沸騰する炭化水素含有液体を意味する、と定義する。その際、燃料製品流れが区切り点以下の全ての未処理流れと、組み合わせを形成するために添加するように選択された区切り点取り出しより上の全ての流れとの組み合わせから形成される場合、区切り点は、その組み合わせ燃料の実際の硫黄含有量が目標硫黄含有量を超えないように選択される。変形例では、上記目標硫黄含有量が上記硫黄区切り点であるか、または上記硫黄区切り点より高いまたは低い場合に燃料を製造することができ、上記燃料を生成する流れの組み合わせは、上記燃料の実際の硫黄含有量が上記硫黄目標を超えないように、上記区切り点を基準にして効率的に作られる。
比較的高い硫黄、窒素及び金属含有量を有する原油及び高硫黄油を含む炭化水素系供給原料は常圧及び減圧蒸留に供給され、(1)軽質オーバーヘッド蒸留ガス、(2)硫黄区切り点以下の液体留分、(3)(A)硫黄を含む蒸留範囲留分、(B)硫黄を含む減圧軽油範囲留分及び(C)硫黄を含む減圧残留物を有する、硫黄区切り点より上の留分、及び(4)蒸留ユニット蒸留ガス、ストリッパー及び他の単位操作オーバーヘッドからの少量の硫黄を含有するガスなどの硫黄含有パージガスに分離される。硫黄区切り点以下の上記液体留分は、未処理液体として、上記組み合わせゾーンに供給され、上記燃料の少なくとも一部を形成する。蒸留範囲留分及び減圧軽油範囲留分を、蒸留及び減圧軽油水素化処理装置で触媒の存在下、水素化処理条件において添加の水素と接触させ、1つまたは複数の水素化処理された液体を形成する。該水素化処理液体は、組み合わせゾーン及び硫黄を有するパージガスに送られる。上記減圧残留物は沸騰残留物水素化変換ゾーンに送られ、触媒の存在下、沸騰水素化変換条件において添加水素と接触し、(1)組み合わせゾーンに供給され、上記燃料の一部を形成するもう一つの処理液体、(2)硫黄を有するパージガス、及び(3)溶剤分離に供給され、(A)残留物水素化変換に単独または減圧残留物と組み合わされて供給される可溶性脱アスファルト化油及び(B)ピッチ処理に送られる不溶性ピッチを形成する未変換油、を形成する。上記未処理液体は上記処理液体と組み合わされて、実際の硫黄含有量が目標硫黄含有量以下である燃料を形成する。好ましくは、上記水素化処理流れの少なくとも1つは、10重量ppm以下の硫黄を有する超低硫黄流れであり、組み合わせに対する該流れの量を増減して使用することにより、実際の硫黄含有量が目標硫黄含有量以下になるように調整して、上記燃料を形成する。
本発明の方法の変形例では、(i)蒸留物の軽質オーバーヘッド蒸留ガス、(ii)ピッチ及び(iii)硫黄または金属回収用蒸気内の炭化水素を有する炭化水素組成物を除いて、上記原油供給原料の実質的に全ての炭化水素組成物を、各留分に分離し、続いて組み換えて、複数の炭化水素製造物ではなく、1つの液体燃料製造物である上記燃料を形成することができる。上記燃料は、常圧蒸留からの上記未処理液体留分の最低沸点部分から溶剤分離から回収した流れの最高沸騰部分までの範囲の炭化水素と、次いで水素化処理または水素化変換反応器で処理され、回収されて上記燃料に組み込まれる流れとの組み合わせを有することができる。一変形例では、水素化処理された蒸気の少なくとも1つは10重量ppm未満の硫黄を有する超低硫黄流れであり、上記未処理留分が上記目標硫黄含有量を超える硫黄含有量を有し、上記未処理留分をトリム制御として使用される場合、上記組み合わせに対するそのような未処理留分の量の削減または増加により、実際の硫黄含有量が目標硫黄含有量以下である燃料を形成する。他の変形例では、第1の水素化処理流れを10重量ppm未満の硫黄含有量を有する低減された硫黄量を有する流れとして作製し、第2の水素化燃料留分を硫黄含有量が0.12~0.18重量%の範囲である低減された硫黄量を有する流れとして作製し、上記未処理留分は上記目標硫黄含有量を超える硫黄含有量を有し、上記第1水素化処理流れまたは第2水素化処理流れまたはその両者をトリム制御に使用し、上記組み合わせに対するそのような流れの量の増減により実際の硫黄含有量が目標硫黄含有量以下である燃料を形成する。
一変形例では、残留物水素化変換及び水素化処理ゾーンは、別々の蒸留水素化処理反応器、重油水素化処理反応器及び残留物水素化変換反応器を有し、各反応器は別々の処理流出物を形成し、各処理流出物は別々の共有壁分離器に供給され、硫黄を有する共通のオーバーヘッドガスを形成し、各反応器処理流出物に関連する1つまたは複数の別々に低減された気液処理流出物をそれぞれの硫黄含有量に基づく速度で上記分離器から別々に取り出し、(a)上記未処理液体流れとの組み合わせに送られて、実際の硫黄含有量が目標硫黄含有量以下である燃料を形成するか、または(b)燃料の硫黄含有量のその後のトリム制御のための予備貯蔵に送られる。本発明の方法の特定の変形例では、出力製造物燃料の量は、少なくとも部分的に水素の添加によって生じる容量上昇のために、入力供給原料の総量を超えることがある。
これらの新規方法は、組み合わせ燃料の硫黄含有量を船舶用燃料に対するIMO仕様または燃焼ガスタービンに対するタービン製造業者の仕様以内の目標硫黄含有量を満たすように調整することができる。したがって、上記燃料は海上または陸上用エンジン、燃焼ガスタービンまたは燃焼式ヒーターに特に有用である。ライトタイトオイル及び残留物水素化変換により処理された高硫黄燃料油を組み合わせることにより誘導された特定の燃料変形例は、実際の硫黄含有量が0.5重量%未満で、原油由来炭化水素が約C5~C20以上の範囲にある燃料を作製する。上記炭化水素は、上記燃料に組み合わされた未処理流れ内の任意の留分の最低沸点である初留点及び溶剤分離からの流出物の最高沸点部分の最高沸点を有し、次いで水素化処理または水素化変換により処理を受けて、組み合わされて上記燃料の一部を形成する。
図1は、本発明の一実施形態の概要を示し、燃料を形成するための硫黄及び金属を有する炭化水素系供給原料の変換方法における主要成分を簡略化して示している。ライトタイトオイル供給原料1は、好ましくは、製造、出荷または他の取り扱い前に基本的な気液分離器に通し、軽質同伴ガスを分離するか、または安定化、水及び沈殿物の除去、または他の軽度調整を受ける。上記ライトタイトオイル供給原料1は、比較的少量の硫黄及び金属及び比較的少量の重油を有する実質的に軽質及び中間範囲の炭化水素を含み、追加の処理なしに未処理液体流れとして組み合わせゾーン600に提供される。硫黄、窒素及び金属を有する高硫黄燃料油は、ライン41を介して残留物水素化変換ゾーン401に供給され、供給原料組成物に基づいて選択された沸騰床反応器などの残留物水素化変換器または他の好適な水素化変換装置内で該油41を触媒の存在下、残留物水素化変換条件において水素と接触させ、ゾーン401に(1)処理水素化変換液411に分割される反応器区分流出物(本明細書では、処理液の種類として称される「水素化変換液」は、約C5の沸点範囲から未変換油409の最小沸点までの実質的に全範囲の炭化水素を有し、水素化変換の残留物、パージされた水素及びオフガスを有するパージガス420、流動石油ガスの成分、及び硫黄を有する酸性ガスである)及び(2)未変換油409を形成する。このような分離は、好ましくは、減圧蒸留の形態であり、特定の供給原料の例では、常圧蒸留に近い蒸留が未変換油の分離に有効なことがある。未変換油409は、ゾーン301での溶剤脱アスファルト化に供給される。溶剤脱アスファルト化分離301は、(A)可溶性脱アスファルト化油311を形成し、ゾーン401内の水素化変換反応器への供給原料として、別々にまたは上記反応器に添加される高硫黄燃料油供給原料41と組み合わされて、再生利用される。溶剤脱アスファルト化分離301はまた、(B)ユーティリティーアイランド501内のピッチ処理に供給される不溶性ピッチ351を形成する。図1に示す変形例では、ピッチ351は、ユーティリティーアイランド501に供給されて、処理される。本実施例では、ピッチは、1つまたは複数のガス化炉(図示せず)で燃焼され、電力ならびに上記水素化変換及びガス化炉固体内の除去される上記金属の少なくとも一部を捕捉するための水素の少なくとも一部を産生することができる。
ライン1の未処理液体は、上記処理液体411と組み合わせて組み合わせゾーン600内に燃料を形成する。上記燃料600は、ライトタイトオイル供給原料、凝縮物または他の軽質供給原料1の軽質及び中間範囲の炭化水素(i)を、水素化変換ゾーン401の処理液体流出物411と共に存在する高硫黄燃料油41のより重い範囲の炭化水素(ii)の多くと組み合わせたものであり、該燃料600は、C5~C20またはそれ以上の広範囲の炭化水素を有する。このようにして形成された燃料は、上記燃料を形成する上記ライトタイトオイルの最低沸点のものから溶剤分離301に溶解するライン311の炭化水素の最大沸点のものまでの広範囲の炭化水素を有し、続いてゾーン401内で水素により処理を受け、上記燃料を形成するための流出物411の一部を形成する。組成物1及び411の量と流速は、それぞれの硫黄含有量に基づいて、燃料600の実際の硫黄含有量が目標硫黄含有量以下であるように調整することができる。例えば、限定されるものではないが、流れ1が許容できないレベルに上昇した硫黄含有量を有し、ゾーン600内での組み合わせに使用できない場合には、上記未処理流れ1は分留され(分離器図示せず)、任意のより高い硫黄量の重質底部部分を処理のためにゾーン401内の統合水素化処理装置に送ることができ、流れ1の他の部分は未処理のまま組み合わせゾーン600を通過することができる。しかし、上記水素化変換器の上流での処理の結果生じるより高い硫黄量の取り出し、例えば、常圧蒸留底部は、水素化変換条件において水素化分解され、不必要に水素を消費し、本来ライトタイトオイル供給原料内に存在するより軽質の材料を生成するので、流れ41の一部として水素化変換に供給されることはない。代わりに、そのようなより高い硫黄量の取り出しは、下記の変形例に示すように、別個の水素化処理ゾーンに送られる。本変形例では、ゾーン401内の1つまたは複数の反応器により処理された製造ゾーン流出物は分留により2つ以上の水素化変換液留分に分離でき、そのような留分の少なくとも1つが目標硫黄含有量より高い硫黄含有量を有するならば、そのような1つまたは複数の留分は、単独でまたはゾーン401外からの他の同様の硫黄含有量及び沸点範囲を有する流れと共に、ゾーン401内の1つまたは複数の別個の水素化処理ゾーンに送られて、触媒の存在下、水素化処理条件において水素と接触し、低減された硫黄含有量、好ましくは0.5重量%以下、より好ましくは0.2重量%以下の水素化処理流れを形成し、上記低硫黄水素化処理流れは上記ライトタイトオイル由来の未処理流れまたはライトタイトオイルの分留または他の処理から残っている流れと組み合わされて、実際の硫黄含有量が目標硫黄含有量以下である燃料を形成する。一変形例では、直列または統合水素化処理装置は、その目標硫黄含有量以下の硫黄含有量を有する組み合わせ流れに必要な超低硫黄または低硫黄処理液体の量に依存して、10重量ppm以下から0.1重量%の硫黄含有量を生じる。
図1に示す残留物水素化変換システム401の変形例では、ユーティリティーアイランド501ガス化システムからの、水素化変換に必要な量の構成水素含有ガス502は、残留物水素化変換ブロック401内の内部再利用水素と共に、圧縮、加熱され、選択された触媒及び他の条件に基づいて、所望レベルの水素化変換を達成するために当該技術分野で知られている効果的な操作温度、圧力、空間速度及び圧力に調整される。処理液体を有するゾーン401反応器の上記流出物及び水素含有ガスは、高圧分離器(図示せず)で分離され、ゾーン401内で回収され、任意選択で分留に送られてもよく、上記水素含有液体は回収される。サワー及び酸性ガスを有するパージガスは、ライン420を介して、ピッチ処理及び硫黄回収システムを有するユーティリティーアイランド501に供給される。ピッチ処理は、単独でまたは希釈剤と共に、電気及び蒸気を生産するために1つまたは複数のボイラー内での燃焼を有することができ、場合によっては、排煙ガス及び他の工程ガスからの硫黄及び金属を除去または低減するための付帯的設備及び圧力スイング吸収ユニットを有する水素発生ユニットを使用することができる。他の変形例では、ピッチ処理は、アスファルト製造のための転送または生コークス製造のためのコーカー供給原料としての使用による。さらに他の変形例では、上記ピッチは、1つまたは複数のガス化炉内で燃焼され、発電、水素化変換または水素化処理のための及びガス化炉固体中の上記金属の少なくとも一部をそのような固体を介して金属除去のために捕捉するための水素の少なくとも一部を製造する。上記ピッチをどのように扱うかの最適な選択は、生成されるピッチの量、低コスト水素源の有効性、及びピッチのための潜在的な販路に依存する。
図1には示されていないが、様々な補助的な高、中及び低圧力気液分離器、蒸気ヒーター、ガス再使用及びパージライン、ガスまたは軽質分と液体とを分離するための還流ドラム、コンプレッサー、冷却システム、及び他の補助的なアプリケーションは、水素化変換技術分野において当業者に公知である。また、共通のユーティリティーアイランド501内に位置しない場合には、水素化変換ゾーン401内に、サワーガスまたは酸性ガス処理のための様々なアミンまたは他の硫黄回収剤吸収剤及び剥離システムが含まれるであろう。
残留物水素化変換触媒の選択及び残留物水素化変換ゾーン401のプロセス条件の調整のためのパラメーターは、石油精製産業に従事する当業者の技術範囲内にあり、本発明の残留物水素化変換区分の実施についての追加の説明を必要としない。上記反応ゾーンにおいて、使用される残留物水素化変換触媒は、水素含有量を増加させ、及び/または硫黄、窒素、酸素、リン、コンラドソン炭素及び金属へテロ原子汚染物質を除去するための重質炭化水素供給物の水素化変換を触媒するのに有用な任意の触媒組成物を含む。使用される特定の触媒の種類及び様々な支持体及び粒度構成及び選択される残留物水素化変換条件は、硫黄及び金属含有量及び重質炭素残留物と同様、回収または他の流れからの各供給原料の炭化水素供給原料組成物、反応器からの製品流れ中の望ましい低減硫黄及び金属含有量に依存する。そのような触媒は、炭化水素原料油の残留物水素化変換に有用な任意の触媒から選択できる。ここで参照することにより組み込まれる、Baldassariらによる特許文献6(2014)は、様々な統合型残留物水素化変換装置を含む好適な残留物水素化変換工程と共に、広範囲の様々な好適な残留物水素化変換触媒も説明している。Baldassariらはさらに、蒸留及び重油残留物水素化変換のための様々な触媒組成物及び条件範囲を要約し、水素化変換のための条件を区別している。これらの全ては、残留物水素化変換の技術分野において当業者に公知である。本発明の好ましい実施形態では、沸騰床水素化変換は、反応温度範囲380℃~450℃、反応圧力範囲70バール~170バール(水素分圧)、好ましくは、液空間速度範囲0.2~2.0h-1で行い、550℃マイナスへの変換は30%から80%の範囲である。
他の好ましい変形例では、ピッチ351は、蒸気及び酸素、及び任意の炭素含有スラリークエンチの存在下、上記ピッチ351を部分酸化するための1つまたは複数のガス化炉を有する統合型ガス化-複合サイクルシステム501に供給され、合成ガスを形成し、少なくともその一部は、高温タービンガスの形成と同様に、水素及び合成ガスに変換され、該水素はライン502を介して水素化変換システム401に送られて使用され、合成ガスはプロセス用途及び他の用途の504内での発電のためユーティリティーアイランドシステム501内の複合サイクル動力ユニットのガスタービンを燃焼させる。統合型ガス化-複合サイクルシステム501は熱回収発電機をさらに有し、高温タービンガスなどから熱を回収し、ライン507内部プロセス使用を介して抽出された蒸気を生成し、または蒸気タービンを駆動し、504を介する電力として追加の発電に向けられる。各ガス化炉は、金属リッチ煤煙も産生する。煤煙は粒状固体の形状であってよく、高硫黄燃料油及び/または重質供給原料由来の金属汚染物質を有する。該固体は、各ガス化炉からライン506を経て金属を除去に送られる。支持システムは、1つまたは複数のガス処理ユニットを有し、全ての単位操作からの全ての硫黄含有ガス流れが、サワーガスまたは酸性ガスであるかどうかにかかわらず、508を介して硫黄除去のために上記ガス処理ユニットに供給される。好ましくは、このような硫黄除去システムは、上記ガス化システムもその一部であるユーティリティーアイランドの一部である。より好ましくは、1つまたは複数の硫黄含有ガス流れは、全体的な硫黄除去の一部として業務用硫黄酸産生に使用される。ユーティリティーゾーン501内のガス化システムは、典型的には、ガス化システム内で生成された原料合成ガスの少なくとも一部から必要な水素を生成するために容量及び構成が最適化された酸性ガス除去ユニット及び酸性COシフトシステムを有する。
図2に示す本発明の方法の実施形態では、高硫黄燃料油供給原料41からの液体流れ411を、組み合わせゾーン600でライトタイトオイル供給原料3からの液体流れ15と組み合わせ、実際の硫黄含有量が目標硫黄含有量以下である燃料を製造する。
ライトタイトオイルは、ライン3の処理に入り、分離器101に向かい、そこで供給原料3は、少なくとも2つの留分、(a)ライトタイトオイル供給原料3内のナフサ範囲炭化水素の少なくとも一部及びより軽質の低度炭化水素の全てを含む上部ゾーン取り出し5、及び(b)実質的に(a)の範囲外であるものを含む底部に分離される。分離器101の底部11は、ライン11及び15を介して、組み合わせゾーン600に供給され、製造物燃料の一部を形成する。上部ゾーンナフサ及び下部取り出し5は、(i)分離器(図示せず)を通り、ライン7を通過して、プロセス燃料または捕捉用としての内部使用または他の用途に使用される軽質蒸留ガス、及び(ii)主にナフサ範囲炭化水素である流れ9を有する。軽質ガスの除去後、流れ9の全てまたは一部を(図示しないコネクター、ライン9及び17を介して)直接的組み合わせのためのライン15に直接送られ、ゾーン600で燃料の一部を形成するか、組み合わせ600の引火点を考慮して、流れ9の少なくとも低発火部分は、精油技術分野において周知の触媒改質装置を有する従来の芳香油複合体などの処理ユニット151を通過させ、流れ9をユニット151内の触媒と接触させ、ライン159を介して回収される副生成物水素505及び軽質処理流れ155を非燃料または他の用途のために製造する。ユニット151は、有用な副生成物、例えば、プロセス燃料として内部的に使用されるか、他の用途のために捕捉される流動石油ガス153に製造されてもよい。
図2では、高硫黄燃料油は、単独でまたは他の重質残渣または超重質油と共に、ライン41を介して処理に入り、残留物水素化変換ゾーン401に供給されて非常に低い硫黄を有する液体流れ41を製造する。図1において前述したように、残留物水素化変換装置の選択及び統合残留物水素化変換ゾーン401の様々なプロセス条件の調整のためのパラメーターは、石油精製産業に従事する当業者の技術範囲内にあり、本発明の残留物水素化変換区分の実施についての詳しい説明を必要としない。図示した本実施形態の変形例では、統合ゾーン401は水素化変換反応器を有し、41内の高硫黄燃料油及び他の重質供給原料が該反応器に供給される。このような重質供給原料41は、好ましくは、沸騰床反応器を有する残留物水素化変換ゾーン401内で処理され、(1)処理液体411及び水素及び硫黄を有するパージガス420に分離される反応器区分流出物、及び(2)未変換油409を形成する。上記未変換油409は溶剤分離301に供給される。溶剤分離301は、(A)可溶性脱アスファルト化油31を形成し、上記反応器401への供給原料として、別々にまたは上記溶剤分離ゾーン301に添加される高硫黄燃料油供給原料51と組み合わされて、回収される。溶剤分離301はまた、(B)ピッチ処理に供給される、図2に示す実施形態である、実質的に不溶性金属リッチピッチ351を形成する。
図3に示すユーティリティー変形例では、上記ピッチ351はボイラーに供給されて燃焼され、蒸気タービン発電561のための蒸気を生成する。該ボイラー排出排ガス429の少なくとも一部は、別々にまたは水素化変換ゾーン401からのパージまたは他のガス流れ内の炭化水素変換ゾーン401酸性ガス420と共に、例えば、ライン565を介する硫黄捕捉及び除去のためのサワーガスまたは酸性ガスのための様々なアミンまたは他の硫黄回収剤吸収剤及び剥離システムを介して、変形例では、ライン563を介する金属の捕捉及び除去のための分離システムを介して、ゾーン701内で処理される。図2には示されていないが、様々な補助的な高、中及び低圧力気液分離器、流れヒーター、ガス再使用及びパージライン、ガスまたは軽質分と液体を分離するための還流ドラム、コンプレッサー、冷却システム、及び他の補助的な装置は、水素化変換及び水素化処理技術分野において当業者に公知である。図示した変形例では、プロセスユニット151からの任意の副生成物水素505に加えて、ゾーン401への他の構成水素供給は、水素源519を有する水素発生ユニット517からライン503及び509を介して行われ、例えば、限定されるものではないが、圧力スイング吸収ユニットを有する天然ガス供給蒸気分解装置は、後述するユーティリティーゾーン501からのボイラー蒸気の少なくとも一部を使用することができる。
水素化変換反応器ゾーン401への上記組み合わせた重質残留物供給原料を、触媒の存在下、残留物水素化変換条件において、ゾーン401内の沸騰床反応器において水素と接触させ、(1)処理液体411及び水素及び硫黄を有するパージガス420に分離される反応器区分流出物、及び(2)未変換油409を形成する。また、サワーガスまたは酸性ガス処理のための様々なアミンまたは他の硫黄回収剤吸収剤及び剥離システムが水素化変換ゾーン401または別々の硫黄回収ゾーン701に含まれ、そこに高硫黄パージガス428が供給される。上記処理蒸気411を組み合わせゾーン600に供給し、未処理流れ15と組み合わせ、実際の硫黄含有量が上記目標硫黄含有量以下であるように組み合わせを形成する方法で、製造物燃料が形成される。
図3に示す本発明の方法の実施形態では、硫黄、窒素及び金属を有する汚染原油の流れは、原油にとって好適な脱塩などの前処理後にライン2を介して処理に入る。この実施例では、原油供給原料2は、単一の原油、1つまたは複数の原油の混合物、または原油とライトタイトオイルまたは高硫黄燃料油などの残留油または両者との混合物であることができる。図示した変形例では、原油供給原料2とライトタイトオイル供給原料3とは別々に常圧蒸留カラム100に供給される。好ましくは、上記ライトタイトオイル3はカラム100の供給原料通過ゾーンで原油2の上部部分またはその近辺に供給され、供給原料を軽質オーバーヘッドガス4と複数の取り出し物に分離される。上記軽質オーバーヘッドガス4は、プロセス燃料として有用な非凝縮蒸留ガス6を含むか、または他の用途のために捕捉される。一好適な変形例では、このようなオーバーヘッドガス4に関する安定化システムに関連する投資は回避される。しかし、現地のニーズに応じて、例えば、特別な船舶用燃料最大H2S仕様など、安定化システムが含まれることになる。
図3に示す実施形態では、複数の取り出し物は、(1)ライン4を介したライン16の安定化されていないワイルド直留ナフサ、(2)ライン18の硫黄区切り点取り出し、(3)ライン24の軽質留分、(4)ライン26の中間蒸留物、(5)ライン28の第1重質蒸留物、及び(6)ライン30の常圧残留物、の範囲内の1つまたは複数の流れを含み得る。好ましくは、硫黄区切り点の流れの組み合わせ(1)ライン4を介したライン16の安定化されていないワイルド直留ナフサ及び(2)ライン18の硫黄区切り点取り出しが、0.06重量%~0.08重量%未満の硫黄を含有し、燃料組み合わせ600の目標硫黄含有量が0.1重量%が以下で、処理流れの硫黄含有量が10重量ppm未満である場合、該組み合わせへの未処理蒸気10及び処理流れ65、75及び85の流速は、上記燃料組み合わせ600が目標硫黄含有量を超えないように調整される。変形例では、未処理低硫黄低金属ライトタイトオイル流れは、ライン10、65、75及び85の組み合わせに加えて、ライン53を介して直接、組み合わせ600に供給され、最終硫黄含有量及び組み合わせゾーン600の他のパラメーターを調整する。
図3では、常圧残渣物は、ライン37を介して、単独でまたは高硫黄燃料油などの添加された残留油供給原料35と共に、減圧蒸留塔200に供給され、(1)ライン32に第2重質蒸留、(2)ライン36に軽質減圧軽油、(3)ライン38に重質減圧軽油及び(4)ライン50に減圧残渣を製造する。上記減圧残渣50は、ライン57及び317を介して、単独でまたは高硫黄燃料油などの添加された残留油55と共に、統合残留物水素化変換及び水素化処理ゾーン401に送られる。
統合残留物水素化変換及び水素化処理装置及び触媒の選択ならびに統合残留物水素化変換及び水素化処理ゾーン401内の様々な処理条件の調整のためのパラメーターは、石油精製産業に従事する当業者の技術範囲内にあり、本発明の残留物水素化変換及び水素化処理区分の実施についての詳しい説明を必要としない。図示した本実施形態の変形例では、統合ゾーン401は、(A)最も重質で最も汚染された供給原料がライン57及び317を介して、例えば、減圧残留物50及びライン55を介して添加された高硫黄燃料油及び他の重質供給原料が供給される水素化変換反応器ゾーン490、(B)最も重質の蒸留物及び軽油がライン39を介して、例えば、(1)ライン36の軽質減圧軽油及び(2)ライン38の重質減圧軽油を有するものが供給され、かつゾーン410内で水素化変換反応器流出物から、例えば、反応器液体製造物流れの減圧蒸留により分離された減圧油が供給される重油水素化処理反応器ゾーン460、及び(C)より軽質で汚染が少ない供給原料がライン20を介して、例えば、(1)ライン24の軽質蒸留分、(2)ライン26の中間蒸留分、(3)ライン28とライン32の第1重質蒸留分及び(4)第2重質蒸留分を有するライン29、を介して供給され、かつ水素化変換反応器流出物からゾーン401内に分離された蒸留範囲材料が供給される蒸留水素化処理反応器ゾーン430を有する。例えば、ライン32の第2重質蒸留物を、代わりに、ライン32組成物に応じて重油水素化処理装置460に供給することができ、ゾーン430及び460内の水素化処理装置反応器に対する負荷のバランスをとり、硫黄含有量レベルを制御する必要がある。そのような統合残留物水素化変換及び水素化処理ゾーン401では、再利用及び構成水素流れ410及び414及びパージガス流れ412及び416は、精油技術分野において当業者に公知の統合再利用、分離及び除去システムを有する。図3には示されていないが、様々な補助的な高、中及び低圧力気液分離器、流れヒーター、ガス再使用及びパージライン、ガスまたは軽質分と液体を分離するための還流ドラム、コンプレッサー、冷却システム、及び他の補助的な装置は、水素化変換及び水素化処理技術分野において当業者に公知である。図示した変形例では、水素供給503を水素源519を有する水素発生ユニット517から行い、例えば、限定されるものではないが、圧力スイング吸収ユニットを有する天然ガス供給蒸気分解装置は、後述するユーティリティーゾーン501からのボイラー蒸気の少なくとも一部を使用することができる。
水素化変換反応器ゾーン490に組み合わされた重質残留物供給原料317を、触媒の存在下、残留物水素化変換条件においてゾーン401の沸騰床反応器内で水素と接触させ、(1)第2減圧蒸留ユニット(図示せず)によって、好ましくは、(1)(i)ナフサ、(ii)中間蒸留物及び(iii)減圧軽油を有する処理液体85、水素及び硫黄を有するパージガス416及び428の一部、及び(2)未変換油409に分離される、反応器区分流出物を形成する。また、サワーガスまたは酸性ガス処理のための様々なアミンまたは他の硫黄回収剤吸収剤及び剥離システムが水素化変換ゾーン401または別々の硫黄回収ゾーン701に含まれ、そこに高硫黄パージガス428が供給される。本技術分野で公知のように、金属及び/または沸騰床上に堆積した他の汚染物質を含む水素化変換反応器490沸騰床からの使用済み触媒、または反応器490の沸騰床内で処理中に触媒と共に蓄積した他の材料の少なくとも一部を、ライン421を介して取り出し、ライン423を介して構成触媒に交換される。一変形例では、(i)ナフサ、(ii)中間蒸留物及び(iii)減圧軽油を有する処理液体85は分留されて、中間蒸留物は蒸留水素化処理装置430に送られ、減圧軽油は重油水素化処理装置460に送られる。
上記水素化変換未変換油409は溶剤分離301に送られる。溶剤分離301は、(A)蒸気水素化変換反応器490または他の変形例ではゾーン460に、別々にまたは減圧残渣50と組み合わせて、高硫黄燃料油供給原料55を添加する場合には一緒に、水素化変換反応器490へのライン57及び317を介して供給される可溶性脱アスファルト化油311を形成する。溶剤分離301はまた、(B)ユーティリティーアイランド501内のピッチ処理に供給される不溶性金属リッチピッチ351を形成する。図3に示すユーティリティー変形例では、ピッチ351はボイラーに送られ、そこでピッチは燃焼されて蒸気タービン発電504のための蒸気を生成し、ボイラー排出排ガス429の少なくとも一部をゾーン701内で、別々にまたはゾーン401酸性ガス428と共に、例えば、様々なアミンまたは他の硫黄回収剤吸収剤により処理し、サワーガスまたは酸性ガス用剥離システムによりライン561を介して硫黄捕捉及び除去、及び分離システムによりライン563を介して金属捕捉及び除去の処理を行う。
図3に示した変形例では、燃料製造物600の硫黄含有量は、目標硫黄含有量制限レベル以下に次のように制御される。(a)安定化されていないワイルド直留ナフサ16及び硫黄区切り点取り出し18を、そのような流れのいずれにも追加の処理をすることなく、組み合わせ600にライン10を介して供給し、続いて(b)実際の製造物硫黄レベル600を(1)軽質留分24、中間蒸留物26、第1重質蒸留物28及び第2重質蒸留物32の流れの1つまたは複数の該組み合わせへの量を増減するか、または統合ゾーン401内で形成された水素化変換器反応器流出物内の中間蒸留物を蒸留水素化処理装置ゾーン430に添加または低減するか、または(2)軽質減圧軽油36及び重質減圧軽油38を有する流れ39の量を増減するか、または統合水素化変換(401)に形成された水素化変換器流出物減圧軽油(図示せず)を重油水素化処理装置460に添加または低減して調整し、次いで(c)(1)軽質留分24、中間蒸留物26、第1重質蒸留物28及び/または第2重質蒸留物32から形成された、ライン65を介する蒸留水素化処理装置ゾーン430からの流れ、及び任意の水素化変換器流出物中間蒸留物、(2)軽質減圧軽油36、重質減圧軽油38及び任意の水素化変換器流出物減圧軽油から形成された、ライン75を介する重油水素化処理装置ゾーン460からの流れ、または(3)何らかの理由で実際の製造物600硫黄レベルを目標硫黄レベルに増やす必要がある場合、ナフサ及び水素化変換反応ゾーン490からの他の処理液体流出物85、の1つまたは複数の該組み合わせ600への量を低減するか、または(d)(1)蒸留水素化処理装置430からのライン65を介する上記流れ、(2)重油水素化処理装置460からのラインを介する流れ、または(3)何らかの理由で実際の製造物600硫黄含有量を目標硫黄制限レベル以下に減らす必要がある場合、水素化変換反応ゾーンからのライン85を介する処理流れ、の1つまたは複数の該組み合わせ600への量を増加する。このような促進により、例えば、海上及び陸上用ガスタービン用の500重量ppm以下の硫黄燃料を対象とした燃料供給や、同じ用途における異なる目標硫黄含有量を必要とする異なる最終消費場所用の異なる範囲など、複数の硫黄等級を効率的に製造が可能になる。
組み合わせ600における最終燃料の上記目標硫黄含有量限界レベルよりも高い硫黄含有量を有する高硫黄燃料油を使用する変形例では、上記高硫黄燃料油は、1つまたは複数の様々な供給原料の一部として、1つまたは複数の単位操作へ供給される。その硫黄含有量に依存して、高硫黄燃料油を、(a)常圧蒸留100への供給ライン2または減圧蒸留200へのライン30へ、(b)ライン55、57及び317を介して残留物水素化変換反応器490へ、(c)別々にまたは蒸留物水素化処理装置430へのライン20に添加された軽質留分24、中間蒸留物26、第1重質蒸留物26または第2重質蒸留物32供給原料の1つまたは複数と組み合わせて、蒸留物水素化処理装置430へ、(d)別々にまたは軽質減圧軽油36または重質減圧軽油38の1つまたは複数と組み合わせて、重油水素化処理装置460へのライン39へ、または(e)ライン59を介して溶剤分離ゾーン301へ添加して、実際の硫黄含有量が目標硫黄含有量限度以下である燃料組み合わせ600を形成することができる。
他の変形例では、組み合わせ600ゾーンの清浄燃料は、上記目標硫黄含有量限度レベルよりも高い硫黄含有量を有することができる高硫黄燃料油を、(a)追加の処理を行うことなく、高硫黄燃料油の硫黄含有量に依存して添加される、安定化されていないワイルド直留ナフサ16及び硫黄区切り点取り出し18から形成される流れ10、(b)野生ナフサ及び超低硫黄ディーゼル範囲物質を含む蒸留物水素化処理装置430から形成される流れ65、または(c)野生ナフサ、超低硫黄ディーゼル及び第2低減された硫黄量を有する流れを有する重油水素化処理装置460から形成される流れ75、または(d)水素化変換反応器85からの処理流出物85、の1つまたは複数に添加し、処理流れ65、75及び85のそれぞれの流れの処理条件及び硫黄含有量を、上記燃料600の実際の硫黄含有量が目標硫黄含有量限度以下となるように、もしあれば、未処理蒸気10の硫黄含有量を考慮しながら、調整することにより形成される。
燃料組成物600の作製に高硫黄燃料油を使用する好ましい一変形例では、そのような高硫黄燃料油の硫黄含有量を測定した後、上記高硫黄燃料油を供給原料55及び59の一部として溶剤分離ユニット301または残留物炭化水素反応ゾーン490の1つまたは複数に供給し、ゾーン490の水素化変換条件の調整の最適化、処理液体流出物85の硫黄含有量の調整を、上記高硫黄燃料油の硫黄含有量により決定しながら、行い、実際の硫黄含有量が目標硫黄含有量限度以下である燃料をゾーン600に形成する。
様々な中間的な個々の生成物を示す図1、図2、図3のフローシートは、描かれた各単位操作の流出物における主要な生成物及び副生成物の説明及び理解のためのものである。各単位操作による分離または処理の選択された変形は、選択された原油及び供給原料、及び目標仕様以下の硫黄を有する燃料を製造するために製造された中間生成物の最適化に依存する。例えば、水素化処理装置430、460及び水素化変換反応器490からの図3に示すそれぞれの処理流出物65、75及び85は、共通の気液分離器(図示せず)の使用によって、統合ゾーン401内で組み合わせることができる。例えば、水素化処理装置430で製造された超低ディーゼルが、水素化処理装置460または水素化変換反応器490で製造されたより高い硫黄含有量の水素化処理物質から分離されない倍、全ての水素化処理物質65、75及び85が組み合わされ、組み合わせゾーン600へのいずれか一つの流れに供給される。上記のように、統合残留物水素化変換及び水素化処理ゾーン401内の様々な処理条件の調整のためのパラメーターは、石油精製産業に従事する当業者の技術範囲内にある。例えば、水素化変換及び水素化処理の条件は、混合物中の軽質部をより少なくしたい場合には、分解を避けるためにより穏やかに調整され、重質部をより少なくしたい場合には、より過酷に調整される。
図4及び5は、新規燃料及びそのような燃料を形成するための一連の軽質(L)、中間(M)及び/または重質(H)材料を有する1つまたは複数の構成要素の組み合わせのレシピを教示する。
図4は、本発明の方法により製造された参照燃料の体積分率に対する温度及び密度プロファイルの両者のプロットであり、及び本明細書で教示されるように特定されたその(L)、(M)及び(H)の範囲を示す。
図5は、組み合わせのための「バレル上部」として使用できる参照軽質凝縮物の体積分率に対して温度及び密度プロファイルを示す。すなわち、そのような凝縮物は、天然に存在する(L)の構成要素の大部分を有し、天然に存在する(M)及び(H)1は少量である。選択された凝縮物が、「バレル底部」などの他の供給源からの添加物(H)2と組み合わされて本発明の燃料を構成する。
図5は、可能な組み合わせを選択するための精製所の「倉庫」の在庫材料はやや大きいが、本明細書に教示されている選択項目のレシピはそうでないことを、実例を挙げて教示する。
必須要件は、本発明の燃料が一連の炭化水素構成要素、(L)、(M)及び(H)を組み合わせて形成された場合、得られた組み合わせは、全量100体積%に基づいて以下のように決定されることである。
(a)(L)%+(M)%+(H)%=100%、
(b)(L)%=(H)%=(100%-(M)%)/2)及び
(c)(M)%がゼロ(零)または100%未満であるならば、残りの(L)%/(H)%率が0.4/1~0.6/1であり、
このような組み合わせは、(1)15℃での密度が820~880Kg/M3以内、(2)硫黄含有量が0.25重量%以下、(3)金属含有量が40重量ppm以下である、という特性を有する。本明細書に記載するように、より少ない硫黄及び金属が好ましい。
本発明のレシピに従って組み合わせるものを選択する方法を最初に精油技術分野の当業者が知ることを可能にするために、(L)、(M)及び(H)の潜在的な成分を業界組成物参照の観点からまず要約し、次いで上記及び下記の要件の制限により狭めていく。
例えば、「(L)」すなわち「軽質構成要素」範囲の成分に関して、特定の成分は、現地の入手可能な精製「倉庫」内に見出される変形例内のものであってもよく、その他のものは、現地で入手不可能であるならば、製造を必要とすることもある。本明細書での要件として、適用される(L)は、全てではないが、例えば、上記燃料組み合わせに対する硫黄及び密度要件により、ナフサ及び灯油範囲物質の成分を含むことができる。本明細書及び特許請求の範囲で使用されているように、(L)は、初留点38℃(華氏100度)以下、90%プラス終点190℃(華氏374度)~約205℃(華氏401度)を有する全範囲のナフサを意味する。(L)は、(a)精製または部分精製、(b)未精製、または(c)抽出して、軽質ガスまたは水の任意の分離以外の、分留、水素化処理またはその他の処理工程を行うことなく、使用することができる。例えば、(L)の特定の成分または(L)の前駆物質は、業界提供システムであるPlattsに公開されているが、提供された範囲の物質は硫黄区切り点に基づいていない。何故なら、区切り点は新規であり、組み合わせまたは低硫黄代替物に添加される材料の処理を考慮する必要があるからである。したがって、以下の成分の説明は、どこを参照するかについてのガイドである。
(L)のそのような適用される成分としてはまた、限定されるものではないが、EIAが指定した定義内のもの(括弧内の華氏から摂氏への変換を含む)(i)「ナフサ:概ね[50℃~204.5℃](華氏122~401度)の範囲で沸騰する精製または部分精製された石油留分を指す一般的な用語」、及び(ii)「ナフサ:概ね[50℃~204.5℃](華氏122~401度)の範囲に沸点を有する精製または部分精製された軽質留分」を挙げることができる。さらに配合または他の物質と混合されて、高級モーターガソリンやジェット燃料を形成する。また、溶剤や石油化学原料油として使用され、都市ガス製造の原料として使用される。したがって、本明細書に教示された要件に従い、本発明の教示を実施する場合、1つまたは複数の適切な(L)または軽質構成要素を製造または調達すること、またはそのような構成要素を製造するための出発材料を調達することは、精製技術分野の当業者に公知である。例えば、(L)構成成分は、好ましくは、区切り点以下または区切り点付近の硫黄含有量を有するが、該硫黄含有量が、組み合わせる(M)及び(H)の硫黄含有量によって燃料硫黄制限を超えないならば、区切り点を超えるものであってもよい。(L)のより重い部分の範囲が、該(L)が製造された原油の硫黄区切り点で終わることが好ましい。
本明細書で使用される「(M)」または「中間構成要素」範囲が適用される成分は、本明細書での全ての要件として、約190℃(華氏374度)~約205℃(華氏401度)の初留点、約385℃(華氏725度)~410℃(華氏770度)の90%プラス終点を有する精製または部分精製された石油留分を意味する。しかし、(M)のより軽い部分の範囲が、該(M)が製造された原油の硫黄区切り点で始まることが好ましい。(M)の成分は、ナフサ範囲よりも重いライトタイトオイルの底部部分を含むことができる。好ましい変形例では、本明細書での他の要件として、(M)の出発成分は約1/3の灯油範囲から約2/3のディーゼル範囲の炭化水素の中間蒸留物組み合わせを有し、ASTM D4052に従って15℃で820~880Kg/M3の範囲の密度を有する。
本明細書に教示された要件に従い、本発明の教示を実施する場合、1つまたは複数の適切な(M)または中間構成要素を製造または調達することは、精製技術分野の当業者に公知である。入手可能な精製「倉庫」内に見出される多くの変形例において、(M)として、限定されるものではないが、EIAが指定した定義内のもの(括弧内の華氏から摂氏への変換を含む)(i)「中間蒸留物:一般的な分類の、蒸留燃料油及び灯油を含む精製石油製造物」、385℃(華氏725度)以下で沸騰する、(ii)「灯油:スペースヒーター、調理ストーブ、給湯器に使用され、芯式ランプで燃やす場合の光源として使用される軽質石油蒸留物、灯油は、10%回収点最大蒸留温度[204.4℃](華氏401度)、終点[300℃](華氏572度)、最小引火点[37.8℃](華氏100度)を有する。ASTN規格D3699により認定された2種の等級No.1-K、No.2-K、及びNo.1燃料油と同様の特性を有する、レンジ油またはストーブ油と呼ばれるその他の等級の灯油を含む」、(iii)「軽質軽油:概ね[205℃~343.8℃](華氏401~650度)の範囲で沸騰するナフサよりも重い流動石油蒸留物」及び(iv)「重質軽油:概ね343.8℃~537.8℃(華氏651~1000度)で沸騰する石油蒸留物」の385℃(華氏725度)以下で沸騰する(iv)部分、を挙げることができ、385℃(華氏725度)以下で沸騰する部分のみが(M)に含まれることが求められる。(M)はまた、EIA定義内の材料(v)「灯油型ジェット燃料」、(vi)「No.1蒸留物」、(vii)「No.1ディーゼル燃料」、(viii)「No.2蒸留物」、(ix)「No.2ディーゼル燃料」、(x)「No.2燃料油」、(xi)「蒸留燃料油」及び(xii)可能であればNo.4燃料またはNo.4ディーゼル燃料の一部も含み、上記の全てについて、約385℃(華氏725度)以下で沸騰することが求められる。EIAは、ディーゼル燃料を、「ディーゼル燃料:石油精製運転で得られる蒸留物またはそのような蒸留物と自動車に使用される残留油との配合物からなる燃料として残油を有する配合物を広く含むように定義している。ディーゼル燃料はガソリンよりも沸点、比重が高い」。このように、残留油はディーゼルとして定義される物質内にあるので、精油技術分野の当業者により、本発明により教示される要因に基づいて、あるディーゼルが(M)または(H)であるかどうかが評価される。EIAが「高硫黄ディーゼル(HSD)燃料:500ppmを超える硫黄を含有するディーゼル燃料」と定義する多くのディーゼルは、本明細書でさらに説明されるように、本発明の他の要件により、(M)または(H)に該当する。しかし、EIAが定義する「低硫黄ディーゼル(LSD)燃料:15ppmを超えるが500ppm以下の硫黄を含有するディーゼル燃料」及び「超低硫黄ディーゼル(ULSD)燃料:最大15ppmの硫黄を含有するディーゼル燃料」は(M)に該当するが、本明細書でさらに説明されるように、本発明の他の要件のより、(H)に該当し得る。
本明細書に記載された他の要件に従い、(M)構成要素範囲の必須属性は、15℃で820~880Kg/M3である組み合わせ密度を有する本発明の組み合わせの一部を形成することを可能にするために、そのような範囲のための(M)標準(バルクと呼ばれることが多い)密度は15℃で820Kg/M3~880Kg/M3でなければならない。すなわち、(M)の個々の構成要素が該範囲外であっても、(M)の集合体は15℃で820~880Kg/M3に該当する。
変形例では、(M)構成要素範囲は、硫黄の除去のための本明細書に記載した水素化処理などの処理前の区切り点より高い硫黄含有量を有する。しかし、(M)構成要素が区切り点より上であってもよい限られたケースを除いて、水素化処理装置流出物などの処理された(M)が水素化変換器流出物などの処理された(H)と組み合わされた場合の硫黄含有量を、両者が(L)と組み合わされた(L)、(M)及び(H)の組み合わせが、燃料硫黄制限を超えないように処理後の(M)硫黄含有量は区切り点より低い必要がある。選択された区切り点のより高いレベルは、硫黄除去に使用されるならば(L)内の物質の最大量が水素化処理などの下流処理を迂回することを可能にし、水素生成コスト及び他の操業コストを下げる。一変形例では、(M)は水素化処理されて、約10重量ppmの範囲の非常に低い硫黄量及び非常に低いか実質的に金属を含まない流出物を製造する。(M)の成分または前駆物質として使用するために選択することができる様々な等級の特定の水素処理された材料が、周知の業界提供システムであるPlattsに公開されている。(M)が存在しない、または添加されないならば、(L)と(H)の境界は、(M)の要件を満たすものとする。
本明細書で使用される「(H)」または「重質構成要素」の成分は、本明細書での要件として、約385℃(華氏725度)~約410℃(華氏770度)の初留点、約815℃(華氏1499度)以下の終点を有する精製または部分精製された石油留分を意味する。そのような(H)終点は、獲得調査または製造試験により知ることができる(H)構成要素の属性である。一変形例では、(H)終点は、溶剤分離から回収され、続いて水素化処理または水素化変換反応器により処理され、回収されて組み合わされて、上記燃料を形成する流れの成分の最高沸点などの原料油及び/または処理条件により設定される。
(H)構成要素範囲の1つの本質的な属性は、製造中に、例えば、上述した溶剤分離及び/または水素化変換及び/または水素化処理による処理によって、硫黄及び特定の重質アスファルテン及び金属の存在を低下させるために処理された成分の適正な量、または(L)、(M)及び(H)の組み合わせに添加できるレベルに硫黄及び金属を削減し、本発明の燃料の硫黄及び金属仕様を満たす他の処理工程である。(H)範囲成分の他の本質的な属性は、(H)範囲密度及び最終燃料組み合わせへの寄与であり、本明細書に記載された他の要件に従い、その燃料組み合わせの15℃での密度が820Kg/M3~880Kg/M3である、本発明の(L)、(M)及び(H)の組み合わせの一部の形成を可能にすることである。
したがって、本明細書に記載された要件に従い、本発明の教示を実施する場合、(H)または重質構成要素の1つまたは複数の好適な成分を製造または調達すること、または原料油及びそれを製造する方法は、精油技術分野の当業者に公知である。入手可能な精製「倉庫」内に見出される多くの変形例において、(H)の成分のための出発材料として、限定されるものではないが、EIAが指定した定義内のもの(i)(iii)「重質軽油:343.8℃~537.8℃(華氏651度~1000度)」で沸騰する石油蒸留物の約385℃(華氏725度)より上で沸騰する部分、が挙げられ、385℃(華氏725度)より上で沸騰する部分のみが(H)に含まれることが求められる。(H)はまた、約385℃(華氏725度)の初留点を有する「重質軽油:概ね華氏651度~1000度の範囲で沸騰する石油蒸留物」、ASTN規格D396及びD975及び連邦規格VV-F-815Cに準拠する、(ii)残渣燃料油:精製所操作で蒸留燃料油及び軽質炭化水素が蒸留除去された後に残るNo.5及びNo.6燃料油として知られる重質油の一般的な分類を含む。No.5は、中粘度の残渣燃料油で、Navy Specialとしても知られ、改正2(NATO Symbol F-770)を含む軍用規格MIL-F-859Eに定義されており、政府機関及び海岸発電所の蒸気動力船で使用されている。No.6燃料油はバンカーC燃料油を含み、発電、室内暖房、船舶バンカーリング、及び各種産業目的に使用され、(ii)EIAは、「No.6残渣燃料油」を定義している。
図4は、本発明の方法により製造された本発明の燃料の組成の一実施形態を示す。
図4は、本発明により処理された参照原油について、体積分率に対する2つのプロファイル、温度プロファイル602及び比重プロファイル604を示す。すなわち、図4では、上部チャート及び下部チャートの両者において、x軸610は原油の体積分率を示す。上部チャートのy軸612は、温度プロファイルカーブ602を描いた、様々な取り出し物の摂氏での沸点をデータ点として示している。図4の下部チャートのy軸614は、密度プロファイルカーブ604を描いた、参照原油の比重データを示す。
図4の上部及び下部チャートの両者において、2つの垂直な点線LM606及びMH608は、温度プロファイル602及び密度プロファイル604曲線に交差して描かれている。垂直線LM602及びMH604は、選択された収率分割(L)である範囲622及び(M)範囲624での参照原油の体積分率として描かれている。図4において、LM606の交差点は205℃であり、MH608の交差点は385℃であり、(L)622及び(M)624のそれぞれの範囲を決定している。参照原油より軽質または重質の原油に対しては、線を右または左にシフトする。
点609は、565℃までで切られる減圧軽油及び565℃以下で残存する減圧残渣からの脱アスファルト化油を有する(H)範囲の終点を示す。点609での温度は、脱アスファルト化油上昇に依存し、点609からピッチを表す100体積%は示されないと理解される。温度点611は、組み合わせに使用される処理済(H)の重質減圧軽油境界点部であり、脱アスファルト化油である点611から点609までの(H)626部分を有する。対応する密度点を、未処理原油の全範囲に対する615として図4に示す。613は、処理原油における(L)、(M)、(H)の嵩密度を通る直線である。
したがって、(L)範囲622の最高沸騰終点と(M)範囲624の初留点は、共通の垂直線LM606を共有する。(M)範囲624の最高沸騰終点と(L)範囲626の初留点は、共通の垂直線MH608を共有する。(H)範囲626への前駆物質の実際の終点609は、本発明の他の実施形態に示され、(H)の定義において記載したように、特定の重質アスファルテン及び他の複合炭化水素を除去し、実質的に金属を除去し、最終燃料に寄与する非常に低い量の硫黄(H)を残すための切断点である。
図4はさらに、本発明の方法により製造された燃料に関して本明細書に開示されている、本発明の方法により製造された本発明の燃料を想定した燃料組成物を形成するための(L)、(M)及び(H)以内の構成要素をどのように組み合わせるかを示す。一変形例としての概要では、構成要素を調査し、体積分率に対して密度をプロットし、15℃で必要な最小密度820Kg/M3の線640と15℃での最大密度880Kg/M3の線642との間の(M)範囲の中心点を見出す。中心点630(後に定義される密度ピボット)は、(M)範囲の中間で密度対容積が交差する点であり、±10体積%または非常に少ないまたは存在しない(M)範囲構成要素であり、そこでまたはその間で(L)が終わり、(H)が始まる帰属点である。中央の黒い四角630は(M)範囲嵩密度中心点であり、631と633は、それぞれ(L)範囲と(H)範囲の嵩密度中心点である。
参照原油よりも軽い原油を本発明の方法により処理し燃料を作製する場合、垂直線LM606とMH608は右にずれ、範囲(L)622、(M)624、(H)626は、より軽い構成要素(L)範囲622の体積は大きくなり、範囲(H)626の体積は小さくなることを意味する。密度ピボット630は僅かに動き、燃料密度は低下するが、密度支点632(後で定義する)内に留まる。参照原油よりも重い重油を本発明の方法により処理して燃料を作製する場合、逆のことが起こる。すなわち、垂直線LM626及びMH628は左にずれ、構成要素(H)の体積は大きくなり、範囲(L)の体積は小さくなることを意味する。燃料密度は上昇するが、燃料組み合わせ密度ピボット630の点は、線640と642の間の820~880Kg/M3密度ゾーンに留まる。そのようなより軽質及びより重質の供給原料の例では、組み合わせ燃料に対して、820~880Kg/M3以内に嵩密度を有する燃料を線640と642との間の燃料組み合わせ密度ゾーンに供給し、(L)と(H)の各範囲を釣り合わせるための集合体必須密度と共に、十分な(L)及び(H)構成要素(存在する場合、(M)構成要素も同様に)が必要である。
したがって、主に(L)範囲物質である、ライトタイトオイルや凝縮物などの非常に軽い供給原料は、最終製造物嵩密度を密度支点内に持たせ、820~880Kg/M3の燃料組み合わせ密度ゾーン内に燃料を与える、単一の物質として働くための十分量の重質物質(M)または(H)を有さない。
本明細書及び特許請求の範囲に使用されているように、(a)「密度支点」という用語は、15℃で820~880KG/M3の嵩密度で、密度ピボットでの約±10%の体積分率範囲内の密度ピボット(下記に定義される)またはその近辺に位置する中心を意味する。説明のため、制限するものではないが、名目上48体積%は43~53体積%以内に測定され、名目上85体積%は80~90体積%以内に測定される。(b)「密度ピボット」という用語は、密度支点の中心点を意味し、同じ体積の構成要素(L)及び(H)を組み合わせる場合、構成要素(M)の有無にかかわらず、平衡化された密度を達成することができる。両端が線640と642の間の820~880Kg/M3燃料組み合わせ密度ゾーン内にあり、組み合わせの嵩密度が、点630にあるように、該引用された線の全てが、密度曲線604の一端の範囲が上向きでも下向きでも、上記燃料の配合物の本質的なガイド役を果たす、必要な嵩密度支点を通過する。
図4に示す密度プロファイル604を観察すると、(嵩)密度はほとんど線形プロファイルに伸び、変動は小さいが、密度支点632の並行ゾーン範囲外に傾斜し、密度支点の中心630付近で旋回することが分かる。図示されるように、密度範囲が15℃で882~880Kg/M3である場合、(L)と(H)との実質的に等しい体積は、全配合に対して線604を持ち上げ、回転させ、本発明の清浄燃料の640と642の間の嵩密度範囲内に入る。
最終組み合わせ燃料製造物の密度が、密度支点632(例えば、約820未満の低密度要求)の最低密度より低い場合、発熱量が低下し、同等のエネルギー効果を達成するためには、燃料消費の増加が必要になる。最終製造物の密度が、密度支点632(例えば、約880を超える上部密度要求)の最高密度を超える場合、エンジン燃料供給原料、取扱システム、及び他の最終使用に関連して問題が発生する。
その他の全ての条件が満足されるならば、密度支点のバランスを妨げることなく、(M)を実質的に低減または除去でき、(L)と(H)の満足できる燃料をなお形成することが可能であることは驚くべきことである。このことは、特定のバレル組み合わせの上部と底部が、(M)からディーゼル範囲を回収しても、残りの(L)と(H)との満足できる燃料をなお形成することを可能にする。
図5は、例えば、(L)範囲構成要素「バレルの上部」としてのライトタイトオイルを、(H)「バレルの底部」としての他の構成要素と一緒に使用して、本発明の方法により製造される燃料を想定した燃料組成物をどのように形成するかを示す。
図5では、凝縮物を、図5の上のチャートに示す参照ライトタイトオイル型物質として使用している。これは、53°のAPI、線706で終了する約69体積%の(L)範囲722を有する軽質の「バレルの上部」物質の一例であり、線708で終了する28体積%のみの(M)724及び最終組み合わせに寄与する726として示す(H)1の一部としての約3体積%の常圧残留底部を有する。体積分率710に対してプロットされた様々な温度712での上記凝縮物参照物質の収率曲線702を図5のチャートに示す。上記のように、この参照物質分析によって、一般的な近似値として、約69体積%の(L)範囲722と28体積%(M)範囲724と約3体積%の少量の(H)1範囲726と解釈される。底部は、重質残留物をわずかしか含まない比較的軽質な軽油範囲物質であるので、終点711は100体積%である。密度支点が参照のみについて示す(図5の下のチャートのみに示す添加された(H)2が含まれない)場合、添加(H)2を含まない元の基準の体積分率の約85%のあたりの右の方に現れる。したがって、線740と線742との間の820~880Kg/M3の密度目標範囲内の組み合わせ曲線のバランスを達成するためには、少なくとも追加の(M)範囲構成要素、好ましくは(M)+(H)構成要素または、より好ましくは、主として、(H)範囲物質が、(M)の成分と共に、組み合わせにとって必要である。
図5の下のチャートに示すこの実施例では、約69体積%の(L)722、28体積%の(M)724及び3体積%のH1範囲726として自然に発生するこの基準凝縮物の各バレルに、他の源、例えば、水素化変換により全範囲流出物として製造された(H)2非凝縮物727の0.69バレルが添加される。中央の黒い四角730は(M)範囲嵩密度中心点であり、731と733は、それぞれ(L)範囲と全(H)範囲の嵩密度中心点である。添加(H)2との該組み合わせは、1.69バレル((L)+(M)+(H)1+(H)2として図5の下のチャートに示す100体積%)の想定される本発明の配合清浄燃料を形成し、該燃料は約25~28の燃料製造物APIに対する要求範囲である820~880Kg/M3の密度を有し、この例を表1に示す。
本発明のさらに他の変形例では、組み合わせのMの量をゼロ(零)近くまで低減する。これは、(M)範囲のディーゼル及び他の材料の供給不足によるものであり、超低硫黄ディーゼル順路要求及び低硫黄海上及びガスタービン用途の高需要のために求められている。本変形例では、配合燃料の形成のために、ほとんどまたは全く(M)を含まない、実質的に等しい(L)及び(H)部分からなる組み合わせを作製する。「より重質の凝縮物」またはライトタイトオイルの選択は、より多くの常圧残留物をもたらし、場合によって、軽油範囲材料のあるものは、垂直線(LM)を左にシフトさせ、より重いライトタイトオイルの寄与による密度の増加につれて、密度支点が上昇する。
上記を適用する一実施形態では、本発明者らは、(L)、(M)及び(H)からなる1つまたは複数の構成要素の組み合わせを有する新規配合燃料を提供する。ここで、組み合わされる全量100体積%に対するそれぞれの量は、以下のように決定される。(a)(L)%+(M)%+(H)%=100%、(b)(L)%=(H)%=(100%-(M)%)/2)、及び(c)(M)%がゼロまたは100%未満である場合、残り部分の(L)%/(H)%比が0.4/1~0.6/1であり、該組み合わせは、(1)15℃で820~880Kg/M3の密度、(2)0.25重量%以下の硫黄含有量、(3)40重量ppm以下の全金属含有量、を有する燃料である。一変形例では、硫黄を0.1重量%以下に低減し、金属を25重量ppm以下に低減する。一変形例では、10%~90%の(M)が存在し、残り部分の(L)/(H)比が0.4/1~0.6/1である。他の変形例では、存在する(M)を20%~80%とし、残り部分の(L)/(H)比が0.4/1~0.6/1である。さらに他の変形例では、30%~70%の(M)が存在し、残り部分の(L)/(H)比が0.4/1~0.6/1である。簡素化した実施形態では、(M)が30体積%~70体積%の範囲であり、残り部分が0.9/1~1/0.9の(L)/(H)比を有する実質的に等しい(L)及び(H)部分からなる。他の実施形態では、(M)が全体の40体積%~60体積%の範囲にあり、15℃での密度が820~880Kg/M3、硫黄が0.25重量%以下、金属が40重量ppm以下である。
したがって、本発明者らは、15℃での密度を820~880Kg/M3またはそれ以下に目標設定し、ライトタイトオイル及び水素化変換された高硫黄燃料油の組み合わせ由来の炭化水素を有する前駆物質または構成要素の製造を利用することにより、0.1重量%という非常に低い硫黄量の燃料を、配合または製造できることを見出した。上記燃料は、常圧蒸留条件における上記油の任意の留分の最低沸点である初留点、及び溶剤分離に好適な溶剤に可溶性である上記高硫黄燃料油の残渣部分の最高沸点である最高沸点を有する。例えば、本発明を実施する場合、ヘプタンを組み合わせ構成要素入手のための獲得測定基準用の溶剤として、または本発明の製造工程の溶剤分離部を使用して製造のための溶剤として使用するならば、処理または未処理のいずれであっても、該組み合わせでの最高沸騰終点は、測定基準または製造のための溶剤としてペンタンを選択した場合より高い。
本発明者らは、前述の本開示の方法を、清浄タービン燃料として有用な広範囲の炭化水素の配合燃料組み合わせを想定するための(L)+(M)+(H)の前駆物質の選択または処理に使用できることを見出した。上記タービン燃料は、以下の特性を有する。(a)ISO8754による、0.05重量%(500重量ppm)~0.1重量%(1000重量ppm)の硫黄、(b)ASTM D4052による、15℃での820~880Kg/M3の密度、(c)ISO 14597による、25重量ppm以下、好ましくは10重量ppm未満、さらに好ましくは1重量ppm未満の全金属、(d)43.81~45.15MJ/kgのHHV、及び(e)41.06~42.33MJ/kgのLHV。引火点は、該組み合わせの最低引火点構成要素に基づいて変動する。本発明者らは、以下の追加の想定される特性を有する変形例を見出した。(a)10mm2/s未満の50℃での動粘度(ISO 3104では、1mm2/s=1cSt)、(b)ISO 10370による炭素残留物は、0.32~1.5であり、(c)ISO 6246による実在ガムが5未満であり、(d)ASTM D2272による酸化安定性が約0.5であり、(e)ASTM D664による酸価が0.05mgKOH/gである。船舶用燃料としての使用のためには、ISO 2817-10に規定されている試験または計算方法を参照する。
したがって、本発明は、硫黄及び他の汚染物質が低減され、低レベルである燃料の作製、及びそのような燃料の使用に広く適用できる。特定の特徴は、本発明の趣旨または範囲から逸脱することなく変更され得る。したがって、本発明は、上記特定の実施形態または実施例に限定されるものではなく、添付の特許請求の範囲または特許請求の範囲と同等のもののみにおいて定義される。