JP7337248B2 - Electromagnetic stainless steel bar - Google Patents

Electromagnetic stainless steel bar Download PDF

Info

Publication number
JP7337248B2
JP7337248B2 JP2022501852A JP2022501852A JP7337248B2 JP 7337248 B2 JP7337248 B2 JP 7337248B2 JP 2022501852 A JP2022501852 A JP 2022501852A JP 2022501852 A JP2022501852 A JP 2022501852A JP 7337248 B2 JP7337248 B2 JP 7337248B2
Authority
JP
Japan
Prior art keywords
less
content
stainless steel
fraction
magnetic properties
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022501852A
Other languages
Japanese (ja)
Other versions
JPWO2021166797A1 (en
JPWO2021166797A5 (en
Inventor
祥太 山先
光司 高野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Stainless Steel Corp
Original Assignee
Nippon Steel Stainless Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Stainless Steel Corp filed Critical Nippon Steel Stainless Steel Corp
Publication of JPWO2021166797A1 publication Critical patent/JPWO2021166797A1/ja
Publication of JPWO2021166797A5 publication Critical patent/JPWO2021166797A5/ja
Application granted granted Critical
Publication of JP7337248B2 publication Critical patent/JP7337248B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • B21B3/02Rolling special iron alloys, e.g. stainless steel
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • C21D8/065Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/52Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/007Heat treatment of ferrous alloys containing Co
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/525Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length for wire, for rods
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties
    • C22C2202/02Magnetic

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Heat Treatment Of Steel (AREA)
  • Soft Magnetic Materials (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Description

本発明は、電磁ステンレス棒状鋼材、特に軟磁気特性に優れるステンレス棒状鋼材及びそれを用いた電磁部品に関する。 TECHNICAL FIELD The present invention relates to an electromagnetic stainless steel bar, particularly to a stainless steel bar having excellent soft magnetic properties and an electromagnetic component using the same.

従来、電磁弁などに代表されるような、電磁ステンレス製品は、SUS430、SUS410Lなどを代表とするフェライト系ステンレス鋼線材、鋼線を素材として加工・成型・熱処理され製造されてきた。しかしながら、上記のようなフェライト系ステンレス鋼線材から加工、製造されたステンレス製品の軟磁気特性は高精度・高出力な部品に十分対応できず、用途の制限を受ける欠点があった。上記課題に対して、軟磁気特性の向上として、CrやSi、Alなどの合金元素の最適化による技術が検討されている(例えば、特許文献1~3)が、成分とプロセスの組合せによる集合組織制御を活用したフェライト系ステンレス棒線の軟磁気特性向上に着目した発明はない。 Conventionally, electromagnetic stainless steel products typified by solenoid valves have been manufactured by processing, forming, and heat-treating ferritic stainless steel wire rods and steel wires typified by SUS430 and SUS410L. However, the soft magnetic properties of the stainless steel products processed and manufactured from the ferritic stainless steel wire as described above cannot sufficiently correspond to high-precision and high-output parts, and there is a drawback that the applications are limited. In order to solve the above problems, techniques by optimizing alloy elements such as Cr, Si, and Al are being studied as an improvement in soft magnetic properties (for example, Patent Documents 1 to 3). There is no invention focusing on the improvement of the soft magnetic properties of ferritic stainless steel bars and wires utilizing structure control.

特開平6-49606号公報JP-A-6-49606 特開平6-49605号公報JP-A-6-49605 特開2004-307979号公報Japanese Patent Application Laid-Open No. 2004-307979 特開平05-329510号公報JP-A-05-329510

以上を踏まえ、本発明は、上記課題を解決し、軟磁気特性に優れるステンレス棒状鋼材及びそれを用いた電磁部品を提供することを目的とする。 Based on the above, an object of the present invention is to solve the above problems and to provide a stainless steel bar having excellent soft magnetic properties and an electromagnetic component using the same.

本発明は、上記の課題を解決するためになされたものであり、下記のステンレス棒状鋼材及び電磁部品を要旨とする。
[1]化学組成が、質量%で、
C:0.001~0.030%、
Si:0.01~4.00%、
Mn:0.01~2.00%、
Ni:0.01~4.00%、
Cr:6.0~35.0%、
Mo:0.01~5.00%、
Cu:0.01~2.00%、
N:0.001~0.050%、
Ti:0~2.00%、
Nb:0~2.00%、
V:0~2.0%、
B:0~0.1%、
Al:0~7.000%、
W:0~3.0%、
Ga:0~0.05%、
Co:0~2.5%、
Sn:0~2.5%、
Sb:0~2.5%、
Ta:0~2.5%、
Ca:0~0.05%、
Mg:0~0.012%、
Zr:0~0.012%、
REM:0~0.05%、
Pb:0~0.30%、
Se:0~0.80%、
Te:0~0.30%、
Bi:0~0.50%、
S:0~0.50%、
P:0~0.30%、
残部:Feおよび不純物であり、(a)式に示すF値が20.0以下であり、
圧延方向の結晶方位RD//<100>分率が0.05以上であるステンレス棒状鋼材。
ただし、圧延方向の結晶方位RD//<100>分率とは、<100>方位と圧延方向との角度差が25°以下である結晶の面積比率を意味する。
F値=700C+800N+20Ni+10Cu+10Mn-6.2Cr-9.2Si-9.3Mo-74.4Ti-37.2Al-3.1Nb+63.2 ・・・(a)
但し、式中の各元素記号は、それぞれの元素の鋼中における含有量(質量%)を意味する。
The present invention has been made to solve the above problems, and its gist is the following stainless steel bar and electromagnetic component.
[1] The chemical composition is % by mass,
C: 0.001 to 0.030%,
Si: 0.01 to 4.00%,
Mn: 0.01 to 2.00%,
Ni: 0.01 to 4.00%,
Cr: 6.0 to 35.0%,
Mo: 0.01 to 5.00%,
Cu: 0.01 to 2.00%,
N: 0.001 to 0.050%,
Ti: 0 to 2.00%,
Nb: 0 to 2.00%,
V: 0 to 2.0%,
B: 0 to 0.1%,
Al: 0 to 7.000%,
W: 0 to 3.0%,
Ga: 0-0.05%,
Co: 0-2.5%,
Sn: 0-2.5%,
Sb: 0-2.5%,
Ta: 0-2.5%,
Ca: 0-0.05%,
Mg: 0-0.012%,
Zr: 0 to 0.012%,
REM: 0-0.05%,
Pb: 0 to 0.30%,
Se: 0 to 0.80%,
Te: 0 to 0.30%,
Bi: 0 to 0.50%,
S: 0 to 0.50%,
P: 0 to 0.30%,
Remainder: Fe and impurities, the F value shown in formula (a) is 20.0 or less,
A stainless steel rod having a crystal orientation RD//<100> fraction in the rolling direction of 0.05 or more.
However, the crystal orientation RD//<100> fraction in the rolling direction means the area ratio of crystals in which the angle difference between the <100> orientation and the rolling direction is 25° or less.
F value = 700C + 800N + 20Ni + 10Cu + 10Mn-6.2Cr-9.2Si-9.3Mo-74.4Ti-37.2Al-3.1Nb+63.2 (a)
However, each element symbol in the formula means the content (% by mass) of each element in the steel.

[2]表面から直径の1/8深さ位置部の圧延方向の結晶方位RD//<334>分率が0.2以下である[1]に記載のステンレス棒状鋼材。
ただし、結晶方位RD//<334>分率とは、<334>方位と圧延方向との角度差が10°以下である結晶の面積比率を意味する。
[2] The stainless steel bar according to [1], wherein the crystal orientation RD//<334> fraction in the rolling direction at a depth of 1/8 of the diameter from the surface is 0.2 or less.
However, the crystal orientation RD//<334> fraction means the area ratio of crystals in which the angle difference between the <334> orientation and the rolling direction is 10° or less.

[3]前記化学組成が、質量%でさらに、
Ti:0.001~2.00%、
Nb:0.001~2.00%、
V:0.001~2.0%
B:0.0001~0.1%
Al:0.001~7.000%、
W:0.05~3.0%、
Ga:0.0004~0.05%、
Co:0.05~2.5%、
Sn:0.01~2.5%、
Sb:0.01~2.5%、および
Ta:0.01~2.5%、
から選択される一種以上を含有する、
[1]又は[2]に記載のステンレス棒状鋼材。
[3] The chemical composition is further, in mass %,
Ti: 0.001 to 2.00%,
Nb: 0.001 to 2.00%,
V: 0.001 to 2.0%
B: 0.0001 to 0.1%
Al: 0.001 to 7.000%,
W: 0.05 to 3.0%,
Ga: 0.0004 to 0.05%,
Co: 0.05-2.5%,
Sn: 0.01 to 2.5%,
Sb: 0.01-2.5%, and Ta: 0.01-2.5%,
containing one or more selected from
The stainless steel bar material according to [1] or [2].

[4]前記化学組成が、質量%でさらに、
Ca:0.0002~0.05%、
Mg:0.0002~0.012%、
Zr:0.0002~0.012%、および
REM:0.0002~0.05%、
から選択される一種以上を含有する、
[1]~[3]のいずれか1項に記載のステンレス棒状鋼材。
[4] The chemical composition is further, in mass%,
Ca: 0.0002-0.05%,
Mg: 0.0002-0.012%,
Zr: 0.0002-0.012%, and REM: 0.0002-0.05%,
containing one or more selected from
The stainless steel bar material according to any one of [1] to [3].

[5]前記化学組成が、質量%でさらに、
Pb:0.0001~0.30%、
Se:0.0001~0.80%、
Te:0.0001~0.30%、
Bi:0.0001~0.50%、
S:0.0001~0.50%、
P:0.0001~0.30%、
から選択される一種以上を含有する、
[1]~[4]のいずれか1項に記載のステンレス棒状鋼材。
[5] The chemical composition is further, in mass %,
Pb: 0.0001 to 0.30%,
Se: 0.0001 to 0.80%,
Te: 0.0001 to 0.30%,
Bi: 0.0001 to 0.50%,
S: 0.0001 to 0.50%,
P: 0.0001 to 0.30%,
containing one or more selected from
The stainless steel bar material according to any one of [1] to [4].

[6]5Oeにおける磁束密度がそれぞれ0.10T以上である、[1]~[5]のいずれか1項に記載のステンレス棒状鋼材。
[7]2kHzの交流周波数で10Oeにおける最大磁束密度が0.05T以上である、[1]~[6]のいずれか1項に記載のステンレス棒状鋼材。
[6] The stainless steel bar according to any one of [1] to [5], each having a magnetic flux density of 0.10 T or more at 5 Oe.
[7] The stainless steel bar according to any one of [1] to [6], which has a maximum magnetic flux density of 0.05 T or more at 10 Oe at an AC frequency of 2 kHz.

[8][1]~[7]のいずれか一項に記載のステンレス棒状鋼材を用いた電磁部品。[8] An electromagnetic component using the stainless steel bar according to any one of [1] to [7].

本発明によれば、軟磁気特性に優れるステンレス棒状鋼材及び電磁部品を得ることができる。 According to the present invention, it is possible to obtain a stainless steel bar and an electromagnetic component having excellent soft magnetic properties.

本発明者らは軟磁気特性に優れるステンレス棒状鋼材及び電磁部品を得るために、種々の検討を行なった。その結果、以下の(a)~(c)の知見を得た。 The inventors of the present invention conducted various studies in order to obtain stainless steel rods and electromagnetic parts having excellent soft magnetic properties. As a result, the following findings (a) to (c) were obtained.

(a)フェライト系ステンレス鋼と熱延プロセス(傾斜圧延時間)の組み合わせで、線材圧延方向の結晶方位RD//<100>分率を高めることができる。併せて、表面から直径の1/4深さ位置の間の線材圧延方向の結晶方位RD//<334>分率を低減することができる。 (a) A combination of ferritic stainless steel and a hot rolling process (tilt rolling time) can increase the crystal orientation RD//<100> fraction in the wire rod rolling direction. At the same time, it is possible to reduce the crystal orientation RD//<334> fraction in the wire rod rolling direction from the surface to the 1/4 diameter depth position.

(b)前記線材と二次加工プロセス(線材熱処理温度、伸線加工率、鋼線熱処理温度)の組合せで、鋼線圧延方向の結晶方位RD//<100>分率を高めることができる。併せて、表面から直径の1/4位置深さの間の鋼線圧延方向の結晶方位RD//<334>分率を低減することができる。 (b) The crystal orientation RD//<100> fraction in the rolling direction of the steel wire can be increased by combining the wire rod and the secondary working process (wire rod heat treatment temperature, wire drawing rate, steel wire heat treatment temperature). At the same time, it is possible to reduce the crystal orientation RD//<334> fraction in the steel wire rolling direction between the surface and the position depth of 1/4 of the diameter.

(c)その結果、5Oeにおける磁束密度が0.10T以上であり、2kHzで10Oeにおける最大磁束密度が0.05T以上となり、軟磁気特性の向上を見出した。 (c) As a result, the magnetic flux density at 5 Oe was 0.10 T or more, and the maximum magnetic flux density at 10 Oe at 2 kHz was 0.05 T or more, indicating an improvement in soft magnetic properties.

本発明は上記の知見に基づいてなされたものである。また、本発明の好ましい一実施形態を詳細に説明する。以降の説明では、本発明の好ましい一実施形態を本発明として記載する。以下、本発明の各要件について詳しく説明する。本発明の棒状の鋼材において、熱間加工ままの材料を「棒線」、伸線加工などの冷間加工を行った材料を「鋼線」、それらを総称して「棒状鋼材」と呼ぶ。 The present invention has been made based on the above findings. A preferred embodiment of the invention will also be described in detail. In the following description, a preferred embodiment of the invention will be described as the invention. Each requirement of the present invention will be described in detail below. In the bar-shaped steel material of the present invention, the material as hot-worked is called "bar", the material subjected to cold working such as wire drawing is called "steel wire", and they are collectively called "bar-shaped steel".

1.圧延方向の結晶方位RD//<100>分率
本発明に係る棒状鋼材では、圧延方向(RD)の結晶方位を制御する。具体的には、圧延方向の結晶方位RD//<100>分率(面積比率)(以下単に「RD//<100>分率」という。)を0.05以上とする。RD//<100>分率が0.05未満となると、軟磁気特性が低下するためである。RD//<100>分率は0.10以上とするのがより好ましく、0.20以上とするのがさらに好ましく、0.40以上とするのが一層好ましい。
1. Crystal Orientation RD//<100> Fraction in Rolling Direction In the steel bar according to the present invention, the crystal orientation in the rolling direction (RD) is controlled. Specifically, the crystal orientation RD//<100> fraction (area ratio) in the rolling direction (hereinafter simply referred to as “RD//<100> fraction”) is set to 0.05 or more. This is because if the RD//<100> fraction is less than 0.05, the soft magnetic properties deteriorate. The RD//<100> fraction is more preferably 0.10 or more, still more preferably 0.20 or more, and even more preferably 0.40 or more.

なお、RD//<100>分率は、以下の手順を用い、算出する。具体的には、RD//<100>分率は、棒状鋼材のL断面(鋼材の長手方向に平行な断面)において、表層部、中心部、および表層部と中心部との間に存在する1/4深さ位置部において、200倍の視野で、各1視野以上測定を行う。そして、観察視野における各結晶粒の結晶方位を、FE-SEM/EBSDを用いて解析する。圧延方向をRDとし、RD方向における結晶面の解析を行い、<100>の方位成分をクリアランス25°以内の部分のみ表示させ、RD//<100>分率を測定する。なお、上記表層部とは表面から中心軸方向に1mm深さ位置を指す。即ち、圧延方向の結晶方位RD//<100>分率とは、<100>方位と圧延方向との角度差が25°以下である結晶の面積比率(表層部、中心部、1/4深さ位置部の平均)を意味する。 The RD//<100> fraction is calculated using the following procedure. Specifically, the RD//<100> fraction exists in the surface layer portion, the center portion, and between the surface layer portion and the center portion in the L cross section (the cross section parallel to the longitudinal direction of the steel material) of the bar steel. At the 1/4 depth position, the field of view is magnified by 200 times, and one or more fields of view are measured. Then, the crystal orientation of each crystal grain in the observation field is analyzed using FE-SEM/EBSD. The rolling direction is set to RD, the crystal plane in the RD direction is analyzed, the <100> orientation component is displayed only within the clearance of 25°, and the RD//<100> fraction is measured. In addition, the surface layer portion refers to a position 1 mm deep from the surface in the direction of the central axis. That is, the crystal orientation RD//<100> fraction in the rolling direction refers to the area ratio of the crystal in which the angle difference between the <100> orientation and the rolling direction is 25° or less (surface layer, center, 1/4 depth mean)

2.圧延方向の結晶方位RD//<334>分率
本発明に係る棒状鋼材で好ましくは、圧延方向(RD)の軟磁気特性を劣化させる結晶方位を制御する。表面から直径の1/8深さ位置部の棒線圧延方向の結晶方位RD//<334>分率を好ましくは0.20以下とする。
圧延方向の結晶方位RD//<334>分率(面積比率)(以下単に「RD//<334>分率」という。)を0.20以下とする。RD//<334>分率が0.2超となると、軟磁気特性が低下するためである。RD//<334>分率は0.10以下とするのがより好ましく、0.05以下とするのがさらに好ましい。
2. Crystal Orientation RD//<334> Fraction in Rolling Direction In the steel bar according to the present invention, preferably, the crystal orientation that deteriorates the soft magnetic properties in the rolling direction (RD) is controlled. The crystal orientation RD//<334> fraction in the bar rolling direction at a depth of 1/8 of the diameter from the surface is preferably 0.20 or less.
The crystal orientation RD//<334> fraction (area ratio) in the rolling direction (hereinafter simply referred to as “RD//<334> fraction”) shall be 0.20 or less. This is because if the RD//<334> fraction exceeds 0.2, the soft magnetic properties deteriorate. The RD//<334> fraction is more preferably 0.10 or less, even more preferably 0.05 or less.

なお、RD//<334>分率は、以下の手順を用い、算出する。具体的には、RD//<334>分率は、棒状鋼材のL断面(鋼材の長手方向に平行な断面)において、表面から直径の1/4深さ位置の間の1/8深さ位置部において、200倍の視野で、1視野以上測定を行う。そして、観察視野における各結晶粒の結晶方位を、FE-SEM/EBSDを用いて解析する。圧延方向をRDとし、RD方向における結晶面の解析を行い、<334>の方位成分をクリアランス10°以内の部分のみ表示させ、RD//<334>分率を測定する。即ち、圧延方向の結晶方位RD//<334>分率とは、<334>方位と圧延方向との角度差が10°以下である結晶の面積比率(表面から直径の1/8深さ位置部)を意味する。 The RD//<334> fraction is calculated using the following procedure. Specifically, the RD//<334> fraction is the 1/8 depth between the surface and the 1/4 diameter depth position in the L cross section of the bar steel (the cross section parallel to the longitudinal direction of the steel material). In the position section, measurements are made in one or more fields of view with a field of view of 200x. Then, the crystal orientation of each crystal grain in the observation field is analyzed using FE-SEM/EBSD. Assuming that the rolling direction is RD, the crystal plane in the RD direction is analyzed, the <334> orientation component is displayed only within a clearance of 10°, and the RD//<334> fraction is measured. That is, the crystal orientation RD//<334> fraction in the rolling direction is the area ratio of crystals having an angle difference of 10° or less between the <334> orientation and the rolling direction (1/8 diameter depth position from the surface part).

3.化学組成
各元素の限定理由は下記のとおりである。なお、以下の説明において含有量についての「%」は、「質量%」を意味する。
3. Chemical composition The reasons for limiting each element are as follows. In addition, "%" about content in the following description means "mass %."

C:0.001~0.030%
Cは、鋼材の強度を高める。このため、C含有量は、0.001%以上とする。しかしながら、Cを過剰に含有させると、軟磁気特性が劣化する。このため、C含有量は0.030%以下とする。C含有量は0.020%以下とするのが好ましく、0.015%以下とするのがより好ましく、0.010%以下とするのがさらに好ましい。
C: 0.001 to 0.030%
C increases the strength of steel. Therefore, the C content should be 0.001% or more. However, an excessive C content deteriorates the soft magnetic properties. Therefore, the C content should be 0.030% or less. The C content is preferably 0.020% or less, more preferably 0.015% or less, even more preferably 0.010% or less.

Si:0.01~4.00%
Siは、脱酸元素として含有させ、高温酸化特性や交流磁気特性を向上させる。このため、Si含有量は0.01%以上とし、0.10%以上とするのが好ましい。しかしながら、Siを過剰に含有させると、軟磁気特性が劣化する。このため、Si含有量は4.00%以下とする。Si含有量は3.00%以下とするのが好ましく、1.50%以下とするのがより好ましい。
Si: 0.01-4.00%
Si is contained as a deoxidizing element to improve high-temperature oxidation characteristics and AC magnetic characteristics. Therefore, the Si content is 0.01% or more, preferably 0.10% or more. However, excessive Si content deteriorates the soft magnetic properties. Therefore, the Si content should be 4.00% or less. The Si content is preferably 3.00% or less, more preferably 1.50% or less.

Mn:0.01~2.00%
Mnは、鋼材の強度と交流磁気特性を向上させる。このため、Mn含有量は、0.01%以上とし、0.05%以上とするのが好ましい。しかしながら、Mnを過剰に含有させると、軟磁気特性が低下する。また、耐食性が低下する場合もある。このため、Mn含有量は2.00%以下とする。Mn含有量は1.00%以下とするのが好ましく、0.50%以下とするのがより好ましい。
Mn: 0.01-2.00%
Mn improves the strength and AC magnetic properties of steel. Therefore, the Mn content is 0.01% or more, preferably 0.05% or more. However, if Mn is contained excessively, the soft magnetic properties are degraded. Moreover, corrosion resistance may fall. Therefore, the Mn content is set to 2.00% or less. The Mn content is preferably 1.00% or less, more preferably 0.50% or less.

Ni:0.01~4.00%
Niは、鋼材の靭性を向上させる。このため、Ni含有量は0.01%以上とし、0.05%以上とするのが好ましい。しかしながら、Niを過剰に含有させると、軟磁気特性が低下する。このため、Ni含有量は4.00%以下とする。Ni含有量は3.00%以下とするのが好ましく、1.00%以下とするのがより好ましく、0.50%以下とするのがさらに好ましい。
Ni: 0.01-4.00%
Ni improves the toughness of steel. Therefore, the Ni content is 0.01% or more, preferably 0.05% or more. However, if Ni is included excessively, the soft magnetic properties are degraded. Therefore, the Ni content is set to 4.00% or less. The Ni content is preferably 3.00% or less, more preferably 1.00% or less, and even more preferably 0.50% or less.

Cr:6.0~35.0%
Crは、耐食性と交流磁気特性を向上させる。このため、Cr含有量は、6.0%以上とする。Cr含有量は7.0%以上とするのが好ましく、10.0%以上とするのがより好ましい。しかしながら、Crを過剰に含有させると、軟磁気特性が低下する。Cr含有量は35.0%以下にする。Cr含有量は21.0%以下とするのが好ましく、20.0%以下とするのがより好ましい。
Cr: 6.0-35.0%
Cr improves corrosion resistance and AC magnetic properties. Therefore, the Cr content is set to 6.0% or more. The Cr content is preferably 7.0% or more, more preferably 10.0% or more. However, excessive Cr content degrades the soft magnetic properties. The Cr content should be 35.0% or less. The Cr content is preferably 21.0% or less, more preferably 20.0% or less.

Mo:0.01~5.00%
Moは、耐食性と交流磁気特性を向上させる。このため、Mo含有量は0.01%以上とする。しかしながら、Moを過剰に含有させると、軟磁気特性が低下する。このため、Mo含有量は5.00%以下とする。Mo含有量は3.00%以下とするのが好ましく、2.00%以下とするのがより好ましく、1.50%以下とするのがさらに好ましい。
Mo: 0.01-5.00%
Mo improves corrosion resistance and AC magnetic properties. Therefore, the Mo content is set to 0.01% or more. However, if Mo is contained excessively, the soft magnetic properties are degraded. Therefore, the Mo content is set to 5.00% or less. The Mo content is preferably 3.00% or less, more preferably 2.00% or less, and even more preferably 1.50% or less.

Cu:0.01~2.00%
Cuは、耐食性と交流磁気特性を向上させる。このため、Cu含有量は0.01%以上とし、0.05%以上とするのが好ましい。しかしながら、Cuを過剰に含有させると、軟磁気特性が低下する。このため、Cu含有量は2.00%以下とする。Cu含有量は1.00%以下とするのが好ましく、0.80%以下とするのがより好ましく、0.40%以下とするのがさらに好ましい。
Cu: 0.01-2.00%
Cu improves corrosion resistance and AC magnetic properties. Therefore, the Cu content is 0.01% or more, preferably 0.05% or more. However, if Cu is contained excessively, the soft magnetic properties are degraded. Therefore, the Cu content is set to 2.00% or less. The Cu content is preferably 1.00% or less, more preferably 0.80% or less, and even more preferably 0.40% or less.

N:0.001~0.050%
Nは、鋼材の強度を向上させる。このため、N含有量は0.001%以上とし、0.002%以上とするのが好ましい。しかしながら、Nを過剰に含有させると、軟磁気特性が低下する。このため、N含有量は0.050%以下とする。N含有量は0.040%以下とするのが好ましく、0.020%以下とするのがより好ましく、0.010%以下とするのがさらに好ましい。
N: 0.001 to 0.050%
N improves the strength of steel materials. Therefore, the N content is 0.001% or more, preferably 0.002% or more. However, an excessive N content degrades the soft magnetic properties. Therefore, the N content is set to 0.050% or less. The N content is preferably 0.040% or less, more preferably 0.020% or less, and even more preferably 0.010% or less.

本発明に係る棒状鋼材は、上記元素に加え、必要に応じて、Ti、Nb、V、B、Al、W、Ga、Co、Sn、SbおよびTaから選択される一種以上の元素を含有させてもよい。 The bar-shaped steel according to the present invention contains, in addition to the above elements, one or more elements selected from Ti, Nb, V, B, Al, W, Ga, Co, Sn, Sb and Ta, if necessary. may

Ti:0~2.00%
Tiは、鋼材の強度を高める効果を有する。また、Tiは炭窒化物を形成するので、Cr炭化物の生成を抑制し、Cr欠乏層の生成を抑制する。この結果、粒界腐食を防止する効果を有する。すなわち、Tiは、耐食性を向上させる効果を有するため、必要に応じて含有させてもよい。また、Ti炭窒化物の形成によりC、Nを固定することで軟磁気特性を高める元素である。
しかしながら、Tiを過剰に含有させると、軟磁気特性が低下する。また、粗大炭窒化物によって靭性が低下する。このため、Ti含有量は2.00%以下とする。Ti含有量は1.00%以下とするのが好ましく、0.50%以下とするのがより好ましく、0.50%以下とすることがさらに好ましく、0.25%以下とすると一層好ましい。一方、上記効果を得るためには、Ti含有量は0.001%以上とするのが好ましい。
Ti: 0-2.00%
Ti has the effect of increasing the strength of steel. In addition, since Ti forms carbonitrides, it suppresses the formation of Cr carbides and the formation of Cr-depleted layers. As a result, it has the effect of preventing intergranular corrosion. That is, since Ti has an effect of improving corrosion resistance, it may be contained as necessary. It is also an element that enhances the soft magnetic properties by fixing C and N by forming Ti carbonitrides.
However, if Ti is contained excessively, the soft magnetic properties are degraded. In addition, coarse carbonitrides reduce the toughness. Therefore, the Ti content is set to 2.00% or less. The Ti content is preferably 1.00% or less, more preferably 0.50% or less, still more preferably 0.50% or less, and even more preferably 0.25% or less. On the other hand, in order to obtain the above effects, the Ti content is preferably 0.001% or more.

Nb:0~2.00%
Nbは、鋼材の強度を高める効果を有する。また、Nbは炭窒化物を形成するため、Cr炭化物の生成を抑制し、Cr欠乏層の生成を抑制する。この結果、Nbは粒界腐食を防止する効果を有する。すなわち、Nbは、耐食性の向上に有効な元素であるため、必要に応じて含有させてもよい。また、Nb炭窒化物の形成によりC、Nを固定することで軟磁気特性を高める元素である。しかしながら、Nbを過剰に含有させると、軟磁気特性が低下する。また、粗大炭窒化物によって靭性が低下する。このため、Nb含有量は2.00%以下とする。Nb含有量は1.00%以下とするのが好ましく、0.80%以下とするのがより好ましく、0.60%以下が一層好ましい。一方、上記効果を得るためには、Nb含有量は0.001%以上とするのが好ましい。
Nb: 0-2.00%
Nb has the effect of increasing the strength of the steel material. Moreover, since Nb forms carbonitrides, it suppresses the formation of Cr carbides and the formation of a Cr depleted layer. As a result, Nb has the effect of preventing intergranular corrosion. That is, since Nb is an element effective in improving corrosion resistance, it may be contained as necessary. It is also an element that enhances the soft magnetic properties by fixing C and N by forming Nb carbonitrides. However, an excessive Nb content degrades the soft magnetic properties. In addition, coarse carbonitrides reduce the toughness. Therefore, the Nb content is set to 2.00% or less. The Nb content is preferably 1.00% or less, more preferably 0.80% or less, and still more preferably 0.60% or less. On the other hand, in order to obtain the above effects, the Nb content is preferably 0.001% or more.

V:0~2.0%
Vは、耐食性を向上させる効果を有するため、必要に応じて含有させてもよい。しかしながら、Vを過剰に含有させると、軟磁気特性が低下する。また、粗大炭窒化物によって靭性が低下する。このため、V含有量は2.0%以下とする。V含有量は1.0%以下とするのが好ましく、0.5%以下とするのがより好ましく、0.1%以下とするのがさらに好ましい。一方、上記効果を得るためには、V含有量は0.001%以上とするのが好ましい。
V: 0-2.0%
Since V has an effect of improving corrosion resistance, it may be contained as necessary. However, an excessive V content degrades the soft magnetic properties. In addition, coarse carbonitrides reduce the toughness. Therefore, the V content is set to 2.0% or less. The V content is preferably 1.0% or less, more preferably 0.5% or less, and even more preferably 0.1% or less. On the other hand, in order to obtain the above effects, the V content is preferably 0.001% or more.

B:0~0.1%
Bは、熱間加工性および耐食性を向上させる効果を有する。このため、必要に応じて含有させてもよい。しかしながら、Bを過剰に含有させると、軟磁気特性が低下する。このため、B含有量は0.1%以下とする。B含有量は0.02%以下とするのが好ましく、0.01%以下とするのがより好ましい。一方、上記効果を得るためには、B含有量は0.0001%以上とするのが好ましい。
B: 0-0.1%
B has the effect of improving hot workability and corrosion resistance. Therefore, it may be contained as necessary. However, an excessive B content degrades the soft magnetic properties. Therefore, the B content should be 0.1% or less. The B content is preferably 0.02% or less, more preferably 0.01% or less. On the other hand, in order to obtain the above effects, the B content is preferably 0.0001% or more.

Al:0~7.000%
Alは、脱酸を促進させ、介在物清浄度レベルを向上させる効果を有するため、必要に応じて含有させてもよい。また、Alの添加は交流磁気特性を高める。しかしながら、Alを過剰に含有させると、その効果は飽和し、軟磁気特性が低下する。また、粗大介在物によって靭性が低下する。このため、Al含有量は7.000%以下とする。Al含有量は3.000%以下とするのが好ましく、0.100%以下とするのがより好ましく、0.020%以下とするのがさらに好ましい。一方、前記効果を得るためには、Al含有量は0.001%以上とするのが好ましい。
Al: 0-7.000%
Al has the effect of promoting deoxidation and improving the cleanness level of inclusions, so it may be contained as necessary. Also, the addition of Al enhances the AC magnetic properties. However, if Al is contained excessively, the effect is saturated and the soft magnetic properties deteriorate. In addition, coarse inclusions reduce the toughness. Therefore, the Al content is set to 7.000% or less. The Al content is preferably 3.000% or less, more preferably 0.100% or less, and even more preferably 0.020% or less. On the other hand, in order to obtain the above effects, the Al content is preferably 0.001% or more.

W:0~3.0%
Wは、耐食性を向上させる効果を有するため、必要に応じて含有させてもよい。しかしながら、Wを過剰に含有させると、軟磁気特性が低下する。また、粗大炭窒化物によって靭性が低下する。このため、W含有量は3.0%以下とする。W含有量は2.0%以下とするのが好ましく、1.5%以下とするのがより好ましい。一方、上記効果を得るためには、W含有量は0.05%以上とするのが好ましく、0.10%以上とするのがより好ましい。
W: 0-3.0%
Since W has an effect of improving corrosion resistance, it may be contained as necessary. However, an excessive W content degrades the soft magnetic properties. In addition, coarse carbonitrides reduce the toughness. Therefore, the W content is set to 3.0% or less. The W content is preferably 2.0% or less, more preferably 1.5% or less. On the other hand, in order to obtain the above effects, the W content is preferably 0.05% or more, more preferably 0.10% or more.

Ga:0~0.05%
Gaは、耐食性を向上させる効果を有するため、必要に応じて含有させてもよい。しかしながら、Gaを過剰に含有させると、熱間加工性が低下する。このため、Ga含有量は0.05%以下とする。一方、上記効果を得るためには、Ga含有量は0.0004%以上とするのが好ましい。
Ga: 0-0.05%
Ga has an effect of improving corrosion resistance, so it may be contained as necessary. However, if Ga is contained excessively, the hot workability deteriorates. Therefore, the Ga content should be 0.05% or less. On the other hand, in order to obtain the above effects, the Ga content is preferably 0.0004% or more.

Co:0~2.50%
Coは、鋼材の強度を向上させる効果を有するため、必要に応じて含有させてもよい。また、適量のCo添加は飽和磁束密度を高めるため、軟磁気特性を高める。しかしながら、Coを過剰に含有させると、軟磁気特性が低下する。このため、Co含有量は2.50%以下とする。Co含有量は1.00%以下とするのが好ましく、0.80%以下とするのがより好ましい。一方、上記効果を得るためには、Co含有量は0.05%以上とするのが好ましく、0.10%以上とするのがより好ましい。
Co: 0-2.50%
Co has the effect of improving the strength of the steel material, so it may be contained as necessary. Also, addition of an appropriate amount of Co increases the saturation magnetic flux density, thereby enhancing the soft magnetic properties. However, excessive Co content degrades the soft magnetic properties. Therefore, the Co content is set to 2.50% or less. The Co content is preferably 1.00% or less, more preferably 0.80% or less. On the other hand, in order to obtain the above effects, the Co content is preferably 0.05% or more, more preferably 0.10% or more.

Sn:0~2.50%
Snは、軟磁気特性や耐食性、切削性を向上させる効果を有するため、必要に応じて含有させてもよい。しかしながら、Snを過剰に含有させると、軟磁気特性が低下する。また、Snの粒界偏析によって靭性が低下する。このため、Sn含有量は2.50%以下とする。Sn含有量は1.00%以下とするのがより好ましく、0.20%以下とするのがさらに好ましい。一方、上記効果を得るためには、Sn含有量は0.01%以上とするのが好ましく、0.05%以上とするのがより好ましい。
Sn: 0-2.50%
Sn has the effect of improving soft magnetic properties, corrosion resistance, and machinability, so it may be contained as necessary. However, an excessive Sn content degrades the soft magnetic properties. In addition, grain boundary segregation of Sn reduces the toughness. Therefore, the Sn content is set to 2.50% or less. The Sn content is more preferably 1.00% or less, more preferably 0.20% or less. On the other hand, in order to obtain the above effects, the Sn content is preferably 0.01% or more, more preferably 0.05% or more.

Sb:0~2.5%
Sbは、耐食性を向上させる効果を有するため、必要に応じて含有させてもよい。しかしながら、Sbを過剰に含有させると、軟磁気特性が低下する。このため、Sb含有量は2.5%以下とする。Sb含有量は1.0%以下とするのがより好ましく、0.2%以下とするのがさらに好ましい。一方、上記効果を得るためには、Sb含有量は0.01%以上とするのが好ましく、0.05%以上とするのがより好ましい。
Sb: 0-2.5%
Since Sb has an effect of improving corrosion resistance, it may be contained as necessary. However, an excessive Sb content degrades the soft magnetic properties. Therefore, the Sb content is set to 2.5% or less. The Sb content is more preferably 1.0% or less, more preferably 0.2% or less. On the other hand, in order to obtain the above effects, the Sb content is preferably 0.01% or more, more preferably 0.05% or more.

Ta:0~2.5%
Taは、耐食性を向上させる効果を有するため、必要に応じて含有させてもよい。しかしながら、Taを過剰に含有させると、軟磁気特性が低下する。このため、Ta含有量は2.5%以下とする。Ta含有量は1.5%以下とするのが好ましく、0.9%以下とするのがより好ましい。一方、上記効果を得るためには、Ta含有量は0.01%以上とするのが好ましく、0.04%以上とするのがより好ましく、0.08%以上とするのがさらに好ましい。
Ta: 0-2.5%
Ta has the effect of improving corrosion resistance, so it may be contained as necessary. However, an excessive Ta content degrades the soft magnetic properties. Therefore, the Ta content should be 2.5% or less. The Ta content is preferably 1.5% or less, more preferably 0.9% or less. On the other hand, in order to obtain the above effects, the Ta content is preferably 0.01% or more, more preferably 0.04% or more, and even more preferably 0.08% or more.

本発明に係る棒状鋼材は、上記元素に加え、必要に応じて、Ca、Mg、Zr、およびREMから選択される一種以上の元素を含有させてもよい。
Ca:0~0.05%
Mg:0~0.012%
Zr:0~0.012%
REM:0~0.05%
Ca、Mg、Zr、およびREMは、脱酸のため、必要に応じて、含有させてもよい。しかしながら、これら各元素を過剰に含有させると、軟磁気特性が低下する。また、粗大介在物によって靭性が低下する。このため、Ca:0.05%以下、Mg:0.012%以下、Zr:0.012%以下、REM:0.05%以下とする。Ca含有量は、0.010%以下とするのが好ましく、0.005%以下とするのがより好ましい。Mgは、0.010%以下とするのが好ましく、0.005%以下とするのがより好ましい。Zrは、0.010%以下とするのが好ましく、0.005%以下とするのがより好ましい。REMは、0.010%以下とするのが好ましい。
一方、上記効果を得るためには、Ca:0.0002%以上、Mg:0.0002%以上、Zr:0.0002%以上、REM:0.0002%以上とするのが好ましい。Ca含有量は、0.0004%以上とするのがより好ましく、0.001%以上とするのがさらに好ましい。Mg含有量は、0.0004%以上とするのが好ましく、0.001%以上とするのがさらに好ましい。Zr含有量は、0.0004%以上とするのがより好ましく、0.001%以上とするのがさらに好ましい。REM含有量は、0.0004%以上とするのがより好ましく、0.001%以上とするのがさらに好ましい。
なお、REMとは、ランタノイドの15元素にYおよびScを合わせた17元素の総称である。これらの17元素のうちの1種以上を鋼に含有させることができ、REM含有量は、これらの元素の合計含有量を意味する。
In addition to the above elements, the steel bar according to the present invention may contain one or more elements selected from Ca, Mg, Zr, and REM, if necessary.
Ca: 0-0.05%
Mg: 0-0.012%
Zr: 0-0.012%
REM: 0-0.05%
Ca, Mg, Zr, and REM may be included as needed for deoxidation. However, if each of these elements is contained excessively, the soft magnetic properties are degraded. In addition, coarse inclusions reduce the toughness. Therefore, Ca: 0.05% or less, Mg: 0.012% or less, Zr: 0.012% or less, and REM: 0.05% or less. The Ca content is preferably 0.010% or less, more preferably 0.005% or less. Mg is preferably 0.010% or less, more preferably 0.005% or less. Zr is preferably 0.010% or less, more preferably 0.005% or less. REM is preferably 0.010% or less.
On the other hand, in order to obtain the above effects, Ca: 0.0002% or more, Mg: 0.0002% or more, Zr: 0.0002% or more, and REM: 0.0002% or more are preferable. The Ca content is more preferably 0.0004% or more, more preferably 0.001% or more. The Mg content is preferably 0.0004% or more, more preferably 0.001% or more. The Zr content is more preferably 0.0004% or more, more preferably 0.001% or more. The REM content is more preferably 0.0004% or more, more preferably 0.001% or more.
Note that REM is a general term for 17 elements including Y and Sc in addition to 15 lanthanoid elements. One or more of these 17 elements can be contained in the steel, and the REM content means the total content of these elements.

本発明に係る棒状鋼材は、上記元素に加え、必要に応じて、Pb、Se、Te、Bi、SおよびPから選択される一種以上の元素を含有させてもよい。
Pb:0~0.30%、
Se:0~0.80%、
Te:0~0.30%、
Bi:0~0.50%、
S:0~0.50%、
P:0~0.30%、
Pb、Se、Te、Bi、SおよびPは、切削性のため、必要に応じて、含有させてもよい。しかしながら、これら各元素を過剰に含有させると、軟磁気特性が低下する。また、靭性が低下する。このため、Pb:0.30%以下、Se:0.80%以下、Te:0.30%以下、Bi:0.50%以下、S:0.50以下、P:0.30以下とする。Pb含有量は、0.1%以下とするのが好ましく、0.05%以下とするのがより好ましい。Se含有量は、0.1%以下とするのが好ましく、0.05%以下とするのがより好ましい。Te含有量は、0.1%以下とするのが好ましく、0.05%以下とするのがより好ましい。Bi含有量は、0.1%以下とするのが好ましく、0.05%以下とするのがより好ましい。S含有量は、0.1%以下とするのが好ましく、0.05%以下とするのがより好ましい。P含有量は、0.1%以下とするのが好ましく、0.05%以下とするのがより好ましい。
一方、上記効果を得るためには、Pb:0.0001%以上、Se:0.0001%以上、Te:0.0001%以上、Bi:0.0001%以上、S:0.0001%以上、P:0.0001%以上とするのが好ましい。Pb含有量は、0.0004%以上とするのがより好ましく、0.001%以上とするのがさらに好ましい。Se含有量は、0.0004%以上とするのがより好ましく、0.001%以上とするのがさらに好ましい。Te含有量は、0.0004%以上とするのがより好ましく、0.001%以上とするのがさらに好ましい。Bi含有量は、0.0004%以上とするのがより好ましく、0.001%以上とするのがさらに好ましい。S含有量は、0.0001%以上とするのがより好ましく、0.0002%以上とするのがさらに好ましい。P含有量は、0.0004%以上とするのがより好ましく、0.001%以上とするのがさらに好ましい。
In addition to the above elements, the steel bar according to the present invention may contain one or more elements selected from Pb, Se, Te, Bi, S and P, if necessary.
Pb: 0 to 0.30%,
Se: 0 to 0.80%,
Te: 0 to 0.30%,
Bi: 0 to 0.50%,
S: 0 to 0.50%,
P: 0 to 0.30%,
Pb, Se, Te, Bi, S and P may be contained as necessary for machinability. However, if each of these elements is contained excessively, the soft magnetic properties are degraded. Also, toughness is reduced. Therefore, Pb: 0.30% or less, Se: 0.80% or less, Te: 0.30% or less, Bi: 0.50% or less, S: 0.50 or less, P: 0.30 or less . The Pb content is preferably 0.1% or less, more preferably 0.05% or less. The Se content is preferably 0.1% or less, more preferably 0.05% or less. The Te content is preferably 0.1% or less, more preferably 0.05% or less. The Bi content is preferably 0.1% or less, more preferably 0.05% or less. The S content is preferably 0.1% or less, more preferably 0.05% or less. The P content is preferably 0.1% or less, more preferably 0.05% or less.
On the other hand, in order to obtain the above effect, Pb: 0.0001% or more, Se: 0.0001% or more, Te: 0.0001% or more, Bi: 0.0001% or more, S: 0.0001% or more, P: 0.0001% or more is preferable. The Pb content is more preferably 0.0004% or more, more preferably 0.001% or more. The Se content is more preferably 0.0004% or more, more preferably 0.001% or more. The Te content is more preferably 0.0004% or more, more preferably 0.001% or more. The Bi content is more preferably 0.0004% or more, more preferably 0.001% or more. The S content is more preferably 0.0001% or more, more preferably 0.0002% or more. The P content is more preferably 0.0004% or more, more preferably 0.001% or more.

(F値)
F値:20.0以下
F値は下記式(a)により求められる。F値は、凝固や固溶加熱処理時にフェライト単相に近づくか否かの指標であり、フェライト単相に近ければ鋳片の柱状晶が増加し後述する傾斜熱間圧延中にRD//<100>分率を高め、軟磁気特性を高める。F値が20.0を超えると、フェライトに加えオーステナイトやマルテンサイトを含有するため、RD//<100>分率が減少する。この結果、軟磁気特性が低下する。そのため、F値は20.0以下とする。F値は、10.0以下であることが好ましく、0.0以下であることが好ましく、-10.0以下であることがより好ましい。
F値=700C+800N+20Ni+10Cu+10Mn-6.2Cr-9.2Si-9.3Mo-74.4Ti-37.2Al-3.1Nb+63.2 ・・・(a)
但し、式中の各元素記号は、それぞれの元素の鋼中における含有量(質量%)を意味する。
(F value)
F value: 20.0 or less The F value is obtained by the following formula (a). The F value is an index of whether or not the ferrite single phase is approached during solidification or solid solution heat treatment. 100> fraction to enhance soft magnetic properties. If the F value exceeds 20.0, the RD//<100> fraction decreases because austenite and martensite are included in addition to ferrite. As a result, soft magnetic properties are degraded. Therefore, the F value should be 20.0 or less. The F value is preferably 10.0 or less, preferably 0.0 or less, and more preferably −10.0 or less.
F value = 700C + 800N + 20Ni + 10Cu + 10Mn-6.2Cr-9.2Si-9.3Mo-74.4Ti-37.2Al-3.1Nb+63.2 (a)
However, each element symbol in the formula means the content (% by mass) of each element in the steel.

本発明の鋼材の化学組成において、残部はFeおよび不純物である。ここで「不純物」とは、鋼材を工業的に製造する際に、鉱石、スクラップ等の原料、製造工程の種々の要因によって混入する成分であって、本発明に悪影響を与えない範囲で許容されるものを意味する。 In the chemical composition of the steel material of the present invention, the balance is Fe and impurities. Here, the term "impurities" refers to components mixed in by various factors in raw materials such as ores, scraps, etc., and in the manufacturing process during the industrial production of steel materials, and is allowed within a range that does not adversely affect the present invention. means something

なお、不純物としては、例えば、O、Zn、H等が例示される。不純物は低減されることが好ましいが、含有される場合は、O,ZnおよびHは0.01%以下とするのが望ましい。 Examples of impurities include O, Zn, H, and the like. Impurities are preferably reduced, but if contained, O, Zn and H are desirably 0.01% or less.

4.製造方法
本発明に係るステンレス棒状鋼材の好ましい製造方法を説明する。本発明に係るステンレス棒状鋼材は、例えば、以下のような製造方法により、本発明に係るステンレス棒状鋼材を安定して得ることができる。
4. Manufacturing Method A preferable manufacturing method of the stainless steel bar according to the present invention will be described. The stainless steel bar according to the present invention can be stably obtained by, for example, the following manufacturing method.

本発明に係るステンレス棒状鋼材では、上記化学組成を有する鋼を溶製し、所定の径を有する鋳片を鋳造した後、熱間または温間の傾斜圧延と線材圧延を行う。その後、必要に応じて、適宜、溶体化処理、酸洗、二次加工、熱処理を行う。 In the stainless steel bar material according to the present invention, steel having the above chemical composition is melted, cast into a slab having a predetermined diameter, and then subjected to hot or warm tilt rolling and wire rod rolling. Thereafter, solution treatment, pickling, secondary processing, and heat treatment are performed as necessary.

4-1.傾斜圧延工程
加熱された鋳片は、傾斜圧延を用い、熱間加工されるのが好ましい。なお、熱間加工は傾斜圧延に限定されず、同様の熱加工履歴を辿る方法であればよく、例えば分塊圧延(ブレークダウン)であっても、同様の熱加工履歴を取れれば用いることができる。
傾斜圧延は、例えば特許文献4に開示されているとおり、3個のワークロールを被圧延材を中心にして同方向に捩って傾斜したロール軸に配置し、各ワークロールが被圧延材の周囲を自転しながら公転することにより、被圧延材は前進しながらスパイラル状に圧延される。フェライト系ステンレス鋼の柱状晶は鋼材半径方向に対し<100>へ配向しているが、傾斜圧延を施すことで柱状晶の<100>を鋼材半径方向から圧延方向へ配向できる。しかし、傾斜圧延の圧延時間(鋼材が3個のワークロールに接触する時間)が短くなると高速加工によって圧延方向へ配向した<100>が<100>以外のランダムな方位の再結晶粒を形成してしまう。
したがって、傾斜圧延の圧延時間は、RD//<100>分率を変化させる。併せて、表面から直径の1/4深さ位置の間のRD//<334>分率を変化させる。このため、傾斜圧延の圧延時間は軟磁気特性に影響を与える。傾斜圧延の圧延時間を0.10s未満とすると、RD//<100>分率が減少する。併せて、表面から直径の1/4深さ位置の間のRD//<334>分率が増加する。この結果、軟磁気特性が低下する。このため、傾斜圧延の圧延時間は0.10s以上とし、1s以上が好ましく、10s以上とするのがより好ましく、50s以上とするのがさらに好ましい。一方で傾斜圧延の圧延時間が長すぎると生産性を落とすため、200s以下とするのが好ましい。
4-1. Tilt Rolling Process The heated slab is preferably hot worked using tilt rolling. Note that hot working is not limited to tilt rolling, and any method that follows a similar heat working history may be used. For example, blooming rolling (breakdown) can be used as long as a similar heat working history can be obtained. can.
In tilt rolling, for example, as disclosed in Patent Document 4, three work rolls are arranged on roll axes that are tilted in the same direction around the material to be rolled, and each work roll rotates the material to be rolled. By rotating and revolving around the periphery, the material to be rolled is spirally rolled while moving forward. The columnar crystals of ferritic stainless steel are oriented <100> with respect to the radial direction of the steel material, but by performing tilt rolling, the <100> of the columnar crystals can be oriented from the radial direction of the steel material to the rolling direction. However, when the rolling time of tilt rolling (the time during which the steel material is in contact with the three work rolls) is shortened, the <100> oriented in the rolling direction due to high-speed processing forms recrystallized grains with random orientations other than <100>. end up
Therefore, the rolling time of tilt rolling changes the RD//<100> fraction. At the same time, the RD//<334> fraction between the surface and the 1/4 diameter depth position is changed. Therefore, the rolling time of tilt rolling affects the soft magnetic properties. If the rolling time of tilt rolling is less than 0.10 s, the RD//<100> fraction decreases. Concomitantly, the RD//<334> fraction between the 1/4 diameter depth position from the surface increases. As a result, soft magnetic properties are degraded. Therefore, the rolling time for tilt rolling is set to 0.10 s or longer, preferably 1 s or longer, more preferably 10 s or longer, and even more preferably 50 s or longer. On the other hand, if the rolling time of the tilt rolling is too long, the productivity is lowered, so it is preferably 200 seconds or less.

4-2.棒線熱処理温度
熱間圧延された棒線は熱処理されるのが好ましい。棒線の熱処理温度は、RD//<100>分率を変化させる。このため、棒線熱処理温度は軟磁気特性に影響を与える。棒線熱処理温度を1400℃超とすると、RD//<100>の核が成長せず、RD//<100>分率が減少する。この結果、軟磁気特性が低下する。このため、棒線熱処理温度は1400℃以下とし、1300℃以下が好ましい。一方で棒線熱処理温度が500℃未満となると、RD//<100>の核が成長しないため、500℃以上とする。棒線熱処理温度は600℃以上で好ましく、700℃で更に好ましく、800℃以上が一層好ましい。RD//<334>分率も棒線熱処理温度の影響を受け、他の製造条件とともに棒線熱処理温度500~1400℃の範囲内で条件を調整することにより、好適なRD//<334>分率範囲とすることができる。
4-2. Bar Heat Treatment Temperature Hot rolled bars are preferably heat treated. The bar and wire heat treatment temperature changes the RD//<100> fraction. Therefore, the bar and wire heat treatment temperature affects the soft magnetic properties. If the bar and wire heat treatment temperature exceeds 1400° C., RD//<100> nuclei do not grow and the RD//<100> fraction decreases. As a result, soft magnetic properties are degraded. Therefore, the bar and wire heat treatment temperature is set to 1400° C. or lower, preferably 1300° C. or lower. On the other hand, if the bar and wire heat treatment temperature is less than 500° C., RD//<100> nuclei do not grow, so the temperature is set to 500° C. or higher. The bar and wire heat treatment temperature is preferably 600° C. or higher, more preferably 700° C. or higher, and even more preferably 800° C. or higher. The RD//<334> fraction is also affected by the bar and wire heat treatment temperature, and a suitable RD//<334> It can be a fractional range.

4-3.伸線加工率
熱間圧延後に熱処理された棒線は伸線加工して鋼線とすることが好ましい。伸線加工率は、RD//<100>分率を変化させる。このため、伸線加工率は軟磁気特性に影響を与える。伸線加工率を50%超とすると、後工程の熱処理で再結晶が促進され、RD//<100>分率が減少する。この結果、軟磁気特性が低下する。このため、伸線加工率は50%以下とし、30%以下が好ましく、15%以下が更に好ましく、5%以下が一層好ましい。一方で伸線加工率が0.01%未満となると、後工程の熱処理でRD//<100>の核が成長できないため、0.01%以上とする。なお、伸線加工率(%)は、伸線前後の鋼材の断面積変化量を伸線前断面積で除した値の百分率表示である。RD//<334>分率も伸線加工率の影響を受け、他の製造条件とともに伸線加工率0.01~50%の範囲内で条件を調整することにより、好適なRD//<334>分率範囲とすることができる。
4-3. Wire-drawing rate It is preferable to draw a wire that has been heat-treated after hot-rolling into a steel wire. The wire drawing ratio changes the RD//<100> fraction. Therefore, the wire drawing rate affects the soft magnetic properties. When the wire drawing rate exceeds 50%, recrystallization is promoted in the subsequent heat treatment, and the RD//<100> fraction decreases. As a result, soft magnetic properties are degraded. Therefore, the wire drawing rate is set to 50% or less, preferably 30% or less, more preferably 15% or less, and even more preferably 5% or less. On the other hand, if the wire drawing rate is less than 0.01%, the core of RD//<100> cannot be grown in the subsequent heat treatment, so the rate is set to 0.01% or more. The wire drawing rate (%) is expressed as a percentage of a value obtained by dividing the amount of change in cross-sectional area of the steel material before and after wire drawing by the cross-sectional area before wire drawing. The RD//<334> fraction is also affected by the wire drawing rate. 334> fraction range.

4-4.鋼線熱処理温度
伸線加工された鋼線は熱処理されるのが好ましい。鋼線の熱処理温度は、RD//<100>分率を変化させる。このため、鋼線熱処理温度は軟磁気特性に影響を与える。鋼線熱処理温度を1400℃超とすると、RD//<100>の核が成長せず、RD//<100>分率が減少する。この結果、軟磁気特性が低下する。このため、鋼線熱処理温度は1400℃以下とし、1300℃以下が好ましい。一方で鋼線熱処理温度が500℃未満となると、RD//<100>の核が成長しないため、500℃以上とする。鋼線熱処理温度は600℃以上で好ましく、700℃で更に好ましく、800℃以上が一層好ましい。RD//<334>分率も鋼線熱処理温度の影響を受け、他の製造条件とともに鋼線熱処理温度500~1400℃の範囲内で条件を調整することにより、好適なRD//<334>分率範囲とすることができる。
4-4. Steel Wire Heat Treatment Temperature The drawn steel wire is preferably heat treated. The heat treatment temperature of the steel wire changes the RD//<100> fraction. Therefore, the steel wire heat treatment temperature affects the soft magnetic properties. If the steel wire heat treatment temperature exceeds 1400° C., RD//<100> nuclei do not grow and the RD//<100> fraction decreases. As a result, soft magnetic properties are degraded. Therefore, the steel wire heat treatment temperature is set to 1400° C. or lower, preferably 1300° C. or lower. On the other hand, if the steel wire heat treatment temperature is less than 500°C, the core of RD//<100> will not grow, so the temperature is set to 500°C or higher. The steel wire heat treatment temperature is preferably 600° C. or higher, more preferably 700° C. or higher, and still more preferably 800° C. or higher. The RD//<334> fraction is also affected by the steel wire heat treatment temperature. It can be a fractional range.

5.電磁部品
本発明のステンレス棒状鋼材を用いた電磁部品は、例えばインジェクタや電磁弁などのコアやコネクタなどであり、素材とする棒状鋼材が優れた軟磁気特性を有することから、“磁気吸引力の向上”や“部品の細径化”、“応答性の向上”などという効果を奏することができる。
5. Electromagnetic Parts Electromagnetic parts using the stainless steel rod of the present invention are, for example, cores and connectors of injectors and solenoid valves. It is possible to achieve effects such as "improvement", "reduction in the diameter of parts", and "improvement in responsiveness".

以下、実施例によって本発明をより具体的に説明するが、本発明はこれらの実施例に限定されるものではない。 EXAMPLES The present invention will be described in more detail below with reference to Examples, but the present invention is not limited to these Examples.

表1、2に記載の化学組成を有する鋼を溶製した。鋼の溶製の際には、ステンレス鋼の安価な溶製プロセスであるAOD溶製を想定し、100kgの真空溶解炉にて溶解し、直径180mmの鋳片に鋳造した。その後、下記の製造条件により直径20.0mmのステンレス棒線とした。
表2、表4~6において、成分組成又はRD//<100>分率が本発明範囲から外れる数値に下線を付している。表4~6において、磁気特性が本発明の好適範囲から外れる数値、及び表5、6において、製造条件が本発明の好適範囲から外れる数値に、それぞれ下線を付している。
Steels having the chemical compositions shown in Tables 1 and 2 were melted. When the steel was smelted, assuming AOD smelting, which is a low-cost stainless steel smelting process, the steel was melted in a 100 kg vacuum melting furnace and cast into a slab with a diameter of 180 mm. After that, a stainless steel bar wire with a diameter of 20.0 mm was formed under the following manufacturing conditions.
In Tables 2 and 4 to 6, numerical values where the component composition or the RD//<100> fraction are outside the scope of the present invention are underlined. In Tables 4 to 6, numerical values for magnetic properties outside the preferred range of the present invention, and in Tables 5 and 6, numerical values for manufacturing conditions outside the preferred range of the present invention are underlined.

以下に条件を記載する。具体的には、鋳造した鋳片を加熱し、傾斜圧延を3sの圧延時間で施し、引き続き連続で焼鈍、圧延を施し、直径20.0mmの棒線(棒状鋼材)を作製し、900℃で棒線熱処理を行った。 Conditions are described below. Specifically, the cast slab is heated, subjected to tilt rolling for a rolling time of 3 s, and continuously subjected to annealing and rolling to produce a bar wire (steel bar) with a diameter of 20.0 mm, which is heated at 900°C. Bar wire heat treatment was performed.

Figure 0007337248000001
Figure 0007337248000001

Figure 0007337248000002
Figure 0007337248000002

得られた棒線(棒状鋼材)について、RD//<100>分率、RD//<334>分率、および軟磁気特性を測定した。以下、表3、表4にまとめて結果を示す。なお、これらの測定は以下の手順に従い、測定を行った。 The RD//<100> fraction, RD//<334> fraction, and soft magnetic properties of the obtained bars (steel bars) were measured. The results are summarized in Tables 3 and 4 below. In addition, these measurements were performed according to the following procedures.

Figure 0007337248000003
Figure 0007337248000003

Figure 0007337248000004
Figure 0007337248000004

RD//<100>分率は、線材のL断面において、表層部、中心部、および表層部と中心部との間に存在する1/4深さ位置部において、200倍の視野で、各1視野以上測定を行った。そして、観察視野における各結晶粒の結晶方位を、FE-SEM/EBSDを用いて解析した。圧延方向をRDとし、RD方向における結晶面の解析を行い、<001>の方位成分をクリアランス25°以内の部分(<100>方位と圧延方向との角度差が25°以下である結晶)のみ表示させ、RD//<100>分率(面積率(-))(表層部、中心部、1/4深さ位置部の平均)を測定した。 The RD//<100> fraction is obtained in the L cross section of the wire in the surface layer, the center, and the 1/4 depth position existing between the surface and the center in a 200-fold field of view. One or more fields of view were measured. Then, the crystal orientation of each crystal grain in the observation field was analyzed using FE-SEM/EBSD. The rolling direction is RD, and the crystal plane in the RD direction is analyzed, and the <001> orientation component is only the part within the clearance of 25 ° (the crystal where the angle difference between the <100> orientation and the rolling direction is 25 ° or less). The RD//<100> fraction (area ratio (−)) (average of surface layer portion, center portion, and 1/4 depth position portion) was measured.

RD//<334>分率は、線材のL断面において、表面から直径の1/4深さ位置の間、具体的には表面から直径の1/8深さ位置部において、200倍の視野で、1視野以上測定を行った。そして、観察視野における各結晶粒の結晶方位を、FE-SEM/EBSDを用いて解析した。圧延方向をRDとし、RD方向における結晶面の解析を行い、<334>の方位成分をクリアランス10°以内の部分のみ表示させ、RD//<334>分率(面積比率(-))(表面から直径の1/8深さ位置部)を測定した。 The RD//<334> fraction is 200 times the field of view between the 1/4 diameter depth position from the surface, specifically, the 1/8 diameter depth position from the surface in the L cross section of the wire. , measurements were made in one or more fields of view. Then, the crystal orientation of each crystal grain in the observation field was analyzed using FE-SEM/EBSD. The rolling direction is RD, the crystal plane in the RD direction is analyzed, the <334> orientation component is displayed only in the part within the clearance of 10 °, and the RD // <334> fraction (area ratio (-)) (surface 1/8 depth position part of the diameter) was measured.

直流磁気特性は、5Oeにおける磁束密度(T)を測定した。厚さ3mm×外径10mm×内径8mmのリング状試験片を作製し、900℃×2hrの熱処理を施した後に5Oeにおける磁束密度を測定した。なお、圧延方向とリング状試験片の直径方向が平行となるように試験片加工を行うことで、RD//<100>と磁気特性の関係を評価し、以下も同様にサンプリングを行った。磁束密度:0.1T以上を良好とした。 DC magnetic properties were measured by magnetic flux density (T) at 5 Oe. A ring-shaped test piece having a thickness of 3 mm, an outer diameter of 10 mm, and an inner diameter of 8 mm was prepared, and after heat treatment at 900° C. for 2 hours, the magnetic flux density at 5 Oe was measured. The relationship between RD//<100> and magnetic properties was evaluated by processing the test piece so that the rolling direction and the diameter direction of the ring-shaped test piece were parallel, and sampling was performed in the same manner. Magnetic flux density: 0.1 T or more was considered good.

交流磁気特性は、前記リング状試験片に900℃×2hrの熱処理を施し、2kHzで10Oeにおける最大磁束密度(T)を測定した。最大磁束密度:0.05T以上を良好とした。 AC magnetic properties were measured by subjecting the ring-shaped test piece to heat treatment at 900° C. for 2 hours and measuring the maximum magnetic flux density (T) at 2 kHz and 10 Oe. Maximum magnetic flux density: 0.05 T or more was considered good.

No.1~39は、本発明の規定を満足し、軟磁気特性が良好であった。一方、本発明の規定を満足しないNo.40~55は軟磁気特性が不良であった。 No. Nos. 1 to 39 satisfied the requirements of the present invention and had good soft magnetic properties. On the other hand, no. Nos. 40 to 55 had poor soft magnetic properties.

続いて表1に示す鋼種Qを用いて、表5に記載の条件により、直径15mmの棒状鋼材を作製した。なお、傾斜圧延の圧延時間以外の履歴は前記実施例1と同様とした。作製した棒線(棒状鋼材)について、RD//<100>分率、RD//<334>分率および軟磁気特性を、上述の方法で測定した。以下、結果をまとめて、表5に示す。 Subsequently, steel grade Q shown in Table 1 was used to produce a steel bar having a diameter of 15 mm under the conditions shown in Table 5. The history of tilt rolling was the same as in Example 1 except for the rolling time. The RD//<100> fraction, RD//<334> fraction, and soft magnetic properties of the produced bars (steel bars) were measured by the methods described above. The results are summarized in Table 5 below.

Figure 0007337248000005
Figure 0007337248000005

No.109~120については、本発明の好適な条件を満足するため、軟磁気特性が良好であった。一方、本発明の好適な条件を満足しないNo.121~123は軟磁気特性が不良であった。 No. As for Nos. 109 to 120, the soft magnetic properties were good because they satisfied the preferred conditions of the present invention. On the other hand, no. Nos. 121 to 123 had poor soft magnetic properties.

続いて表1に示す鋼種Pを用いて、鋳造した鋳片を加熱し、傾斜圧延の時間は50sとし、引き続き連続で焼鈍、圧延を施し、種々の直径の棒線を作製した。続いて、表6記載の条件により、棒線熱処理および伸線加工、鋼線熱処理を行い、直径20mmの鋼線(棒状鋼材)を作製した。作製した鋼線(棒状鋼材)について、RD//<100>分率、RD//<334>分率および軟磁気特性を、上述の方法で測定した。以下、結果をまとめて、表6に示す。 Subsequently, using steel type P shown in Table 1, cast slabs were heated, tilt rolling was performed for 50 seconds, and continuous annealing and rolling were performed to produce bars and wires of various diameters. Subsequently, under the conditions shown in Table 6, bar and wire heat treatment, wire drawing, and steel wire heat treatment were performed to produce a steel wire (steel bar) with a diameter of 20 mm. The RD//<100> fraction, RD//<334> fraction, and soft magnetic properties of the produced steel wire (bar-shaped steel material) were measured by the methods described above. The results are summarized in Table 6 below.

Figure 0007337248000006
Figure 0007337248000006

No.124~138については、本発明の好適な条件を満足するため、軟磁気特性が良好であった。一方、本発明の好適な条件を満足しないNo.139~144は軟磁気特性が不良であった。 No. As for Nos. 124 to 138, the soft magnetic properties were good because they satisfied the preferred conditions of the present invention. On the other hand, no. Nos. 139 to 144 had poor soft magnetic properties.

本発明によれば、軟磁気特性に優れる棒状鋼材を得ることができ、産業上極めて有用である。 INDUSTRIAL APPLICABILITY According to the present invention, it is possible to obtain a bar-shaped steel material having excellent soft magnetic properties, which is extremely useful industrially.

Claims (11)

化学組成が、質量%で、
C:0.001~0.030%、
Si:0.01~4.00%、
Mn:0.01~2.00%、
Ni:0.01~4.00%、
Cr:6.0~35.0%、
Mo:0.01~5.00%、
Cu:0.01~2.00%、
N:0.001~0.050%、
Ti:0~2.00%、
Nb:0~2.00%、
V:0~2.0%、
B:0~0.1%、
Al:0~7.000%、
W:0~3.0%、
Ga:0~0.05%、
Co:0~2.5%、
Sn:0~2.5%、
Sb:0~2.5%、
Ta:0~2.5%、
Ca:0~0.05%、
Mg:0~0.012%、
Zr:0~0.012%、
REM:0~0.05%、
Pb:0~0.30%、
Se:0~0.80%、
Te:0~0.30%、
Bi:0~0.50%、
S:0~0.50%、
P:0~0.30%、
残部:Feおよび不純物であり、(a)式に示すF値が20以下であり、
圧延方向の結晶方位RD//<100>分率が0.05以上であるステンレス棒状鋼材。
ただし、圧延方向の結晶方位RD//<100>分率とは、<100>方位と圧延方向との角度差が25°以下である結晶の面積比率を意味する。
F値=700C+800N+20Ni+10Cu+10Mn-6.2Cr-9.2Si-9.3Mo-74.4Ti-37.2Al-3.1Nb+63.2 ・・・(a)
但し、式中の各元素記号は、それぞれの元素の鋼中における含有量(質量%)を意味する。
The chemical composition, in mass %,
C: 0.001 to 0.030%,
Si: 0.01 to 4.00%,
Mn: 0.01 to 2.00%,
Ni: 0.01 to 4.00%,
Cr: 6.0 to 35.0%,
Mo: 0.01 to 5.00%,
Cu: 0.01 to 2.00%,
N: 0.001 to 0.050%,
Ti: 0 to 2.00%,
Nb: 0 to 2.00%,
V: 0 to 2.0%,
B: 0 to 0.1%,
Al: 0 to 7.000%,
W: 0 to 3.0%,
Ga: 0-0.05%,
Co: 0-2.5%,
Sn: 0-2.5%,
Sb: 0-2.5%,
Ta: 0-2.5%,
Ca: 0-0.05%,
Mg: 0-0.012%,
Zr: 0 to 0.012%,
REM: 0-0.05%,
Pb: 0 to 0.30%,
Se: 0 to 0.80%,
Te: 0 to 0.30%,
Bi: 0 to 0.50%,
S: 0 to 0.50%,
P: 0 to 0.30%,
Balance: Fe and impurities, the F value shown in the formula (a) is 20 or less,
A stainless steel rod having a crystal orientation RD//<100> fraction in the rolling direction of 0.05 or more.
However, the crystal orientation RD//<100> fraction in the rolling direction means the area ratio of crystals in which the angle difference between the <100> orientation and the rolling direction is 25° or less.
F value = 700C + 800N + 20Ni + 10Cu + 10Mn-6.2Cr-9.2Si-9.3Mo-74.4Ti-37.2Al-3.1Nb+63.2 (a)
However, each element symbol in the formula means the content (% by mass) of each element in the steel.
化学組成が、質量%で、Si:3.00%以下、Al:3.000%以下であり、
表面から直径の1/8深さ位置部の圧延方向の結晶方位RD//<334>分率が0.2以下であり、
圧延方向の結晶方位RD//<100>分率が0.62以上である請求項1に記載のステンレス棒状鋼材。
ただし、結晶方位RD//<334>分率とは、<334>方位と圧延方向との角度差が10°以下である結晶の面積比率を意味する。
Chemical composition, in mass%, Si: 3.00% or less, Al: 3.000% or less,
The crystal orientation RD//<334> fraction in the rolling direction at a depth position of 1/8 of the diameter from the surface is 0.2 or less,
2. The stainless steel bar according to claim 1, wherein the crystal orientation RD//<100> fraction in the rolling direction is 0.62 or more.
However, the crystal orientation RD//<334> fraction means the area ratio of crystals in which the angle difference between the <334> orientation and the rolling direction is 10° or less.
前記化学組成が、質量%でさらに、
Ti:0.001~2.00%、
Nb:0.001~2.00%、
V:0.001~2.0%
B:0.0001~0.1%
Al:0.001~3.000%、
W:0.05~3.0%、
Ga:0.0004~0.05%、
Co:0.05~2.5%、
Sn:0.01~2.5%、
Sb:0.01~2.5%、および
Ta:0.01~2.5%、
から選択される一種以上を含有する、
請求項1又は請求項2に記載のステンレス棒状鋼材。
Further, the chemical composition is, in mass %,
Ti: 0.001 to 2.00%,
Nb: 0.001 to 2.00%,
V: 0.001 to 2.0%
B: 0.0001 to 0.1%
Al: 0.001 to 3.000%,
W: 0.05 to 3.0%,
Ga: 0.0004 to 0.05%,
Co: 0.05-2.5%,
Sn: 0.01 to 2.5%,
Sb: 0.01-2.5%, and Ta: 0.01-2.5%,
containing one or more selected from
The stainless steel bar according to claim 1 or 2.
前記化学組成が、質量%でさらに、
Ca:0.0002~0.05%、
Mg:0.0002~0.012%、
Zr:0.0002~0.012%、および
REM:0.0002~0.05%、
から選択される一種以上を含有する、
請求項1~請求項3のいずれか1項に記載のステンレス棒状鋼材。
Further, the chemical composition is, in mass %,
Ca: 0.0002-0.05%,
Mg: 0.0002-0.012%,
Zr: 0.0002-0.012%, and REM: 0.0002-0.05%,
containing one or more selected from
The stainless steel bar material according to any one of claims 1 to 3.
前記化学組成が、質量%でさらに、
Pb:0.0001~0.30%、
Se:0.0001~0.80%、
Te:0.0001~0.30%、
Bi:0.0001~0.50%、
S:0.0001~0.50%、
P:0.0001~0.30%、
から選択される一種以上を含有する、
請求項1~請求項4のいずれか1項に記載のステンレス棒状鋼材。
Further, the chemical composition is, in mass %,
Pb: 0.0001 to 0.30%,
Se: 0.0001 to 0.80%,
Te: 0.0001 to 0.30%,
Bi: 0.0001 to 0.50%,
S: 0.0001 to 0.50%,
P: 0.0001 to 0.30%,
containing one or more selected from
The stainless steel bar material according to any one of claims 1 to 4.
5Oeにおける磁束密度が0.10T以上である、請求項1~請求項5のいずれか1項に記載のステンレス棒状鋼材。 The stainless steel bar according to any one of claims 1 to 5, wherein the magnetic flux density at 5 Oe is 0.10 T or more. 2kHzの交流周波数で10Oeにおける最大磁束密度が0.05T以上である、請求項1~請求項6のいずれか1項に記載のステンレス棒状鋼材。 The stainless steel bar according to any one of claims 1 to 6, having a maximum magnetic flux density of 0.05 T or more at 10 Oe at an AC frequency of 2 kHz. 請求項1~請求項7のいずれか一項に記載のステンレス棒状鋼材を用いた電磁部品。 An electromagnetic component using the stainless steel bar according to any one of claims 1 to 7. 前記化学組成が、質量%でさらに、
Ti:0.001~2.00%、
Nb:0.001~2.00%、
V:0.001~2.0%
B:0.0001~0.1%
Al:0.001~7.000%、
W:0.05~3.0%、
Ga:0.0004~0.05%、
Co:0.05~2.5%、
Sn:0.01~2.5%、
Sb:0.01~2.5%、および
Ta:0.01~2.5%、
から選択される一種以上を含有する、
請求項1に記載のステンレス棒状鋼材。
Further, the chemical composition is, in mass %,
Ti: 0.001 to 2.00%,
Nb: 0.001 to 2.00%,
V: 0.001 to 2.0%
B: 0.0001 to 0.1%
Al: 0.001 to 7.000%,
W: 0.05 to 3.0%,
Ga: 0.0004 to 0.05%,
Co: 0.05-2.5%,
Sn: 0.01 to 2.5%,
Sb: 0.01-2.5%, and Ta: 0.01-2.5%,
containing one or more selected from
The stainless steel bar according to claim 1.
前記化学組成が、質量%でさらに、
Ca:0.0002~0.05%、
Mg:0.0002~0.012%、
Zr:0.0002~0.012%、および
REM:0.0002~0.05%、
から選択される一種以上を含有する、
請求項1又は請求項9に記載のステンレス棒状鋼材。
Further, the chemical composition is, in mass %,
Ca: 0.0002-0.05%,
Mg: 0.0002-0.012%,
Zr: 0.0002-0.012%, and REM: 0.0002-0.05%,
containing one or more selected from
The stainless steel bar material according to claim 1 or claim 9.
前記化学組成が、質量%でさらに、
Pb:0.0001~0.30%、
Se:0.0001~0.80%、
Te:0.0001~0.30%、
Bi:0.0001~0.50%、
S:0.0001~0.50%、
P:0.0001~0.30%、
から選択される一種以上を含有する、
請求項1、請求項9、請求項10のいずれか1項に記載のステンレス棒状鋼材。
Further, the chemical composition is, in mass %,
Pb: 0.0001 to 0.30%,
Se: 0.0001 to 0.80%,
Te: 0.0001 to 0.30%,
Bi: 0.0001 to 0.50%,
S: 0.0001 to 0.50%,
P: 0.0001 to 0.30%,
containing one or more selected from
The stainless steel bar according to any one of claims 1, 9 and 10.
JP2022501852A 2020-02-19 2021-02-12 Electromagnetic stainless steel bar Active JP7337248B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2020026141 2020-02-19
JP2020026141 2020-02-19
PCT/JP2021/005231 WO2021166797A1 (en) 2020-02-19 2021-02-12 Rod-shaped electromagnetic stainless steel material

Publications (3)

Publication Number Publication Date
JPWO2021166797A1 JPWO2021166797A1 (en) 2021-08-26
JPWO2021166797A5 JPWO2021166797A5 (en) 2022-11-10
JP7337248B2 true JP7337248B2 (en) 2023-09-01

Family

ID=77392259

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022501852A Active JP7337248B2 (en) 2020-02-19 2021-02-12 Electromagnetic stainless steel bar

Country Status (6)

Country Link
US (1) US20230085558A1 (en)
JP (1) JP7337248B2 (en)
KR (1) KR20220139981A (en)
MX (1) MX2022010037A (en)
TW (1) TWI747739B (en)
WO (1) WO2021166797A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7427722B2 (en) 2022-07-12 2024-02-05 東北特殊鋼株式会社 Precipitation hardening soft magnetic ferritic stainless steel with excellent machinability

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003213382A (en) 2001-11-26 2003-07-30 Usinor Sulphur-containing ferritic stainless steel used for ferromagnetic part
JP2012201929A (en) 2011-03-25 2012-10-22 Nippon Steel & Sumikin Stainless Steel Corp Stainless steel wire material and steel wire excellent in corrosion resistance, strength, ductility, and method for producing the same
JP2013185183A (en) 2012-03-07 2013-09-19 Nippon Steel & Sumikin Stainless Steel Corp Soft magnetic stainless steel fine wire and method for producing the same
WO2015190422A1 (en) 2014-06-11 2015-12-17 新日鐵住金ステンレス株式会社 High strength duplex stainless steel wire rod, high strength duplex stainless steel wire and manufacturing method therefor as well as spring component
WO2020196595A1 (en) 2019-03-27 2020-10-01 日鉄ステンレス株式会社 Steel rod

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2545670B2 (en) 1992-06-02 1996-10-23 新日本製鐵株式会社 Steel rolling method
JP3309374B2 (en) 1992-08-04 2002-07-29 大同特殊鋼株式会社 Electromagnetic stainless steel
JPH0649606A (en) 1992-08-04 1994-02-22 Daido Steel Co Ltd Magnetic stainless steel
JP2004307979A (en) 2003-04-10 2004-11-04 Sanyo Special Steel Co Ltd Electromagnetic stainless steel with excellent tool life characteristic
JP6262599B2 (en) * 2013-11-29 2018-01-17 株式会社神戸製鋼所 SOFT MAGNETIC STEEL MATERIAL, ITS MANUFACTURING METHOD, AND SOFT MAGNETIC PARTS OBTAINED FROM SOFT MAGNETIC STEEL
WO2018139619A1 (en) * 2017-01-27 2018-08-02 新日鐵住金株式会社 Plated steel

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003213382A (en) 2001-11-26 2003-07-30 Usinor Sulphur-containing ferritic stainless steel used for ferromagnetic part
JP2012201929A (en) 2011-03-25 2012-10-22 Nippon Steel & Sumikin Stainless Steel Corp Stainless steel wire material and steel wire excellent in corrosion resistance, strength, ductility, and method for producing the same
JP2013185183A (en) 2012-03-07 2013-09-19 Nippon Steel & Sumikin Stainless Steel Corp Soft magnetic stainless steel fine wire and method for producing the same
WO2015190422A1 (en) 2014-06-11 2015-12-17 新日鐵住金ステンレス株式会社 High strength duplex stainless steel wire rod, high strength duplex stainless steel wire and manufacturing method therefor as well as spring component
WO2020196595A1 (en) 2019-03-27 2020-10-01 日鉄ステンレス株式会社 Steel rod

Also Published As

Publication number Publication date
TW202136536A (en) 2021-10-01
WO2021166797A1 (en) 2021-08-26
JPWO2021166797A1 (en) 2021-08-26
MX2022010037A (en) 2022-09-05
TWI747739B (en) 2021-11-21
KR20220139981A (en) 2022-10-17
US20230085558A1 (en) 2023-03-16

Similar Documents

Publication Publication Date Title
JP6286540B2 (en) High-strength duplex stainless steel wire, high-strength duplex stainless steel wire and its manufacturing method, and spring parts
JP6004653B2 (en) Ferritic stainless steel wire, steel wire, and manufacturing method thereof
JP6107437B2 (en) Manufacturing method of low-alloy high-strength seamless steel pipe for oil wells with excellent resistance to sulfide stress corrosion cracking
JP6384629B2 (en) Induction hardening steel
JP6782601B2 (en) High-strength stainless steel wire with excellent warmth relaxation characteristics, its manufacturing method, and spring parts
JP6244701B2 (en) High carbon hot rolled steel sheet excellent in hardenability and workability and method for producing the same
KR20190031278A (en) High frequency quenching steel
JP2014185367A (en) Stainless steel wire excellent in twisting processability and manufacturing method therefor, and stainless steel wire and manufacturing method therefor
KR20190028757A (en) High frequency quenching steel
CN106687614A (en) High strength seamless steel pipe for use in oil wells and manufacturing method thereof
WO2017188284A1 (en) Untempered steel for induction hardening
JP7337248B2 (en) Electromagnetic stainless steel bar
JP7077477B2 (en) Ferritic stainless steel rod-shaped steel
WO2022153790A1 (en) Martensite-based stainless steel material and method for producing same
JP6652021B2 (en) Hot forging steel and hot forged products
JP5884781B2 (en) High carbon hot rolled steel sheet excellent in hardenability and workability and method for producing the same
JPS6137953A (en) Nonmagnetic steel wire rod and its manufacture
JP5653269B2 (en) Stainless steel wire and steel wire excellent in corrosion resistance, strength, and ductility, and methods for producing them.
JP7320936B2 (en) bar steel
TWI773591B (en) Stainless steel rods and electromagnetic parts
JP7009666B1 (en) Ni—Cr—Mo alloy for welded pipes with excellent workability and corrosion resistance
JP7504672B2 (en) Stainless steel wire, its manufacturing method, and spring parts
JP7205067B2 (en) Non-heat treated steel for induction hardening
JP7205066B2 (en) Non-heat treated steel for induction hardening
JP2023144727A (en) Martensitic stainless hot-rolled wire rod and method for manufacturing the same, and martensitic stainless annealed wire rod

Legal Events

Date Code Title Description
A529 Written submission of copy of amendment under article 34 pct

Free format text: JAPANESE INTERMEDIATE CODE: A5211

Effective date: 20220803

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230801

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230822

R150 Certificate of patent or registration of utility model

Ref document number: 7337248

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150