JP7338917B2 - METHOD FOR CONSTRUCTING FINE STRUCTURE OF SEMICONDUCTOR NANOCRYSTAL DEVICE HAVING HIGH LIGHT EXTRACTION EFFECT - Google Patents

METHOD FOR CONSTRUCTING FINE STRUCTURE OF SEMICONDUCTOR NANOCRYSTAL DEVICE HAVING HIGH LIGHT EXTRACTION EFFECT Download PDF

Info

Publication number
JP7338917B2
JP7338917B2 JP2022122818A JP2022122818A JP7338917B2 JP 7338917 B2 JP7338917 B2 JP 7338917B2 JP 2022122818 A JP2022122818 A JP 2022122818A JP 2022122818 A JP2022122818 A JP 2022122818A JP 7338917 B2 JP7338917 B2 JP 7338917B2
Authority
JP
Japan
Prior art keywords
printing
semiconductor
microstructure
nanocrystals
doped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022122818A
Other languages
Japanese (ja)
Other versions
JP2023070046A (en
Inventor
張加濤
喬辰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BEIJING INSTITUTE OF TECHONOLOGY
Original Assignee
BEIJING INSTITUTE OF TECHONOLOGY
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BEIJING INSTITUTE OF TECHONOLOGY filed Critical BEIJING INSTITUTE OF TECHONOLOGY
Publication of JP2023070046A publication Critical patent/JP2023070046A/en
Application granted granted Critical
Publication of JP7338917B2 publication Critical patent/JP7338917B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/112Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using individual droplets, e.g. from jetting heads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/307Handling of material to be used in additive manufacturing
    • B29C64/314Preparation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/386Data acquisition or data processing for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • B33Y40/10Pre-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • B33Y70/10Composites of different types of material, e.g. mixtures of ceramics and polymers or mixtures of metals and biomaterials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • C09K11/025Use of particular materials as binders, particle coatings or suspension media therefor non-luminescent particle coatings or suspension media
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/58Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing copper, silver or gold
    • C09K11/582Chalcogenides
    • C09K11/584Chalcogenides with zinc or cadmium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/62Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing gallium, indium or thallium
    • C09K11/621Chalcogenides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/62Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing gallium, indium or thallium
    • C09K11/621Chalcogenides
    • C09K11/623Chalcogenides with zinc or cadmium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/66Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing germanium, tin or lead
    • C09K11/664Halogenides
    • C09K11/665Halogenides with alkali or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/34Electrical apparatus, e.g. sparking plugs or parts thereof

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Ceramic Engineering (AREA)
  • Civil Engineering (AREA)
  • Composite Materials (AREA)
  • Structural Engineering (AREA)
  • Electroluminescent Light Sources (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
  • Luminescent Compositions (AREA)

Description

本発明は、高い光取出し効果を有する半導体ナノ結晶デバイスの微細構造の構築方法に関し、特に、高い光取出し効果を有する半導体ナノ結晶光学デバイスの微細構造を構築する3D印刷方法に関し、蛍光発光、蛍光イメージング及び光電検出の分野に属する。 TECHNICAL FIELD The present invention relates to a method for constructing a microstructure of a semiconductor nanocrystal device having a high light extraction effect, and more particularly to a 3D printing method for constructing a microstructure of a semiconductor nanocrystal optical device having a high light extraction effect. It belongs to the fields of imaging and photoelectric detection.

コロイド状半導体ナノ結晶は、サイズ、形態による量子サイズ、閉じ込め効果により、独特な物理的及び化学的特性と豊富な光学的及び電気的特性とを備える。その表面は長鎖有機配位子の保護層で覆われているため、有機溶媒中の分散性が高く、同時にこのような材料は大面積溶液処理による特性を備える。ナノ結晶材料は、バイオイメージング、発光ダイオード、レーザ及び太陽電池等において広く研究されており、将来の応用に大きな可能性を示している。しかしながら、コロイド状半導体ナノ結晶の実用では、そのマクロサイズでのデバイスプロセスはその光電子特性に重要な影響を及ぼす。現在、半導体光電子デバイスは、既存の金型と冶具によって特定の形状のデバイスを形成するという従来の製造方法を採用することが多いが、その加工が難しく、且つ形成されたデバイスの形状とサイズを効果的に制御することは困難である。特に、複雑な構造を持つ光電子デバイスの合成では、従来のプロセスで制御可能な製造を実現することは困難である。また、従来のプロセスは、コロイド状ナノ結晶の光電子特性にも大きな影響を及ぼす。コロイド状半導体量子ドットを例として、従来のプロセスでは、加工中に量子ドットの表面の配位子が破壊されるため、量子ドットは緊密に接続され、さらには凝集しており、これは、量子ドットの量子収率と励起子寿命の大幅な低下に直接つながる。従って、コロイド状ナノ結晶本来の光電子特性を最大限に確保した上で、さらに、複雑な微細構造の光電子デバイスの製造を実現できれば、高効率デバイスの構築によってコロイド状ナノ結晶の効率的な利用を実現できるだけでなく、さらに特別な設計要件に応じたデバイスを製造するための技術基盤をも提供できる。 Colloidal semiconductor nanocrystals possess unique physical and chemical properties and a wealth of optical and electrical properties due to their quantum size due to size, morphology, and confinement effects. Its surface is covered with a protective layer of long-chain organic ligands, making it highly dispersible in organic solvents, while at the same time such materials possess large-area solution-processing properties. Nanocrystalline materials have been extensively studied in bioimaging, light emitting diodes, lasers and solar cells, etc., and show great potential for future applications. However, in the practical use of colloidal semiconductor nanocrystals, device processing at their macro-size has a significant impact on their optoelectronic properties. At present, semiconductor optoelectronic devices often adopt conventional manufacturing methods of forming devices of specific shapes using existing molds and jigs, but the processing is difficult and the shape and size of the formed devices are difficult. difficult to control effectively. Especially in the synthesis of optoelectronic devices with complex structures, it is difficult to achieve controllable fabrication with conventional processes. Conventional processes also greatly affect the optoelectronic properties of colloidal nanocrystals. Taking colloidal semiconductor quantum dots as an example, in the conventional process, the ligands on the surface of the quantum dots are destroyed during processing, so the quantum dots are tightly connected and even aggregated, which means that the quantum This directly leads to a significant decrease in the quantum yield and exciton lifetime of the dots. Therefore, if it is possible to manufacture an optoelectronic device with a complicated microstructure while maximizing the optoelectronic properties inherent in colloidal nanocrystals, it will be possible to efficiently utilize colloidal nanocrystals by constructing high-efficiency devices. Not only can it be realized, but it can also provide the technical basis for manufacturing devices according to specific design requirements.

本発明の目的は、既存の半導体ナノ結晶デバイスの発光効率が使用のニーズを満たすことができないという問題を解決するために、高い光取出し効果を有する半導体ナノ結晶デバイスの微細構造の構築方法を提供することである。該方法は、従来の加工手段では実現が困難な微細加工という、従来の加工手段とは異なる3D印刷の特性を生かし、特定の微細構造を構築し、デバイスの内部全反射による光取出し効率低下という問題を軽減し、デバイスの効率的な光取出しを実現し、同時に、従来の製造方法において半導体ナノ結晶デバイスの加工が難しく、工業生産が難しく、且つ形成されたデバイスの形状が標準形状に合わない等の技術的問題に対処するように、3D印刷の本来の利点を維持し、デバイス性能の制御可能性を実現する。 The purpose of the present invention is to provide a method for constructing a microstructure of a semiconductor nanocrystal device with high light extraction effect, so as to solve the problem that the luminous efficiency of existing semiconductor nanocrystal devices cannot meet the needs of use. It is to be. This method utilizes the characteristics of 3D printing, which is difficult to achieve with conventional processing means, and constructs a specific microstructure, which is different from conventional processing means. Alleviate the problem and achieve efficient light extraction of the device, while at the same time making the semiconductor nanocrystalline device difficult to process in conventional manufacturing methods, difficult to industrially produce, and the shape of the formed device does not conform to the standard shape. It preserves the inherent advantages of 3D printing and achieves controllability of device performance, so as to address technical issues such as.

本発明の目的は、下記技術的解決手段によって実現される。 The objectives of the present invention are achieved by the following technical solutions.

高い光取出し効果を有する半導体ナノ結晶デバイスの微細構造の構築方法であって、以下のステップを含む。 A method for constructing a microstructure of a semiconductor nanocrystal device with high light extraction efficiency, comprising the following steps.

(1)半導体ナノ結晶を製造するステップであって、本方法における半導体ナノ結晶は、液相反応によって製造された単分散サイズ、形態の真性量子ドット、ドープ量子ドット、ヘテロ構造(金属/半導体コアシェル、ヘテロ二量体構造)ナノ結晶及びペロブスカイト量子ドット等を含み、ソルボサーマル法、熱注入法又は低温陽イオン交換法によって製造されるものであり、且つ異なる溶媒に分散できるように表面配位子を調整することができる。 (1) The step of producing semiconductor nanocrystals, wherein the semiconductor nanocrystals in the method are monodisperse size, morphology intrinsic quantum dots, doped quantum dots, heterostructures (metal/semiconductor core-shell , heterodimer structure) nanocrystals and perovskite quantum dots, etc., which are prepared by solvothermal methods, thermal injection methods or low temperature cation exchange methods, and have surface ligands so that they can be dispersed in different solvents. can be adjusted.

(2)3D印刷ペーストを配合するステップであって、半導体ナノ結晶をクロロホルム、トルエン等の油相有機溶媒、又は水、DMF等の水相溶媒に分散させて高分散な半導体ナノ結晶ゾルを得て、このゾルを一定のレオロジー特性を有する高光学特性の有機ポリマーマトリックスと均一に混合し、3D印刷ペーストを得る。 (2) A step of blending a 3D printing paste, wherein the semiconductor nanocrystals are dispersed in an oil phase organic solvent such as chloroform or toluene, or an aqueous phase solvent such as water or DMF to obtain a highly dispersed semiconductor nanocrystal sol. This sol is then homogeneously mixed with an organic polymer matrix of high optical properties with certain rheological properties to obtain a 3D printing paste.

(3)半導体ナノ結晶デバイスを3D印刷するステップであって、得られたペーストで直描式3D印刷技術(3Dモデルを構築し、スプレーヘッド直径、印刷距離、印刷速度等のパラメータを設定すること)によって三次元構造成形を行い、半導体ナノ結晶デバイスの半完成品を形成し、様々な要件に応じて様々なパス角度を設計し、特定のポイント、特定のサーフェスにおける性能の制御を実現し、異方性デバイスを構築することができる。 (3) The step of 3D printing the semiconductor nanocrystal device, the paste obtained by direct-writing 3D printing technology (building a 3D model, setting parameters such as spray head diameter, printing distance, printing speed, etc. ) to form a three-dimensional structure to form a semi-finished semiconductor nanocrystalline device, design various pass angles according to different requirements, and achieve control of performance at specific points and specific surfaces, Anisotropic devices can be constructed.

(4)半導体ナノ結晶デバイスを硬化させ及び微細構造を構築するステップであって、前記半導体ナノ結晶デバイスの半完成品を加熱処理し、硬化させて安定的な微細構造を備える半導体ナノ結晶デバイスを形成する。 (4) curing and microstructuring the semiconductor nanocrystalline device, wherein the semiconductor nanocrystalline device semi-finished product is heat treated and cured to form a semiconductor nanocrystalline device with a stable microstructure; Form.

ステップ(1)において、前記半導体ナノ結晶は、液相法で製造された表面にオレイルアミン、オレイン酸、ドデカンチオール配位子、オクタデシルアミン、ヘキサデシルアミン、ステアリン酸、オクタンチオール、ミリスチン酸、トリブチルホスフィン、トリオクチルホスフィン、リン酸基類、リン酸エステル類のうちの1種又は複数種を有する真性量子ドット、ドープ量子ドット、ヘテロ構造ナノ結晶及びペロブスカイト量子ドットである。液相法で製造されたAgドープCdS、CuドープCdS、AgドープCdSe、CuドープCdSe、AgドープZnS、CuドープZnS、ZnS被覆CuInS、CsPbBr量子ドットが好ましく、その合成方法は、従来のいずれかの方法で製造してもよい。 In step (1), the semiconductor nanocrystals are prepared by a liquid phase method and are coated with oleylamine, oleic acid, dodecanethiol ligands, octadecylamine, hexadecylamine, stearic acid, octanethiol, myristic acid, and tributylphosphine. , trioctylphosphine, phosphate groups, phosphate esters, intrinsic quantum dots, doped quantum dots, heterostructure nanocrystals and perovskite quantum dots. Ag-doped CdS, Cu-doped CdS, Ag-doped CdSe, Cu-doped CdSe, Ag-doped ZnS, Cu-doped ZnS, ZnS-coated CuInS 2 , CsPbBr 3 quantum dots produced by a liquid phase method are preferred, and their synthesis methods are conventional. You may manufacture by either method.

具体的な製造ステップは以下のとおりである。 Specific manufacturing steps are as follows.

ステップ(2)において、3D印刷ペーストの配合は以下を含む。製造された半導体ナノ結晶に対して表面配位子処理を行い、クロロホルム、トルエン等の油相有機溶媒、又は水、DMF等の水相溶媒に分散させて高分散な半導体ナノ結晶ゾルを得て、該半導体ナノ結晶ゾルを3D印刷原材料と均一に混合すると、半導体ナノ結晶を十分に分散させ、3D印刷ペーストを得ることができる。 In step (2), formulation of the 3D printing paste includes: The produced semiconductor nanocrystals are subjected to a surface ligand treatment and dispersed in an oil phase organic solvent such as chloroform or toluene, or an aqueous phase solvent such as water or DMF to obtain a highly dispersed semiconductor nanocrystal sol. When the semiconductor nanocrystal sol is evenly mixed with 3D printing raw materials, the semiconductor nanocrystals can be well dispersed to obtain a 3D printing paste.

特に、前記半導体ナノ結晶ゾル中の半導体ナノ結晶の濃度は0.01wt%から99wt%であり、前記半導体ナノ結晶ゾルと有機高分子ポリマーマトリックスの質量比は20%以下である。 In particular, the concentration of semiconductor nanocrystals in the semiconductor nanocrystal sol ranges from 0.01 wt% to 99 wt%, and the mass ratio of the semiconductor nanocrystal sol to the organic polymer matrix is less than 20%.

ステップ(3)において、スプレーヘッド直径については、スプレーヘッド直径が大きいほど、吐出が容易になり、印刷線が太く、印刷精度が低く、そしてスプレーヘッド直径が小さいほど、吐出線が細くなり、印刷物体の表面が滑らかになり、精度が高くなる。スプレーヘッド直径の範囲は0.01~0.9mmであってもよく、実際に必要な印刷精度に応じて、対応するサイズのスプレーヘッドを選択する。 In step (3), for the spray head diameter, the larger the spray head diameter, the easier the ejection, the thicker the printing line, the lower the printing accuracy, and the smaller the spray head diameter, the finer the ejection line, the better the printing. The surface of the object becomes smoother and the accuracy increases. The range of the spray head diameter can be 0.01-0.9 mm, and according to the actual required printing accuracy, the corresponding size of the spray head is selected.

ステップ(3)において、印刷距離については、印刷スプレーヘッドから印刷プラットフォームまでの高さは印刷精度に大きく影響する。印刷距離が高すぎると、押し出される線は印刷プラットフォームにおける押し出された線と完全にくっつかなくなり、印刷ずれ等の現象が発生し、印刷距離が低すぎると、印刷された物体はスプレーヘッドに押圧され又は削り取られる場合があり、同様に印刷精度が低下する。印刷プラットフォームとノズルとの距離は0.01~1mmとしてもよい。例えば、スプレーヘッド直径が0.2mmである条件下で、印刷プラットフォームとノズルとの距離は0.2mmとしてもよい。 In step (3), for the printing distance, the height from the printing spray head to the printing platform greatly affects the printing accuracy. If the printing distance is too high, the extruded line will not be completely attached to the extruded line on the printing platform, causing phenomena such as printing deviation, and if the printing distance is too low, the printed object will be pressed against the spray head. Or it may be scraped off, and the printing accuracy is similarly reduced. The distance between the printing platform and the nozzles may be 0.01-1 mm. For example, under the condition that the spray head diameter is 0.2 mm, the distance between the printing platform and the nozzle may be 0.2 mm.

ステップ(3)において、印刷速度については、印刷速度が速すぎると、押し出される印刷材が適時に前の印刷材にくっつくことができないため、ブリッジ現象が発生し、印刷速度が遅すぎると、押し出される印刷材がカールするため、印刷精度に影響を及ぼす。印刷速度が0.01~100mm/sにあり、例えば10mm/sであると、印刷線は均一で且つ元の形状を維持できる。印刷速度v、スプレーヘッド直径d、及び印刷プラットフォームとノズルとの距離hは、以下の式によって得られる以下の関係がある。 In step (3), as for the printing speed, if the printing speed is too fast, the extruded printing material cannot stick to the previous printing material in a timely manner, resulting in a bridging phenomenon; The printing material curls, which affects the printing accuracy. When the printing speed is between 0.01 and 100 mm/s, for example 10 mm/s, the printed line can be uniform and keep its original shape. The printing speed v, the spray head diameter d, and the printing platform to nozzle distance h have the following relationships given by the following equations.

v=α*d+β;β=10*(h-d)+γ(式中、α、β及びγはいずれも定数である)
hがd以上である場合、αは10から100の範囲にあり、γは-10から10の範囲にあり、
hがdよりも小さい場合、αは80~500の範囲にあり、γは-10から20の範囲にある。
v = α * d + β; β = 10 * (hd) + γ (where α, β and γ are constants)
when h is greater than or equal to d, α ranges from 10 to 100 and γ ranges from −10 to 10;
When h is less than d, α ranges from 80 to 500 and γ ranges from -10 to 20.

ステップ(4)において、微細構造前駆体光学デバイスの構築に基づいて高温加熱によって成形し、温度の選択範囲は摂氏50から180度であり、昇温レートは1分当たり摂氏1~20度である。高温加熱成形段階は1つ又は複数の特定の温度を維持し、各段階の保温時間は0.5から24時間とし、さらに、高い光取出し効果を有する半導体ナノ結晶光学デバイスの微細構造の構築を実現する。 In step (4), molding by high temperature heating according to the construction of the microstructure precursor optical device, the temperature selection range is 50 to 180 degrees Celsius, and the heating rate is 1 to 20 degrees Celsius per minute. . The high-temperature hot-molding step maintains one or more specific temperatures, and the incubation time of each step is 0.5 to 24 hours, furthermore, the construction of the microstructure of the semiconductor nanocrystalline optical device with high light extraction effect. Realize.

有益な効果
1、本発明は、3D印刷技術及び加熱処理によって高い光取出し効果を有する微細構造の構築を実現し、従来法により鋳造されたバルクデバイスに比べて、正面の光取出し率は約33%から最大で約92.3%まで向上することができる。正面の光取出し効果の著しい向上により、デバイスの発光効率が著しく向上できる。デバイス発光のエネルギー節約からも、コロイド量子ドットの効率的な利用からも、優れた有益な効果を示している。
Beneficial Effects 1. The present invention realizes the construction of microstructures with high light extraction efficiency by 3D printing technology and heat treatment, and the front light extraction rate is about 33% compared to bulk devices cast by conventional methods. % up to about 92.3%. A significant improvement in the front light extraction effect can significantly improve the luminous efficiency of the device. Both from energy savings in device emission and from efficient utilization of colloidal quantum dots, significant beneficial effects are demonstrated.

2、本発明の強度が制御可能な半導体ナノ結晶光電子デバイスの3D印刷方法は、半導体ナノ結晶溶液を高光学特性の有機ポリマーと十分に混合して3D印刷技術による成形を行い、微細構造を構築することで、高い光取出し効果を有するナノ結晶デバイスを得て、且つ従来の技術では実現が困難な異方性デバイスを得ることもできる。微細構造の構築によって、デバイスの内部全反射による光取出し効率低下という問題を軽減でき、半導体ナノ結晶デバイスの光学特性が大幅に向上し、且つ3D印刷に固有の利点が維持され、付加製造の方式により大量の原材料を節約でき、少量の半導体ナノ結晶だけでデバイスの性能を保証でき、材料が節約されて効率が高い。 2. The 3D printing method of the semiconductor nanocrystal optoelectronic device with controllable strength of the present invention is to fully mix the semiconductor nanocrystal solution with the organic polymer with high optical properties and perform molding by 3D printing technology to build a microstructure. By doing so, it is possible to obtain a nanocrystalline device having a high light extraction effect and also obtain an anisotropic device that is difficult to achieve with conventional techniques. The construction of microstructures can alleviate the problem of reduced light extraction efficiency due to total internal reflection of the device, greatly improve the optical properties of semiconductor nanocrystalline devices, and maintain the inherent advantages of 3D printing, making it a method of additive manufacturing. Therefore, a large amount of raw materials can be saved, only a small amount of semiconductor nanocrystals can guarantee the performance of the device, and the material is saved and the efficiency is high.

3、本発明は3D印刷技術を半導体ナノ結晶材料のマクロ印刷に応用しており、一方で、ナノ結晶をマトリックスに高度に分散させて、ナノ結晶の利用効率を向上させることができ、他方で、微細構造を構築することでデバイスの光学効果を向上させることができ、このような技術によれば、少量のナノ結晶だけで豊富な光電子用途を得ることができる。3D印刷のような進歩的なマイクロナノクロススケール製造技術と光電子特性を有する半導体ナノ結晶材料とを組み合わせ、高光学特性の有機ポリマーによって三次元の複雑な微細構造の構築を実現するとともに、コロイド状ナノ結晶の本来の豊富な光電子特性を最大限に維持し、コロイド状ナノ結晶量子ドット材料の実際の応用において、重要な科学的及び応用的価値を持っている。 3. The present invention applies 3D printing technology to the macro-printing of semiconductor nanocrystalline materials, on the one hand, the nanocrystals can be highly dispersed in the matrix to improve the utilization efficiency of nanocrystals, and on the other hand, , the optical effects of devices can be enhanced by building microstructures, and such techniques can provide a wealth of optoelectronic applications with only a small amount of nanocrystals. Combining advanced micro-nano cross-scale manufacturing techniques such as 3D printing with semiconductor nanocrystalline materials with optoelectronic properties, we have realized the construction of three-dimensional complex microstructures by organic polymers with high optical properties, and colloidal materials. It preserves the original rich optoelectronic properties of nanocrystals to the maximum extent, and has important scientific and application value in the practical application of colloidal nanocrystal quantum dot materials.

従来の鋳造プロセスによって製造されたバルク量子ドットデバイスであり、aはデバイスのマクロ形態であり、bは正面発光効果が33.3%である蛍光テスト結果である。Bulk quantum dot device fabricated by conventional casting process, a is the macro morphology of the device, b is the fluorescence test result with front emission efficiency of 33.3%. PMMAをマトリックスとして印刷されたデバイスである。aは蛍光顕微鏡下でのCdS:Agナノ結晶/PMMAデバイスの内部微細構造図であり、bは正面発光効果が45.7%であるCdS:Agナノ結晶/PMMAの蛍光テスト結果である。It is a device printed with PMMA as a matrix. a is the internal microstructure view of CdS:Ag nanocrystal/PMMA device under fluorescence microscope, b is the fluorescence test result of CdS:Ag nanocrystal/PMMA with front emission efficiency of 45.7%. PMMAをマトリックスとして印刷されたデバイスである。aは蛍光顕微鏡下でのCdS:Agナノ結晶/PMMAデバイスの内部微細構造図であり、bは正面発光効果が92.3%であるCdS:Agナノ結晶/PMMAの蛍光テスト結果である。It is a device printed with PMMA as a matrix. a is the internal microstructure view of CdS:Ag nanocrystal/PMMA device under fluorescence microscope, b is the fluorescence test result of CdS:Ag nanocrystal/PMMA with front emission efficiency of 92.3%. PCをマトリックスとして印刷されたCsPbBr量子ドット/PCデバイスのマクロ発光写真である。Macroluminescence photographs of CsPbBr 3 QD/PC devices printed with PC as a matrix. PSをマトリックスとして印刷されたデバイスである。aは蛍光顕微鏡下でのCuInS@ZnSナノ結晶/PSデバイスの内部微細構造図であり、bは正面発光効果が54.6%であるCuInS@ZnSナノ結晶/PSの蛍光テスト結果である。This is a device printed using PS as a matrix. a is the internal microstructure view of CuInS2 @ZnS nanocrystals/PS device under fluorescence microscope, b is the fluorescence test result of CuInS2 @ZnS nanocrystals/PS with front emission efficiency of 54.6%. . PSをマトリックスとして印刷されたデバイスである。aは蛍光顕微鏡下でのCuInS@ZnSナノ結晶/PSデバイスの内部微細構造図であり、bは正面発光効果が81.1%であるCuInS@ZnSナノ結晶/PSの蛍光テスト結果である。It is a device printed with PS as a matrix. a is the internal microstructure view of CuInS2 @ZnS nanocrystals/PS device under fluorescence microscope, b is the fluorescence test result of CuInS2 @ZnS nanocrystals/PS with front emission efficiency of 81.1%. . (a)は実施例2及び実施例3のマクロ蛍光写真であり、(b)は実施例6及び実施例7のマクロ蛍光写真である。(a) is a macro fluorescence photograph of Examples 2 and 3, and (b) is a macro fluorescence photograph of Examples 6 and 7. FIG.

以下において、具体的な実施例を参照しながら、本発明の内容をさらに説明するが、本発明への制限として解釈されるべきではない。特に明記しない限り、実施例で使用される技術的手段は当業者に周知の従来の手段であり、特に説明しない限り、本発明で使用される試薬、方法及び装置は本技術分野における従来の試薬、方法及び装置である。
実施例1
In the following, the subject matter of the invention is further described with reference to specific examples, which should not be construed as a limitation to the invention. Unless otherwise specified, the technical means used in the examples are conventional means well known to those skilled in the art, and unless otherwise specified, the reagents, methods and devices used in the present invention are conventional reagents in the art. , a method and apparatus.
Example 1

本実施例はCuInS量子ドットを例として、半導体ナノ結晶デバイスを製造する。 This example takes CuInS2 quantum dots as an example to fabricate a semiconductor nanocrystalline device.

高い光取出し効果を有する半導体ナノ結晶デバイスの微細構造の構築方法であって、具体的なステップは以下のとおりである。 A method for constructing a microstructure of a semiconductor nanocrystal device with high light extraction effect, the specific steps are as follows.

半導体ナノ結晶の製造
まず0.08molの塩化第一銅及び0.008の酢酸インジウムをフラスコ中に加え、2mLのドデカンチオール、2mLのオレイルアミン、20mLのオクタデセンを加え、N保護下で撹拌し、230℃まで昇温した時に反応を2h続け、続いて自然に室温まで冷却する。8000rpmで20min遠心分離し、底部に得られた沈殿物を30mLのクロロホルムに分散させ、CuInS量子ドット溶液を得る。
Preparation of semiconductor nanocrystals First add 0.08 mol cuprous chloride and 0.008 indium acetate into the flask, add 2 mL dodecanethiol, 2 mL oleylamine, 20 mL octadecene, stir under N2 protection, The reaction continues for 2 h when the temperature is raised to 230°C, followed by natural cooling to room temperature. Centrifuge at 8000 rpm for 20 min and disperse the precipitate obtained at the bottom in 30 mL of chloroform to obtain a CuInS2 quantum dot solution.

印刷ペーストの配合
50℃の水浴で加熱する状態において、1mLのCuInS量子ドット溶液を10mLのクロロホルムに分散させ、5gのPMMA粉末(500メッシュ)及び5gのPS粉末(800メッシュ)を加え、さらにPMMA及びPSとドープ量子ドットとを均一に混合するように5mLのトルエンを加え、さらにポリ乳酸を溶解してドープ量子ドットと均一に混合するように10mLのクロロホルムを加え、且つ体系が粘稠になるまで持続的に撹拌し、流れが困難となると加熱を停止し、取り出して3D印刷ペーストを得る。
Printing Paste Formulation Disperse 1 mL of CuInS2 quantum dot solution in 10 mL of chloroform, add 5 g of PMMA powder (500 mesh) and 5 g of PS powder (800 mesh) under the condition of heating in a water bath at 50° C., and add Add 5 mL of toluene to uniformly mix the PMMA and PS with the doped quantum dots, add 10 mL of chloroform to dissolve the polylactic acid and uniformly mix with the doped quantum dots, and make the system viscous. Stir continuously until it becomes difficult to flow, stop heating and take out to obtain a 3D printing paste.

3D印刷成形
製造されたペーストを印刷装置のバレルに入れ、直径が0.1mmの印刷スプレーヘッドを選択し、コンピュータで3Dモデルを作成し、且つスライス等のパラメータを設定し、印刷速度は10mm/sで、印刷温度は25℃で、印刷プラットフォームの高さは0.12mmであり、3D印刷を行い、半導体ナノ結晶デバイスの半完成品を得る。
3D printing molding Put the produced paste into the barrel of the printing device, select a printing spray head with a diameter of 0.1 mm, create a 3D model on the computer, and set parameters such as slicing, and the printing speed is 10 mm/ s, the printing temperature is 25° C., the height of the printing platform is 0.12 mm, and 3D printing is performed to obtain semi-finished products of semiconductor nanocrystalline devices.

半完成品の硬化
本実施例で使用されるのはPMMA材料であり、印刷完了後にオーブンに入れ、2℃/minで室温から60℃まで昇温し、12時間保温し、さらに2℃/minで120℃まで昇温し、12時間保温する。自然に室温まで冷却し、高い光取出し効果を有する光学デバイスを得る。
Curing of the semi-finished product The PMMA material used in this example is placed in an oven after printing is completed, and the temperature is raised from room temperature to 60°C at a rate of 2°C/min, maintained for 12 hours, and further heated at 2°C/min. The temperature is raised to 120°C with , and the temperature is maintained for 12 hours. To obtain an optical device which is naturally cooled to room temperature and has a high light extraction effect.

結論
デバイスの正面光透過効果は48.6%に達し、従来の鋳造プロセスによって得られたデバイス(図1に示される33.3%)よりも明らかに高い。
実施例2
Conclusion The front light transmission effect of the device reaches 48.6%, which is obviously higher than the device obtained by conventional casting process (33.3% shown in Fig. 1).
Example 2

本実施例はドープ量子ドットCdS:Agを例として、ホスト半導体ナノ結晶デバイスを製造する。 This example uses doped quantum dots CdS:Ag as an example to fabricate a host semiconductor nanocrystal device.

強度が制御可能な半導体ナノ結晶光電子デバイスの3D印刷方法であって、具体的なステップは以下のとおりである。 A 3D printing method for semiconductor nanocrystalline optoelectronic devices with controllable intensity, the specific steps are as follows.

半導体ナノ結晶の製造
まずAgのトルエンゾルを製造し、即ち10mLのオレイン酸、20mLのオレイルアミン及び0.34gのAgNOをフラスコ中に加え、50℃で5min撹拌し、続いて0.06gのFe(NO・4HOを加え、温度を120℃まで高め、徐々に昇温して撹拌し、120℃まで昇温した時に反応を1h続け、体積比が1:3のエタノールを加え、続いて5000rpmで8min遠心分離し、底部に得られた沈殿物を14mLのトルエンに分散させ、4nm Agトルエンゾルを得る。
Preparation of semiconductor nanocrystals Firstly, a toluene sol of Ag was prepared, namely, 10 mL of oleic acid, 20 mL of oleylamine and 0.34 g of AgNO3 were added into a flask, stirred at 50 °C for 5 min, followed by 0.06 g of Fe ( NO 3 ) 3.4H 2 O was added, the temperature was increased to 120°C, the temperature was gradually increased and stirred, the reaction was continued for 1 h when the temperature was increased to 120°C, ethanol was added in a volume ratio of 1:3, Subsequently, the mixture is centrifuged at 5000 rpm for 8 minutes, and the precipitate obtained at the bottom is dispersed in 14 mL of toluene to obtain a 4 nm Ag toluene sol.

次に、硫黄前駆体溶液を調製し、即ち10mlのオレイルアミン、20mLのオレイン酸及び128mgの硫黄粉末をフラスコに入れ、室温で撹拌し、100℃で反応物を40min撹拌し、その中に30mlのトルエンを加え、均一に撹拌して、硫黄前駆体溶液を得る。 Next, a sulfur precursor solution was prepared, i.e., 10 ml of oleylamine, 20 mL of oleic acid and 128 mg of sulfur powder were placed in a flask, stirred at room temperature, and the reaction was stirred at 100° C. for 40 min, into which 30 ml of Toluene is added and uniformly stirred to obtain a sulfur precursor solution.

AgSナノ粒子ゾルを製造し、即ち350μLの単分散5nm Agのトルエンゾルを25mLの丸底フラスコに入れ、その中に6mlのトルエン及び3mLの硫黄前駆体溶液を加え、50℃の水浴で反応物を1h撹拌し、適量のエタノールを加え、6000rpmで遠心分離によって10min洗浄し、単分散AgSナノ粒子を得る。それを12mlのトルエンに分散させ、AgSナノ粒子のトルエンゾルを得る。 Ag 2 S nanoparticle sol was prepared, i.e., 350 μL of toluene sol of monodisperse 5 nm Ag was placed in a 25 mL round-bottomed flask, into which 6 mL of toluene and 3 mL of sulfur precursor solution were added, and reacted in a water bath at 50°C. Stir the mass for 1 h, add appropriate amount of ethanol and wash by centrifugation at 6000 rpm for 10 min to obtain monodisperse Ag 2 S nanoparticles. Disperse it in 12 ml of toluene to obtain a toluene sol of Ag 2 S nanoparticles.

AgドープCdSナノ結晶を製造し、即ち上記で製造された単分散AgSナノ粒子ゾルに、撹拌しながら0.2mLのオレイン酸、0.1mLのオレイルアミン及び適量のCd(NO・4HOメタノール溶液(0.1g/ml)を加え、室温で3min磁気撹拌し、0.1mLのTBPを加え、60℃の水浴で反応物を2h撹拌し、エタノールを加え、5000rpmで遠心分離によって8min洗浄し、CdS:Agドープ量子ドットを得る。 Ag-doped CdS nanocrystals were prepared, i.e., 0.2 mL of oleic acid, 0.1 mL of oleylamine and an appropriate amount of Cd( NO3 ) 2 . Add 4H 2 O methanol solution (0.1 g/ml), magnetically stir at room temperature for 3 min, add 0.1 mL of TBP, stir the reaction in a 60° C. water bath for 2 h, add ethanol and centrifuge at 5000 rpm. for 8 min to obtain CdS:Ag doped quantum dots.

印刷ペーストの配合
50℃の水浴で加熱する状態において、製造された高純度のCdS:Agドープ量子ドットを1mLのトルエンに溶解し、5gのPMMA粉末(500メッシュ)を加え、さらにPMMAドープ量子ドットを均一に混合するように5mLトルエンを加え、且つ体系が粘稠になるまで持続的に撹拌し、流れが困難となると加熱を停止し、取り出して3D印刷ペーストを得る。
Formulation of printing paste Dissolve the produced high-purity CdS:Ag-doped quantum dots in 1 mL of toluene, add 5 g of PMMA powder (500 mesh), and then add PMMA-doped quantum dots under the condition of heating in a water bath at 50°C. Add 5 mL toluene to mix evenly, and continuously stir until the system becomes viscous, stop heating when it becomes difficult to flow, and take out to obtain 3D printing paste.

3D印刷成形
製造されたペーストを印刷装置のバレルに入れ、直径が0.5mmの印刷スプレーヘッドを選択し、コンピュータで3Dモデルを作成し、且つスライス等のパラメータを設定し、印刷速度は15mm/sで、印刷温度は25℃で、印刷プラットフォームの高さは0.50mmであり、3D印刷を行い、半導体ナノ結晶デバイスの半完成品を得る。
3D printing molding Put the produced paste into the barrel of the printing device, select a printing spray head with a diameter of 0.5 mm, create a 3D model on the computer, and set parameters such as slicing, printing speed is 15 mm/ s, the printing temperature is 25° C., the height of the printing platform is 0.50 mm, and 3D printing is performed to obtain semi-finished products of semiconductor nanocrystalline devices.

半完成品の硬化
印刷完了後の半完成品をオーブンに入れ、2℃/minで室温から80℃まで昇温し、24時間保温する。自然に室温まで冷却し、高い光取出し効果を有する光学デバイスを得る。
Curing of semi-finished product After printing, the semi-finished product is placed in an oven, heated from room temperature to 80°C at a rate of 2°C/min, and kept at that temperature for 24 hours. To obtain an optical device which is naturally cooled to room temperature and has a high light extraction effect.

結論
図2aは得られた光学デバイスの蛍光顕微鏡による写真を示し、その蛍光テスト結果は図2bに示すように、デバイスの正面光透過効果が45.7%に達し、従来の鋳造プロセスによって得られたデバイス(図1に示される33.3%)よりも明らかに高い。
実施例3
Conclusion Fig. 2a shows a fluorescence microscope photograph of the obtained optical device, and the fluorescence test result shows that the frontal light transmission effect of the device reaches 45.7%, as shown in Fig. 2b, which is obtained by the conventional casting process. is clearly higher than the device (33.3% shown in FIG. 1).
Example 3

実施例2をもとに、3D印刷の技術的パラメータ及び処理温度を変更することでデバイスの内部微細構造への制御を実現する。 Based on Example 2, the control over the internal microstructure of the device is achieved by changing the technical parameters of 3D printing and the processing temperature.

元の実施例2の印刷ペーストの配合を維持することを前提として以下のように行う。 Assuming that the original Example 2 printing paste formulation is maintained, proceed as follows.

3D印刷成形
製造されたペーストを印刷装置のバレルに入れ、直径が0.30mmの印刷スプレーヘッドを選択し、コンピュータで3Dモデルを作成し、且つスライス等のパラメータを設定し、印刷速度は30mm/sで、印刷温度は25℃で、印刷プラットフォームの高さは0.35mmであり、3D印刷を行い、半導体ナノ結晶デバイスの半完成品を得る。
3D printing molding Put the produced paste into the barrel of the printing device, select a printing spray head with a diameter of 0.30mm, create a 3D model on the computer, and set parameters such as slicing, printing speed is 30mm/ s, the printing temperature is 25° C., the height of the printing platform is 0.35 mm, and 3D printing is performed to obtain semi-finished products of semiconductor nanocrystalline devices.

半完成品の硬化
印刷完了後の半完成品をオーブンに入れ、2℃/minで室温から50℃まで昇温し、8時間保温し、5℃/minで120℃まで昇温し、12時間保温し、80℃まで降温し、15時間保温し、自然に室温まで冷却し、高い光取出し効果を有する光学デバイスを得る。
Curing of the semi-finished product After printing, the semi-finished product was placed in an oven, heated from room temperature to 50°C at a rate of 2°C/min, maintained for 8 hours, and heated to 120°C at a rate of 5°C/min for 12 hours. It is kept warm, cooled to 80° C., kept warm for 15 hours, and naturally cooled to room temperature to obtain an optical device having a high light extraction effect.

結論
図3aは得られた光学デバイスの蛍光顕微鏡による写真を示し、その蛍光テスト結果は図3bに示すように、デバイスの正面光透過効果が92.3%に達し、従来の鋳造プロセスによって得られたデバイス(図1に示される33.3%及び実施例2の45.7%)よりも明らかに高い。
実施例4
Conclusion Fig. 3a shows a fluorescence microscope photograph of the obtained optical device, and the fluorescence test result shows that the front light transmission effect of the device reaches 92.3%, as shown in Fig. 3b. significantly higher than that of the other devices (33.3% shown in FIG. 1 and 45.7% in Example 2).
Example 4

本実施例はCsPbBr量子ドットを例として、半導体ナノ結晶デバイスを製造する。 This example takes CsPbBr3 quantum dots as an example to fabricate a semiconductor nanocrystal device.

CsPbBr量子ドットの製造
0.069gのPbBrを秤量して三口フラスコに入れ、5mLの1-オクタデセンを加え、室温で10min磁気撹拌し、均一に混合した後、真空オーブンに入れて120℃の温度で1h真空乾燥し、0.5mLのオレイルアミン、0.5mLのオレイン酸を加え、10min磁気撹拌し、均一に混合した後、ビーカーを油浴に入れて180℃まで昇温し、PbBrが十分に溶解するまで保温した後、前のステップで製造されたCs前駆体溶液を注射器で0.4mL吸い取ってフラスコ中に注入し、体系は瞬時に変色し、すぐにフラスコを取り出し、氷水に入れて室温まで急速に冷却し、過剰の酢酸エチルで洗浄し、遠心分離し(8000rpm、10min)、沈殿物はCsPbBr量子ドットであり、10mLのトルエンに分散させて使用に備える。
Preparation of CsPbBr3 Quantum Dots Weigh 0.069 g of PbBr2 into a three-necked flask, add 5 mL of 1-octadecene, magnetically stir at room temperature for 10 min, mix evenly, and then place in a vacuum oven at 120 °C. Vacuum dry at temperature for 1 h, add 0.5 mL oleylamine, 0.5 mL oleic acid, magnetically stir for 10 min, mix evenly, then place the beaker in an oil bath and heat up to 180 ° C, PbBr 2 After being warmed until fully dissolved, 0.4 mL of the Cs precursor solution prepared in the previous step was sucked up with a syringe and injected into the flask. It is rapidly cooled to room temperature with , washed with excess ethyl acetate, centrifuged (8000 rpm, 10 min), the precipitate is CsPbBr 3 QDs, dispersed in 10 mL of toluene and ready for use.

印刷ペーストの配合
50℃の水浴で加熱する状態において、高純度のCsPbBr量子ドットを3mL取り出し、15gのPC粉末(800メッシュ)を加え、さらにPCを溶解してドープ量子ドットと均一に混合するように15mLのトルエンを加え、且つ体系が粘稠になるまで持続的に撹拌し、流れが困難となると加熱を停止し、取り出して3D印刷ペーストを得る。
Formulation of printing paste Under the condition of being heated in a water bath at 50°C, take out 3 mL of high purity CsPbBr3 quantum dots, add 15 g of PC powder (800 mesh), further dissolve the PC and mix with the doped quantum dots evenly. Add 15 mL of toluene and stir continuously until the system becomes viscous, stop heating when it becomes difficult to flow, and take out to obtain 3D printing paste.

3D印刷成形
製造されたペーストを印刷装置のバレルに入れ、直径が0.8mmの印刷スプレーヘッドを選択し、コンピュータで3Dモデルを作成し、且つスライス等のパラメータを設定し、印刷速度は80mm/sで、印刷温度は25℃で、印刷プラットフォームの高さは0.75mmであり、3D印刷を行い、半導体ナノ結晶デバイスの半完成品を得る。
3D printing molding Put the produced paste into the barrel of the printing device, select a printing spray head with a diameter of 0.8mm, create a 3D model on the computer, and set the parameters such as slicing, printing speed is 80mm/ s, the printing temperature is 25° C., the height of the printing platform is 0.75 mm, and 3D printing is performed to obtain semi-finished products of semiconductor nanocrystalline devices.

半完成品の硬化
印刷完了後の半完成品をオーブンに入れ、5℃/minで室温から80℃まで昇温し、5時間保温する。5℃/minで120℃まで昇温し、12時間保温し、自然に室温まで冷却し、高い光取出し効果を有する光学デバイスを得る。
Curing of Semi-Finished Product The semi-finished product after printing is placed in an oven, heated from room temperature to 80° C. at a rate of 5° C./min, and kept at that temperature for 5 hours. The temperature is raised to 120°C at a rate of 5°C/min, the temperature is maintained for 12 hours, and the temperature is naturally cooled to room temperature to obtain an optical device having a high light extraction effect.

図4に示すように、得られた光学デバイスは明らかな蛍光透過効果を有する。 As shown in FIG. 4, the resulting optical device has obvious fluorescence transmission effect.

結論
デバイスの正面光透過効果は66.2%に達し、従来の鋳造プロセスによって得られたデバイス(図1に示される33.3%)よりも明らかに高い。
実施例5
Conclusion The front light transmission effect of the device reaches 66.2%, which is obviously higher than the device obtained by conventional casting process (33.3% shown in Fig. 1).
Example 5

本実施例はドープ量子ドットCdS:Cuを例として、半導体ナノ結晶デバイスを製造する。 This example takes doped quantum dots CdS:Cu as an example to fabricate a semiconductor nanocrystalline device.

半導体ナノ結晶の製造
まずステアリン酸銅粉末を製造し、即ち70mLのn-ヘキサン、5mmol(1.5323g)のステアリン酸ナトリウムを250mLの丸底フラスコに入れて3min撹拌し、続いて40mLのメタノールを加えて撹拌を3min続ける。0.25mol/Lの二水和塩化銅メタノール溶液を10mL調製し且つ上記混合溶液に滴下する。最後に10mLの高純水を加え、52℃の水浴で反応物を4h撹拌し、フラスコの下層にある青色のステアリン酸銅を取り出し、適量のメタノールを加え、5500rpmで遠心分離によって8min洗浄し、60℃のオーブンに入れて乾燥し且つ粉末に粉砕する。
Preparation of semiconductor nanocrystals Copper stearate powder was first prepared, that is, 70 mL of n-hexane, 5 mmol (1.5323 g) of sodium stearate were placed in a 250 mL round-bottomed flask and stirred for 3 min, followed by 40 mL of methanol. Stirring is continued for an additional 3 min. 10 mL of 0.25 mol/L dihydrate copper chloride methanol solution is prepared and added dropwise to the above mixed solution. Finally, add 10 mL of high-purity water, stir the reaction in a water bath at 52°C for 4 h, remove the blue copper stearate in the lower layer of the flask, add an appropriate amount of methanol, wash by centrifugation at 5500 rpm for 8 min, and wash at 60°C. oven to dry and grind to powder.

次に、CuSナノ結晶を製造し、即ち0.25mmol(157.7mg)の上記ステアリン酸銅粉末、5mLのオレイン酸、3mLのオレイルアミンを、10mLの反応釜に入れて5min撹拌し、0.25mLのn-ドデカンチオールを上記混合液に加え、均一に撹拌し、密封した後に200℃のオーブンに2.5h静置し、茶色の溶液を1:3エタノール、5500rpmで、遠心分離によって8min洗浄し、続いて8mLのトルエンに分散させる。 Next, Cu 2 S nanocrystals are prepared: 0.25 mmol (157.7 mg) of the above copper stearate powder, 5 mL of oleic acid, 3 mL of oleylamine are placed in a 10 mL reactor and stirred for 5 min, .25 mL of n-dodecanethiol was added to the above mixture, stirred uniformly, sealed and placed in an oven at 200°C for 2.5 h, and the brown solution was centrifuged in 1:3 ethanol at 5500 rpm for 8 min. Wash and then disperse in 8 mL of toluene.

CuドープCdS量子ドットを製造し、即ち8mLの上記CuSナノ結晶のトルエンゾル及び1mLの0.1g/mLのCd(NO・4HOメタノール溶液を、25mLの丸底フラスコに入れて均一に撹拌し、続いて0.1mLのTBPを加え、56℃の水浴で反応物を2h撹拌し、適量のエタノールを加え、6500rpmで遠心分離によって8min洗浄し、1mLのトルエンに分散させて完成品を得る。上記ステップにおいて、Cd2+の添加量及び反応温度を制御することで、異なるCu濃度でドープされたCdSナノ結晶を合成することができる。 Cu-doped CdS quantum dots were prepared: 8 mL of the above Cu 2 S nanocrystal toluene sol and 1 mL of 0.1 g/mL Cd(NO 3 ) 2.4H 2 O methanol solution were placed in a 25 mL round bottom flask. and then add 0.1 mL of TBP, stir the reaction in a water bath at 56° C. for 2 h, add appropriate amount of ethanol, wash by centrifugation at 6500 rpm for 8 min, and disperse in 1 mL of toluene. get the finished product. By controlling the amount of Cd 2+ added and the reaction temperature in the above steps, CdS nanocrystals doped with different Cu concentrations can be synthesized.

印刷ペーストの配合
50℃の水浴で加熱する状態において、製造された高純度のCdS:Cuドープ量子ドットを1mLのクロロホルムに溶解し、2.5gのPMMA(500メッシュ)を加え、さらにポリ乳酸を溶解してドープ量子ドットと均一に混合するように5mLのクロロホルムを加え、且つ体系が粘稠になるまで持続的に撹拌し、流れが困難となると加熱を停止し、取り出して3D印刷ペーストを得る。
Formulation of printing paste The high-purity CdS:Cu-doped quantum dots produced were dissolved in 1 mL of chloroform, 2.5 g of PMMA (500 mesh) was added, and polylactic acid was added, under the condition of heating in a water bath at 50 °C. Add 5 mL of chloroform to dissolve and mix with the doped quantum dots uniformly, and continuously stir until the system becomes viscous, stop heating when it becomes difficult to flow, and take out to obtain a 3D printing paste. .

3D印刷成形
製造されたペーストを印刷装置のバレルに入れ、直径が0.12mmの印刷スプレーヘッドを選択し、コンピュータで3Dモデルを作成し、且つスライス等のパラメータを設定し、印刷速度は8mm/sで、印刷温度は25℃で、印刷プラットフォームの高さは0.1mmであり、3D印刷を行い、半導体ナノ結晶デバイスの半完成品を得る。
3D printing molding Put the produced paste into the barrel of the printing device, select a printing spray head with a diameter of 0.12mm, create a 3D model on the computer, and set parameters such as slicing, printing speed is 8mm/ s, the printing temperature is 25° C., the height of the printing platform is 0.1 mm, and 3D printing is performed to obtain semi-finished products of semiconductor nanocrystalline devices.

半完成品の硬化
印刷完了後の半完成品をオーブンに入れ、5℃/minで室温から80℃まで昇温し、5時間保温する。5℃/minで120℃まで昇温し、12時間保温し、自然に室温まで冷却し、高い光取出し効果を有する光学デバイスを得る。
Curing of Semi-Finished Product The semi-finished product after printing is placed in an oven, heated from room temperature to 80° C. at a rate of 5° C./min, and kept at that temperature for 5 hours. The temperature is raised to 120°C at a rate of 5°C/min, the temperature is maintained for 12 hours, and the temperature is naturally cooled to room temperature to obtain an optical device having a high light extraction effect.

結論
デバイスの正面光透過効果は62.9%に達し、従来の鋳造プロセスによって得られたデバイス(図1に示される33.3%)よりも明らかに高い。
実施例6
Conclusion The frontal light transmission effect of the device reaches 62.9%, which is obviously higher than the device obtained by conventional casting process (33.3% shown in Fig. 1).
Example 6

本実施例はCuInS@ZnS量子ドットを例として、半導体ナノ結晶デバイスを製造する。 In this example, a semiconductor nanocrystal device is manufactured using CuInS 2 @ZnS quantum dots as an example.

強度が制御可能な半導体ナノ結晶光電子デバイスの3D印刷方法であって、具体的なステップは以下のとおりである。 A 3D printing method for semiconductor nanocrystalline optoelectronic devices with controllable intensity, the specific steps are as follows.

半導体ナノ結晶の製造
まず0.08molのヨウ化第一銅及び0.008の酢酸インジウムをフラスコ中に加え、2mLのドデカンチオール、2mLのオレイルアミン、20mLのオクタデセンを加え、N保護下で撹拌し、230℃まで昇温した時に反応を1h続ける。
Preparation of semiconductor nanocrystals First, add 0.08 mol of cuprous iodide and 0.008 mol of indium acetate into the flask, add 2 mL of dodecanethiol, 2 mL of oleylamine, 20 mL of octadecene, and stir under N2 protection. , the reaction is continued for 1 h when the temperature is raised to 230°C.

0.02mmolの酢酸亜鉛を6mLのオクタデセンに溶解し且つ2mLのオレイン酸を加える。注射器で溶液を4回に分けて元の体系に加える。15minの間隔で行う。最後の添加後に20min反応させ、自然に室温まで冷却する。8000rpmで20min遠心分離し、底部に得られた沈殿物を30mLのトルエンに分散させ、CuInS@ZnS量子ドット溶液を得る。 0.02 mmol of zinc acetate are dissolved in 6 mL of octadecene and 2 mL of oleic acid are added. Add the solution to the original system in 4 portions with a syringe. 15 min intervals. Allow to react 20 min after the last addition and cool naturally to room temperature. Centrifuge at 8000 rpm for 20 min and disperse the precipitate obtained at the bottom in 30 mL of toluene to obtain a CuInS 2 @ZnS quantum dot solution.

印刷ペーストの配合
25℃の水浴で加熱する状態において、1mLのCuInS@ZnS量子ドット溶液を、10mLのトルエンに分散させ、10gのPS粉末(800メッシュ)を加え、さらにPSをドープ量子ドットと均一に混合するように10mLのトルエンを加え、且つ体系が粘稠になるまで持続的に撹拌し、流れが困難となると加熱を停止し、取り出して3D印刷ペーストを得る。
Formulation of printing paste 1 mL of CuInS2@ZnS quantum dot solution was dispersed in 10 mL of toluene under the condition of heating in a water bath at 25°C, and 10 g of PS powder (800 mesh) was added, and PS was mixed with the doped quantum dots. Add 10 mL of toluene to mix evenly, and stir continuously until the system becomes viscous, stop heating when it becomes difficult to flow, and take out to obtain 3D printing paste.

3D印刷成形
製造されたペーストを印刷装置のバレルに入れ、直径が0.5mmの印刷スプレーヘッドを選択し、コンピュータで3Dモデルを作成し、且つスライス等のパラメータを設定し、印刷速度は50mm/sで、印刷温度は25℃で、印刷プラットフォームの高さは0.5mmであり、3D印刷を行い、半導体ナノ結晶デバイスの半完成品を得る。
3D printing molding Put the produced paste into the barrel of the printing device, select a printing spray head with a diameter of 0.5 mm, create a 3D model on the computer, and set parameters such as slicing, and the printing speed is 50 mm/ s, the printing temperature is 25° C., the height of the printing platform is 0.5 mm, and 3D printing is performed to obtain semi-finished products of semiconductor nanocrystalline devices.

半完成品の硬化
本実施例で使用されるのはPMMA材料であり、印刷完了後にオーブンに入れ、2℃/minで室温から60℃まで昇温し、12時間保温し、さらに2℃/minで120℃まで昇温し、12時間保温する。自然に室温まで冷却し、高い光取出し効果を有する光学デバイスを得る。
Curing of the semi-finished product The PMMA material used in this example is placed in an oven after printing is completed, and the temperature is raised from room temperature to 60°C at a rate of 2°C/min, maintained for 12 hours, and further heated at 2°C/min. The temperature is raised to 120°C with , and the temperature is maintained for 12 hours. To obtain an optical device which is naturally cooled to room temperature and has a high light extraction effect.

結論
図5aは得られた光学デバイスの蛍光顕微鏡による写真を示し、その蛍光テスト結果は図5bに示すように、デバイスの正面光透過効果が54.6%に達し、従来の鋳造プロセスによって得られたデバイス(図1に示される33.3%)よりも明らかに高い。
実施例7
Conclusion Fig. 5a shows a fluorescence microscope photograph of the obtained optical device, and the fluorescence test result shows that the front light transmission effect of the device reaches 54.6%, as shown in Fig. 5b, which is obtained by the conventional casting process. is clearly higher than the device (33.3% shown in FIG. 1).
Example 7

実施例6をもとに、3D印刷の技術的パラメータ及び処理温度を変更することでデバイスの内部微細構造への制御を実現する。 Based on Example 6, the control over the internal microstructure of the device is achieved by changing the technical parameters of 3D printing and the processing temperature.

元の実施例6の印刷ペーストの配合を維持することを前提として以下のように行う。 Assuming that the original Example 6 printing paste formulation is maintained, proceed as follows.

3D印刷成形
製造されたペーストを印刷装置のバレルに入れ、直径が0.50mmの印刷スプレーヘッドを選択し、コンピュータで3Dモデルを作成し、且つスライス等のパラメータを設定し、印刷速度は50mm/sで、印刷温度は25℃で、印刷プラットフォームの高さは0.48mmであり、3D印刷を行い、半導体ナノ結晶デバイスの半完成品を得る。
3D printing molding Put the produced paste into the barrel of the printing device, select a printing spray head with a diameter of 0.50 mm, create a 3D model on the computer, and set parameters such as slicing, and the printing speed is 50 mm/ s, the printing temperature is 25° C., the height of the printing platform is 0.48 mm, and 3D printing is performed to obtain semi-finished products of semiconductor nanocrystalline devices.

半完成品の硬化
本実施例で使用されるのはPMMA材料であり、印刷完了後にオーブンに入れ、2℃/minで室温から60℃まで昇温し、12時間保温し、さらに2℃/minで120℃まで昇温し、12時間保温する。自然に室温まで冷却し、高い光取出し効果を有する光学デバイスを得る。
Curing of the semi-finished product The PMMA material used in this example is placed in an oven after printing is completed, and the temperature is raised from room temperature to 60°C at a rate of 2°C/min, maintained for 12 hours, and further heated at 2°C/min. The temperature is raised to 120°C with , and the temperature is maintained for 12 hours. To obtain an optical device which is naturally cooled to room temperature and has a high light extraction effect.

結論
図6aは得られた光学デバイスの蛍光顕微鏡による写真を示し、その蛍光テスト結果は図6bに示すように、デバイスの正面光透過効果が81.1%に達し、従来の鋳造プロセスによって得られたデバイス(図1に示される33.3%及び実施例2の54.6%)よりも明らかに高い。
実施例8
Conclusion Fig. 6a shows a fluorescence microscope photograph of the obtained optical device, and the fluorescence test result shows that the front light transmission effect of the device reaches 81.1%, as shown in Fig. 6b, which is obtained by the conventional casting process. 33.3% shown in FIG. 1 and 54.6% in Example 2).
Example 8

本実施例はCsPbBr量子ドットを例として、半導体ナノ結晶デバイスを製造する。 This example takes CsPbBr3 quantum dots as an example to fabricate a semiconductor nanocrystal device.

CsPbBr量子ドットの製造
0.069gのPbBrを秤量して三口フラスコに入れ、5mLの1-オクタデセンを加え、室温で10min磁気撹拌し、均一に混合した後、真空オーブンに入れて120℃の温度で1h真空乾燥し、0.5mLのオレイルアミン、0.5mLのオレイン酸を加え、10min磁気撹拌し、均一に混合した後、ビーカーを油浴に入れて180℃まで昇温し、PbBrが十分に溶解するまで保温した後、前のステップで製造されたCs前駆体溶液を注射器で0.4mL吸い取ってフラスコ中に注入し、体系は瞬時に変色し、すぐにフラスコを取り出し、氷水に入れて室温まで急速に冷却し、過剰の酢酸エチルで洗浄し、遠心分離し(8000rpm、10min)、沈殿物はCsPbBr量子ドットであり、10mLのトルエンに分散させて使用に備える。
Preparation of CsPbBr3 Quantum Dots Weigh 0.069 g of PbBr2 into a three-necked flask, add 5 mL of 1-octadecene, magnetically stir at room temperature for 10 min, mix evenly, and then place in a vacuum oven at 120 °C. Vacuum dry at temperature for 1 h, add 0.5 mL oleylamine, 0.5 mL oleic acid, magnetically stir for 10 min, mix evenly, then place the beaker in an oil bath and heat up to 180 ° C, PbBr 2 After being warmed until fully dissolved, 0.4 mL of the Cs precursor solution prepared in the previous step was sucked up with a syringe and injected into the flask. was rapidly cooled to room temperature, washed with excess ethyl acetate, centrifuged (8000 rpm, 10 min), the precipitate was CsPbBr 3 QDs, dispersed in 10 mL of toluene and ready for use.

印刷ペーストの配合
50℃の水浴で加熱する状態において、3mLの高純度CsPbBr量子ドットを、15gのPC粉末(800メッシュ)及び5gのPS粉末(300メッシュ)を加え、さらにPC及びPS粉末を溶解してドープ量子ドットと均一に混合するように15mLのトルエンを加え、且つ体系が粘稠になるまで持続的に撹拌し、流れが困難となると加熱を停止し、取り出して3D印刷ペーストを得る。
Formulation of printing paste 3 mL of high purity CsPbBr3 quantum dots, 15 g of PC powder (800 mesh) and 5 g of PS powder (300 mesh) were added, and further PC and PS powders were added under the condition of heating in a water bath at 50°C. Add 15 mL of toluene so as to dissolve and mix with the doped quantum dots uniformly, and continuously stir until the system becomes viscous, stop heating when it becomes difficult to flow, and take out to obtain a 3D printing paste. .

3D印刷成形
製造されたペーストを印刷装置のバレルに入れ、直径が0.8mmの印刷スプレーヘッドを選択し、コンピュータで3Dモデルを作成し、且つスライス等のパラメータを設定し、印刷速度は80mm/sで、印刷温度は25℃で、印刷プラットフォームの高さは0.65mmであり、3D印刷を行い、半導体ナノ結晶デバイスの半完成品を得る。
3D printing molding Put the produced paste into the barrel of the printing device, select a printing spray head with a diameter of 0.8mm, create a 3D model on the computer, and set the parameters such as slicing, printing speed is 80mm/ s, the printing temperature is 25° C., the height of the printing platform is 0.65 mm, and 3D printing is performed to obtain semi-finished products of semiconductor nanocrystalline devices.

半完成品の硬化
印刷完了後の半完成品をオーブンに入れ、5℃/minで室温から100℃まで昇温し、24時間保温する。高い光取出し効果を有する光学デバイスを得る。
Curing of semi-finished product After printing, the semi-finished product is placed in an oven, heated from room temperature to 100°C at a rate of 5°C/min, and maintained for 24 hours. An optical device having a high light extraction effect is obtained.

結論
デバイスの正面光透過効果は68.1%に達し、従来の鋳造プロセスによって得られたデバイス(図1に示される33.3%)よりも明らかに高い。
実施例9
Conclusion The front light transmission effect of the device reaches 68.1%, which is obviously higher than the device obtained by conventional casting process (33.3% shown in Fig. 1).
Example 9

本実施例はドープ量子ドットCdS:Cuを例として、半導体ナノ結晶デバイスを製造する。 This example takes doped quantum dots CdS:Cu as an example to fabricate a semiconductor nanocrystalline device.

半導体ナノ結晶の製造
まずステアリン酸銅粉末を製造し、即ち70mLのn-ヘキサン、5mmol(1.5323g)のステアリン酸ナトリウムを250mLの丸底フラスコに入れて3min撹拌し、続いて40mLのメタノールを加えて撹拌を3min続ける。0.25mol/Lの二水和塩化銅メタノール溶液を10mL調製し且つ上記混合溶液に滴下する。最後に10mLの高純水を加え、52℃の水浴で反応物を4h撹拌し、フラスコの下層にある青色のステアリン酸銅を取り出し、適量のメタノールを加え、5500rpmで遠心分離によって8min洗浄し、60℃のオーブンに入れて乾燥し且つ粉末に粉砕する。
Preparation of semiconductor nanocrystals Copper stearate powder was first prepared, that is, 70 mL of n-hexane, 5 mmol (1.5323 g) of sodium stearate were placed in a 250 mL round-bottomed flask and stirred for 3 min, followed by 40 mL of methanol. Stirring is continued for an additional 3 min. 10 mL of 0.25 mol/L dihydrated copper chloride methanol solution is prepared and added dropwise to the above mixed solution. Finally, add 10 mL of high-purity water, stir the reaction in a water bath at 52°C for 4 h, remove the blue copper stearate in the lower layer of the flask, add an appropriate amount of methanol, wash by centrifugation at 5500 rpm for 8 min, and wash at 60°C. Place in an oven to dry and grind into powder.

次に、CuSナノ結晶を製造し、即ち0.25mmol(157.7mg)の上記ステアリン酸銅粉末、5mLのオレイン酸、3mLのオレイルアミンを、10mLの反応釜に入れて5min撹拌し、0.25mLのn-ドデカンチオールを上記混合液に加え、均一に撹拌し、密封した後に200℃のオーブンに2.5h入れ、茶色の溶液を1:3エタノール、5500rpmで、遠心分離によって8min洗浄し、続いて8mLのトルエンに分散させる。 Next, Cu 2 S nanocrystals are prepared: 0.25 mmol (157.7 mg) of the above copper stearate powder, 5 mL of oleic acid, 3 mL of oleylamine are placed in a 10 mL reactor and stirred for 5 min, .25 mL of n-dodecanethiol was added to the above mixture, stirred evenly, sealed and placed in an oven at 200° C. for 2.5 h, and the brown solution was washed with 1:3 ethanol at 5500 rpm for 8 min by centrifugation. , followed by dispersion in 8 mL of toluene.

CuドープCdS量子ドットを製造し、即ち8mLの上記CuSナノ結晶のトルエンゾル及び1mLの0.1g/mLのCd(NO・4HOメタノール溶液を、25mLの丸底フラスコに入れて均一に撹拌し、続いて0.1mLのTBPを加え、56℃の水浴で反応物を2h撹拌し、適量のエタノールを加え、6500rpmで遠心分離によって8min洗浄し、1mLのトルエンに分散させて完成品を得る。上記ステップにおいて、Cd2+の添加量及び反応温度を制御することで、異なるCu濃度でドープされたCdSナノ結晶を合成することができる。 Cu-doped CdS quantum dots were prepared: 8 mL of the above Cu 2 S nanocrystal toluene sol and 1 mL of 0.1 g/mL Cd(NO 3 ) 2.4H 2 O methanol solution were placed in a 25 mL round bottom flask. and then add 0.1 mL of TBP, stir the reaction in a water bath at 56° C. for 2 h, add appropriate amount of ethanol, wash by centrifugation at 6500 rpm for 8 min, and disperse in 1 mL of toluene. get the finished product. By controlling the amount of Cd 2+ added and the reaction temperature in the above steps, CdS nanocrystals doped with different Cu concentrations can be synthesized.

製造された量子ドットを50mLのn-ヘキサンに分散させ、0.02molのKIを40mLのDMFに溶解する。10mLのn-ヘキサン/量子ドット溶液を取り出して10mLのKIのDMF溶液と共に50mLの同位素瓶中に入れて4時間撹拌し、遠心分離後に10mLのDMFに分散させ、油相量子ドットを水相量子ドットに変換して使用に備える。 The prepared quantum dots are dispersed in 50 mL of n-hexane, and 0.02 mol of KI is dissolved in 40 mL of DMF. Take out 10 mL of n-hexane/quantum dot solution, put it in a 50 mL isotope bottle together with 10 mL of KI in DMF solution, stir for 4 hours, and disperse in 10 mL of DMF after centrifugation. Convert to dot and prepare for use.

印刷ペーストの配合
50℃の水浴で加熱する状態において、準備した高純度の水相CdS:Cuドープ量子ドットを10mL取り、6gのPS(800メッシュ)を加え、さらにPSをドープ量子ドットと均一に混合するように5mLのDMFを加え、且つ体系が粘稠になるまで持続的に撹拌し、流れが困難となると加熱を停止し、取り出して3D印刷ペーストを得る。
Formulation of printing paste Under the condition of heating in a water bath at 50° C., take 10 mL of the prepared high-purity water-phase CdS:Cu-doped quantum dots, add 6 g of PS (800 mesh), and add PS evenly with the doped quantum dots. Add 5 mL of DMF to mix and stir continuously until the system becomes viscous, stop heating when it becomes difficult to flow, and take out to obtain 3D printing paste.

3D印刷成形
製造されたペーストを印刷装置のバレルに入れ、直径が0.52mmの印刷スプレーヘッドを選択し、コンピュータで3Dモデルを作成し、且つスライス等のパラメータを設定し、印刷速度は20mm/sで、印刷温度は25℃で、印刷プラットフォームの高さは0.6mmであり、3D印刷を行い、半導体ナノ結晶デバイスの半完成品を得る。
3D printing molding Put the produced paste into the barrel of the printing device, select a printing spray head with a diameter of 0.52 mm, create a 3D model on the computer, and set parameters such as slicing, printing speed is 20 mm/ s, the printing temperature is 25° C., the height of the printing platform is 0.6 mm, and 3D printing is performed to obtain semi-finished products of semiconductor nanocrystalline devices.

印刷完了後の半完成品をオーブンに入れ、5℃/minで室温から100℃まで昇温し、12時間保温する。60℃まで降温し、12時間保温する。高い光取出し効果を有する光学デバイスを得る。 The semi-finished product after printing is placed in an oven, heated from room temperature to 100° C. at a rate of 5° C./min, and maintained for 12 hours. The temperature is lowered to 60° C. and kept for 12 hours. An optical device having a high light extraction effect is obtained.

以上の具体的な説明は、発明の目的、技術的解決手段及び有益な効果をさらに詳細に説明しており、以上の説明は本発明の具体的な実施例に過ぎず、本発明の保護範囲を限定するためのものではないことを理解すべきであり、本発明の精神及び原則内に行われる修正、均等な置換、改良等は、いずれも本発明の保護範囲内に含まれるものとする。
結論
The above detailed descriptions describe the objectives, technical solutions and beneficial effects of the invention in more detail. Any modification, equivalent replacement, improvement, etc. made within the spirit and principle of the present invention shall all fall within the protection scope of the present invention. .
conclusion

デバイスの正面光透過効果は57.6%に達し、従来の鋳造プロセスによって得られたデバイス(図1に示される33.3%)よりも明らかに高い。 The front light transmission effect of the device reaches 57.6%, which is obviously higher than the device obtained by conventional casting process (33.3% shown in Fig. 1).

Claims (9)

半導体ナノ結晶を製造するステップ1と、
3D印刷ペーストを配合するステップ2であって、ステップ1で得られた半導体ナノ結晶を油相有機溶媒又は水相溶媒に均一に分散させ、高分散な半導体ナノ結晶ゾルを得て、前記半導体ナノ結晶ゾルを一定のレオロジー特性を有する高光学特性の有機ポリマーマトリックスと均一に混合し、3D印刷ペーストを得るステップと、
半導体ナノ結晶デバイスを3D印刷するステップ3であって、得られたペーストで直描式3D印刷技術によって三次元構造成形を行い、半導体ナノ結晶デバイスの半完成品を形成するステップと、
半導体ナノ結晶デバイスを硬化させ及び微細構造を構築するステップ4であって、前記半導体ナノ結晶デバイスの半完成品を加熱処理し、硬化後に微細構造を備える半導体ナノ結晶デバイスを形成するステップと、を含み、 前記ステップ3において、前記直描式3D印刷技術では、印刷速度v、スプレーヘッド直径d、及び印刷プラットフォームとノズルとの距離hは、以下の式によって得られる以下の関係があり、
v=α*d+β;β=10*(h-d)+γ
式中、α、β及びγはいずれも定数であり、
hがd以上である場合、αは10から100の範囲にあり、γは-10から10の範囲にあり、
hがdよりも小さい場合、αは80-500の範囲にあり、γは-10から20の範囲にあることを特徴とする、半導体ナノ結晶デバイスの微細構造の構築方法。
Step 1 of manufacturing semiconductor nanocrystals;
In step 2 of blending the 3D printing paste, the semiconductor nanocrystals obtained in step 1 are uniformly dispersed in an oil phase organic solvent or an aqueous phase solvent to obtain a highly dispersed semiconductor nanocrystal sol, and the semiconductor nanocrystals are homogeneously mixing the crystalline sol with an organic polymer matrix of high optical properties with certain rheological properties to obtain a 3D printing paste;
a step 3 of 3D printing a semiconductor nanocrystalline device, wherein the resulting paste is subjected to three-dimensional structural molding by direct writing 3D printing technology to form a semi-finished product of the semiconductor nanocrystalline device;
Step 4 of curing and microstructuring a semiconductor nanocrystalline device, the step of heat treating said semiconductor nanocrystalline device semi-finished product to form a semiconductor nanocrystalline device with microstructures after curing; , in step 3, in the direct-writing 3D printing technology, the printing speed v, the spray head diameter d, and the distance h between the printing platform and the nozzle have the following relationship obtained by the following equation: ,
v=α*d+β;β=10*(h-d)+γ
In the formula, α, β and γ are all constants,
When h is greater than or equal to d, α is in the range 10 to 100, γ is in the range -10 to 10,
A method of fabricating a microstructure of a semiconductor nanocrystalline device , wherein α is in the range of 80-500 and γ is in the range of -10 to 20, when h is less than d .
ステップ1に記載の半導体ナノ結晶は、ソルボサーマル法、熱注入法又は低温陽イオン交換法によって製造されるものであり、且つナノ結晶が異なる溶媒に分散できるように表面配位子を調整することができることを特徴とする、請求項1に記載の半導体ナノ結晶デバイスの微細構造の構築方法。 The semiconductor nanocrystals according to step 1 are prepared by solvothermal method, heat injection method or low temperature cation exchange method, and adjusting the surface ligands so that the nanocrystals can be dispersed in different solvents. The method for fabricating a microstructure of a semiconductor nanocrystalline device according to claim 1, characterized in that ステップ1に記載の半導体ナノ結晶は、液相法で製造された、表面にオレイルアミン、オレイン酸、ドデカンチオール配位子、オクタデシルアミン、ヘキサデシルアミン、ステアリン酸、オクタンチオール、ミリスチン酸、トリブチルホスフィン、トリオクチルホスフィン、リン酸基類、リン酸エステル類のうちの1種又は複数種を有する真性量子ドット、ドープ量子ドット、ヘテロ構造ナノ結晶及びペロブスカイト量子ドットであることを特徴とする、請求項1に記載の半導体ナノ結晶デバイスの微細構造の構築方法。 The semiconductor nanocrystals according to step 1 are produced by a liquid phase method and have oleylamine, oleic acid, dodecanethiol ligands, octadecylamine, hexadecylamine, stearic acid, octanethiol, myristic acid, tributylphosphine, Claim 1 characterized by intrinsic quantum dots, doped quantum dots, heterostructure nanocrystals and perovskite quantum dots having one or more of trioctylphosphine, phosphate groups, phosphate esters. 3. A method for constructing a microstructure of a semiconductor nanocrystal device according to claim 1. ステップ2において、前記半導体ナノ結晶ゾル中の半導体ナノ結晶の濃度は0.01wt%から99wt%であり、有機高分子ポリマーマトリックスに対する前記半導体ナノ結晶ゾルの質量比は20%以下であることを特徴とする、請求項1に記載の半導体ナノ結晶デバイスの微細構造の構築方法。 In step 2, the concentration of semiconductor nanocrystals in the semiconductor nanocrystal sol is 0.01 wt% to 99 wt%, and the mass ratio of the semiconductor nanocrystal sol to the organic polymer matrix is 20% or less. A method for fabricating a microstructure of a semiconductor nanocrystalline device according to claim 1. ステップ3に記載の前記スプレーヘッド直径の範囲は0.01~0.9mmであり、ステップ3において、前記直描式3D印刷技術では、印刷プラットフォームとノズルとの距離は0.01~1mmであることを特徴とする、請求項1に記載の半導体ナノ結晶デバイスの微細構造の構築方法。 The spray head diameter range according to step 3 is 0.01-0.9 mm, and in step 3, the distance between the printing platform and the nozzle is 0.01-1 mm for the direct-write 3D printing technology. A method for constructing a microstructure of a semiconductor nanocrystal device according to claim 1, characterized in that: ステップ4において、前記熱処理は多段階加熱を含み、温度は摂氏50から180度であり、昇温レートは1分当たり摂氏1~20度であり、各段階の保温時間は0.5から24時間であることを特徴とする、請求項1に記載の半導体ナノ結晶デバイスの微細構造の構築方法。 In step 4, the heat treatment includes multi-step heating , the temperature is 50 to 180 degrees Celsius, the temperature rising rate is 1 to 20 degrees Celsius per minute, and the heat retention time of each step is 0.5 to The method of fabricating a microstructure of a semiconductor nanocrystalline device according to claim 1, characterized in that it is 24 hours. ステップ1に記載のヘテロ構造は金属/半導体コアシェル構造及びヘテロ二量体構造を含み、
前記油相有機溶媒はクロロホルム及びトルエンを含み、
前記水相溶媒は水及びDMFを含み、
前記一定のレオロジー特性を有する高光学特性の有機ポリマーマトリックスは、ポリメチルメタクリレート(PMMA)、ポリスチレン(PS)、ポリカーボネート(PC)及びポリジエチレングリコールビスアリルカーボネート(CR-39)を含むことを特徴とする、請求項1に記載の半導体ナノ結晶デバイスの微細構造の構築方法。
The heterostructures of step 1 include metal/semiconductor core-shell structures and heterodimer structures;
The oil phase organic solvent contains chloroform and toluene,
the aqueous phase solvent comprises water and DMF;
The high optical property organic polymer matrix having certain rheological properties is characterized by comprising polymethyl methacrylate (PMMA), polystyrene (PS), polycarbonate (PC) and polydiethylene glycol bisallyl carbonate (CR-39). A method for fabricating a microstructure of a semiconductor nanocrystal device according to claim 1.
ステップ3において、前記直描式3D印刷技術では、印刷速度は0.01~100mm/sであることを特徴とする、請求項に記載の半導体ナノ結晶デバイスの微細構造の構築方法。 The method for constructing a microstructure of a semiconductor nanocrystalline device according to claim 1 , characterized in that in step 3, the printing speed is 0.01-100mm/s in the direct writing 3D printing technology. 前記ステップ1に記載の半導体ナノ結晶は、液相法で製造されたAgドープCdS、CuドープCdS、AgドープCdSe、CuドープCdSe、AgドープZnS、CuドープZnS、ZnS被覆CuInS2、CsPbBr3量子ドットであることを特徴とする、請求項に記載の半導体ナノ結晶デバイスの微細構造の構築方法。 The semiconductor nanocrystals according to step 1 are Ag -doped CdS, Cu-doped CdS, Ag-doped CdSe, Cu-doped CdSe, Ag-doped ZnS, Cu-doped ZnS, ZnS-coated CuInS2, CsPbBr3 quantum dots prepared by a liquid phase method. 4. The method for constructing a microstructure of a semiconductor nanocrystal device according to claim 3 .
JP2022122818A 2021-11-03 2022-08-01 METHOD FOR CONSTRUCTING FINE STRUCTURE OF SEMICONDUCTOR NANOCRYSTAL DEVICE HAVING HIGH LIGHT EXTRACTION EFFECT Active JP7338917B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111294316.2 2021-11-03
CN202111294316.2A CN114013028A (en) 2021-11-03 2021-11-03 Method for constructing semiconductor nanocrystalline device microstructure with highlight overflow effect

Publications (2)

Publication Number Publication Date
JP2023070046A JP2023070046A (en) 2023-05-18
JP7338917B2 true JP7338917B2 (en) 2023-09-05

Family

ID=80060303

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022122818A Active JP7338917B2 (en) 2021-11-03 2022-08-01 METHOD FOR CONSTRUCTING FINE STRUCTURE OF SEMICONDUCTOR NANOCRYSTAL DEVICE HAVING HIGH LIGHT EXTRACTION EFFECT

Country Status (2)

Country Link
JP (1) JP7338917B2 (en)
CN (1) CN114013028A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003064278A (en) 2001-08-23 2003-03-05 Mitsubishi Chemicals Corp Core-shell semiconductor nano-particle
JP2003073126A (en) 2001-09-03 2003-03-12 Mitsubishi Chemicals Corp Method for producing semiconductive nano-particle
JP2013060593A (en) 2011-09-14 2013-04-04 Sharp Corp Preparation of nanoparticle with narrow luminescence spectrum
JP2018535107A (en) 2015-11-06 2018-11-29 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Techniques for combining CMP process tracking data with 3D printed CMP consumables
JP2019513190A (en) 2016-03-03 2019-05-23 ヴェロクシント コーポレイション Method of making nanocrystalline articles using additive manufacturing

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2506388A1 (en) * 2004-05-05 2005-11-05 Tieneke Emily Dykstra Surface modification of nanocrystals using multidentate polymer ligands
CN107056974A (en) * 2016-03-10 2017-08-18 北京理工大学 A kind of preparation method of nanocrystal/polymer solid solution
CN106493943A (en) * 2016-10-27 2017-03-15 广东奥基德信机电有限公司 A kind of solidify afterwards 3D printing forming method
CN106629815B (en) * 2016-12-26 2017-12-01 北京理工大学 A kind of semiconductor-based hetero-nanocrystals with hollow reaction microchamber structure and preparation method thereof
CN109080134B (en) * 2018-07-25 2020-08-21 沈阳精合数控科技开发有限公司 Printing method and device for controlling forming speed by adjusting laser power
US11693311B2 (en) * 2018-10-23 2023-07-04 The Brigham And Women's Hospital, Inc. Microfluidics-enabled multimaterial stereolithographic printing
CN110126257B (en) * 2019-05-15 2020-09-22 北京理工大学 3D printing method of strength-controllable semiconductor nanocrystalline flexible photoelectric device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003064278A (en) 2001-08-23 2003-03-05 Mitsubishi Chemicals Corp Core-shell semiconductor nano-particle
JP2003073126A (en) 2001-09-03 2003-03-12 Mitsubishi Chemicals Corp Method for producing semiconductive nano-particle
JP2013060593A (en) 2011-09-14 2013-04-04 Sharp Corp Preparation of nanoparticle with narrow luminescence spectrum
JP2018535107A (en) 2015-11-06 2018-11-29 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Techniques for combining CMP process tracking data with 3D printed CMP consumables
JP2019513190A (en) 2016-03-03 2019-05-23 ヴェロクシント コーポレイション Method of making nanocrystalline articles using additive manufacturing

Also Published As

Publication number Publication date
CN114013028A (en) 2022-02-08
JP2023070046A (en) 2023-05-18

Similar Documents

Publication Publication Date Title
CN108502918B (en) Synthesis method of inorganic perovskite nanowire
TWI443236B (en) Process for the synthesis of nanoscale, metal-containing nanoparticles and nanoparticle dispersions
CN108483487B (en) Cs with controllable size and shape4PbBr6Preparation method of perovskite nanocrystal
CN108774520B (en) Preparation method of cesium-lead-bromine quantum dots based on liquid-phase laser irradiation of halogen perovskite
Getachew et al. Metal halide perovskite nanocrystals for biomedical engineering: Recent advances, challenges, and future perspectives
CN110255607B (en) High stability cross CsPbBr3Preparation method of perovskite nanocrystalline and product prepared by preparation method
CN107056974A (en) A kind of preparation method of nanocrystal/polymer solid solution
CN105481264B (en) A kind of WO of morphology controllable3The preparation method of film
CN108051886B (en) Light guide plate containing magnetic quantum dots and preparation method thereof
KR20210152535A (en) Methods for improving the quantum yield of indium phosphide quantum dots
Sinatra et al. Methods of synthesizing monodisperse colloidal quantum dots
CN110126257B (en) 3D printing method of strength-controllable semiconductor nanocrystalline flexible photoelectric device
Yao et al. Advances in green colloidal synthesis of metal selenide and telluride quantum dots
JP7338917B2 (en) METHOD FOR CONSTRUCTING FINE STRUCTURE OF SEMICONDUCTOR NANOCRYSTAL DEVICE HAVING HIGH LIGHT EXTRACTION EFFECT
CN105969359A (en) Large-scale preparation method of ZnCdSe/ZnS quantum dots
JP7104170B2 (en) Quantum dot manufacturing method
Shi et al. One-pot synthesis of CsPbBr 3 nanocrystals in methyl methacrylate: a kinetic study, in situ polymerization, and backlighting applications
CN109941977B (en) Method for synthesizing cadmium selenide quantum dots
CN101844751B (en) Method for preparing lead selenide nanocrystals
CN106206878B (en) A kind of white light alloy quantum dot and preparation method thereof, electroluminescent diode and photoluminescent diode
CN114835154B (en) Preparation method of monodisperse ZnS colloidal microspheres with adjustable particle size
CN103694997B (en) A kind of bluish violet that synthesizes shines the method for ZnCdS/ZnS nano-crystal with core-shell structure
KR101299713B1 (en) Mavufacturing apparatus of quantum dot and manufacturing method thereof
Zhang et al. Morphological and luminescent evolution of near-infrared-emitting CdTe x Se 1− x nanocrystals
KR101264193B1 (en) Method of manufacturing core-shell semiconductor nanocrystals with low toxicity

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230428

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230628

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230803

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230817

R150 Certificate of patent or registration of utility model

Ref document number: 7338917

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150