JP7340197B2 - Antitumor and antiviral agents - Google Patents

Antitumor and antiviral agents Download PDF

Info

Publication number
JP7340197B2
JP7340197B2 JP2019115725A JP2019115725A JP7340197B2 JP 7340197 B2 JP7340197 B2 JP 7340197B2 JP 2019115725 A JP2019115725 A JP 2019115725A JP 2019115725 A JP2019115725 A JP 2019115725A JP 7340197 B2 JP7340197 B2 JP 7340197B2
Authority
JP
Japan
Prior art keywords
lignin
eucalyptus
water
decomposition product
organic solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019115725A
Other languages
Japanese (ja)
Other versions
JP2021001141A (en
Inventor
隆司 渡辺
裕 牧村
裕志 西村
修 松田
えり子 扇谷
理緒 柏本
貴章 古屋
修 若村
掌 道上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KYOTO PREFECTURAL UNIVERSITY OF MEDICINE
Kyoto University
Nippon Steel Engineering Co Ltd
Original Assignee
KYOTO PREFECTURAL UNIVERSITY OF MEDICINE
Kyoto University
Nippon Steel Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KYOTO PREFECTURAL UNIVERSITY OF MEDICINE, Kyoto University, Nippon Steel Engineering Co Ltd filed Critical KYOTO PREFECTURAL UNIVERSITY OF MEDICINE
Priority to JP2019115725A priority Critical patent/JP7340197B2/en
Publication of JP2021001141A publication Critical patent/JP2021001141A/en
Application granted granted Critical
Publication of JP7340197B2 publication Critical patent/JP7340197B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、抗腫瘍剤及び抗ウイルス剤に関する。 TECHNICAL FIELD The present invention relates to antitumor agents and antiviral agents.

近年、環境問題の観点からカーボンニュートラルな資源としてバイオマス(動植物から得られる再生可能な有機性資源)が注目されている。例えば、糖質原料やデンプン原料といった食糧にもなる可食性バイオマスを用いたバイオエタノールの製造が挙げられるが、この場合は食糧との競合が問題となっている。一方、非可食性バイオマスは食糧との競合がなく、注目されている。例えば非可食性バイオマスの一つであるリグノセルロースバイオマスには、未利用の間伐材や製材工場での残材、住宅の解体で発生する木材等がある。リグノセルロース系バイオマスの利用は、廃棄物の抑制やエネルギー資源としての利用が期待されており、環境的観点から重要である。 In recent years, biomass (renewable organic resources obtained from plants and animals) has attracted attention as a carbon-neutral resource from the perspective of environmental issues. An example is the production of bioethanol using edible biomass that can also be used as food, such as carbohydrate raw materials or starch raw materials, but in this case, competition with food is a problem. On the other hand, non-edible biomass is attracting attention because it does not compete with food. For example, lignocellulose biomass, which is a type of non-edible biomass, includes unused thinned wood, leftover wood from sawmills, and wood generated from demolishing houses. The use of lignocellulosic biomass is expected to reduce waste and be used as an energy resource, and is important from an environmental perspective.

リグノセルロースバイオマスは、セルロース、ヘミセルロース、リグニンから構成されている。リグニンはセルロールを繋ぎ合わせる接着分子である。その構造はフェニルプロパン骨格が重合したものであるため、芳香族化合物の資源として注目されている。 Lignocellulosic biomass is composed of cellulose, hemicellulose, and lignin. Lignin is an adhesive molecule that holds cellulose together. Because its structure is a polymerized phenylpropane skeleton, it is attracting attention as a resource for aromatic compounds.

リグニンの低分子化技術はこれまで製紙業を中心に発達してきた。製紙プロセスにおけるリグニンの低分子化技術としてはクラフト蒸解、サルファイト蒸解、アルカリ蒸解等が挙げられる。クラフト蒸解では、リグニンは主として熱源として利用され、サルファイト蒸解では、リグニンを熱源とする他、スルフォン化したリグニンを分散剤などにも利用してきた。しかし、従来の製紙プロセスより得られるリグニンは変性を受けており、更なる低分子化も難しい。このため従来の製紙プロセスで得られるリグニンは燃料や分散剤等としての利用に限られており、化学工業製品の原料として利用するのは困難である。 Until now, technology for reducing the molecular weight of lignin has been developed mainly in the paper manufacturing industry. Techniques for reducing the molecular weight of lignin in the paper manufacturing process include kraft cooking, sulfite cooking, and alkaline cooking. In kraft cooking, lignin is mainly used as a heat source, and in sulfite cooking, in addition to using lignin as a heat source, sulfonated lignin has also been used as a dispersant. However, lignin obtained through conventional papermaking processes has undergone modification, making it difficult to further reduce the molecular weight. For this reason, lignin obtained through conventional papermaking processes is limited to use as fuel, dispersant, etc., and is difficult to use as a raw material for chemical industrial products.

特許文献1は、リグニンを、炭化水素及びアルコールの混合溶媒中において酸触媒存在下で加熱することによりリグニン分解物を製造しているが、その医薬用途については記載していない。 Patent Document 1 produces a lignin decomposition product by heating lignin in a mixed solvent of hydrocarbon and alcohol in the presence of an acid catalyst, but does not describe its medical use.

非特許文献1は精製リグニンスルホン酸の抗腫瘍作用を開示し、非特許文献2は笹葉リグニンのアルカリで抽出液中に含まれるフェノール化合物の抗腫瘍効果を開示しているが、非特許文献1、2で抗腫瘍活性が確認されているリグニンスルホン酸とリグニンアルカリ抽出液中のフェノール化合物は、いずれもリグニンの構造が壊れており、リグニンの構造が保持されたリグニン分解物の生理活性は知られていない。 Non-Patent Document 1 discloses the antitumor effect of purified lignin sulfonic acid, and Non-Patent Document 2 discloses the antitumor effect of phenolic compounds contained in the alkaline extract of bamboo leaf lignin. Both lignin sulfonic acid and the phenolic compound in the alkaline lignin extract, which have been confirmed to have antitumor activity in 1 and 2, have broken lignin structures, and the bioactivity of lignin decomposition products that retain the lignin structure is unknown.

特開2016-50200号公報Japanese Patent Application Publication No. 2016-50200

九州大学農学部学芸雑誌, 28(4), pp.215-221 (1974)Kyushu University Faculty of Agriculture Curatorial Magazine, 28(4), pp.215-221 (1974) 九州大学農学部学芸雑誌, 23(3), pp.103-111 (1968)Kyushu University Faculty of Agriculture Curatorial Magazine, 23(3), pp.103-111 (1968)

本発明は、新規な抗腫瘍剤及び抗ウイルス剤を提供することを目的とする。 The present invention aims to provide novel antitumor and antiviral agents.

本発明は、以下の抗腫瘍剤及び抗ウイルス剤を提供するものである。
項1. OH及び/又はOCH3を置換基として有するベンゼン環を部分構造として含むリグニン由来ユニットを含むリグニン分解物を有効成分とする、抗腫瘍剤。
項2. OH及び/又はOCH3を置換基として有するベンゼン環を含むリグニン由来ユニットを含むリグニン分解物を有効成分とし、カリシウイルス科もしくはオルソミクソウイルス科のウイルスに有効な、抗ウイルス剤。
項3. カリシウイルス科のノロウイルス及びオルソミクソウイルス科のインフルエンザウイルス(A型、B型、C型)に有効な、項2に記載の抗ウイルス剤。
The present invention provides the following antitumor agents and antiviral agents.
Item 1. An antitumor agent containing as an active ingredient a lignin decomposition product containing a lignin-derived unit containing a benzene ring having OH and/or OCH3 as a substituent as a partial structure.
Item 2. An antiviral agent containing a lignin decomposition product containing a lignin-derived unit containing a benzene ring having OH and/or OCH3 as a substituent as an active ingredient, and which is effective against viruses of the family Caliciviridae or the family Orthomyxoviridae.
Item 3. Item 2. The antiviral agent according to item 2, which is effective against norovirus of the Caliciviridae family and influenza viruses (types A, B, and C) of the Orthomyxoviridae family.

本発明の抗腫瘍剤及び抗ウイルス剤は、天然物由来であるリグニン分解物を有効成分として含み、正常細胞に対する毒性が低い利点がある。 The antitumor agent and antiviral agent of the present invention contain a lignin decomposition product derived from a natural product as an active ingredient, and have the advantage of low toxicity to normal cells.

LLC細胞の生存率に対する25種MASLの効果。LLCを表示濃度の表示MASLで24時間処理した。 細胞生存率は、水溶性テトラゾリウム塩アッセイを用いて評価した。DMSOのみ処理の対照に対する有意差を、反復測定分散分析 (AVNOVA) を用いて測定した。*p<0.05Effect of 25 MASLs on LLC cell viability. LLC was treated with the indicated concentrations of MASL for 24 hours. Cell viability was assessed using a water-soluble tetrazolium salt assay. Significant differences in DMSO only treatment versus control were determined using repeated measures analysis of variance (AVNOVA). *p<0.05 MASLは腫瘍細胞の生存率を低下させた。LLC、A549、HT1080およびHDFを0.1 mg / mL濃度の表示されたMASLで処理した。 12時間および24時間後に、細胞生存率を水溶性テトラゾリウム塩アッセイを用いて測定した。データは平均±SD (n=4) として表した。 DMSOのみ処理の対照に対する有意差を、反復測定分散分析 (AVNOVA) を用いて測定した。*p<0.05、**p<0.01MASL reduced tumor cell viability. LLC, A549, HT1080 and HDF were treated with the indicated MASL at a concentration of 0.1 mg/mL. After 12 and 24 hours, cell viability was measured using a water-soluble tetrazolium salt assay. Data were expressed as mean±SD (n=4). Significant differences in DMSO only treatment versus control were determined using repeated measures analysis of variance (AVNOVA). *p<0.05, **p<0.01 YM CL1T投与はマウスにおけるLLCの増殖を有意に阻害した。LLC担癌マウスにMASLを腹腔内注射した。対照マウスにはDMSOを注射した。マウスをMASL投与開始後14日で安楽死させた。14日目のA. 腫瘍の大きさ(平均±SD)、B. マウスの体重(平均±SD)を示す。N = 5(対照群およびYM E2T群)またはN = 6(YM CL1T群)。分散分析 (ANOVA) を用いて群間の有意差を検定した。*p<0.05、 **p<0.01、N.S., 有意ではない(not significant)。YM CL1T administration significantly inhibited LLC proliferation in mice. LLC tumor-bearing mice were injected intraperitoneally with MASL. Control mice were injected with DMSO. Mice were euthanized 14 days after the start of MASL administration. A. Tumor size (mean ± SD) and B. mouse weight (mean ± SD) on day 14 are shown. N = 5 (control and YM E2T groups) or N = 6 (YM CL1T group). Analysis of variance (ANOVA) was used to test for significant differences between groups. *p<0.05, **p<0.01, N.S., not significant. A型インフルエンザウイルスに対する12種MASLの阻害効果。Inhibitory effects of 12 types of MASL on influenza A virus. 各リグニン分解物の抗ネコカリシウイルス阻害効果。ネコカリシウイルス F9株 (A) 2000 TCID50/100 μl、(B)20000 TCID50/100 μlAnti-feline calicivirus inhibitory effect of each lignin decomposition product. Feline Calicivirus F9 strain (A) 2000 TCID 50 /100 μl, (B) 20000 TCID 50 /100 μl

本発明の抗腫瘍剤、抗ウイルス剤の有効成分であるリグニン分解物は、下記式(1) The lignin decomposition product, which is an active ingredient of the antitumor agent and antiviral agent of the present invention, is expressed by the following formula (1).

Figure 0007340197000001
Figure 0007340197000001

(式中、RはOH又はO-を示す。R及びRは、同一又は相異なり、水素原子、単結合又はOCHを示す。)の部分構造を少なくとも1つ含む。 (In the formula, R 1 represents OH or O-. R 2 and R 3 are the same or different and represent a hydrogen atom, a single bond, or OCH 3. ).

なお、「O-」は、酸素原子(O)が他のベンゼン環又は脂肪族の炭素原子と単結合することを意味する。 Note that "O-" means that an oxygen atom (O) is single-bonded to another benzene ring or an aliphatic carbon atom.

本発明のリグニン分解物は、混合物であり、1つのリグニン分解物は式(1)の部分構造を平均で、好ましくは1~15個、より好ましくは2~12個、さらに好ましくは3~10個含む。例えばリグニンをアルカリで可溶化したアルカリリグニンは、OH及び/又はOCHを置換基として有するベンゼン環を平均で15個よりも多く含むので、本発明のリグニン分解物には含まれない。 The lignin decomposition product of the present invention is a mixture, and one lignin decomposition product has an average of preferably 1 to 15, more preferably 2 to 12, and even more preferably 3 to 10 partial structures of formula (1). Including pcs. For example, alkaline lignin obtained by solubilizing lignin with an alkali contains more than 15 benzene rings having OH and/or OCH 3 as a substituent on average, and therefore is not included in the lignin decomposition product of the present invention.

1つのリグニン分解物に含まれる式(1)の部分構造の平均数は、分解反応の反応条件によって決まり、例えばより高い温度、より長い反応時間、より強い酸性条件などにより平均数は小さくなる傾向がある。 The average number of partial structures of formula (1) contained in one lignin decomposition product is determined by the reaction conditions of the decomposition reaction, and for example, the average number tends to become smaller due to higher temperature, longer reaction time, stronger acidic conditions, etc. There is.

本発明のリグニン分解物は木材パルプの製造時に副生する高分子物質であるリグニンスルホン酸を含まない。 The lignin decomposition product of the present invention does not contain lignin sulfonic acid, which is a polymeric substance produced as a by-product during the production of wood pulp.

本発明で有効成分として使用するリグニン分解物は、リグニンを溶媒(水と水混和性有機溶媒及び水非混和性有機溶媒からなる群から選ばれる少なくとも1種の有機溶媒)と酸触媒(硫酸、塩酸、硝酸、リン酸等の無機酸;酢酸、クエン酸、リンゴ酸、蓚酸、酒石酸、コハク酸、メタンスルホン酸などの有機酸)存在下で加熱することにより製造することができる。 酸触媒の使用量は、少なすぎると反応が進行しにくく、また多すぎると反応後の除去が困難である理由から、使用する溶媒に対し0.01質量%~5質量%、好ましくは0.05質量%~2質量%である。好ましい反応温度は、40~230℃、好ましい反応時間は、5分間~100分間である。 The lignin decomposition product used as an active ingredient in the present invention consists of lignin as a solvent (at least one organic solvent selected from the group consisting of water-miscible organic solvents and water-immiscible organic solvents) and an acid catalyst (sulfuric acid, It can be produced by heating in the presence of an inorganic acid such as hydrochloric acid, nitric acid, or phosphoric acid; or an organic acid such as acetic acid, citric acid, malic acid, oxalic acid, tartaric acid, succinic acid, or methanesulfonic acid. The amount of acid catalyst used is 0.01% to 5% by mass, preferably 0.01% by mass based on the solvent used, because if the amount is too small, the reaction will be difficult to proceed, and if it is too large, it will be difficult to remove after the reaction. 05% to 2% by mass. The preferred reaction temperature is 40 to 230°C, and the preferred reaction time is 5 to 100 minutes.

水混和性有機溶媒としては、アルコール(メタノール、エタノール、n-プロパノール、イソプロパノール、n-ブタノール、2-ブタノール、イソブタノール、イソペンタノールなどの直鎖又は分岐を有する脂肪族アルコール、シクロヘキサノール、メチルシクロヘキサノールなどの脂環式アルコール、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテルなどのアルキレングリコールモノアルキルエーテル)、グリコール(エチレングリコール、プロピレングリコールなど)、グリセリン、ケトン(アセトン、メチルエチルケトンなど)、テトラヒドロフラン、アセトニトリル、DMF,DMSOなどが挙げられる。水非混和性有機溶媒としては、芳香族炭化水素(ベンゼン、トルエン、キシレン、キシレンガソリン、エチルベンゼン、クロルベンゼン、ジクロルベンゼン、石油エーテル、石油ナフサ、石油ベンジン、ミネラルスピリット、リモネンなど)、脂肪族又は脂環式炭化水素類(ヘキサン、ヘプタン、オクタン、シクロヘキサン、メチルシクロヘキサン、ガソリンなど)、塩素化炭化水素(塩化メチレン、クロロホルム、四塩化炭素、1,2-ジクロロエタンなど)、酢酸エチル、ジエチルエーテルなどが挙げられる。 Water-miscible organic solvents include alcohols (linear or branched aliphatic alcohols such as methanol, ethanol, n-propanol, isopropanol, n-butanol, 2-butanol, isobutanol, isopentanol, cyclohexanol, methyl Alicyclic alcohols such as cyclohexanol, alkylene glycol monoalkyl ethers such as ethylene glycol monomethyl ether and ethylene glycol monoethyl ether), glycols (ethylene glycol, propylene glycol, etc.), glycerin, ketones (acetone, methyl ethyl ketone, etc.), tetrahydrofuran, Examples include acetonitrile, DMF, DMSO, and the like. Water-immiscible organic solvents include aromatic hydrocarbons (benzene, toluene, xylene, xylene gasoline, ethylbenzene, chlorobenzene, dichlorobenzene, petroleum ether, petroleum naphtha, petroleum benzine, mineral spirits, limonene, etc.), aliphatic or alicyclic hydrocarbons (hexane, heptane, octane, cyclohexane, methylcyclohexane, gasoline, etc.), chlorinated hydrocarbons (methylene chloride, chloroform, carbon tetrachloride, 1,2-dichloroethane, etc.), ethyl acetate, diethyl ether Examples include.

リグニンとは木化した植物体中に15~35%程度存在する芳香族高分子化合物である。本発明におけるリグニンの原料としては、スギ、ヒノキ、トウヒ、マツ、ユーカリ、ブナ、ヤナギ、タケなどの木材チップ、木粉、麦わら、稲わら、もみ殻、サトウキビの絞りかす、テンサイ残渣、キャッサバ、ナタネ残渣、大豆残渣、トウモロコシの茎葉、アブラヤシの果実殻、タバコの残管、ネピアグラス、エリアンサスなどが挙げられる。 Lignin is an aromatic polymer compound that exists in lignified plants in an amount of about 15 to 35%. The raw materials for lignin in the present invention include wood chips such as cedar, cypress, spruce, pine, eucalyptus, beech, willow, and bamboo, wood flour, wheat straw, rice straw, rice husk, sugarcane residue, sugar beet residue, cassava, Examples include rapeseed residue, soybean residue, corn stover, oil palm fruit husk, tobacco residue, napier grass, and Erianthus.

リグニン分解物の製造原料のリグニンとしては、リグニンをセルロースから分離していないリグノセルロース系バイオマスそのものを用いてもよいし、バイオマスから分離したリグニンを用いてもよい。リグノセルロース系バイオマスは木材の他、サトウキビバガスやネピアグラスなどの草本系バイオマスを含む。本発明におけるバイオマスから分離したリグニンとは、本発明の工程とは別に予めバイオマスより分離されたリグニンであり、分離方法の違いにより、硫酸リグニン、塩酸リグニン、過ヨウ素酸リグニン、ジオキサンリグニン、アルコールリグニン、チオグリコール酸リグニン、クラフトリグニン、アルカリリグニン、Brauns天然リグニン、摩砕リグニン、セルロース糖化残渣リグニン、水熱リグニン、水蒸気爆砕リグニンなどが挙げられる。本発明のリグニン分解物は、これらのバイオマスより分離された高分子量のリグニンは含まず、例えばアルカリリグニンは、本発明のリグニン分解物には含まれない。 As the lignin used as a raw material for producing the lignin decomposition product, lignocellulosic biomass itself in which lignin is not separated from cellulose may be used, or lignin separated from biomass may be used. In addition to wood, lignocellulosic biomass includes herbaceous biomass such as sugarcane bagasse and napier grass. The lignin separated from biomass in the present invention is lignin that has been separated from biomass in advance apart from the process of the present invention, and depending on the separation method, lignin may be sulfuric acid lignin, hydrochloric acid lignin, periodic acid lignin, dioxane lignin, or alcohol lignin. , thioglycolic acid lignin, kraft lignin, alkaline lignin, Brauns natural lignin, ground lignin, cellulose saccharification residue lignin, hydrothermal lignin, steam blasted lignin, and the like. The lignin decomposition product of the present invention does not contain high molecular weight lignin separated from these biomass; for example, alkaline lignin is not included in the lignin decomposition product of the present invention.

本発明のリグニン分解物は硫黄原子を含まないものが好ましい。 The lignin decomposition product of the present invention preferably does not contain sulfur atoms.

抗腫瘍剤の投与により治療できる腫瘍としては、例えば悪性腫瘍の場合、頭頚部癌、食道癌、胃癌、結腸癌、直腸癌、肝臓癌、胆嚢・胆管癌、膵臓
癌、肺癌、乳癌、卵巣癌、子宮頚癌、子宮体癌、腎癌、膀胱癌、前立腺癌、精巣腫瘍、骨・軟部肉腫、白血病、悪性リンパ腫、多発性骨髄腫、皮膚癌、脳腫瘍等が挙げられる。
Examples of tumors that can be treated by administering antitumor agents include, in the case of malignant tumors, head and neck cancer, esophageal cancer, gastric cancer, colon cancer, rectal cancer, liver cancer, gallbladder/cholangiocarcinoma, pancreatic cancer, lung cancer, breast cancer, and ovarian cancer. , cervical cancer, endometrial cancer, renal cancer, bladder cancer, prostate cancer, testicular tumor, bone/soft tissue sarcoma, leukemia, malignant lymphoma, multiple myeloma, skin cancer, brain tumor, etc.

抗ウイルス剤の治療対象となるウイルス感染症の原因ウイルスとしては、ノロウイルス、ネコカリシウイルスなどのカリシウイルス科のウイルス、インフルエンザウイルス(A型、B型、C型)などのあるソミクソウイルス科のウイルスが挙げられる。 Viruses that cause viral infections that can be treated with antiviral drugs include viruses of the Caliciviridae family, such as norovirus and feline calicivirus, and viruses of the Somyxoviridae family, including influenza viruses (types A, B, and C). Examples include viruses.

抗腫瘍剤又は抗ウイルス剤の有効成分であるリグニン分解物の投与量は、腫瘍又はウイルス感染した患者の症状もしくは剤形等により一定ではないが、一般に投与単位形態あたり、経口剤では約1~1000mg、注射剤では約0.1~500mgとするのが望ましい。リグニン分解物の成人1日あたりの投与量は、患者の症状、体重、年齢、性別等によって異なり一概には決定できないが、通常約0.1~5000mg、好ましくは1~1000mgとすればよく、これを1日1回又は2~4回程度に分けて投与するのが好ましい。 The dose of lignin decomposition product, which is the active ingredient of antitumor or antiviral drugs, varies depending on the symptoms of patients infected with tumors or viruses, the dosage form, etc., but in general, it is about 1 to 1 for oral drugs per dosage unit form. 1000 mg, preferably about 0.1 to 500 mg for injections. The daily dose for an adult adult of the lignin decomposition product varies depending on the patient's symptoms, weight, age, sex, etc., and cannot be determined unconditionally, but it is usually about 0.1 to 5000 mg, preferably 1 to 1000 mg. It is preferable to administer this once a day or in divided doses of about 2 to 4 times a day.

以下に実施例を示すが、本発明はこの実施例だけに限定されるものではない。 Examples are shown below, but the present invention is not limited to these examples.

実施例1
(1) リグニン分解物サンプル(No.1~No.25)
No.1(YMC1T)の製造: スギ木粉1 gに硫酸水溶液6 mL(硫酸含有量0.75g、0.07 mL/mL)、エタノール6 mL、トルエン8 mL加え、Biotage社のinitiator+を用いて180 ℃、30分間マイクロウェーブ加熱を行った。反応後上層である有機層を分注後、下層である水層にトルエン約10 mLを加え攪拌し、抽出操作を行った。抽出操作は計3回行い、集めた有機層は硫酸ナトリウムで脱水後、減圧濃縮を行い、サンプルNo.1を得た。
No.2(YMC1E)の製造: No.1の抽出操作で得られた固形物を含む水層に酢酸エチル約10 mLを加え、抽出操作を行った。この操作を3回繰り返し、集めた有機層は硫酸ナトリウムで脱水後、減圧濃縮を行い、サンプルNo.2を得た。
No.3(YMC1A)の製造: No.2の抽出操作で得られた固形物を含む水層を綿濾過し、残渣部分をアセトンで3度抽出を行った。アセトン溶液は減圧濃縮によりサンプルNo.3を得た。
No.4(YME1T)の製造: ユーカリ木粉1 gに硫酸水溶液6 mL(硫酸含有量0.75g、0.07 mL/mL)、エタノール6 mL、トルエン8 mL加え、Biotage社のinitiator+を用いて180 ℃、30分間マイクロウェーブ加熱を行った。反応後上層である有機層を分注後、下層である水層にトルエン約10 mLを加え攪拌し、抽出操作を行った。抽出操作は計3回行い、集めた有機層は硫酸ナトリウムで脱水後濃縮操作を行い、サンプルNo.4を得た。
No.5(YME1E)の製造: No.4の抽出操作で得られた固形物を含む水層に酢酸エチル約10 mLを加え、抽出操作を行った。この操作を3回繰り返し、集めた有機層は硫酸ナトリウムで脱水後濃縮操作を行い、サンプルNo.5を得た。
No.6(YME1A)の製造: No.5の抽出操作で得られた固形物を含む水層を綿濾過し、残渣部分をアセトンで3度抽出を行った。アセトン溶液は減圧濃縮によりサンプルNo.6を得た。
No.7(YMC2T)の製造: スギ木粉1 gに硫酸水溶液6 mL(硫酸含有量0.25g、0.023 mL/mL)、エタノール6 mL、トルエン8 mL加え、Biotage社のinitiator+を用いて180 ℃、30分間マイクロウェーブ加熱を行った。反応後上層である有機層を分注後、下層である水層にトルエン約10 mLを加え攪拌し、抽出操作を行った。抽出操作は計3回行い、集めた有機層は硫酸ナトリウムで脱水後、減圧濃縮を行い、サンプルNo.7を得た。
No.8(YMC2E)の製造: No.7の抽出操作で得られた固形物を含む水層に酢酸エチル約10 mLを加え、抽出操作を行った。この操作を3回繰り返し、集めた有機層は硫酸ナトリウムで脱水後、減圧濃縮を行い、サンプルNo.8を得た。
No.9(YMC2A)の製造: No.8の抽出操作で得られた固形物を含む水層を綿濾過し、残渣部分をアセトンで3度抽出を行った。アセトン溶液は減圧濃縮によりサンプルNo.9を得た。
No.10(YME2T)の製造: ユーカリ木粉1gに硫酸水溶液6 mL(硫酸含有量0.25g、0.023 mL/mL)、エタノール6 mL、トルエン8 mL加え、Biotage社のinitiator+を用いて180 ℃、30分間マイクロウェーブ加熱を行った。反応後上層である有機層を分注後、下層である水層にトルエン約10 mLを加え攪拌し、抽出操作を行った。抽出操作は計3回行い、集めた有機層は硫酸ナトリウムで脱水後濃縮操作を行い、サンプルNo.10を得た。
No.11(YME2E)の製造: No.10の抽出操作で得られた固形物を含む水層に酢酸エチル約10 mLを加え、抽出操作を行った。この操作を3回繰り返し、集めた有機層は硫酸ナトリウムで脱水後濃縮操作を行い、サンプルNo.11を得た。
No.12(YME2A)の製造: No.11の抽出操作で得られた固形物を含む水層を綿濾過し、残渣部分をアセトンで3度抽出を行った。アセトン溶液は減圧濃縮によりサンプルNo.12を得た。
No.13(YMCL1T)の製造: スギアルカリリグニン(スギチップを23 %水酸化ナトリウムで170 ℃、Hf1500で蒸解して得られた黒液からの酸沈殿物。詳細は別項)5 gに硫酸水溶液60 mL(硫酸含有量7.5 g、0.07 mL/mL)、メタノール60 mL、トルエン80 mL加え、Milestone社のStartSYNTHを用いて180 ℃、30分間マイクロウェーブ加熱を行った。反応後トルエンを加え抽出操作を行った。抽出操作は計3回行い、集めた有機層は硫酸ナトリウムで脱水後濃縮操作を行い、サンプルNo.13を得た。
アルカリリグニンの製造: スギチップを170 ℃、Hf 1500 の条件で水酸化ナトリウムを用いてアルカリ蒸解し、得られた黒液を中和・濾過後、不溶部を回収して水に懸濁した後、硫酸で酸性化して生じた沈殿を濾過により分離し、アルカリリグニンとした。
No.14(YMCL1E)の製造: No.13の抽出操作で得られた固形物を含む水層に酢酸エチル抽出操作を行った。この操作を3回繰り返し、集めた有機層は硫酸ナトリウムで脱水後濃縮操作を行い、サンプルNo.14を得た。
No.15(YMCL1A)の製造: No.14の抽出操作で得られた固形物を含む水層を綿濾過し、残渣部分をアセトンで3度抽出を行った。アセトン溶液は減圧濃縮によりサンプルNo.15を得た。
No.16(YMCL2T)の製造: スギアルカリリグニン(スギチップを23 %水酸化ナトリウムで170 ℃、Hf1500で蒸解して得られた黒液からの酸沈殿物。詳細は別項)5 gに硫酸水溶液60 mL(硫酸含有量7.5 g、0.07 mL/mL)、エタノール60 mL、トルエン80 mL加え、Milestone社のStartSYNTHを用いて180 ℃、30分間マイクロウェーブ加熱を行った。反応後トルエンを加え抽出操作を行った。抽出操作は計3回行い、集めた有機層は硫酸ナトリウムで脱水後濃縮操作を行い、サンプルNo.16を得た。
No.17(YMCL2E)の製造: No.13の抽出操作で得られた固形物を含む水層に酢酸エチル抽出操作を行った。この操作を3回繰り返し、集めた有機層は硫酸ナトリウムで脱水後濃縮操作を行い、サンプルNo.17を得た。
No.18(YMCL2A)の製造: No.17の抽出操作で得られた固形物を含む水層を綿濾過し、残渣部分をアセトンで3度抽出を行った。アセトン溶液は減圧濃縮によりサンプルNo.18を得た。
No.19(MYE1)の製造: ボールミル処理をしたユーカリ木粉3gに酢酸1 %過酢酸溶液20 mLを加え、Biotage社のinitiator+を用いて50 ℃、10分間マイクロウェーブ加熱を行った。反応後アセトン20 mLを加えて抽出操作を行った。抽出操作は計3回行い、集めたアセトン画分の減圧濃縮を行い、サンプルNo.19を得た。
No.20(MYE2)の製造: ボールミル処理をしたユーカリ木粉3 gに酢酸1 %過酢酸溶液20 mLを加え、Biotage社のinitiator+を用いて100 ℃、10分間マイクロウェーブ加熱を行った。反応後アセトン20 mLを加えて抽出操作を行った。抽出操作は計3回行い、集めたアセトン画分の減圧濃縮を行い、サンプルNo.20を得た。
No.21(MYE3)の製造: ボールミル処理をしたユーカリ木粉に酢酸1 %過酢酸溶液20 mLを加え、Biotage社のinitiator+を用いて140 ℃、10分間マイクロウェーブ加熱を行った。反応後アセトン20 mLを加えて抽出操作を行った。抽出操作は計3回行い、集めたアセトン画分の減圧濃縮を行い、サンプルNo.21を得た。
No.22(MKEL1)の製造: ユーカリアルカリリグニン0.3 gに塩化パラトルエンスルホニル318 mgと重水15 mLを加え、Biotage社のinitiator、もしくはinitiator+を用いて160 ℃、30分間マイクロウェーブ加熱を行った。反応後は濾過後、メタノールと酢酸エチルで洗浄後、炭酸水素ナトリウムでpH=3に調製し酢酸エチル抽出を行った。抽出操作は計3回行い、集めた有機層は硫酸ナトリウムで脱水後、減圧濃縮を行い、サンプルNo.22を得た。
No.23(MKEL2)の製造: ユーカリセルラーゼ処理後残渣リグニン0.3 gに塩化パラトルエンスルホニル318 mgと重水15 mLを加え、Milestone社のStartSYNTHを用いて160 ℃、60分間マイクロウェーブ加熱を行った。反応後は濾過後、メタノールと酢酸エチルで洗浄後、炭酸水素ナトリウムでpH=3に調製し酢酸エチル抽出を行った。抽出操作は計3回行い、集めた有機層は硫酸ナトリウムで脱水後、減圧濃縮を行い、サンプルNo.23を得た。
No.24(SSE1-4)の製造:
サトウキビバガスを原料として150℃から200℃の間で希硫酸蒸解を行い、得られた蒸解物はセルラーゼにより糖化処理を行った。糖化バガスはエタノール発酵により糖をエタノールに変換した後にメッシュ0.4mmの振動篩処理により溶液画分を分画した。エタノール溶液は蒸溜操作によりエタノールを分離し、残った蒸留廃液は遠心分離により固液を分離した。得られた上清は減圧濃縮を行うことによりサンプルNo.24を得た。
No.25(SSE2-4)の製造: ネピアグラスを原料として150℃から200℃の間で希硫酸蒸解を行い、得られた蒸解物はセルラーゼにより糖化処理を行った。糖化ネピアグラスはエタノール発酵により糖をエタノールに変換した後にメッシュ0.4mmの振動篩処理により溶液画分を分画した。エタノール溶液は蒸溜操作によりエタノールを分離し、残った蒸留廃液は遠心分離により固液を分離した。得られた上清は減圧濃縮を行うことによりサンプルNo.25を得た。
Example 1
(1) Lignin decomposition product samples (No.1 to No.25)
Manufacture of No. 1 (YMC1T): Add 6 mL of sulfuric acid aqueous solution (sulfuric acid content 0.75 g, 0.07 mL/mL), 6 mL of ethanol, and 8 mL of toluene to 1 g of cedar wood flour, and use Biotage's initiator + to incubate at 180 mL. Microwave heating was performed at ℃ for 30 minutes. After the reaction, the upper organic layer was dispensed, and about 10 mL of toluene was added to the lower aqueous layer and stirred to perform an extraction operation. The extraction operation was performed three times in total, and the collected organic layer was dehydrated with sodium sulfate and then concentrated under reduced pressure to obtain sample No. 1.
Production of No. 2 (YMC1E): Approximately 10 mL of ethyl acetate was added to the aqueous layer containing solids obtained in the extraction operation of No. 1, and an extraction operation was performed. This operation was repeated three times, and the collected organic layer was dehydrated with sodium sulfate and concentrated under reduced pressure to obtain sample No. 2.
Production of No. 3 (YMC1A): The aqueous layer containing solids obtained in the extraction operation of No. 2 was filtered through cotton, and the residue was extracted three times with acetone. Sample No. 3 was obtained from the acetone solution by concentration under reduced pressure.
Manufacture of No. 4 (YME1T): Add 6 mL of sulfuric acid aqueous solution (sulfuric acid content 0.75 g, 0.07 mL/mL), 6 mL of ethanol, and 8 mL of toluene to 1 g of eucalyptus wood flour, and use Biotage's initiator Microwave heating was performed at ℃ for 30 minutes. After the reaction, the upper organic layer was dispensed, and about 10 mL of toluene was added to the lower aqueous layer and stirred to perform an extraction operation. The extraction operation was performed three times in total, and the collected organic layer was dehydrated with sodium sulfate and then concentrated to obtain sample No. 4.
Production of No. 5 (YME1E): Approximately 10 mL of ethyl acetate was added to the aqueous layer containing solids obtained in the extraction operation of No. 4, and an extraction operation was performed. This operation was repeated three times, and the collected organic layer was dehydrated with sodium sulfate and then concentrated to obtain sample No. 5.
Production of No. 6 (YME1A): The aqueous layer containing solids obtained in the extraction operation of No. 5 was filtered through cotton, and the residue was extracted three times with acetone. Sample No. 6 was obtained from the acetone solution by concentration under reduced pressure.
Manufacture of No.7 (YMC2T): Add 6 mL of sulfuric acid aqueous solution (sulfuric acid content 0.25 g, 0.023 mL/mL), 6 mL of ethanol, and 8 mL of toluene to 1 g of cedar wood flour, and use Biotage's initiator + to incubate at 180 mL. Microwave heating was performed at ℃ for 30 minutes. After the reaction, the upper organic layer was dispensed, and about 10 mL of toluene was added to the lower aqueous layer and stirred to perform an extraction operation. The extraction operation was performed three times in total, and the collected organic layer was dehydrated with sodium sulfate and concentrated under reduced pressure to obtain sample No. 7.
Production of No. 8 (YMC2E): Approximately 10 mL of ethyl acetate was added to the aqueous layer containing solids obtained in the extraction operation of No. 7, and an extraction operation was performed. This operation was repeated three times, and the collected organic layer was dehydrated with sodium sulfate and concentrated under reduced pressure to obtain sample No. 8.
Production of No. 9 (YMC2A): The aqueous layer containing solids obtained in the extraction operation of No. 8 was filtered through cotton, and the residue was extracted three times with acetone. Sample No. 9 was obtained from the acetone solution by concentration under reduced pressure.
Manufacture of No. 10 (YME2T): Add 6 mL of sulfuric acid aqueous solution (sulfuric acid content 0.25 g, 0.023 mL/mL), 6 mL of ethanol, and 8 mL of toluene to 1 g of eucalyptus wood powder, and heat at 180 °C using Biotage's initiator + . , microwave heating was performed for 30 minutes. After the reaction, the upper organic layer was dispensed, and about 10 mL of toluene was added to the lower aqueous layer and stirred to perform an extraction operation. The extraction operation was performed three times in total, and the collected organic layer was dehydrated with sodium sulfate and then concentrated to obtain sample No. 10.
Production of No. 11 (YME2E): Approximately 10 mL of ethyl acetate was added to the aqueous layer containing solids obtained in the extraction operation of No. 10, and an extraction operation was performed. This operation was repeated three times, and the collected organic layer was dehydrated with sodium sulfate and then concentrated to obtain sample No. 11.
Production of No. 12 (YME2A): The aqueous layer containing solids obtained in the extraction operation of No. 11 was filtered through cotton, and the residue was extracted three times with acetone. The acetone solution was concentrated under reduced pressure to obtain sample No. 12.
Manufacture of No. 13 (YMCL1T): Sugi alkaline lignin (acid precipitate from black liquor obtained by cooking cedar chips with 23% sodium hydroxide at 170 °C and Hf1500. Details are provided separately) 5 g of sulfuric acid aqueous solution 60 mL (sulfuric acid content: 7.5 g, 0.07 mL/mL), methanol 60 mL, and toluene 80 mL were added, and microwave heating was performed at 180 °C for 30 minutes using Milestone's StartSYNTH. After the reaction, toluene was added and an extraction operation was performed. The extraction operation was performed three times in total, and the collected organic layer was dehydrated with sodium sulfate and then concentrated to obtain sample No. 13.
Production of alkaline lignin: Cedar chips are alkali-cooked using sodium hydroxide at 170°C and Hf 1500, the resulting black liquor is neutralized and filtered, the insoluble part is collected and suspended in water, The precipitate produced by acidification with sulfuric acid was separated by filtration and used as alkaline lignin.
Manufacture of No. 14 (YMCL1E): The aqueous layer containing solids obtained in the extraction operation of No. 13 was subjected to an ethyl acetate extraction operation. This operation was repeated three times, and the collected organic layer was dehydrated with sodium sulfate and then concentrated to obtain sample No. 14.
Production of No. 15 (YMCL1A): The aqueous layer containing solids obtained in the extraction operation of No. 14 was filtered through cotton, and the residue was extracted three times with acetone. The acetone solution was concentrated under reduced pressure to obtain sample No. 15.
Manufacture of No. 16 (YMCL2T): Sugi alkaline lignin (acid precipitate from black liquor obtained by cooking cedar chips with 23% sodium hydroxide at 170 °C and Hf1500. Details in another section) 5 g and 60 g of sulfuric acid aqueous solution mL (sulfuric acid content: 7.5 g, 0.07 mL/mL), 60 mL of ethanol, and 80 mL of toluene were added, and microwave heating was performed at 180 °C for 30 minutes using Milestone's StartSYNTH. After the reaction, toluene was added and an extraction operation was performed. The extraction operation was performed three times in total, and the collected organic layer was dehydrated with sodium sulfate and then concentrated to obtain sample No. 16.
Production of No. 17 (YMCL2E): The aqueous layer containing solids obtained in the extraction operation of No. 13 was subjected to an ethyl acetate extraction operation. This operation was repeated three times, and the collected organic layer was dehydrated with sodium sulfate and then concentrated to obtain sample No. 17.
Production of No. 18 (YMCL2A): The aqueous layer containing solids obtained in the extraction operation of No. 17 was filtered through cotton, and the residue was extracted three times with acetone. The acetone solution was concentrated under reduced pressure to obtain sample No. 18.
Production of No. 19 (MYE1): 20 mL of 1% acetic acid peracetic acid solution was added to 3 g of ball-milled eucalyptus wood flour, and microwave heating was performed at 50° C. for 10 minutes using Biotage's initiator + . After the reaction, 20 mL of acetone was added to perform an extraction operation. The extraction operation was performed three times in total, and the collected acetone fractions were concentrated under reduced pressure to obtain sample No. 19.
Production of No. 20 (MYE2): 20 mL of 1% acetic acid peracetic acid solution was added to 3 g of ball-milled eucalyptus wood flour, and microwave heating was performed at 100 °C for 10 minutes using Biotage's initiator + . After the reaction, 20 mL of acetone was added to perform an extraction operation. The extraction operation was performed three times in total, and the collected acetone fractions were concentrated under reduced pressure to obtain sample No. 20.
Manufacture of No. 21 (MYE3): 20 mL of 1% acetic acid peracetic acid solution was added to ball-milled eucalyptus wood flour, and microwave heating was performed at 140 °C for 10 minutes using Biotage's initiator + . After the reaction, 20 mL of acetone was added to perform an extraction operation. The extraction operation was performed three times in total, and the collected acetone fractions were concentrated under reduced pressure to obtain sample No. 21.
Production of No. 22 (MKEL1): 318 mg of paratoluenesulfonyl chloride and 15 mL of heavy water were added to 0.3 g of eucalyptus alkaline lignin, and microwave heating was performed at 160 °C for 30 minutes using Biotage's initiator or initiator + . . After the reaction, the mixture was filtered, washed with methanol and ethyl acetate, adjusted to pH=3 with sodium hydrogen carbonate, and extracted with ethyl acetate. The extraction operation was performed three times in total, and the collected organic layer was dehydrated with sodium sulfate and concentrated under reduced pressure to obtain sample No. 22.
Manufacture of No. 23 (MKEL2): 318 mg of paratoluenesulfonyl chloride and 15 mL of heavy water were added to 0.3 g of lignin left after the eucalyptus cellulase treatment, and microwave heating was performed at 160° C. for 60 minutes using StartSYNTH from Milestone. After the reaction, the mixture was filtered, washed with methanol and ethyl acetate, adjusted to pH=3 with sodium hydrogen carbonate, and extracted with ethyl acetate. The extraction operation was performed three times in total, and the collected organic layer was dehydrated with sodium sulfate and concentrated under reduced pressure to obtain sample No. 23.
Manufacture of No.24 (SSE1-4):
Sugarcane bagasse was used as a raw material and digested with dilute sulfuric acid between 150°C and 200°C, and the resulting digested product was saccharified using cellulase. For saccharified bagasse, sugar was converted to ethanol by ethanol fermentation, and then the solution fraction was separated by vibrating sieving with a mesh size of 0.4 mm. Ethanol was separated from the ethanol solution by distillation, and solid and liquid were separated from the remaining distillation waste by centrifugation. The obtained supernatant was concentrated under reduced pressure to obtain sample No. 24.
Manufacture of No. 25 (SSE2-4): Napier grass was used as a raw material and digested with dilute sulfuric acid between 150°C and 200°C, and the resulting digested product was saccharified using cellulase. For the saccharified Napier grass, sugar was converted to ethanol by ethanol fermentation, and then the solution fraction was separated by vibrating sieving with a mesh size of 0.4 mm. Ethanol was separated from the ethanol solution by distillation, and solid and liquid were separated from the remaining distillation waste by centrifugation. The obtained supernatant was concentrated under reduced pressure to obtain sample No. 25.

(2) 細胞株と培養条件
ルイス肺癌細胞株(LLC)をRIKEN BRC (RCB0558)から入手した。ヒト肺胞癌細胞株A549、ヒト線維肉腫細胞株HT1080をATCC (Numbers CCL-185 and CCL-121)から購入した。aHDFs (健常成人皮膚繊維芽細胞)をScienCell Research Laboratories (cat no.2320)から購入した。全ての細胞は10%胎児ウシ血清(FBS; Equitech-Bio), 100 U/mL ペニシリン, 100 μg/mL ストレプトマイシン及び100 mM非必須アミノ酸を含むDMEM培地で37℃、5% CO2/95%加湿空気で培養した。細胞は継代前にトリプシン処理した。
(2) Cell line and culture conditions Lewis lung cancer cell line (LLC) was obtained from RIKEN BRC (RCB0558). Human alveolar carcinoma cell line A549 and human fibrosarcoma cell line HT1080 were purchased from ATCC (Numbers CCL-185 and CCL-121). aHDFs (healthy adult dermal fibroblasts) were purchased from ScienCell Research Laboratories (cat no. 2320). All cells were grown in DMEM medium containing 10% fetal bovine serum (FBS; Equitech-Bio), 100 U/mL penicillin, 100 μg/mL streptomycin, and 100 mM nonessential amino acids at 37°C in 5% CO2/95% humidified air. It was cultured in Cells were trypsinized before passaging.

(3) 細胞生存率アッセイ
細胞生存率は水溶性テトラゾリウム塩アッセイで測定した。細胞として、LLC、A549、HT1080、HDFsの4種を使用した。4種のいずれかの細胞をウェルあたり1 x 103 細胞の密度で96-ウェルプレートに播種し、翌日、リグニン分解物を各ウェルに加えた。リグニン分解物としてNo.1~No.25を全て使用した実験では、細胞としてLLCを用い、リグニン分解物の濃度を0.05mg/mL、0.1mg/mL、0.2mg/mLの3種類で試験した(図1)。リグニン分解物としてNo.10(YME2T)、No.13(YMCL1T)、No.16(YMCL2T)を使用した実験では、LLC、A549、HT1080、HDFsの4種の細胞を使用した(図2)。リグニン分解物の濃度を0.1 mg/mLで試験した。リグニン分解物の添加の12時間又は24時間培養後、ウェルに2-(2-メトキシ-4-ニトロフェニル)-3-(4-ニトロフェニル)-5-(2,4-ジスルホフェニル)-2H-テトラゾリウム モノナトリウム 塩 (WST-8) 溶液 (ナカライテスク)を加えた。37℃で1時間培養後、培養上清を新しい96-ウェルプレートに移した。各ウェルの吸光度をマイクロプレート リーダー (Emax; Molecular Devices)を用いて測定した。結果を図1、図2に示す。
(3) Cell viability assay
Cell viability was determined by water-soluble tetrazolium salt assay. Four types of cells were used: LLC, A549, HT1080, and HDFs. Cells of any of the four types were seeded in 96-well plates at a density of 1 x 10 3 cells per well, and the next day lignin digest was added to each well. In experiments using all Nos. 1 to 25 as lignin decomposition products, LLC was used as the cell, and three concentrations of lignin decomposition products were tested: 0.05 mg/mL, 0.1 mg/mL, and 0.2 mg/mL. (Figure 1). In experiments using No. 10 (YME2T), No. 13 (YMCL1T), and No. 16 (YMCL2T) as lignin decomposition products, four types of cells, LLC, A549, HT1080, and HDFs, were used (Figure 2). The concentration of lignin degradation product was tested at 0.1 mg/mL. After 12 or 24 hours of incubation after addition of the lignin decomposition product, 2-(2-methoxy-4-nitrophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)- 2H-tetrazolium monosodium salt (WST-8) solution (Nacalai Tesque) was added. After culturing at 37°C for 1 hour, the culture supernatant was transferred to a new 96-well plate. The absorbance of each well was measured using a microplate reader (Emax; Molecular Devices). The results are shown in FIGS. 1 and 2.

(4) LLC 腫瘍マウスモデル
動物実験は、京都府立医大の実験動物委員会から承認され(Code No M29-137)、全ての方法は実験動物の管理と使用に関するNIH指針に従った。7週齢雌C57BL/6マウスを清水実験材料株式会社から購入した。全てのマウスの脇腹に1×10 のLLC細胞を注入した。
約100 mm3のサイズに腫瘍が増殖した後に、リグニン分解物(YM E2T(■)、YM CL1T(◆))を20 mg/kg体重またはコントロール(○)としてDMSOを20 mg/kg体重で1日おきにマウスに腹腔内注射した。腫瘍体積計算は以下のように行った:腫瘍体積=d2 × D/2(式中、dとDは、各々最も短い直径及び最も長い直径である。)。14日目に体重測定した後、全てのマウスを安楽死させ、腫瘍の大きさを測定した。
(4) LLC tumor mouse model animal experiments were approved by the Laboratory Animal Committee of Kyoto Prefectural University of Medicine (Code No M29-137), and all methods followed the NIH guidelines for the care and use of laboratory animals. Seven-week-old female C57BL/6 mice were purchased from Shimizu Experimental Materials Co., Ltd. All mice were injected with 1 x 10 5 LLC cells into the flank.
After the tumor grew to a size of approximately 100 mm3 , lignin degradation products (YM E2T (■), YM CL1T (◆)) were added at 20 mg/kg body weight or DMSO was added at 20 mg/kg body weight as a control (○). Mice were injected intraperitoneally every other day. Tumor volume calculations were performed as follows: Tumor volume = d 2 × D/2, where d and D are the shortest and longest diameters, respectively. After measuring body weight on day 14, all mice were euthanized and tumor size was measured.

(5) インフルエンザウイルス感染阻害
A型インフルエンザウイルス(A/Puerto Rico/8/1934 H1N1;PR8株) 104 PFU/100 μlに12種の各リグニン分解物サンプルを2 mg/mlになるように添加し、氷中に10分置いた。この混合液のウイルス感染価をプラークアッセイ法で測定した。プラークアッセイは以下の手順で行った。混合液をPBS(-)で10段階希釈し、各希釈段階のウイルス液を100 μl /well でMadin-Darby Canine Kidney(MDCK:イヌ腎臓尿細管上皮細胞由来)細胞がコンフルエントに撒かれている6-well プレートに添加した。37℃、5% CO2下で1時間ウイルス吸着を行い、0.8%アガロース、2.5μg/ml トリプシン、0.2%アルブミン加DMEM培地を添加し、37℃、5% CO2下で48時間培養後、5%グルタルアルデヒドで固定した。寒天培地除去後クリスタルバイオレットで染色し、出現したプラーク数を数えた。DMSOを含む培地のみをウイルス液に添加したものをコントロールとし、これのプラーク数を1とした場合の各サンプルのプラークの割合を算出した。
(5) Inhibition of influenza virus infection
Influenza A virus (A/Puerto Rico/8/1934 H1N1; PR8 strain) 12 lignin degradation product samples were added to 104 PFU/100 μl at a concentration of 2 mg/ml, and incubated on ice for 10 minutes. placed. The virus infectivity of this mixture was measured by plaque assay. Plaque assay was performed according to the following procedure. Dilute the mixture solution in 10 steps with PBS(-), and spread the virus solution at each dilution step at 100 μl/well to confluent Madin-Darby Canine Kidney (MDCK: derived from canine renal tubular epithelial cells) cells6. -well plate. Virus adsorption was performed for 1 hour at 37°C and 5% CO2 , DMEM medium supplemented with 0.8% agarose, 2.5μg/ml trypsin, and 0.2% albumin was added, and cultured at 37°C and 5% CO2 for 48 hours. Fixed with 5% glutaraldehyde. After removing the agar medium, it was stained with crystal violet and the number of plaques that appeared was counted. A control in which only a medium containing DMSO was added to the virus solution was used as a control, and the proportion of plaques in each sample was calculated, assuming that the number of plaques in this control was 1.

結果を図4に示す。 The results are shown in Figure 4.

(6) ネコカリシウイルス感染阻害
ネコカリシウイルス F9株 2000 TCID50/100 μlあるいは20000 TCID50/100 μlに図5に示されるリグニン分解物サンプルを1又は0.25 mg/mlの濃度になるように添加し、氷中に10分置いた。この混合液を100 μl /well でCRFK細胞(ネコ腎由来細胞)がコンフルエントに撒かれている96-well プレートに添加した。37℃、5% CO2下で1時間ウイルス吸着を行い、上清を除いた後2% FBS加DMEM培地を100 μl /well添加し、37℃、5% CO2下で4日間静置した。細胞生存率を水溶性テトラゾリウム塩アッセイで測定した。ウェルに2-(2-メトキシ-4-ニトロフェニル)-3-(4-ニトロフェニル)-5-(2,4-ジスルホフェニル)-2H-テトラゾリウム モノナトリウム 塩 (WST-8) 溶液 (ナカライテスク)を加え、37℃で1時間反応後、各 ウェルの吸光度をマイクロプレート リーダー (Emax; Molecular Devices)を用いて測定した。結果を図5に示す。
(6) Inhibition of feline calicivirus infection: Add the lignin degradation product sample shown in Figure 5 to feline calicivirus F9 strain 2000 TCID 50 /100 μl or 20000 TCID 50 /100 μl to a concentration of 1 or 0.25 mg/ml. and placed on ice for 10 minutes. This mixed solution was added at 100 μl/well to a 96-well plate on which CRFK cells (feline kidney-derived cells) were spread to confluence. Virus adsorption was performed for 1 hour at 37°C and 5% CO 2 , and after removing the supernatant, 100 μl/well of DMEM medium containing 2% FBS was added, and the mixture was left standing at 37°C and 5% CO 2 for 4 days. . Cell viability was determined by water-soluble tetrazolium salt assay. Add 2-(2-methoxy-4-nitrophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium monosodium salt (WST-8) solution (Nacalai) to the well. After reaction at 37°C for 1 hour, the absorbance of each well was measured using a microplate reader (Emax; Molecular Devices). The results are shown in Figure 5.

(7) 統計解析
全ての実験データを、平均±標準偏差(SD)で示した。両側スチューデントのt検定及びパラメトリック1元配置又は2元配置分散分析(ANOVA)は、群間の相違を分析するために使用した。The Tukey-Kramer post-hoc テストは群間の特定の相違を決定するために使用した。全ての解析において, P<0.05 を統計的に有意であるとみなした。統計分析はGraphPad Prism 6 (GraphPad Software, Inc.) を用いて行った。
(7) Statistical analysis All experimental data were expressed as mean ± standard deviation (SD). Two-tailed Student's t-test and parametric one-way or two-way analysis of variance (ANOVA) were used to analyze differences between groups. The Tukey-Kramer post-hoc test was used to determine specific differences between groups. In all analyses, P<0.05 was considered statistically significant. Statistical analysis was performed using GraphPad Prism 6 (GraphPad Software, Inc.).

(8) 結果
図1に示すように、No.1-25のリグニン分解物は、がん細胞株(LLC)に対し抗腫瘍作用を有する。
(8) Results As shown in Figure 1, lignin degradation product No. 1-25 has an antitumor effect on cancer cell lines (LLC).

図2に示すように、No.10(YME2T)、No.13(YMCL1T)、No.16(YMCL2T)のリグニン分解物は、がん細胞株(LLC、A549、HT1080)に対し抗腫瘍作用を有するが、正常細胞(HDFs)に対する細胞毒性は低いことが明らかになった。 As shown in Figure 2, lignin degradation products No. 10 (YME2T), No. 13 (YMCL1T), and No. 16 (YMCL2T) have antitumor effects on cancer cell lines (LLC, A549, HT1080). However, it was revealed that the cytotoxicity against normal cells (HDFs) is low.

図3に示すように、No.10(YME2T)、No.13(YMCL1T)のリグニン分解物は、体重増加に関する有意な差はなく(図3B)、腫瘍体積を減少させる(図3A)ことが明らかになった。 As shown in Figure 3, there was no significant difference in weight gain between No. 10 (YME2T) and No. 13 (YMCL1T) lignin degradation products (Figure 3B), and they were able to reduce tumor volume (Figure 3A). It was revealed.

図4、図5に示されるように、リグニン分解物はインフルエンザウイルス(A型、B型、C型)などのオルソミクソウイルス科のウイルス、ネコカリシウイルス、ノロウイルスなどのカリシウイルス科のウイルスに対する抗ウイルス活性を示すことが明らかになった。 As shown in Figures 4 and 5, lignin degradation products have anti-inflammatory properties against viruses of the Orthomyxoviridae family, such as influenza viruses (types A, B, and C), and viruses of the Caliciviridae family, such as feline calicivirus and norovirus. It was revealed that the virus showed viral activity.

Claims (4)

下記式(1)で表される部分構造を少なくとも1つ含むリグニン分解物を含む、抗腫瘍剤の製造方法であって、 A method for producing an antitumor agent comprising a lignin decomposition product containing at least one partial structure represented by the following formula (1),
前記リグニン分解物は、 The lignin decomposition product is
スギ若しくはユーカリの木粉、 Cedar or eucalyptus wood flour,
スギ若しくはユーカリのアルカリリグニン、又は Alkaline lignin of cedar or eucalyptus, or
ユーカリのセルラーゼ処理後残渣リグニン Residual lignin after cellulase treatment of eucalyptus
に対して、(1)水と、水混和性有機溶媒と、水非混和性有機溶媒を含む溶媒と、(2)酸触媒の存在下で加熱しながらマイクロウェーブ処理を行う工程A、又は(1) a solvent containing water, a water-miscible organic solvent, and a water-immiscible organic solvent; and (2) step A of performing microwave treatment while heating in the presence of an acid catalyst, or
ユーカリのアルカリリグニン、又は Eucalyptus alkaline lignin, or
ユーカリのセルラーゼ処理後残渣リグニン Residual lignin after cellulase treatment of eucalyptus
に対して、(1’)重水と、(2)塩化パラトルエンスルホニルの存在下で加熱しながらマイクロウェーブ処理を行う工程A’、及びStep A' of performing microwave treatment while heating in the presence of (1') heavy water and (2) para-toluenesulfonyl chloride;
マイクロウェーブ処理に、リグニン分解物を水非混和性有機溶媒を使って回収する工程B Step B of recovering lignin decomposition products using a water-immiscible organic solvent during microwave treatment
を含む方法により生成される、generated by a method including
製造方法:Production method:
Figure 0007340197000002
Figure 0007340197000002
(式中、R(In the formula, R 1 はOH又はO-を示す。Rrepresents OH or O-. R. 2 及びRand R 3 は、同一又は相異なり、水素原子、単結合又はOCHare the same or different, hydrogen atom, single bond or OCH 3 を示す。「O-」は、酸素原子(O)が他のベンゼン環又は脂肪族の炭素原子と単結合することを意味する)。shows. "O-" means that the oxygen atom (O) is single bonded to another benzene ring or aliphatic carbon atom).
下記式(1)で表される部分構造を少なくとも1つ含むリグニン分解物を含む、カリシウイルス科もしくはオルソミクソウイルス科のウイルスに有効な、抗ウイルス剤の製造方法であって、 A method for producing an antiviral agent effective against viruses of the Caliciviridae or Orthomyxoviridae family, comprising a lignin decomposition product containing at least one partial structure represented by the following formula (1),
前記リグニン分解物は、 The lignin decomposition product is
スギ若しくはユーカリの木粉、 Cedar or eucalyptus wood flour,
スギ若しくはユーカリのアルカリリグニン、又は Alkaline lignin of cedar or eucalyptus, or
ユーカリのセルラーゼ処理後残渣リグニン Residual lignin after cellulase treatment of eucalyptus
に対して、(1)水と、水混和性有機溶媒と、水非混和性有機溶媒を含む溶媒と、(2)酸触媒の存在下で加熱しながらマイクロウェーブ処理を行う工程A、又は(1) a solvent containing water, a water-miscible organic solvent, and a water-immiscible organic solvent; and (2) step A of performing microwave treatment while heating in the presence of an acid catalyst, or
ユーカリのアルカリリグニン、又は Eucalyptus alkaline lignin, or
ユーカリのセルラーゼ処理後残渣リグニン Residual lignin after cellulase treatment of eucalyptus
に対して、(1’)重水と、(2)塩化パラトルエンスルホニルの存在下で加熱しながらマイクロウェーブ処理を行う工程A’、及びStep A' of performing microwave treatment while heating in the presence of (1') heavy water and (2) para-toluenesulfonyl chloride;
マイクロウェーブ処理に、リグニン分解物を水非混和性有機溶媒を使って回収する工程B Step B of recovering lignin decomposition products using a water-immiscible organic solvent during microwave treatment
を含む方法により生成される、generated by a method including
製造方法:Production method:
Figure 0007340197000003
Figure 0007340197000003
(式中、R(In the formula, R 1 はOH又はO-を示す。Rrepresents OH or O-. R. 2 及びRand R 3 は、同一又は相異なり、水素原子、単結合又はOCHare the same or different, hydrogen atom, single bond or OCH 3 を示す。「O-」は、酸素原子(O)が他のベンゼン環又は脂肪族の炭素原子と単結合することを意味する)。shows. "O-" means that the oxygen atom (O) is single bonded to another benzene ring or aliphatic carbon atom).
下記式(1)で表される部分構造を少なくとも1つ含むリグニン分解物を含む、カリシウイルス科もしくはオルソミクソウイルス科のウイルスに有効な、抗ウイルス剤の製造方法であって、A method for producing an antiviral agent effective against viruses of the Caliciviridae or Orthomyxoviridae family, comprising a lignin decomposition product containing at least one partial structure represented by the following formula (1),
前記リグニン分解物は、 The lignin decomposition product is
原料であるサトウキビバガス又はネピアグラスを150℃から200℃の間で希硫酸蒸解を行う工程a、 a step of digesting raw material sugarcane bagasse or napier grass with dilute sulfuric acid at a temperature between 150°C and 200°C;
工程aにおいて得られた蒸解物に対してセルラーゼにより糖化処理を行う工程b、 Step b of performing saccharification treatment on the digested product obtained in step a using cellulase;
工程bにおいて得られた糖化物に対してエタノール発酵を行い糖をエタノールに変換する工程c、 Step c of converting sugar into ethanol by performing ethanol fermentation on the saccharified product obtained in step b;
工程cにおいて得られたエタノール発酵処理物から溶液画分を分画する工程d、 step d of fractionating a solution fraction from the ethanol fermentation product obtained in step c;
工程dにおいて得られた溶液画分からエタノールを除去した蒸留残液を固液分離する工程e、及び Step e of separating the distillation residue from which ethanol has been removed from the solution fraction obtained in Step d into solid and liquid;
工程eの固液分離により得られた上清を濃縮する工程f Step f of concentrating the supernatant obtained by solid-liquid separation in Step e.
を含む方法により生成される、generated by a method including
製造方法:Production method:
Figure 0007340197000004
Figure 0007340197000004
(式中、R(In the formula, R 1 はOH又はO-を示す。Rrepresents OH or O-. R. 2 及びRand R 3 は、同一又は相異なり、水素原子、単結合又はOCHare the same or different, hydrogen atom, single bond or OCH 3 を示す。「O-」は、酸素原子(O)が他のベンゼン環又は脂肪族の炭素原子と単結合することを意味する)。shows. "O-" means that an oxygen atom (O) is single bonded to another benzene ring or aliphatic carbon atom).
カリシウイルス科のノロウイルス及びオルソミクソウイルス科のインフルエンザウイルス(A型、B型、C型)に有効な、請求項2又は3に記載の製造方法 The manufacturing method according to claim 2 or 3, which is effective against norovirus of the Caliciviridae family and influenza viruses (types A, B, and C) of the Orthomyxoviridae family.
JP2019115725A 2019-06-21 2019-06-21 Antitumor and antiviral agents Active JP7340197B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019115725A JP7340197B2 (en) 2019-06-21 2019-06-21 Antitumor and antiviral agents

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019115725A JP7340197B2 (en) 2019-06-21 2019-06-21 Antitumor and antiviral agents

Publications (2)

Publication Number Publication Date
JP2021001141A JP2021001141A (en) 2021-01-07
JP7340197B2 true JP7340197B2 (en) 2023-09-07

Family

ID=73994806

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019115725A Active JP7340197B2 (en) 2019-06-21 2019-06-21 Antitumor and antiviral agents

Country Status (1)

Country Link
JP (1) JP7340197B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000191520A (en) 1998-12-31 2000-07-11 Kazuo Sakuma Microbicide
JP2002534391A (en) 1998-12-30 2002-10-15 オブスチェストボ アンド オグラニチエノイ オトベトストベノステイユ ”リグフアルム” Method for producing antitumor therapeutic agent and manufactured therapeutic agent
WO2016024359A1 (en) 2014-08-15 2016-02-18 株式会社カスケード資源研究所 Pharmaceutical agent including lignin extract as active ingredient
JP2016050200A (en) 2014-08-29 2016-04-11 日本化薬株式会社 Method for producing low molecular lignin

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5940136B2 (en) * 1976-07-02 1984-09-28 山陽国策パルプ株式会社 Antitumor agent consisting of purified lignin sulfonic acid
JPS5939411B2 (en) * 1980-12-24 1984-09-22 野田食菌工業株式会社 anti-animal virus agent
JP2923660B2 (en) * 1990-01-06 1999-07-26 宏 坂上 Antiviral agent

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002534391A (en) 1998-12-30 2002-10-15 オブスチェストボ アンド オグラニチエノイ オトベトストベノステイユ ”リグフアルム” Method for producing antitumor therapeutic agent and manufactured therapeutic agent
JP2000191520A (en) 1998-12-31 2000-07-11 Kazuo Sakuma Microbicide
WO2016024359A1 (en) 2014-08-15 2016-02-18 株式会社カスケード資源研究所 Pharmaceutical agent including lignin extract as active ingredient
JP2016050200A (en) 2014-08-29 2016-04-11 日本化薬株式会社 Method for producing low molecular lignin

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Mingming Guo et al.,AppliedBiochemistry and Biotechnology,vol. 184,2018年,pp. 350-365

Also Published As

Publication number Publication date
JP2021001141A (en) 2021-01-07

Similar Documents

Publication Publication Date Title
Dong et al. Characterization and application of lignin–carbohydrate complexes from lignocellulosic materials as antioxidants for scavenging in vitro and in vivo reactive oxygen species
Huang et al. Unveiling the structural properties of lignin–carbohydrate complexes in bamboo residues and its functionality as antioxidants and immunostimulants
Zhao et al. Evolution of the lignin chemical structure during the bioethanol production process and its inhibition to enzymatic hydrolysis
Liu et al. Synergistic maximization of the carbohydrate output and lignin processability by combinatorial pretreatment
Mohan et al. Naturally occurring sulfonium-ion glucosidase inhibitors and their derivatives: a promising class of potential antidiabetic agents
Pei et al. Isolation and identification of a novel anti-protein aggregation activity of lignin-carbohydrate complex from Chionanthus retusus leaves
CA2980173A1 (en) Antiviral activity from medicinal mushrooms containing phenyl carboxylate/acrylate compounds
CN104245656B (en) By the method for lignocellulosic biomass production levulic acid
Moniz et al. Membrane separation and characterisation of lignin and its derived products obtained by a mild ethanol organosolv treatment of rice straw
Li et al. Conversion of beech wood into antiviral lignin–carbohydrate complexes by microwave acidolysis
JP7340197B2 (en) Antitumor and antiviral agents
Chen et al. Methyl brevifolincarboxylate, a novel influenza virus PB2 inhibitor from Canarium Album (Lour.) Raeusch
CN103788038B (en) Red sesame lactone compound and pharmaceutical composition thereof and its preparation method and application
CN104974276A (en) Preparation method of succinic anhydride cyclodextrin
FR2954892B1 (en) PROCESS FOR THE VALORISATION OF DISTILLATION BY-PRODUCTS FROM THE PRODUCTION OF BIOETHANOL FROM A CEREAL RAW MATERIAL, IN PARTICULAR WHEAT
Grienke et al. Lanostane triterpenes from Gloeophyllum odoratum and their anti-influenza effects
WO2009112134A3 (en) Method for producing ethanol by fermentation from lignocellulosic biomass that is delignified using alkanol amines
WO2019080571A1 (en) Method for extracting toosendanin
CN103142621A (en) Medical applications of four buxus alkaloids compounds
Hu et al. Ammonia fiber expansion combined with white rot fungi to treat lignocellulose for cultivation of mushrooms
JP5861413B2 (en) Continuous production method of furfural from biomass
CN102417509A (en) Application of three compounds extracted from starfish to promotion of bone fracture healing, and preparation method for three compounds
TWI381844B (en) A method for isolating ganoderic acids from ganoderma growth bags
Yan et al. Protective effects of lignin fractions obtained from grape seeds against bisphenol AF neurotoxicity via antioxidative effects mediated by the Nrf2 pathway
CN108192925A (en) Applications of the SIRT3 in old human adipose mesenchymal stem cells rejuvenation is promoted

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230110

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230309

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230808

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230818

R150 Certificate of patent or registration of utility model

Ref document number: 7340197

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150