JP7341492B2 - Reaction treatment container, reaction treatment container manufacturing method, and reaction treatment method - Google Patents

Reaction treatment container, reaction treatment container manufacturing method, and reaction treatment method Download PDF

Info

Publication number
JP7341492B2
JP7341492B2 JP2020117813A JP2020117813A JP7341492B2 JP 7341492 B2 JP7341492 B2 JP 7341492B2 JP 2020117813 A JP2020117813 A JP 2020117813A JP 2020117813 A JP2020117813 A JP 2020117813A JP 7341492 B2 JP7341492 B2 JP 7341492B2
Authority
JP
Japan
Prior art keywords
reaction
channel
flow path
substrate
processing container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020117813A
Other languages
Japanese (ja)
Other versions
JP2020171315A (en
Inventor
磨 川口
隆 福澤
秀光 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Go Foton Inc
Original Assignee
Go Foton Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2019072811A external-priority patent/JP6732994B1/en
Application filed by Go Foton Inc filed Critical Go Foton Inc
Priority to JP2020117813A priority Critical patent/JP7341492B2/en
Publication of JP2020171315A publication Critical patent/JP2020171315A/en
Application granted granted Critical
Publication of JP7341492B2 publication Critical patent/JP7341492B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Description

本発明は、ポリメラーゼ連鎖反応(PCR:Polymerase Chain Reaction)に使用される反応処理容器に関する。 The present invention relates to a reaction processing container used for polymerase chain reaction (PCR).

遺伝子検査は、各種医学分野における検査、農作物や病原性微生物の同定、食品の安全性評価、さらには病原性ウィルスや各種感染症の検査にも広く活用されている。微小量のDNAを高感度に検出するために、DNAの一部を増幅して得られたものを分析する方法が知られている。中でもPCRを用いた方法は、生体等から採取されたごく微量のDNAのある部分を選択的に増幅する注目の技術である。 Genetic testing is widely used in various medical fields, identification of agricultural products and pathogenic microorganisms, food safety evaluation, and even testing for pathogenic viruses and various infectious diseases. In order to detect minute amounts of DNA with high sensitivity, a method is known in which a portion of DNA is amplified and the resultant product is analyzed. Among them, a method using PCR is a technique that is attracting attention for selectively amplifying a certain part of a very small amount of DNA collected from a living body or the like.

PCRは、DNAを含む生体サンプルと、プライマーや酵素などからなるPCR試薬とを混合した試料に、所定のサーマルサイクルを与え、変性、アニーリングおよび伸長反応を繰り返し起こさせて、DNAの特定の部分を選択的に増幅させるものである。 PCR is a mixture of a biological sample containing DNA and a PCR reagent consisting of primers, enzymes, etc., which is subjected to a predetermined thermal cycle to repeatedly cause denaturation, annealing, and elongation reactions to generate a specific portion of DNA. This is selective amplification.

PCRにおいては、対象の試料をPCRチューブまたは複数の穴が形成されたマイクロプレート(マイクロウェル)などの反応処理容器に所定量入れて行うことが一般的であるが、近年、基板に形成された微細な流路を備える反応処理容器(反応処理チップとも呼ばれる)を用いて行うことが実用化されてきている(例えば特許文献1~3)。 In PCR, it is common to place a predetermined amount of the target sample into a reaction processing container such as a PCR tube or a microplate (microwell) in which multiple holes are formed. It has been put into practical use to use a reaction processing container (also called a reaction processing chip) equipped with fine flow channels (for example, Patent Documents 1 to 3).

特開2009-232700号公報JP2009-232700A 特開2007-51881号公報Japanese Patent Application Publication No. 2007-51881 特開2007-285777号公報Japanese Patent Application Publication No. 2007-285777

上記のような微細な流路が形成された基板から成る反応処理容器は、射出成形により製造することが工業的に有利である。しかしながら、本発明者は、このような反応処理容器を射出成形で製造する際に、以下のような課題があることを認識した。 It is industrially advantageous to manufacture a reaction treatment container made of a substrate with fine flow channels as described above by injection molding. However, the present inventor recognized that there are the following problems when manufacturing such a reaction treatment container by injection molding.

流路の断面は幅、深さともに1mm前後もしくは1mm未満であり、曲線や直線から構成された流路である。特に、外部からのヒータなどにより所定の温度水準(例えば約95℃や55℃)に設定される流路の領域(適宜「反応領域」と呼ぶ)では、試料を効率よく加熱するために、複数のターンを含む直線状流路と曲線状流路が組み合わされた形態とすることが有利である。 The cross section of the flow path is approximately 1 mm or less than 1 mm in both width and depth, and is a flow path composed of curved lines or straight lines. In particular, in the region of the flow path (appropriately referred to as the "reaction region") where the temperature is set to a predetermined temperature level (for example, approximately 95°C or 55°C) by an external heater, multiple It is advantageous to have a combination of straight channels and curved channels including turns.

射出成形方法においては、このような流路に対応した形状の金型に樹脂を流し込んで基板が成形されていくが、直線状流路と曲線状流路が組み合わされたような凹凸構造が連続する流路に対応する複雑な部分では、金型の内部において、樹脂の充填やエアの排除に大きく時間差が生じたりするなど高速の樹脂の流れが複雑になる。そのような部位に対応する基板の部分には、いわゆるウェルドラインが生じる場合がある。このようなウェルドラインが基板の流路近傍に発生すると、ウェルドラインと流路とが接続または触れ合う部分に「ピット」と呼ばれる深さ数μmから数十μmの凹部が生じる可能性がある。流路にこのようなピットが存在すると、試料の移動が妨げられ、試料の停止もしくは滞留や残留が生じるおそれがある。 In the injection molding method, a substrate is molded by pouring resin into a mold with a shape that corresponds to these flow channels, but the uneven structure that is a combination of straight and curved channels is continuous. In the complicated parts corresponding to the flow paths, the high-speed flow of resin becomes complicated, as there is a large time difference between resin filling and air removal inside the mold. A so-called weld line may occur in a portion of the substrate corresponding to such a portion. If such a weld line occurs near the flow path of the substrate, a recessed portion called a "pit" with a depth of several μm to several tens of μm may occur at the portion where the weld line and the flow path connect or touch. If such pits exist in the flow path, the movement of the sample may be hindered, and there is a risk that the sample may stop, stagnate, or remain.

本発明はこうした状況に鑑みてなされたものであり、その目的は、成形時の不適当なウェルドラインの発生を抑制することで、試料が流路内をスムースに移動することのできる反応処理容器を提供することにある。 The present invention was made in view of these circumstances, and its purpose is to provide a reaction processing container in which a sample can move smoothly in a flow path by suppressing the occurrence of inappropriate weld lines during molding. Our goal is to provide the following.

上記課題を解決するために、本発明のある態様の反応処理容器は、樹脂から成る基板と、基板の主面に形成された溝状の流路と、を備える。流路は、底面および側面を含む。流路の一部において、底面と側面とが曲面により接続される。 In order to solve the above problems, a reaction processing container according to an embodiment of the present invention includes a substrate made of resin and a groove-shaped flow path formed on the main surface of the substrate. The channel includes a bottom surface and side surfaces. In a part of the flow path, the bottom surface and the side surface are connected by a curved surface.

流路は、当該流路内を流れる試料に所定の反応を起こさせるための反応流路を備え、反応流路において、底面と側面とが曲面により接続されてもよい。 The channel may include a reaction channel for causing a predetermined reaction in a sample flowing through the channel, and the bottom surface and the side surface of the reaction channel may be connected by a curved surface.

反応流路は、曲線状の流路と直線状の流路とを組み合わせた蛇行状の流路を含んでもよい。 The reaction channel may include a meandering channel that is a combination of a curved channel and a straight channel.

反応流路の開口幅は、0.6mm~1.1mmであり、反応流路における曲面の曲率半径は、0.2mm~0.38mmであってもよい。 The opening width of the reaction channel may be 0.6 mm to 1.1 mm, and the radius of curvature of the curved surface in the reaction channel may be 0.2 mm to 0.38 mm.

反応流路の深さは、0.55mm~0.95mmであり、反応流路のテーパ角は、10°~30°であってもよい。 The depth of the reaction channel may be 0.55 mm to 0.95 mm, and the taper angle of the reaction channel may be 10° to 30°.

流路は、当該流路内を流れる試料から蛍光を検出するために励起光の照射を受ける検出流路を備え、検出流路における底面は、基板の主面と平行な平面に形成されてもよい。 The flow path may include a detection flow path that is irradiated with excitation light in order to detect fluorescence from a sample flowing through the flow path, and the bottom surface of the detection flow path may be formed in a plane parallel to the main surface of the substrate. good.

検出流路は、直線状の流路に形成されてもよい。 The detection channel may be formed as a linear channel.

基板は、検出流路の近傍にゲートを備えてもよい。 The substrate may include a gate near the detection channel.

基板は、検出流路に垂直な仮定垂直線と基板の端部との交点近傍にゲートを備えてもよい。 The substrate may include a gate near the intersection of an assumed vertical line perpendicular to the detection channel and an edge of the substrate.

基板は、直線状の検出流路を延長した仮定平行線と基板の端部との交点近傍にゲートを備えてもよい。 The substrate may include a gate near the intersection of the hypothetical parallel line extending the linear detection channel and the end of the substrate.

検出流路の底面幅は、0.5mm~0.8mmであってもよい。 The bottom width of the detection channel may be 0.5 mm to 0.8 mm.

検出流路の深さは、0.8mm~1.25mmであり、検出流路のテーパ角は、10°~30°であってもよい。 The depth of the detection channel may be 0.8 mm to 1.25 mm, and the taper angle of the detection channel may be 10° to 30°.

本発明によれば、成形時の不適当なウェルドラインの発生を抑制することで、試料が流路内をスムースに移動することのできる反応処理容器を提供できる。 According to the present invention, it is possible to provide a reaction processing container in which a sample can move smoothly in a flow path by suppressing the occurrence of inappropriate weld lines during molding.

本発明の実施形態に係る反応処理容器が備える基板の平面図である。FIG. 2 is a plan view of a substrate included in a reaction processing container according to an embodiment of the present invention. 本発明の実施形態に係る反応処理容器の断面構造を説明するための図である。1 is a diagram for explaining a cross-sectional structure of a reaction processing container according to an embodiment of the present invention. 反応処理容器を利用可能な反応処理装置を説明するための模式図である。FIG. 2 is a schematic diagram for explaining a reaction processing apparatus that can utilize a reaction processing container. 従来の反応処理容器の基板に生じたウェルドラインの一例を示す図である。FIG. 3 is a diagram showing an example of weld lines generated on a substrate of a conventional reaction processing container. 本発明の実施形態に係る反応流路の断面の一例を示す図である。FIG. 3 is a diagram showing an example of a cross section of a reaction channel according to an embodiment of the present invention. 本発明の実施形態に係る反応流路の断面の別の例を示す図である。FIG. 7 is a diagram showing another example of a cross section of a reaction channel according to an embodiment of the present invention. 図7(a)および(b)は、金型における樹脂の流れを説明するための図である。FIGS. 7A and 7B are diagrams for explaining the flow of resin in the mold. 検出流路の断面の一例を示す図である。FIG. 3 is a diagram showing an example of a cross section of a detection channel. 本発明の別の実施形態に係る反応処理容器が備える基板の平面図である。FIG. 3 is a plan view of a substrate included in a reaction processing container according to another embodiment of the present invention. 本発明の実施形態に係る反応処理容器の基板の流路近傍の拡大図である。FIG. 3 is an enlarged view of the vicinity of the flow path of the substrate of the reaction processing container according to the embodiment of the present invention.

以下、本発明の実施形態に係る反応処理容器について説明する。各図面に示される同一または同等の構成要素、部材、処理には、同一の符号を付するものとし、適宜重複した説明は省略する。また、実施の形態は、発明を限定するものではなく例示であって、実施の形態に記述されるすべての特徴やその組み合わせは、必ずしも発明の本質的なものであるとは限らない。 Hereinafter, a reaction processing container according to an embodiment of the present invention will be described. Identical or equivalent components, members, and processes shown in each drawing are designated by the same reference numerals, and redundant explanations will be omitted as appropriate. Further, the embodiments are illustrative rather than limiting the invention, and all features and combinations thereof described in the embodiments are not necessarily essential to the invention.

本発明の実施形態に係る反応処理容器は、基板と、該基板に貼り付けられた封止フィルムと、フィルタと、から成る。図1は、反応処理容器が備える基板の平面図である。図2は、反応処理容器の断面構造を説明するための図である。図2は、基板に形成される流路、フィルムおよびフィルタとの位置関係を説明するための図であり、実施の反応処理容器の断面図とは異なる点に留意されたい。 A reaction processing container according to an embodiment of the present invention includes a substrate, a sealing film attached to the substrate, and a filter. FIG. 1 is a plan view of a substrate included in a reaction processing container. FIG. 2 is a diagram for explaining the cross-sectional structure of the reaction processing container. It should be noted that FIG. 2 is a diagram for explaining the positional relationship between a flow path formed on a substrate, a film, and a filter, and is different from a cross-sectional view of an actual reaction processing container.

反応処理容器10は、上面14aに溝状の流路12が形成された樹脂製の基板14と、基板14の上面14a上に貼られた流路封止フィルム16、第1封止フィルム18および第2封止フィルム19と、基板14の下面14b上に貼られた第3封止フィルム20、第4封止フィルム21および第5フィルム(図示せず)と、基板14内に配置された第1フィルタ28および第2フィルタ30とを備える。 The reaction processing container 10 includes a resin substrate 14 in which a groove-shaped channel 12 is formed on the upper surface 14a, a channel sealing film 16, a first sealing film 18, and a channel sealing film 16 pasted on the upper surface 14a of the substrate 14. A second sealing film 19, a third sealing film 20, a fourth sealing film 21, and a fifth film (not shown) pasted on the lower surface 14b of the substrate 14, and a 1 filter 28 and a second filter 30.

基板14は、温度変化に対して安定で、使用される試料溶液に対して侵されにくい材質から形成されることが好ましい。さらに、基板14は、成形性がよく、透明性やバリア性が良好で、且つ、低い自家蛍光性を有する材質から形成されることが好ましい。このような材質としては、アクリル、ポリプロピレン、シリコーンなどの樹脂、中でも環状ポリオレフィン樹脂が好適である。 The substrate 14 is preferably formed of a material that is stable against temperature changes and is not easily attacked by the sample solution used. Further, the substrate 14 is preferably formed of a material that has good moldability, good transparency and barrier properties, and low autofluorescence. As such a material, resins such as acrylic, polypropylene, and silicone, among which cyclic polyolefin resins are suitable.

基板14の上面14aには溝状の流路12が形成されている。反応処理容器10において、流路12の大部分は基板14の上面14aに露出した溝状に形成されている。金型を用いた射出成形により容易に成形できるようにするためである。この溝を封止して流路として活用するために、基板14の上面14a上に流路封止フィルム16が貼られる。流路12の寸法の一例は、幅0.7mm、深さ0.7mmである。また射出成型法により基板を工業的により有利に生産するために、流路の構造は、いわゆる「抜きテーパ」と称する、基板の主面に対して一定の角度を備える側面を含みうる。 A groove-shaped channel 12 is formed on the upper surface 14a of the substrate 14. In the reaction processing container 10, most of the channel 12 is formed in the shape of a groove exposed on the upper surface 14a of the substrate 14. This is to enable easy molding by injection molding using a metal mold. In order to seal this groove and utilize it as a flow path, a flow path sealing film 16 is pasted on the upper surface 14a of the substrate 14. An example of the dimensions of the flow path 12 is a width of 0.7 mm and a depth of 0.7 mm. Further, in order to produce the substrate industrially more advantageously by the injection molding method, the structure of the channel may include a so-called "pull taper" side surface having a certain angle with respect to the main surface of the substrate.

流路封止フィルム16は、一方の主面が粘着性を備えていてもよいし、押圧や紫外線などのエネルギー照射、加熱等により粘着性や接着性を発揮する機能層が一方の主面に形成されていてもよく、容易に基板14の上面14aと密着して一体化できる機能を備える。流路封止フィルム16は、粘着剤も含めて低い自家蛍光性を有する材質から形成されることが望ましい。この点でシクロオレフィンポリマー、ポリエステル、ポリプロピレン、ポリエチレンまたはアクリルなどの樹脂からなる透明フィルムが適しているが、これらに限定されない。また、流路封止フィルム16は、板状のガラスや樹脂から形成されてもよい。この場合はリジッド性が期待できることから、反応処理容器10の反りや変形防止に役立つ。 The channel sealing film 16 may have adhesiveness on one main surface, or may have a functional layer on one main surface that exhibits adhesiveness or adhesive properties when pressed, irradiated with energy such as ultraviolet rays, heated, etc. It has the function of being easily integrated with the upper surface 14a of the substrate 14 in close contact with the upper surface 14a of the substrate 14. The channel sealing film 16, including the adhesive, is desirably made of a material with low autofluorescence. Transparent films made of resins such as, but not limited to, cycloolefin polymers, polyesters, polypropylene, polyethylene or acrylics are suitable in this regard. Moreover, the channel sealing film 16 may be formed from plate-shaped glass or resin. In this case, since rigidity can be expected, it is useful for preventing warpage and deformation of the reaction processing container 10.

流路12の一端12aには、第1フィルタ28が設けられている。流路12の他端12bには、第2フィルタ30が設けられている。流路12の両端に設けられた一対の第1フィルタ28および第2フィルタ30は、PCRによって目的のDNAの増幅やその検出を妨げないように、または目的のDNAの品質が劣化しないように、コンタミネーションを防止する。第1フィルタ28および第2フィルタ30の寸法は、基板14に形成されたフィルタ設置スペースに隙間なく収まるような寸法に形成される。 A first filter 28 is provided at one end 12a of the flow path 12. A second filter 30 is provided at the other end 12b of the flow path 12. A pair of first filters 28 and second filters 30 provided at both ends of the flow path 12 are provided so as not to interfere with amplification or detection of the target DNA by PCR, or to prevent the quality of the target DNA from deteriorating. Prevent contamination. The dimensions of the first filter 28 and the second filter 30 are such that they can fit into the filter installation space formed on the substrate 14 without any gaps.

基板14には、空気導入路29および第1フィルタ28を介して流路12の一端12aに通じる第1空気連通口24が形成されている。同様に基板14には、空気導入路31および第2フィルタ30を介して流路12の他端12bに通じる第2空気連通口26が形成されている。一対の第1空気連通口24および第2空気連通口26は、基板14の上面14aに露出するように形成されている。 A first air communication port 24 is formed in the substrate 14 and communicates with one end 12a of the flow path 12 via an air introduction path 29 and a first filter 28. Similarly, a second air communication port 26 is formed in the substrate 14 and communicates with the other end 12b of the flow path 12 via the air introduction path 31 and the second filter 30. A pair of first air communication ports 24 and second air communication ports 26 are formed so as to be exposed on the upper surface 14a of the substrate 14.

本実施形態においては、第1フィルタ28および第2フィルタ30として、低不純物特性が良好であり、且つ通気性および撥水性もしくは撥油性を有するものが用いられる。第1フィルタ28および第2フィルタ30としては、例えば多孔性樹脂や樹脂の焼結体などが好ましく、これらに限られないが、フッ素含有樹脂としては、PTFE(ポリテトラフルオロエチレン)、PFA(パーフルオロアルコキシアルカン)、FEP(パーフルオロエチレンプロペンコポリマー)、ETFE(エチレンテトラフルオロエチレンコポリマー)などが例示できる。さらにPTFE(ポリテトラフルオロエチレン)製フィルタとしては、これらに限られないが、PF020(いずれもアドバンテックグループ社製)等を用いることができる。さらに、第1フィルタ28および第2フィルタ30としては、フッ素含有樹脂でコーティングして表面を撥水処理したものも使用することができる。その他フィルタの材料としては、ポリエチレン、ポリアミド、ポリプロピレンなどが挙げられ、PCRに供される試料のコンタミネーション防止をすることができ、PCRに支障の生じないものであればよく、空気を通過させることができ、液体を通過させないような性状を備えていればなおよく、求められる性能に対してこれらのいくつかの要求を満たすものであればその性能や材質は問わない。 In this embodiment, as the first filter 28 and the second filter 30, filters having good low impurity properties, air permeability, and water or oil repellency are used. As the first filter 28 and the second filter 30, for example, a porous resin or a sintered body of resin is preferable, but examples of fluorine-containing resin include PTFE (polytetrafluoroethylene) and PFA (permeable resin). Examples include fluoroalkoxyalkane), FEP (perfluoroethylene propene copolymer), and ETFE (ethylene tetrafluoroethylene copolymer). Furthermore, as a filter made of PTFE (polytetrafluoroethylene), PF020 (both manufactured by Advantech Group), etc. can be used, although the filter is not limited to these. Furthermore, as the first filter 28 and the second filter 30, filters whose surfaces are coated with a fluorine-containing resin to make them water-repellent can also be used. Other filter materials include polyethylene, polyamide, polypropylene, etc., as long as they can prevent contamination of samples to be subjected to PCR, do not interfere with PCR, and do not allow air to pass through. It is preferable that the material has properties that allow liquid to pass through it and that it does not allow liquid to pass through, and its performance and material do not matter as long as it satisfies some of these requirements for the desired performance.

流路12は、一対の第1フィルタ28および第2フィルタ30の間に、後述する反応処理装置により複数水準の温度の制御が可能な反応領域を備える。複数水準の温度が維持された反応領域を連続的に往復するように試料を移動させることにより、試料にサーマルサイクルを与えることができる。 The flow path 12 includes a reaction region between a pair of first filters 28 and second filters 30 in which temperature can be controlled at a plurality of levels by a reaction processing device to be described later. By continuously moving the sample back and forth through a reaction zone where multiple levels of temperature are maintained, the sample can be subjected to a thermal cycle.

本実施形態において、反応領域は、高温領域36と、中温領域38とを含む。後述の反応処理装置に反応処理容器10が搭載された際に、高温領域36は比較的高温(例えば約95℃)に維持され、中温領域38は、高温領域36よりも低温(例えば約62℃)に維持される。高温領域36の一端は、第2フィルタ30および空気導入路31を介して第2空気連通口26に連通し、他端は接続流路40を介して中温領域38に連通している。中温領域38の一端は接続流路40を介して高温領域36に連通し、他端は緩衝流路(予備流路)39に連通している。緩衝流路39の一端は中温領域38に連通し、他端は第1フィルタ28および空気導入路29を介して第1空気連通口24に連通している。 In this embodiment, the reaction region includes a high temperature region 36 and a medium temperature region 38. When the reaction processing container 10 is installed in the reaction processing apparatus described below, the high temperature region 36 is maintained at a relatively high temperature (for example, about 95° C.), and the medium temperature region 38 is maintained at a temperature lower than the high temperature region 36 (for example, about 62° C.). ) will be maintained. One end of the high temperature region 36 communicates with the second air communication port 26 via the second filter 30 and the air introduction path 31, and the other end communicates with the medium temperature region 38 via the connection channel 40. One end of the medium temperature region 38 communicates with the high temperature region 36 via a connection channel 40, and the other end communicates with a buffer channel (preparation channel) 39. One end of the buffer flow path 39 communicates with the medium temperature region 38, and the other end communicates with the first air communication port 24 via the first filter 28 and the air introduction path 29.

高温領域36および中温領域38はそれぞれ、曲線状流路と直線状流路とを組み合わせた連続的に折り返す蛇行状の流路を含んでいる。このように蛇行状の流路とした場合、後述の温度制御システムを構成するヒータ等の限られた実効面積を有効に使うことができ、反応領域内での温度のばらつきを低減することが容易であるとともに、反応処理容器の実体的な大きさを小さくでき、反応処理装置の小型化に貢献できるという利点がある。また、緩衝流路39も蛇行状の流路となっている。一方、高温領域36と中温領域38の間の接続流路40は、直線状の流路となっている。接続流路40には、後述の反応処理装置に反応処理容器10が搭載された際に、流路内を流れる試料から蛍光を検出するために励起光の照射を受ける領域(「蛍光検出領域」と称する)86が設定される。 The high-temperature region 36 and the medium-temperature region 38 each include a meandering flow path that is a combination of a curved flow path and a straight flow path and is continuously folded back. When creating a meandering flow path in this way, it is possible to effectively use the limited effective area of heaters, etc. that make up the temperature control system described later, and it is easy to reduce temperature variations within the reaction area. In addition, there is an advantage that the actual size of the reaction processing container can be reduced, contributing to miniaturization of the reaction processing apparatus. Further, the buffer flow path 39 is also a meandering flow path. On the other hand, the connecting flow path 40 between the high temperature region 36 and the medium temperature region 38 is a straight flow path. The connection flow path 40 includes a region (“fluorescence detection region”) that is irradiated with excitation light in order to detect fluorescence from a sample flowing in the flow path when the reaction processing container 10 is installed in a reaction processing apparatus to be described later. ) 86 is set.

緩衝流路39の一部には分岐点が設けられており、該分岐点から分岐流路42が分岐している。分岐流路42の先端には、基板14の下面14bに露出するように試料導入口44が形成されている。緩衝流路39は、試料導入口44から所定量の試料が投入された後に、反応処理容器10の反応処理装置への導入を行う際の一時的な試料の待機流路として用いることができる。 A branch point is provided in a part of the buffer channel 39, and a branch channel 42 branches from the branch point. A sample introduction port 44 is formed at the tip of the branch channel 42 so as to be exposed on the lower surface 14b of the substrate 14. The buffer channel 39 can be used as a temporary sample standby channel when the reaction processing container 10 is introduced into the reaction processing apparatus after a predetermined amount of the sample is introduced from the sample introduction port 44.

図2に示すように、第1封止フィルム18は、第1空気連通口24を封止するように基板14の上面14aに貼り付けられる。第2封止フィルム19は、第2空気連通口26を封止するように基板14の上面14aに貼り付けられる。第3封止フィルム20は、空気導入路29および第1フィルタ28を封止するように基板14の下面14bに貼り付けられる。第4封止フィルム21は、空気導入路31および第2フィルタ30を封止するように基板14の下面14bに貼り付けられる。第5封止フィルム(図示せず)は、試料導入口44を封止するように基板14の下面14bに貼り付けられる。これらの封止フィルムとしては、シクロオレフィンポリマー、ポリエステル、ポリプロピレン、ポリエチレンまたはアクリルなどの樹脂を基材とする透明フィルムを用いることができる。流路封止フィルム16を含む全ての封止フィルムを貼った状態では、全流路は閉空間となっている。 As shown in FIG. 2, the first sealing film 18 is attached to the upper surface 14a of the substrate 14 so as to seal the first air communication port 24. The second sealing film 19 is attached to the upper surface 14a of the substrate 14 so as to seal the second air communication port 26. The third sealing film 20 is attached to the lower surface 14b of the substrate 14 so as to seal the air introduction path 29 and the first filter 28. The fourth sealing film 21 is attached to the lower surface 14b of the substrate 14 so as to seal the air introduction path 31 and the second filter 30. A fifth sealing film (not shown) is attached to the lower surface 14b of the substrate 14 so as to seal the sample introduction port 44. As these sealing films, transparent films based on resins such as cycloolefin polymer, polyester, polypropylene, polyethylene, or acrylic can be used. When all the sealing films including the channel sealing film 16 are pasted, all the channels are closed spaces.

反応処理容器10に後述する送液システムを接続する際には、第1空気連通口24、第2空気連通口26を封止している第1封止フィルム18、第2封止フィルム19を剥がし、送液システムに備わったチューブを第1空気連通口24、第2空気連通口26に接続する。あるいは、送液システムに備わった中空のニードル(先端がとがった注射針)で第1封止フィルム18、第2封止フィルム19に穿孔することにより行ってもよい。この場合、第1封止フィルム18、第2封止フィルム19は、ニードルによる穿孔が容易な材質や厚みから成るフィルムが好ましい。 When connecting a liquid feeding system to be described later to the reaction processing container 10, the first sealing film 18 and the second sealing film 19, which seal the first air communication port 24 and the second air communication port 26, are Peel it off and connect the tube provided in the liquid delivery system to the first air communication port 24 and the second air communication port 26. Alternatively, the first sealing film 18 and the second sealing film 19 may be perforated with a hollow needle (syringe needle with a pointed tip) provided in the liquid delivery system. In this case, the first sealing film 18 and the second sealing film 19 are preferably made of a material and having a thickness that allows easy perforation with a needle.

試料導入口44を通じての試料の流路12内への導入は、第5封止フィルムを一旦、基板14から剥がして行い、所定量の試料の導入後に第5封止フィルムを再び基板14の下面14bに戻し貼り付ける。このとき、試料の導入によって流路内部の空気が押されるので、その空気を逃がすために、事前に第2封止フィルムを剥がしておいてもよい。そのため、第5封止フィルムとしては、数サイクルの貼り付け/剥がしに耐久するような粘着性を備えるフィルムが望ましい。また第5封止フィルムは、試料導入後に新しいフィルムを貼り付ける態様であってもよく、この場合は繰り返しの貼り付け/剥がしに関する特性の重要性は緩和されうる。 Introducing the sample into the flow path 12 through the sample introduction port 44 is performed by first peeling off the fifth sealing film from the substrate 14, and after introducing a predetermined amount of the sample, the fifth sealing film is again attached to the bottom surface of the substrate 14. Paste it back to 14b. At this time, since the air inside the channel is pushed by the introduction of the sample, the second sealing film may be peeled off in advance in order to release the air. Therefore, as the fifth sealing film, it is desirable to use a film with adhesiveness that can withstand several cycles of pasting and peeling. Further, the fifth sealing film may be such that a new film is pasted after the sample is introduced, and in this case, the importance of characteristics regarding repeated pasting/peeling can be alleviated.

試料導入口44への試料の導入の方法は特に限定されないが、例えばピペットやスポイト、シリンジ等で試料導入口44から適量の試料を直接導入してもよい。あるいは、多孔質のPTFEやポリエチレンからなるフィルタが内蔵してあるニードルチップを介してコンタミネーションを防止しながらの導入方法であってもよい。このようなニードルチップは一般的に数多くの種類のものが販売され容易に入手でき、ピペットやスポイト、シリンジ等の先端に取り付けて使用することが可能である。さらにピペットやスポイト、シリンジ等による試料の吐出、導入後、さらに加圧して推すことにより流路12の所定の場所まで試料を移動させてもよい。 The method for introducing the sample into the sample introduction port 44 is not particularly limited, but an appropriate amount of sample may be directly introduced from the sample introduction port 44 using, for example, a pipette, dropper, syringe, or the like. Alternatively, it may be introduced through a needle tip with a built-in filter made of porous PTFE or polyethylene while preventing contamination. Such needle tips are generally sold in many types and are easily available, and can be used by being attached to the tip of a pipette, dropper, syringe, or the like. Further, after discharging or introducing the sample using a pipette, dropper, syringe, etc., the sample may be moved to a predetermined location in the channel 12 by further applying pressure and pushing.

試料としては、例えば、一または二以上の種類のDNAを含む混合物に、PCR試薬として、耐熱性酵素および4種類のデオキシリボヌクレオシド三リン酸(dATP、dCTP、dGTP、dTTP)を添加したものがあげられる。さらに反応処理対象のDNAに特異的に反応するプライマー、さらに、場合によってはTaqMan等の蛍光プローブ(TaqMan/タックマンはロシュ ダイアグノスティックスゲゼルシャフト ミット ベシュレンクテル ハフツングの登録商標)もしくはSYBR Green(SYBRはモレキュラープローブス インコーポレイテッドの登録商標)を混合する。市販されているリアルタイムPCR用試薬キット等も使用することができる。 Examples of the sample include a mixture containing one or more types of DNA to which a thermostable enzyme and four types of deoxyribonucleoside triphosphates (dATP, dCTP, dGTP, dTTP) are added as PCR reagents. It will be done. In addition, primers that specifically react with the DNA to be subjected to reaction treatment, and in some cases, fluorescent probes such as TaqMan (TaqMan is a registered trademark of Roche Diagnostics Gesellschaft mit Beschlenchtel Haftsung) or SYBR Green (SYBR is a molecular probe) (registered trademark of S.Incorporated). Commercially available real-time PCR reagent kits and the like can also be used.

図3は、反応処理容器10を利用可能な反応処理装置100を説明するための模式図であり、特に反応処理容器10に直接関連する部分のみを概念的に抜粋したものである。 FIG. 3 is a schematic diagram for explaining a reaction processing apparatus 100 in which the reaction processing container 10 can be used, and in particular only a portion directly related to the reaction processing container 10 is conceptually extracted.

反応処理装置100は、反応処理容器10が設置される容器設置部(図示せず)と、流路12の高温領域36を加熱するための高温用ヒータ104と、流路12の中温領域38を加熱するための中温用ヒータ106と、各温度領域の実温度を計測するための例えば熱電対等の温度センサ(図示せず)を備える。各ヒータは例えば抵抗加熱素子やペルチェ素子等であってよい。これらのヒータ、適切なヒータドライバ(図示せず)およびマイクロコンピュータなどの制御装置(図示せず)によって、反応処理容器10の流路12における高温領域36が約95℃、中温領域38が約62℃に維持され、サーマルサイクル領域の各温度領域の温度が設定される。 The reaction processing apparatus 100 includes a container installation part (not shown) in which the reaction processing container 10 is installed, a high temperature heater 104 for heating the high temperature region 36 of the flow path 12, and a medium temperature region 38 of the flow path 12. A medium temperature heater 106 for heating and a temperature sensor (not shown) such as a thermocouple for measuring the actual temperature in each temperature range are provided. Each heater may be, for example, a resistance heating element, a Peltier element, or the like. These heaters, a suitable heater driver (not shown), and a control device such as a microcomputer (not shown) control the high temperature region 36 in the flow path 12 of the reaction processing vessel 10 to approximately 95° C., and the medium temperature region 38 to approximately 62° C. ℃, and the temperature of each temperature region of the thermal cycle region is set.

反応処理装置100は、さらに、蛍光検出器140を備える。上述したように、試料Sには所定の蛍光プローブが添加されている。DNAの増幅が進むにつれ試料Sから発せられる蛍光信号の強度が増加するので、その蛍光信号の強度値をPCRの進捗やその終結の判定材料としての指標とすることができる。 The reaction processing apparatus 100 further includes a fluorescence detector 140. As described above, a predetermined fluorescent probe is added to the sample S. Since the intensity of the fluorescent signal emitted from the sample S increases as the amplification of the DNA progresses, the intensity value of the fluorescent signal can be used as an index as a material for determining the progress of PCR and its termination.

蛍光検出器140としては、非常にコンパクトな光学系で、迅速に測定でき、かつ明るい場所か暗い場所かにもかかわらず、蛍光を検出することができる日本板硝子株式会社製の光ファイバ型蛍光検出器FLE-510を使用することができる。この光ファイバ型蛍光検出器は、その励起光/蛍光の波長特性を試料Sの発する蛍光特性に適するようにチューニングしておくことができ、様々な特性を有する試料について最適な光学・検出系を提供することが可能であり、さらに光ファイバ型蛍光検出器によってもたらされる光線の径の小ささから、流路などの小さいまたは細い領域に存在する試料からの蛍光を検出するのに適しており応答スピードも優れている。 The fluorescence detector 140 is an optical fiber type fluorescence detector manufactured by Nippon Sheet Glass Co., Ltd., which has a very compact optical system, can perform measurements quickly, and can detect fluorescence regardless of whether it is in a bright or dark place. A device FLE-510 can be used. This optical fiber type fluorescence detector can tune the wavelength characteristics of its excitation light/fluorescence to be suitable for the fluorescence characteristics emitted by the sample S, and can provide the optimal optical and detection system for samples with various characteristics. Furthermore, the small diameter of the light beam provided by the fiber optic fluorescence detector makes it suitable for detecting fluorescence from samples present in small or narrow areas such as flow channels. He also has good speed.

光ファイバ型の蛍光検出器140は、光学ヘッド142と、蛍光検出器ドライバ144と、光学ヘッド142と蛍光検出器ドライバ144とを接続する光ファイバ146とを備える。蛍光検出器ドライバ144には励起光用光源(LED、レーザその他特定の波長を出射するように調整された光源)、光ファイバ型合分波器および光電変換素子(PD,APD又はフォトマル等の光検出器)(いずれも図示せず)等が含まれており、これらを制御するためのドライバ等からなる。光学ヘッド142はレンズ等の光学系からなり、励起光の試料への指向性照射と試料から発せられる蛍光の集光の機能を担う。集光された蛍光は光ファイバ146を通じて蛍光検出器ドライバ144内の光ファイバ型合分波器により励起光と分けられ、光電変換素子によって電気信号に変換される。光ファイバ型の蛍光検出器としては、特開2010-271060号に記載のものを使用することができる。光ファイバ型蛍光検出器は、さらに単一または複数の光学ヘッドを用いて同軸式に複数波長に係る検出が可能なようにモディファイすることもできる。複数波長に係る蛍光検出器とその信号処理については、国際公開第2014/003714号に記載の発明を活用することができる。 The optical fiber type fluorescence detector 140 includes an optical head 142, a fluorescence detector driver 144, and an optical fiber 146 connecting the optical head 142 and the fluorescence detector driver 144. The fluorescence detector driver 144 includes an excitation light source (LED, laser, or other light source adjusted to emit a specific wavelength), an optical fiber multiplexer/demultiplexer, and a photoelectric conversion element (such as a PD, APD, or photomultiplexer). (photodetector) (none of which are shown), etc., and a driver for controlling these. The optical head 142 is composed of an optical system such as a lens, and has the functions of directional irradiation of excitation light onto the sample and collection of fluorescence emitted from the sample. The collected fluorescence is separated from excitation light by an optical fiber multiplexer/demultiplexer in the fluorescence detector driver 144 through an optical fiber 146, and converted into an electrical signal by a photoelectric conversion element. As the optical fiber type fluorescence detector, the one described in JP-A No. 2010-271060 can be used. The optical fiber type fluorescence detector can also be modified to enable detection of multiple wavelengths in a coaxial manner using a single optical head or multiple optical heads. Regarding the fluorescence detector related to multiple wavelengths and its signal processing, the invention described in International Publication No. 2014/003714 can be utilized.

反応処理装置100においては、高温領域36と中温領域38とを接続する接続流路40における蛍光検出領域86内の試料Sからの蛍光を検出することができるように光学ヘッド142が配置される。試料Sは流路内を繰り返し往復移動させられることで反応が進み、試料Sに含まれる所定のDNAが増幅するので、検出された蛍光信号の強度値の変動をモニタリングすることで、DNAの増幅の進度をリアルタイムで知ることができる。また、反応処理装置100においては、蛍光検出器140からの出力値を利用して、試料Sの移動制御に活用する。例えば蛍光検出器140からの出力値を制御装置に送信して、後述の送液システムの制御をする際のパラメータとして利用してもよい。蛍光検出器は、試料からの蛍光を検出する機能を発揮するものであれば光ファイバ型蛍光検出器に限定されない。 In the reaction processing apparatus 100, the optical head 142 is arranged so as to be able to detect the fluorescence from the sample S in the fluorescence detection region 86 in the connection channel 40 that connects the high temperature region 36 and the medium temperature region 38. As the sample S is repeatedly moved back and forth within the flow channel, the reaction progresses and the predetermined DNA contained in the sample S is amplified. By monitoring the fluctuation in the intensity value of the detected fluorescence signal, the amplification of the DNA can be carried out. You can check the progress in real time. Furthermore, in the reaction processing apparatus 100, the output value from the fluorescence detector 140 is used to control the movement of the sample S. For example, the output value from the fluorescence detector 140 may be sent to the control device and used as a parameter when controlling the liquid feeding system described below. The fluorescence detector is not limited to an optical fiber type fluorescence detector as long as it exhibits the function of detecting fluorescence from a sample.

反応処理装置100は、さらに、試料Sを反応処理容器10の流路12内で移動および停止させるための送液システム(図示せず)を備える。送液システムは、これに限られるものではないが、第1空気連通口24または第2空気連通口26を通じて、いずれか一方から空気を送り込む(送風する)ことによって、試料Sを流路12内で一方向に移動させることができる。さらに、送液システムは、流路への送風を止める、または流路12内の試料Sの両側の圧力を等しくすることにより所定の位置で停止させることができる。 The reaction processing apparatus 100 further includes a liquid feeding system (not shown) for moving and stopping the sample S within the channel 12 of the reaction processing container 10. Although the liquid feeding system is not limited to this, by feeding (blowing) air from either the first air communication port 24 or the second air communication port 26, the sample S is transferred into the flow path 12. can be moved in one direction. Furthermore, the liquid delivery system can be stopped at a predetermined position by stopping the air flow to the channel or by equalizing the pressure on both sides of the sample S in the channel 12.

送液システムのうち、送風や加圧機能を備える手段(送風手段)として、シリンジポンプやダイアフラムポンプ、ブロアなどを用いることができる。また試料Sを所定の位置で停止させる機能を備えるものとして、送風手段と三方弁(3ポートバルブ)などを組み合わせたものを用いることができる。例えば、第1および第2の三方弁を備え、第1の三方弁を、その第1のポート(コモンポート)を第1の空気連通口に接続し、第2のポートを上記の送風手段に接続し、第三のポートを大気圧に開放されるように各ポートの接続をし、第2の三方弁を、その第1のポート(コモンポート)を第2の空気連通口に接続し、第2のポートを上記の送風手段に接続し、第三のポートを大気圧に開放されるように各ポートの接続をした態様が考えられる。これらの具体的態様は、例えば、特開平4-325080号や特開2007-285777号に記載がある。例えば、いずれか一方の空気連通口に接続されている三方弁を操作して、送風手段とその空気連通口とが連通するような状態にして、かつ、もう一方の空気連通口に接続されている三方弁を操作して、その空気連通口が大気圧に通じるような状態にすることにより、試料Sを一方向に移動させる。続いて両方の三方弁を操作して、両方の空気連通口が大気圧に通じるような状態にすることにより、試料Sを停止させる。 In the liquid feeding system, a syringe pump, a diaphragm pump, a blower, or the like can be used as a means (air blowing means) having an air blowing or pressurizing function. Further, as a device having a function of stopping the sample S at a predetermined position, a combination of a blowing means and a three-way valve (3-port valve) or the like can be used. For example, a first three-way valve and a second three-way valve are provided, the first port (common port) of the first three-way valve is connected to the first air communication port, and the second port is connected to the above-mentioned ventilation means. and connect each port so that the third port is open to atmospheric pressure, and connect the second three-way valve with its first port (common port) to the second air communication port, A possible embodiment is such that the ports are connected so that the second port is connected to the above-mentioned air blowing means and the third port is opened to atmospheric pressure. Specific aspects of these are described, for example, in JP-A-4-325080 and JP-A-2007-285777. For example, if a three-way valve connected to one of the air communication ports is operated so that the air blowing means and the air communication port communicate with each other, and if the three-way valve is connected to the other air communication port, The sample S is moved in one direction by operating the three-way valve so that its air communication port communicates with atmospheric pressure. Subsequently, the sample S is stopped by operating both three-way valves so that both air communication ports communicate with atmospheric pressure.

また、三方弁や送液手段の操作は、適切なドライバを通じて、制御装置によって行わせることが可能である。特に、先述のように配置された蛍光検出器140が、得られた蛍光信号に基づく出力値を制御装置に送信することにより、流路12中の試料Sの位置やその通過を、制御装置に認識させることによって、三方弁や送液手段からなる送液システムの制御を行わせる。 Further, the three-way valve and the liquid feeding means can be operated by the control device through an appropriate driver. In particular, the fluorescence detector 140 arranged as described above transmits an output value based on the obtained fluorescence signal to the control device, so that the position of the sample S in the flow channel 12 and its passage can be controlled by the control device. By making the recognition, the liquid feeding system consisting of the three-way valve and the liquid feeding means is controlled.

従って、流路12の両側に接続された三方弁を順次に、かつ、連続的に操作することにより、試料Sを流路12内で、高温領域36と中温領域38の間を連続して往復移動させて、それによって試料Sに適切なサーマルサイクルを与えることが可能となる。 Therefore, by sequentially and continuously operating the three-way valves connected to both sides of the flow path 12, the sample S is continuously moved back and forth between the high temperature region 36 and the medium temperature region 38 within the flow path 12. movement, thereby making it possible to subject the sample S to an appropriate thermal cycle.

図4は、従来の反応処理容器の基板に生じたウェルドラインの一例を示す。本実施形態に係る反応処理容器10は、射出成形法により製造される。射出成形法においては、溝状の流路12に対応した凸形状を有する金型に樹脂を流し込んで基板14が成形されていくが、高温領域36や中温領域38などのように、直線状流路と曲線状流路が組み合わされたような凹凸構造が連続する流路に対応する複雑な部分では、金型の内部において、樹脂の充填やエアの排除に大きく時間差が生じたりするなど高速の樹脂の流れが複雑になる。そのような部位に対応する基板の部分には、異なる方向から流れてきた樹脂同士の接触や衝突、または、ある位置への樹脂の到達時間の差異によって、いわゆるウェルドラインが生じる場合がある。 FIG. 4 shows an example of a weld line generated on a substrate of a conventional reaction processing container. The reaction treatment container 10 according to this embodiment is manufactured by injection molding. In the injection molding method, the substrate 14 is molded by pouring resin into a mold having a convex shape corresponding to the groove-shaped flow path 12. In complex parts that correspond to channels with a continuous uneven structure such as a combination of channels and curved channels, high-speed The resin flow becomes complicated. A so-called weld line may occur in a portion of the substrate corresponding to such a region due to contact or collision between resins flowing from different directions, or due to differences in arrival times of resins to a certain position.

図4には、実際に基板14に生じたウェルドライン50が示されている。図4に示す例では、ウェルドライン50が基板14の流路12の近傍に顕著に発生しており、ウェルドライン50と流路12とが接続する部分にピット52(深さ数十μmの凹部)が生じている。流路12にこのようなピット52が存在すると、試料の移動が妨げられ、試料の停止もしくは滞留が生じるおそれがある。また、ピット52が生じた流路12の領域を試料が通過する際にエア(泡)を巻き込むおそれもある。数十回に及ぶ試料の移動の間に試料の巻き込んだエアがその体積を増大させて、最終的には試料が寸断されて流路12内を試料が移動することができなくなってしまい、PCR反応を継続できなくなるおそれがある。また、試料の一部がピット52にトラップされてしまい、それが再び流路中に放出されることもあり、この場合にも試料の寸断が生じるおそれがある。特に高温領域36に属する流路12に生じたピットは、経験上、エアの巻き込みの原因となる可能性が高い。そこで、本実施形態に係る反応処理容器10では、ウェルドラインの発生を抑制できる流路12の構造を採用する。 FIG. 4 shows a weld line 50 actually formed on the substrate 14. In the example shown in FIG. 4, the weld line 50 noticeably occurs near the channel 12 of the substrate 14, and a pit 52 (a recess with a depth of several tens of μm ) is occurring. If such a pit 52 exists in the flow path 12, movement of the sample may be hindered, and there is a possibility that the sample may stop or stagnate. Furthermore, when the sample passes through the region of the channel 12 where the pits 52 have occurred, there is a risk that air (bubbles) will be drawn in. During the movement of the sample dozens of times, the air trapped in the sample increases its volume, and eventually the sample is cut into pieces, making it impossible for the sample to move within the flow path 12, resulting in PCR failure. There is a possibility that the reaction cannot be continued. Further, part of the sample may be trapped in the pit 52 and released into the flow path again, and in this case as well, there is a risk that the sample may be shredded. In particular, pits that occur in the flow path 12 belonging to the high temperature region 36 are highly likely to cause air entrainment based on experience. Therefore, in the reaction processing container 10 according to the present embodiment, a structure of the flow path 12 that can suppress the generation of weld lines is adopted.

図5は、高温領域や中温領域などの反応領域に属する流路(以下「反応流路」と呼ぶ)の断面の一例を示す。図5に示す反応流路60は、一部が平面状の底面62と、底面62の両側に位置する側面64とを含む。反応流路60においては、図5に示すように、底面62と側面64とが曲面66により接続されている。すなわち、底面62と側面64の接続部が曲面状となっている。反応流路60の形状・寸法を規定するパラメータとしては、流路の開口幅W、流路の深さD、側面64のテーパ角Ta、曲面66の曲率半径Rがある。先述のとおり、反応流路60はその開口部が基板14の主面14aに露出している。開口幅Wは主面14aにおける流路の幅である。流路の深さDは主面14aからの流路の最大の深さである。曲面66の曲率半径Rは底面62と側面64の接続部を構成する曲面の断面を円で近似したときの半径である。テーパ角Taは側面64のなす角である。側面64のテーパは、射出成型法によって基板を成形する場合において、抜きテーパとして作用することができ、工業的な生産に際して有利である。流路の深さDは、0.55mm~0.95mmであり、流路の開口幅Wは、0.6mm~1.1mmである。流路のこれらの寸法は実際の試料について、サーマルサイクルを行うにあたって経験上適切な寸法の範囲である。流路の深さDは、0.65mm~0.85mmが好ましく、流路の開口幅Wは0.65mm~0.9mmが好ましい。テーパ角Taは、10°~30°である。テーパ角Taがこの範囲にあるとき、射出成型方法によって基板14を製造するときに適切な抜き角となる。テーパ角Taは、15°~25°が好ましい。 FIG. 5 shows an example of a cross section of a channel (hereinafter referred to as a "reaction channel") belonging to a reaction region such as a high temperature region or a medium temperature region. The reaction channel 60 shown in FIG. 5 includes a partially planar bottom surface 62 and side surfaces 64 located on both sides of the bottom surface 62. In the reaction channel 60, as shown in FIG. 5, a bottom surface 62 and a side surface 64 are connected by a curved surface 66. That is, the connecting portion between the bottom surface 62 and the side surface 64 has a curved shape. Parameters that define the shape and dimensions of the reaction channel 60 include the opening width W of the channel, the depth D of the channel, the taper angle Ta of the side surface 64, and the radius of curvature R of the curved surface 66. As described above, the opening of the reaction channel 60 is exposed to the main surface 14a of the substrate 14. The opening width W is the width of the flow path on the main surface 14a. The depth D of the flow path is the maximum depth of the flow path from the main surface 14a. The radius of curvature R of the curved surface 66 is the radius when the cross section of the curved surface that forms the connection between the bottom surface 62 and the side surface 64 is approximated by a circle. The taper angle Ta is the angle formed by the side surface 64. The taper of the side surface 64 can act as a punching taper when the substrate is molded by injection molding, and is advantageous in industrial production. The depth D of the channel is 0.55 mm to 0.95 mm, and the opening width W of the channel is 0.6 mm to 1.1 mm. These dimensions of the flow path are within the appropriate range of dimensions based on experience for performing thermal cycles on actual samples. The depth D of the channel is preferably 0.65 mm to 0.85 mm, and the opening width W of the channel is preferably 0.65 mm to 0.9 mm. The taper angle Ta is 10° to 30°. When the taper angle Ta is within this range, it becomes an appropriate draft angle when manufacturing the substrate 14 by the injection molding method. The taper angle Ta is preferably 15° to 25°.

図6は、反応流路の断面の別の例を示す。図6に示す反応流路70は、曲面状の底面72と、底面72の両側に位置する側面74とを含む。反応流路70は、断面が略U字形状の流路であり、図6に示すように、底面72と側面74とが曲面76により接続されている。本例においても、底面72と側面74の接続部が曲面状となっている。本例では、底面72の曲率半径と曲面76の曲率半径Rは同じであるが、異なってもよい。反応流路70の形状・寸法を規定するパラメータとその範囲は、図5に示した反応流路60に準ずる。 FIG. 6 shows another example of the cross section of the reaction channel. The reaction channel 70 shown in FIG. 6 includes a curved bottom surface 72 and side surfaces 74 located on both sides of the bottom surface 72. The reaction channel 70 is a channel having a substantially U-shaped cross section, and as shown in FIG. 6, a bottom surface 72 and a side surface 74 are connected by a curved surface 76. Also in this example, the connecting portion between the bottom surface 72 and the side surface 74 is curved. In this example, the radius of curvature of the bottom surface 72 and the radius of curvature R of the curved surface 76 are the same, but they may be different. The parameters and ranges that define the shape and dimensions of the reaction channel 70 are similar to those of the reaction channel 60 shown in FIG.

図7(a)および(b)は、射出成型法における金型内部の樹脂の流れを説明するための図である。樹脂が流れる方向に流路に対応する金型の凸部が横断するような部分であって、流路の断面を表す方向からの概略図を示す。図7(a)は、本実施形態に係る反応処理容器10の基板を成形するための金型80に樹脂が流れる様子を示す。金型80は、反応処理容器10の基板の反応流路を成形するための凸部82を備える。この凸部82は、流路の底面と側面の接続部が曲面状となっていることにより、それに対応する部分においてなだらかに変化する形状となっている。したがって、樹脂の流れもそれに沿うように途切れることなく連続的に流れが生じ、その結果、反応流路近傍における樹脂の充填も抵抗が少なくスムースなものとなるので、好ましくないウェルドラインの生じる確率を低減できる、もしくは先述のピットのような凹部を伴った顕著もしくは明確なウェルドラインの生じる確率を低減できる。曲面の曲率半径Rは、0.2mm~0.38mmであり、0.3mm~0.35mmが好ましく、曲面の曲率半径Rは、これらの範囲内で流路の幅と深さを鑑みて、底面と側面との間で急峻な屈曲部のないことが好ましい。 FIGS. 7A and 7B are diagrams for explaining the flow of resin inside a mold in the injection molding method. This is a portion where a convex portion of a mold corresponding to a flow path crosses the direction in which resin flows, and is a schematic view taken from a direction representing a cross section of the flow path. FIG. 7A shows how resin flows into the mold 80 for molding the substrate of the reaction processing container 10 according to this embodiment. The mold 80 includes a convex portion 82 for molding the reaction channel of the substrate of the reaction processing container 10 . The convex portion 82 has a curved shape at the connection portion between the bottom surface and the side surface of the flow path, so that the convex portion 82 has a shape that changes gently in the corresponding portion. Therefore, the resin flows continuously without interruption, and as a result, the resin filling near the reaction channel becomes smooth with less resistance, reducing the probability of undesirable weld lines. or the probability of occurrence of noticeable or clear weld lines with recesses such as the aforementioned pits can be reduced. The radius of curvature R of the curved surface is 0.2 mm to 0.38 mm, preferably 0.3 mm to 0.35 mm, and the radius of curvature R of the curved surface is within these ranges, considering the width and depth of the flow path. Preferably, there is no sharp bend between the bottom and side surfaces.

さらに、反応流路60は、図1に示すように直線状流路と曲線状流路とからなる蛇行状流路である。ここで曲線状流路の曲率半径は小さすぎないことも重要である。曲線状流路の曲率半径が過剰に小さい場合も、基板14の射出成型の際、そのような小さい曲線に囲まれた部分への樹脂の充填がスムースにいかなくなる。曲線状流路の曲率半径は、反応流路60における開口幅Wに対して1倍以上である。曲線状流路の曲率半径は、流路の幅方向の中心を通る流路中心線の曲率半径である。 Furthermore, the reaction channel 60 is a meandering channel consisting of a straight channel and a curved channel, as shown in FIG. It is also important here that the radius of curvature of the curved flow path is not too small. If the radius of curvature of the curved flow path is too small, resin will not be filled smoothly into the portion surrounded by such a small curve during injection molding of the substrate 14. The radius of curvature of the curved channel is one or more times the opening width W in the reaction channel 60. The radius of curvature of the curved channel is the radius of curvature of the channel centerline passing through the center of the channel in the width direction.

また、図1に示すように、高温領域36や中温領域38の中心から離れるに従って、反応流路60における曲線状流路の曲率半径が変化してもよいし、あるいは同じでもよい。例えば、図1に示す反応流路60において、曲線状流路の曲率半径を内側から外側にかけてR1、R2、R3、R4としたとき、R1<R2<R3<R4となるように曲線状流路を構成してもよい。R1~R4については、反応流路60における開口幅Wに対して1~6倍であってもよい。反応流路60におけるR1~R4で示された曲線状流路以外の曲線状流路の曲率半径は、R1~R4のいずれかの曲率半径に等しくてもよい。曲線状流路の曲率半径を開口幅に対して適宜大きくすることは、上記のように射出成型の際の樹脂充填の観点から有利であるとともに、試料を流路内で移動させているときでも、曲線状流路のような屈曲部において試料の減速を抑制でき、試料の移動スピードを一定に保つことができる。一方で、曲線状流路の曲率半径は、大きすぎると反応領域における流路の容積が減少し、所定量の試料を含ませることができない。例えば、反応流路60の開口幅Wに対して、R1~R4は、すべてまたは一部が等しく、1×W~6×Wであってもよく、R1=1×W~3×W、R2=1.5×W~3.5×W、R3=2.5×W~4.5×W、R4=4×W~6×Wであってもよい。さらにR1~R4の差を明確にして、R1=1×W~2×W、R2=2×W~3×W、R3=3×W~4×W、R4=4.5×W~5×Wであってもよい。このような場合、基板14の明確なウェルドラインの抑制することができ、試料の反応流路60を移動するときの移動スピードを略一定にすることが期待されるとともに、PCRやその後の診断に必要な量の試料を含ませることができる。 Further, as shown in FIG. 1, the radius of curvature of the curved flow path in the reaction flow path 60 may change or may remain the same as the distance from the center of the high temperature region 36 or the medium temperature region 38 increases. For example, in the reaction channel 60 shown in FIG. 1, when the radius of curvature of the curved channel is R1, R2, R3, and R4 from the inside to the outside, the curved channel is arranged so that R1<R2<R3<R4. may be configured. R1 to R4 may be 1 to 6 times the opening width W in the reaction channel 60. The radius of curvature of the curved channels other than the curved channels indicated by R1 to R4 in the reaction channel 60 may be equal to the radius of curvature of any one of R1 to R4. Increasing the radius of curvature of the curved channel appropriately relative to the opening width is advantageous from the viewpoint of resin filling during injection molding as described above, and also when the sample is being moved within the channel. , it is possible to suppress the deceleration of the sample at a bent part such as a curved channel, and it is possible to keep the moving speed of the sample constant. On the other hand, if the radius of curvature of the curved channel is too large, the volume of the channel in the reaction region will decrease, making it impossible to contain a predetermined amount of sample. For example, with respect to the opening width W of the reaction channel 60, R1 to R4 may be all or partially equal to 1×W to 6×W, R1=1×W to 3×W, R2 =1.5×W to 3.5×W, R3=2.5×W to 4.5×W, and R4=4×W to 6×W. Furthermore, clarify the difference between R1 to R4, R1 = 1 × W to 2 × W, R2 = 2 × W to 3 × W, R3 = 3 × W to 4 × W, R4 = 4.5 × W to 5 ×W may be used. In such a case, it is possible to suppress a clear weld line on the substrate 14, and it is expected that the moving speed of the sample when moving through the reaction channel 60 will be kept approximately constant, and it will also be possible to suppress the formation of a clear weld line on the substrate 14. It can contain as much sample as needed.

一方、図7(b)は、比較例に係る反応処理容器の基板を成形するための金型85に樹脂が流れる様子を示す。この比較例に係る反応処理容器の基板は、断面が台形状の反応流路を備えるものである。金型85は、台形状の反応流路を成形するための凸部88を備える。この凸部88は、流路の底面と側面の接続部が角張った形状となっていることにより、それに対応する部分において急峻に変化する形状となっている。したがって、レイノルズ数の急激な変動により、樹脂の充填時の流速の変化が生じて乱流となり、反応流路近傍に好ましくないウェルドラインの発生する確率が高くなるものと示唆される。 On the other hand, FIG. 7(b) shows how resin flows into a mold 85 for molding a substrate of a reaction processing container according to a comparative example. The substrate of the reaction processing container according to this comparative example includes a reaction channel having a trapezoidal cross section. The mold 85 includes a convex portion 88 for molding a trapezoidal reaction channel. The convex portion 88 has an angular shape at the connection portion between the bottom surface and the side surface of the flow path, so that the convex portion 88 has a shape that changes sharply at the corresponding portion. Therefore, it is suggested that a sudden change in the Reynolds number causes a change in the flow velocity during resin filling, resulting in a turbulent flow, increasing the probability that an undesirable weld line will occur in the vicinity of the reaction flow path.

このように、本実施形態に係る反応処理容器10によれば、反応流路において底面と側面との接続部を曲面状としたことにより、金型に樹脂を流し込む際に、反応流路近傍における樹脂の充填がスムースになる。その結果、反応流路近傍において好ましくないウェルドラインの発生する確率を低減できるので、反応流路内に面した部分にピットなどの凹部が生じるのを防ぐことができ、試料が反応流路内をスムースに移動可能な反応処理容器を実現できる。 As described above, according to the reaction processing container 10 according to the present embodiment, the connecting portion between the bottom surface and the side surface in the reaction channel is formed into a curved shape, so that when pouring the resin into the mold, the area near the reaction channel is Filling with resin becomes smooth. As a result, it is possible to reduce the probability that undesirable weld lines will occur near the reaction channel, thereby preventing pits and other recesses from forming in the area facing the reaction channel, and allowing the sample to flow inside the reaction channel. A reaction processing container that can be moved smoothly can be realized.

また、本実施形態に係る反応処理容器10によれば、反応領域にピットが生じるのを防ぐことができるので、ピットを試料が通過する際のエアの巻き込みを回避することができ、好適にPCR反応を行うことができる。 Further, according to the reaction processing container 10 according to the present embodiment, it is possible to prevent pits from forming in the reaction region, so that it is possible to avoid entrainment of air when the sample passes through the pits, and it is possible to suitably perform PCR. reactions can be carried out.

図8は、蛍光検出領域に属する流路(以下「検出流路」と呼ぶ)の断面の一例を示す。検出流路90は、平面状の底面92と、底面92の両側に位置する側面94とを含む。側面はテーパ角を有していてもよい。検出流路90における底面92は、基板14の主面(上面14a、下面14b)と平行な平面に形成される。また、反応処理容器10を、反応処理装置100に導入したときに、蛍光検出器140の光学ヘッド142は、その光軸が底面92や基板14の主面と略垂直になるように配置される。このように配置することにより、光学ヘッド142から試料に照射される励起光または試料から出射される蛍光の好ましくない屈折や反射等を抑制することができ、安定した蛍光強度の検出が可能となる。 FIG. 8 shows an example of a cross section of a channel (hereinafter referred to as a "detection channel") belonging to the fluorescence detection region. The detection channel 90 includes a planar bottom surface 92 and side surfaces 94 located on both sides of the bottom surface 92. The side surfaces may have a tapered angle. A bottom surface 92 of the detection channel 90 is formed in a plane parallel to the main surface (upper surface 14a, lower surface 14b) of the substrate 14. Further, when the reaction processing container 10 is introduced into the reaction processing apparatus 100, the optical head 142 of the fluorescence detector 140 is arranged so that its optical axis is substantially perpendicular to the bottom surface 92 and the main surface of the substrate 14. . By arranging them in this way, it is possible to suppress undesirable refraction and reflection of the excitation light irradiated onto the sample from the optical head 142 or the fluorescence emitted from the sample, and it becomes possible to detect stable fluorescence intensity. .

さらに、検出流路90においては、平面状の底面92と側面94とが直接に接続されている。すなわち、底面92と側面94との接続部95が曲面状になっておらず、角張った形状となっている。試料から出射して検出に係る蛍光の強度は、流路の深さが深くなるほど大きくなるので、接続部95や底面92の一部が曲面状である場合、実質的に流路の深さが一定でないことになるので、検出に係る蛍光強度が、反応処理容器10の個体間において、ばらつきが生じるおそれがある。一方で、検出流路の断面積は、先述の反応流路の断面積と同じであってもよいし異なっていてもよい。断面積は流路(の溝)の幅と深さによって決まる。試料の移動速さは、流路の断面積によって異なるので、この作用を用いて、反応流路を移動するときの試料の速さを、検出流路を移動するときの試料の速さより大きくしてもよいし、その逆も可能である。 Furthermore, in the detection channel 90, a planar bottom surface 92 and side surfaces 94 are directly connected. That is, the connecting portion 95 between the bottom surface 92 and the side surface 94 is not curved but has an angular shape. The intensity of fluorescence emitted from the sample and used for detection increases as the depth of the channel increases. Therefore, if the connecting portion 95 or part of the bottom surface 92 is curved, the depth of the channel becomes substantially smaller. Since the intensity is not constant, there is a possibility that the fluorescence intensity for detection may vary among individual reaction processing vessels 10. On the other hand, the cross-sectional area of the detection channel may be the same as or different from the cross-sectional area of the reaction channel described above. The cross-sectional area is determined by the width and depth of the channel. The speed of sample movement varies depending on the cross-sectional area of the channel, so this effect can be used to make the speed of the sample when moving through the reaction channel greater than the speed of the sample when moving through the detection channel. or vice versa.

検出流路90の形状・寸法を規定するパラメータとしては、開口幅W1、流路の深さDb、底面幅W2、側面94のテーパ角Tbがある。開口幅W1は主面14aにおける流路の幅である。流路の深さDbは主面14aからの流路の最大の深さである。底面幅W2は、底面92の幅である。テーパ角Tbは側面94のなす角である。開口幅W1は、0.8mm~1.2mmである。この寸法は実際の試料について、サーマルサイクルを行うにあたって経験上適切な寸法の範囲である。検出流路90の開口幅W1は、0.9mm~1.1mmが好ましい。検出流路90の深さDbは、0.8mm~1.25mmである。この寸法は実際の試料について、サーマルサイクルを行うにあたって経験上適切な寸法の範囲であるとともに、検出に係る蛍光強度の値について、十分に大きく、S/Nの向上が図ることができる。検出流路90の深さDbは、0.9mm~1.1mmが好ましい。検出流路90の底面幅W2は、0.5mm~0.8mmである。この寸法は実際の試料について、サーマルサイクルを行うにあたって経験上適切な寸法の範囲である。検出流路90の底面幅W2は、0.55mm~0.7mmが好ましい。検出流路90のテーパ角Tbは、10°~30°である。テーパ角Tbがこの範囲にあるとき、射出成型方法によって基板14を製造するときに適切な抜き角となる。検出流路90のテーパ角Tbは、15°~25°が好ましい。 Parameters that define the shape and dimensions of the detection channel 90 include the opening width W1, the channel depth Db, the bottom width W2, and the taper angle Tb of the side surface 94. The opening width W1 is the width of the flow path on the main surface 14a. The depth Db of the flow path is the maximum depth of the flow path from the main surface 14a. The bottom surface width W2 is the width of the bottom surface 92. The taper angle Tb is the angle formed by the side surface 94. The opening width W1 is 0.8 mm to 1.2 mm. This dimension is within a range of dimensions that are empirically appropriate for performing thermal cycles on actual samples. The opening width W1 of the detection channel 90 is preferably 0.9 mm to 1.1 mm. The depth Db of the detection channel 90 is 0.8 mm to 1.25 mm. This dimension is within a range of dimensions that are empirically appropriate for performing a thermal cycle on an actual sample, and the value of fluorescence intensity related to detection is sufficiently large, making it possible to improve the S/N ratio. The depth Db of the detection channel 90 is preferably 0.9 mm to 1.1 mm. The bottom width W2 of the detection channel 90 is 0.5 mm to 0.8 mm. This dimension is within a range of dimensions that are empirically appropriate for performing thermal cycles on actual samples. The bottom width W2 of the detection channel 90 is preferably 0.55 mm to 0.7 mm. The taper angle Tb of the detection channel 90 is 10° to 30°. When the taper angle Tb is within this range, it becomes an appropriate draft angle when manufacturing the substrate 14 by the injection molding method. The taper angle Tb of the detection channel 90 is preferably 15° to 25°.

検出流路90は、直線状の流路に形成されることが好ましい。直線状の流路とすることにより、金型に樹脂を流し込む際に、反応流路のような蛇行状の流路の場合よりも樹脂の充填がスムースとなるので、検出流路90の近傍でのウェルドラインの発生が抑制され、検出流路90にピットが発生するのを防ぐことができる。 It is preferable that the detection channel 90 is formed in a straight channel. By forming a straight channel, when pouring the resin into the mold, the filling of the resin is smoother than in the case of a meandering channel such as a reaction channel, so the flow path near the detection channel 90 is The occurrence of weld lines is suppressed, and the occurrence of pits in the detection channel 90 can be prevented.

図1に戻るが、反応処理容器10の基板14は、検出流路90の近傍にゲート17を備える。「ゲート」とは、基板を射出成形法によって作製する場合の、金型への樹脂の注入口であり、この種の方法で樹脂製品を得る場合に必須の構造体である。図1に示すように、ゲート17は、ゲート17と検出流路90との間に他の流路が存在しないように配置されることが望ましい。このようにゲート17を配置することにより、ゲート17から注入された樹脂が、検出流路に対応する部分に到達するまでに、凹凸構造体が連続した部分の通過を要することなく、比較的短時間(または短距離)で検出流路90もしくはその近傍まで到達することができるので、樹脂の流れの複雑性を回避でき、検出流路90の近傍でのウェルドラインの発生をさらに抑制することができる。 Returning to FIG. 1, the substrate 14 of the reaction processing container 10 includes a gate 17 near the detection channel 90. A "gate" is an inlet for injecting resin into a mold when a substrate is manufactured by injection molding, and is an essential structure when obtaining a resin product using this type of method. As shown in FIG. 1, it is desirable that the gate 17 be arranged so that no other flow path exists between the gate 17 and the detection flow path 90. By arranging the gate 17 in this way, the resin injected from the gate 17 does not have to pass through a continuous portion of the uneven structure before reaching the portion corresponding to the detection flow path, and the resin injected from the gate 17 can be delivered in a relatively short time. Since it is possible to reach the detection channel 90 or its vicinity in a short period of time (or a short distance), the complexity of the resin flow can be avoided, and the occurrence of weld lines in the vicinity of the detection channel 90 can be further suppressed. can.

図1において、ゲート17は検出流路90の直上であり紙面上の基板の上辺近傍に形成されている。より詳細には、直線状の検出流路90に垂直な「仮定垂直線V-V」を仮定した場合に、ゲート17は、仮定垂直線V-Vと基板14の上端部との交点P1近傍に形成されている。あるいは、ゲート17は、検出流路90の直下であり紙面上の基板の下辺近傍に形成されてもよい。より詳細には、仮定垂直線V-Vと基板14の下端部との交点P2近傍にゲート17(破線で示す)が形成されてもよい。このような位置に形成することにより、上記のように比較的短時間(または短距離)で検出流路90もしくはその近傍まで到達することができるので、効果的にウェルドラインの発生を抑制することができる。なお図1では、ゲート17は基板14の主面上に位置しているが、ゲート17は基板14の端面に位置してもよい。 In FIG. 1, the gate 17 is formed directly above the detection channel 90 and near the upper side of the substrate on the paper. More specifically, when assuming a "hypothetical vertical line VV" perpendicular to the linear detection channel 90, the gate 17 is located near the intersection P1 of the hypothetical vertical line VV and the upper end of the substrate 14. is formed. Alternatively, the gate 17 may be formed directly below the detection channel 90 and near the lower side of the substrate on the paper. More specifically, the gate 17 (indicated by a broken line) may be formed near the intersection P2 between the hypothetical vertical line VV and the lower end of the substrate 14. By forming it at such a position, it is possible to reach the detection channel 90 or the vicinity thereof in a relatively short time (or short distance) as described above, so that the generation of weld lines can be effectively suppressed. I can do it. Although the gate 17 is located on the main surface of the substrate 14 in FIG. 1, the gate 17 may be located on the end surface of the substrate 14.

図9は、本発明の別の実施形態に係る反応処理容器110が備える基板14の平面図である。図9に示すように、直線状の検出流路90を延長した「仮定平行線H-H」を仮定したときに、その仮定平行線H-Hと基板14の左端部との交点P3近傍にゲート17が形成されてもよい。あるいは、仮定平行線H-Hと基板14の右端部との交点P4近傍にゲート17(破線で示す)が形成されてもよい。これらの場合は、射出成型の際に、ゲートから注入される樹脂の充填に向かう方向と、直線状の検出流路90の方向とが略一致するので、樹脂が検出流路90に対応する金型の凸部を横断することがない。その結果、樹脂は直線状の検出流路90の方向に沿って充填されていくので、ウェルドラインの生じる確率を低減できる。 FIG. 9 is a plan view of the substrate 14 included in the reaction processing container 110 according to another embodiment of the present invention. As shown in FIG. 9, when assuming a "hypothetical parallel line HH" that is an extension of the linear detection flow path 90, a point near the intersection P3 of the hypothetical parallel line HH and the left end of the substrate 14. A gate 17 may also be formed. Alternatively, the gate 17 (indicated by a broken line) may be formed near the intersection P4 between the hypothetical parallel line HH and the right end of the substrate 14. In these cases, during injection molding, the direction toward the filling of the resin injected from the gate and the direction of the linear detection channel 90 substantially match, so that the resin flows into the metal corresponding to the detection channel 90. It does not cross the convex part of the mold. As a result, the resin is filled along the direction of the linear detection channel 90, so the probability of weld lines occurring can be reduced.

ここで、基板14の射出成形時における樹脂の流動性の解析結果について説明する。樹脂の流動を解析するにあたり、ソフトウェアはMoldflow(Autodesk社製)を用いた。図6に示すような底面と側面とが曲面で接続された形状の流路を実施例とし、使用する樹脂を環状ポリオレフィン樹脂とした。ゲートは、図1に示す位置に設定した。また、流路の深さDを0.75mm、テーパ角Taを20°、開口幅Wを0.81mm、曲面の曲率半径Rを0.325mmに設定した。さらに、比較例として、図8に示すような、台形状の流路についても解析を行った。比較例の流路は、深さDを0.7mm、テーパ角Taを20°、開口幅W1を0.75mm、底面幅W2を0.50mmに設定した。 Here, analysis results of resin fluidity during injection molding of the substrate 14 will be explained. In analyzing the flow of the resin, Moldflow (manufactured by Autodesk) was used as software. A channel having a shape in which the bottom and side surfaces are connected by a curved surface as shown in FIG. 6 was used as an example, and the resin used was a cyclic polyolefin resin. The gate was set at the position shown in FIG. Further, the depth D of the channel was set to 0.75 mm, the taper angle Ta was set to 20°, the opening width W was set to 0.81 mm, and the radius of curvature R of the curved surface was set to 0.325 mm. Furthermore, as a comparative example, a trapezoidal channel as shown in FIG. 8 was also analyzed. The flow path of the comparative example had a depth D of 0.7 mm, a taper angle Ta of 20°, an opening width W1 of 0.75 mm, and a bottom width W2 of 0.50 mm.

樹脂の流動解析の結果、実施例および比較例ともに基板全体を充填することが可能であるが、反応流路近傍の部位の樹脂の充填時間に差異が見られた。実施例においては、反応流路近傍の部位への樹脂の充填がスムースで、反応流路近傍の部位全体を充填するのにそれほど時間を要しなかった。また、ウェルドラインの原因となるボイドやエア溜まりの発生も抑制されていた。 As a result of the resin flow analysis, it was possible to fill the entire substrate in both the Example and the Comparative Example, but a difference was observed in the resin filling time in the vicinity of the reaction flow path. In the example, filling of the resin into the region near the reaction channel was smooth, and it did not take much time to fill the entire region near the reaction channel. In addition, the occurrence of voids and air pockets that cause weld lines was also suppressed.

一方で、比較例においては、反応流路近傍の部位に樹脂が到達した当初から、一部にボイドやエア溜まりの形成が見られた。充填時間の経過とともにそれが小さくなり、反応流路近傍の部位全体を充填するのに、比較的時間を要することが判明した。また比較例では、上記ボイド等と、充填がすすむ樹脂との境界線が明確に観測され、これがウェルドラインとなりうることが判明した。本解析結果から、実施例に係る流路形状の優位性を確認できた。 On the other hand, in the comparative example, formation of voids and air pockets was observed in some areas from the time the resin reached the area near the reaction flow path. It was found that it became smaller as the filling time progressed, and that it took a relatively long time to fill the entire area near the reaction channel. Furthermore, in the comparative example, a boundary line between the voids and the resin that was being filled was clearly observed, and it was found that this could be a weld line. From this analysis result, the superiority of the channel shape according to the example was confirmed.

図10は、本実施形態に係る反応処理容器10の基板14の流路12近傍を顕微鏡で拡大して観察した図である。わずかにウェルドライン50が生じているのが確認できるが、図4に示す従来の基板に生じたような明確なウェルドラインではなく、流路12の側面に生じていたピットのような凹部の発生も抑制することができた。本実施形態に係る反応処理容器10の基板14においては明らかに改善の効果が現れた。 FIG. 10 is an enlarged view of the vicinity of the flow path 12 of the substrate 14 of the reaction processing container 10 according to the present embodiment, observed with a microscope. Although it can be seen that a slight weld line 50 has been formed, it is not a clear weld line like the one that occurs in the conventional substrate shown in FIG. could also be suppressed. In the substrate 14 of the reaction processing container 10 according to this embodiment, an improvement effect was clearly seen.

以上、本発明を実施の形態をもとに説明した。この実施の形態は例示であり、それらの各構成要素や各処理プロセスの組合せにいろいろな変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に理解されるところである。 The present invention has been described above based on the embodiments. Those skilled in the art will understand that this embodiment is merely an example, and that various modifications can be made to the combinations of the constituent elements and processing processes, and that such modifications are also within the scope of the present invention. be.

10、110 反応処理容器、 12 流路、 14 基板、 16 流路封止フィルム、 17 ゲート、 18 第1封止フィルム、 19 第2封止フィルム、 20 第3封止フィルム、 21 第4封止フィルム、 24 第1空気連通口、 26 第2空気連通口、 28 第1フィルタ、 29、31 空気導入路、 40 接続流路、 30 第2フィルタ、 36 高温領域、 38 中温領域、 39 緩衝流路、 42 分岐流路、 44 試料導入口、 50 ウェルドライン、 52 ピット、 60、70 反応流路、 62、72、92 底面、 64、74、94 側面、 66、76 曲面、 80、85 金型、 82、88 凸部、 86 蛍光検出領域、 90 検出流路、 95 接続部、 100 反応処理装置、 104 高温用ヒータ、 106 中温用ヒータ、 140 蛍光検出器、 142 光学ヘッド、 144 蛍光検出器ドライバ、 146 光ファイバ。 10, 110 reaction treatment container, 12 channel, 14 substrate, 16 channel sealing film, 17 gate, 18 first sealing film, 19 second sealing film, 20 third sealing film, 21 fourth sealing film, 24 first air communication port, 26 second air communication port, 28 first filter, 29, 31 air introduction channel, 40 connection channel, 30 second filter, 36 high temperature region, 38 medium temperature region, 39 buffer channel , 42 branch channel, 44 sample introduction port, 50 weld line, 52 pit, 60, 70 reaction channel, 62, 72, 92 bottom surface, 64, 74, 94 side surface, 66, 76 curved surface, 80, 85 mold, 82, 88 convex portion, 86 fluorescence detection region, 90 detection channel, 95 connection portion, 100 reaction processing device, 104 high temperature heater, 106 medium temperature heater, 140 fluorescence detector, 142 optical head, 144 fluorescence detector driver, 146 Optical fiber.

Claims (13)

樹脂から成る基板と、
前記基板の主面に形成された溝状の流路と、
前記基板の主面上に形成されたゲートと、
を備え
前記流路は、曲線状の流路と直線状の流路とを組み合わせた蛇行状流路を含み、
前記蛇行状流路は、底面と、側面と、前記底面と前記側面とを接続する曲面と、を含み、
前記流路に通じる一対の空気連通口が前記基板に形成されており、
前記ゲートは、前記一対の空気連通口の間に形成されることを特徴とする反応処理容器。
A substrate made of resin,
a groove-shaped channel formed on the main surface of the substrate;
a gate formed on the main surface of the substrate;
Equipped with
The flow path includes a meandering flow path that is a combination of a curved flow path and a straight flow path,
The meandering flow path includes a bottom surface, a side surface, and a curved surface connecting the bottom surface and the side surface,
A pair of air communication ports communicating with the flow path are formed in the substrate,
The reaction processing container is characterized in that the gate is formed between the pair of air communication ports .
前記基板は、少なくとも一辺を含み、
前記ゲートは、前記基板の一辺近傍に形成されることを特徴とする請求項1に記載の反応処理容器。
The substrate includes at least one side,
The reaction processing container according to claim 1, wherein the gate is formed near one side of the substrate.
前記流路は、直線状の検出流路を含み、
前記ゲートは、前記直線状の検出流路に垂直な仮定垂直線と前記基板の一辺との交点近傍に形成されることを特徴とする請求項1または2に記載の反応処理容器。
The flow path includes a linear detection flow path,
3. The reaction processing container according to claim 1 , wherein the gate is formed near an intersection between a hypothetical vertical line perpendicular to the linear detection channel and one side of the substrate.
前記直線状の検出流路の底面は、前記基板の主面と平行な平面に形成されることを特徴とする請求項に記載の反応処理容器。 4. The reaction processing container according to claim 3 , wherein a bottom surface of the linear detection channel is formed in a plane parallel to a main surface of the substrate. 前記流路は、試料を繰り返し往復移動することにより前記試料にサーマルサイクルが付与されて前記試料に所定の反応を生じさせる反応流路を含み、
前記反応流路は前記蛇行状流路を含み、
前記反応流路は、互いに異なる温度に維持される第1領域および第2領域を含み、
前記第1領域と前記第2領域は、前記直線状の検出流路により接続されることを特徴とする請求項またはに記載の反応処理容器。
The flow path includes a reaction flow path in which a thermal cycle is applied to the sample by repeatedly reciprocating the sample to cause a predetermined reaction in the sample,
The reaction channel includes the meandering channel,
The reaction channel includes a first region and a second region maintained at different temperatures,
5. The reaction processing container according to claim 3 , wherein the first region and the second region are connected by the linear detection channel.
前記基板は、前記反応流路の近傍にウェルドラインを有することを特徴とする請求項に記載の反応処理容器。 6. The reaction processing container according to claim 5 , wherein the substrate has a weld line near the reaction channel. 記ウェルドラインと前記反応流路の一部とが交差していることを特徴とする請求項に記載の反応処理容器。 7. The reaction processing container according to claim 6 , wherein the weld line and a part of the reaction channel intersect. 前記ウェルドラインと前記反応流路の一部との交点近傍の前記反応流路内に凹部を備えないことを特徴とする請求項に記載の反応処理容器。 8. The reaction processing container according to claim 7 , wherein there is no recess in the reaction channel near the intersection of the weld line and a part of the reaction channel. 前記反応流路の深さは、0.55mm~0.95mmであり、前記反応流路のテーパ角は、10°~30°であることを特徴とする請求項からのいずれかに記載の反応処理容器。 The depth of the reaction channel is 0.55 mm to 0.95 mm, and the taper angle of the reaction channel is 10° to 30°, according to any one of claims 5 to 8 . reaction treatment vessel. 前記直線状の検出流路の底面幅は、0.5mm~0.8mmであることを特徴とする請求項からのいずれかに記載の反応処理容器。 The reaction processing container according to any one of claims 3 to 9 , wherein the linear detection channel has a bottom width of 0.5 mm to 0.8 mm. 前記直線状の検出流路の深さは、0.8mm~1.25mmであり、前記直線状の検出流路のテーパ角は、10°~30°であることを特徴とする請求項10に記載の反応処理容器。 11. The linear detection channel has a depth of 0.8 mm to 1.25 mm, and a taper angle of the linear detection channel is 10° to 30°. The reaction treatment vessel described. 請求項1から11のいずれかに記載された反応処理容器の製造方法であって、
前記溝状の流路に対応する凸形状を有する金型に前記ゲートから樹脂を注入する工程を備えることを特徴とする反応処理容器の製造方法。
A method for manufacturing a reaction treatment container according to any one of claims 1 to 11 , comprising:
A method for manufacturing a reaction processing container, comprising the step of injecting resin from the gate into a mold having a convex shape corresponding to the groove-like flow path.
請求項1から11のいずれかに記載された反応処理容器を用いることを特徴とする反応処理方法。 A reaction treatment method comprising using the reaction treatment container according to any one of claims 1 to 11 .
JP2020117813A 2019-04-05 2020-07-08 Reaction treatment container, reaction treatment container manufacturing method, and reaction treatment method Active JP7341492B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020117813A JP7341492B2 (en) 2019-04-05 2020-07-08 Reaction treatment container, reaction treatment container manufacturing method, and reaction treatment method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019072811A JP6732994B1 (en) 2019-04-05 2019-04-05 Reaction processing container
JP2020117813A JP7341492B2 (en) 2019-04-05 2020-07-08 Reaction treatment container, reaction treatment container manufacturing method, and reaction treatment method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2019072811A Division JP6732994B1 (en) 2019-04-05 2019-04-05 Reaction processing container

Publications (2)

Publication Number Publication Date
JP2020171315A JP2020171315A (en) 2020-10-22
JP7341492B2 true JP7341492B2 (en) 2023-09-11

Family

ID=87934744

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020117813A Active JP7341492B2 (en) 2019-04-05 2020-07-08 Reaction treatment container, reaction treatment container manufacturing method, and reaction treatment method

Country Status (1)

Country Link
JP (1) JP7341492B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005059524A (en) 2003-08-20 2005-03-10 Enplas Corp Injection-molded article
WO2009101850A1 (en) 2008-02-15 2009-08-20 Konica Minolta Opto, Inc. Method for manufacturing microchip and microchip
WO2012060186A1 (en) 2010-11-01 2012-05-10 コニカミノルタオプト株式会社 Microchip and method for manufacturing microchip
JP2012095583A (en) 2010-11-01 2012-05-24 Konica Minolta Opto Inc Microchip and method for manufacturing the same
JP2012100580A (en) 2010-11-10 2012-05-31 Konica Minolta Opto Inc Microchip and method for manufacturing the same
WO2016006612A1 (en) 2014-07-08 2016-01-14 国立研究開発法人産業技術総合研究所 Nucleic acid amplification device, nucleic acid amplification method, and chip for nucleic acid amplification
JP2019000110A (en) 2015-01-22 2019-01-10 アークレイ株式会社 Target analytical chip, and target analytical method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005059524A (en) 2003-08-20 2005-03-10 Enplas Corp Injection-molded article
WO2009101850A1 (en) 2008-02-15 2009-08-20 Konica Minolta Opto, Inc. Method for manufacturing microchip and microchip
WO2012060186A1 (en) 2010-11-01 2012-05-10 コニカミノルタオプト株式会社 Microchip and method for manufacturing microchip
JP2012095583A (en) 2010-11-01 2012-05-24 Konica Minolta Opto Inc Microchip and method for manufacturing the same
JP2012100580A (en) 2010-11-10 2012-05-31 Konica Minolta Opto Inc Microchip and method for manufacturing the same
WO2016006612A1 (en) 2014-07-08 2016-01-14 国立研究開発法人産業技術総合研究所 Nucleic acid amplification device, nucleic acid amplification method, and chip for nucleic acid amplification
JP2019000110A (en) 2015-01-22 2019-01-10 アークレイ株式会社 Target analytical chip, and target analytical method

Also Published As

Publication number Publication date
JP2020171315A (en) 2020-10-22

Similar Documents

Publication Publication Date Title
JP7369475B2 (en) Reaction treatment container, reaction treatment equipment, reaction treatment method, and method of using reaction treatment container
US11827924B2 (en) PCR reaction vessel, PCR device, and PCR method
US11465143B2 (en) Reaction processing vessel
JP7223689B2 (en) Reaction processor
JP6584373B2 (en) Reaction processing apparatus and reaction processing method
JP6694120B2 (en) Reaction processor
US20220023861A1 (en) Reaction processing vessel
JP7341492B2 (en) Reaction treatment container, reaction treatment container manufacturing method, and reaction treatment method
CN212610651U (en) Reaction processing container
JP6652677B2 (en) Reaction treatment apparatus and reaction treatment method
JP2020198867A (en) Reaction processing vessel
JP6876162B2 (en) Reaction processing equipment and reaction processing method
WO2023219098A1 (en) Microfluidic chip, pcr device, and pcr method
JP2020008405A (en) Reaction processing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230425

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230623

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20230623

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230808

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230823

R150 Certificate of patent or registration of utility model

Ref document number: 7341492

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150