JP7336100B2 - Anti-corrosion structure and method for manufacturing anti-corrosion structure - Google Patents

Anti-corrosion structure and method for manufacturing anti-corrosion structure Download PDF

Info

Publication number
JP7336100B2
JP7336100B2 JP2019206774A JP2019206774A JP7336100B2 JP 7336100 B2 JP7336100 B2 JP 7336100B2 JP 2019206774 A JP2019206774 A JP 2019206774A JP 2019206774 A JP2019206774 A JP 2019206774A JP 7336100 B2 JP7336100 B2 JP 7336100B2
Authority
JP
Japan
Prior art keywords
joint
joint portion
target
corrosion structure
corrosion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019206774A
Other languages
Japanese (ja)
Other versions
JP2021079389A (en
Inventor
英俊 藤井
好昭 森貞
祥宏 青木
洋二 正木
進 松野
幸文 松岡
和彦 谷
興平 林
光良 中谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Osaka University NUC
Original Assignee
Hitachi Zosen Corp
Osaka University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp, Osaka University NUC filed Critical Hitachi Zosen Corp
Priority to JP2019206774A priority Critical patent/JP7336100B2/en
Priority to PCT/JP2020/033837 priority patent/WO2021095333A1/en
Publication of JP2021079389A publication Critical patent/JP2021079389A/en
Application granted granted Critical
Publication of JP7336100B2 publication Critical patent/JP7336100B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/12Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding

Description

本発明は、水上構造物の飛沫干満帯部に配置される防食構造に関する。 TECHNICAL FIELD The present invention relates to an anti-corrosion structure that is arranged in a splash tidal zone of a floating structure.

従来、ジャケット式の港湾施設等では、腐食環境が厳しい鋼管の飛沫干満帯部に超厚膜塗装を施工することにより、鋼管の耐食性向上が図られている。また、近年、鋼管の耐食性を向上するために、鋼管の飛沫干満帯部を金属シートでライニングした防食構造も採用されている。特許文献1では、上記金属シートである耐海水性ステンレス鋼の薄板を、レーザ溶接やプラズマ溶接を用いて鋼管にライニングする技術が提案されている。一方、特許文献2では、上記金属シートであるチタン系材料を鉄系材料に重ね合わせ、摩擦攪拌接合により接合する技術が提案されている。 Conventionally, in jacket-type harbor facilities, corrosion resistance of steel pipes has been improved by applying an ultra-thick coating to the splash tidal zone of steel pipes, which is in a severe corrosive environment. Further, in recent years, in order to improve the corrosion resistance of steel pipes, a corrosion-resistant structure in which the splash tidal zone of steel pipes is lined with a metal sheet has been adopted. Patent Document 1 proposes a technique of lining a steel pipe with a thin sheet of seawater-resistant stainless steel, which is the metal sheet, by laser welding or plasma welding. On the other hand, Patent Literature 2 proposes a technique of superimposing a titanium-based material, which is the metal sheet, on an iron-based material and joining them by friction stir welding.

特許第4350490号公報Japanese Patent No. 4350490 特開2019-13956号公報JP 2019-13956 A

ところで、特許文献1のように、耐海水性ステンレス鋼をレーザ溶接やプラズマ溶接により鋼管に接合した場合、接合部に隙間が生じて鋼管の隙間腐食が生じるおそれがある。また、接合部における耐海水性ステンレス鋼の硬度が低下し、防食構造の強度が低下するおそれもある。一方、特許文献2では、チタン系材料については記載されているが、耐海水性ステンレス鋼については記載も示唆もされていない。 By the way, when seawater-resistant stainless steel is joined to a steel pipe by laser welding or plasma welding as in Patent Document 1, there is a risk of crevice corrosion occurring in the steel pipe due to the formation of gaps in the joint. In addition, the hardness of the seawater-resistant stainless steel at the joint may decrease, and the strength of the anticorrosion structure may decrease. On the other hand, Patent Document 2 describes a titanium-based material, but neither describes nor suggests a seawater-resistant stainless steel.

本発明は、上記課題に鑑みなされたものであり、水上構造物の飛沫干満帯部に配置される防食構造において、耐海水性ステンレス鋼により被覆された炭素鋼の隙間腐食を抑制することを目的としている。 SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and an object of the present invention is to suppress crevice corrosion of carbon steel coated with seawater-resistant stainless steel in an anti-corrosion structure arranged in a splash tidal zone of a floating structure. and

請求項1に記載の発明は、水上構造物の飛沫干満帯部に配置される防食構造であって、炭素鋼製の筒状または柱状の第1部材と、前記第1部材の飛沫干満帯部において前記第1部材の外側面を被覆して前記第1部材に接合される耐海水性ステンレス鋼製の筒状の第2部材とを備え、前記第1部材と前記第2部材との接合部、および、前記第2部材同士の接合部のうち少なくとも一方である対象接合部は、摩擦攪拌接合により形成され、前記対象接合部は、重ね合わせ接合部であり、前記対象接合部において外側に位置する前記第2部材の端縁の厚さは0mmである
請求項2に記載の発明は、水上構造物の飛沫干満帯部に配置される防食構造であって、炭素鋼製の筒状または柱状の第1部材と、前記第1部材の飛沫干満帯部において前記第1部材の外側面を被覆して前記第1部材に接合される耐海水性ステンレス鋼製の筒状の第2部材とを備え、前記第1部材と前記第2部材との接合部、および、前記第2部材同士の接合部のうち少なくとも一方である対象接合部は、摩擦攪拌接合により形成され、前記対象接合部は、重ね合わせ接合部であり、前記対象接合部の幅方向における前記対象接合部の外表面の傾斜は、1/5以下である。
The invention according to claim 1 is an anti-corrosion structure arranged in a splash zone of a water structure, comprising a cylindrical or columnar first member made of carbon steel, and a splash zone of the first member. and a cylindrical second member made of seawater-resistant stainless steel that covers the outer surface of the first member and is joined to the first member, wherein the joint portion between the first member and the second member and a target joint that is at least one of the joints between the second members is formed by friction stir welding, the target joint is a lap joint, and is positioned outside the target joint The thickness of the edge of the second member to be connected is 0 mm .
The invention according to claim 2 is an anti-corrosion structure arranged in a splash zone of a water structure, comprising a cylindrical or columnar first member made of carbon steel, and a splash zone of the first member. and a cylindrical second member made of seawater-resistant stainless steel that covers the outer surface of the first member and is joined to the first member, wherein the joint portion between the first member and the second member , and a target joint that is at least one of the joints between the second members is formed by friction stir welding, the target joint is an overlap joint, and the width direction of the target joint is The inclination of the outer surface of the target joint is ⅕ or less.

請求項に記載の発明は、請求項1または2に記載の防食構造であって、前記第2部材の非接合部の板厚は、1mm以下である。 The invention according to claim 3 is the anti-corrosion structure according to claim 1 or 2 , wherein the plate thickness of the non-joint portion of the second member is 1 mm or less.

請求項に記載の発明は、請求項1ないしのいずれか1つに記載の防食構造であって、前記対象接合部における前記第2部材の平均ビッカース硬さは、非接合部における前記第2部材の平均ビッカース硬さの1.2倍以上である。 The invention according to claim 4 is the anti-corrosion structure according to any one of claims 1 to 3 , wherein the average Vickers hardness of the second member at the target joint is equal to the second member at the non-joint. It is at least 1.2 times the average Vickers hardness of the two members.

請求項に記載の発明は、水上構造物の飛沫干満帯部に配置される防食構造の製造方法であって、a)炭素鋼製の筒状または柱状の第1部材を準備する工程と、b)耐海水性ステンレス鋼製の第2部材を、前記第1部材の飛沫干満帯部において前記第1部材の外側面に被覆させて前記第1部材に接合する工程とを備え、前記b)工程において、前記第1部材と前記第2部材との接合部、および、前記第2部材同士の接合部のうち少なくとも一方である対象接合部は、摩擦攪拌接合により形成され、前記対象接合部は、重ね合わせ接合部であり、前記対象接合部において外側に位置する前記第2部材の端縁の厚さは0mmである
請求項6に記載の発明は、水上構造物の飛沫干満帯部に配置される防食構造の製造方法であって、a)炭素鋼製の筒状または柱状の第1部材を準備する工程と、b)耐海水性ステンレス鋼製の第2部材を、前記第1部材の飛沫干満帯部において前記第1部材の外側面に被覆させて前記第1部材に接合する工程とを備え、前記b)工程において、前記第1部材と前記第2部材との接合部、および、前記第2部材同士の接合部のうち少なくとも一方である対象接合部は、摩擦攪拌接合により形成され、前記対象接合部は、重ね合わせ接合部であり、前記対象接合部の幅方向における前記対象接合部の外表面の傾斜は、1/5以下である。
According to a fifth aspect of the present invention, there is provided a method for manufacturing an anti-corrosion structure to be arranged in a splash ebb and flow zone of a floating structure, comprising the steps of: a) preparing a tubular or columnar first member made of carbon steel; b) coating a second member made of seawater-resistant stainless steel on the outer surface of the first member at the splash zone of the first member and bonding the first member to the first member; In the step, a target joint that is at least one of a joint between the first member and the second member and a joint between the second members is formed by friction stir welding , and the target joint is , the thickness of the edge of the second member, which is a lap joint and which is located on the outer side of the target joint, is 0 mm .
According to a sixth aspect of the present invention, there is provided a method for manufacturing an anti-corrosion structure to be arranged in a splash ebb and flow zone of a floating structure, comprising the steps of a) preparing a cylindrical or columnar first member made of carbon steel; b) coating a second member made of seawater-resistant stainless steel on the outer surface of the first member at the splash zone of the first member and bonding the first member to the first member; In the step, a target joint that is at least one of a joint between the first member and the second member and a joint between the second members is formed by friction stir welding, and the target joint is and a lap joint, wherein the inclination of the outer surface of the target joint in the width direction of the target joint is ⅕ or less.

本発明では、耐海水性ステンレス鋼により被覆された炭素鋼の隙間腐食を抑制することができる。 In the present invention, crevice corrosion of carbon steel coated with seawater-resistant stainless steel can be suppressed.

防食構造の斜視図である。1 is a perspective view of an anti-corrosion structure; FIG. 防食構造の製造の流れを示す図である。It is a figure which shows the flow of manufacture of an anti-corrosion structure. 防食構造の一部を示す縦断面図である。It is a longitudinal cross-sectional view which shows a part of anti-corrosion structure.

図1は、本発明の一の実施の形態に係る防食構造1を示す斜視図である。防食構造1は、水上構造物の飛沫干満帯部(すなわち、飛沫帯部および/または干満帯部)に配置される。当該水上構造物は、例えば、ジャケット式の港湾設備等のように海上に設けられる海上構造物である。なお、水上構造物は、汽水域や湖水等の水上に設けられてもよい。 FIG. 1 is a perspective view showing an anti-corrosion structure 1 according to one embodiment of the present invention. The anti-corrosion structure 1 is placed in the splash zone (ie splash zone and/or tidal zone) of the floating structure. The floating structure is, for example, a marine structure provided on the sea, such as a jacket-type harbor facility. In addition, the water structure may be provided on water such as a brackish water area or a lake.

防食構造1は、炭素鋼製の第1部材11と、耐海水性ステンレス鋼製の第2部材12とを備える。第1部材11は、筒状(すなわち、管状)または柱状の部材である。第2部材12は、筒状(すなわち、管状)の部材である。第2部材12は、第1部材11の飛沫干満帯部において、第1部材11の外側面を被覆して、第1部材11に接合される。図1に示す例では、第1部材11および第2部材12は略円筒状であり、第2部材12の内径は、第1部材11の外径と略同じである。第1部材11は、第2部材12よりも厚い厚肉筒状の部材である。本実施の形態では、第1部材11は「SS400」により形成されており、第2部材12は「SUS312L」により形成されている。なお、第1部材11および第2部材12は、他の材料により形成されていてもよい。 The anti-corrosion structure 1 comprises a first member 11 made of carbon steel and a second member 12 made of seawater resistant stainless steel. The first member 11 is a cylindrical (that is, tubular) or columnar member. The second member 12 is a cylindrical (that is, tubular) member. The second member 12 covers the outer surface of the first member 11 at the splash ebb and flow zone of the first member 11 and is joined to the first member 11 . In the example shown in FIG. 1 , the first member 11 and the second member 12 are substantially cylindrical, and the inner diameter of the second member 12 is substantially the same as the outer diameter of the first member 11 . The first member 11 is a thick tubular member that is thicker than the second member 12 . In this embodiment, the first member 11 is made of "SS400", and the second member 12 is made of "SUS312L". Note that the first member 11 and the second member 12 may be made of other materials.

第2部材12は、耐海水性ステンレス鋼製の薄板状部材(シート状部材とも呼ぶ。)を、第1部材11の外側面に沿って湾曲させ、当該薄板状部材の周方向(すなわち、第1部材11の中心軸を中心とする周方向)の両端部を、第1部材11の外側面上で互いに接合することにより、筒状に形成される。また、図1中における第2部材12の上端部および下端部は、第1部材11の外側面と接合される。 The second member 12 is a thin plate-shaped member (also called a sheet-shaped member) made of seawater-resistant stainless steel that is curved along the outer surface of the first member 11, and is bent in the circumferential direction of the thin plate-shaped member (that is, the second member). The first member 11 is formed into a tubular shape by joining both ends in the circumferential direction around the central axis of the first member 11 to each other on the outer surface of the first member 11 . Also, the upper end and the lower end of the second member 12 in FIG. 1 are joined to the outer surface of the first member 11 .

以下の説明では、第2部材12の上端部および下端部における第1部材11と第2部材12との接合部を、「第1接合部21」と呼ぶ。また、第2部材12となる予定の上記薄板状部材の周方向の両端部を接合した部位(すなわち、第2部材12同士の接合部)を、「第2接合部22」と呼ぶ。図1では、第1接合部21および第2接合部22に平行斜線を付す。第1接合部21は、第1部材11と第2部材12とを重ね合わせて接合した重ね合わせ接合部である。第1接合部21では、第2部材12が第1部材11の径方向(すなわち、第1部材11の中心軸を中心とする径方向)外側に位置する。第2接合部22は、例えば、第2部材12同士を突き合わせて接合した突き合わせ接合部である。あるいは、第2接合部22は、第2部材12同士を重ね合わせて接合した重ね合わせ接合部であってもよい。 In the following description, the joints between the first member 11 and the second member 12 at the upper end and the lower end of the second member 12 are referred to as "first joints 21". In addition, a portion where both ends in the circumferential direction of the thin plate member to be the second member 12 are joined (that is, a joint portion between the second members 12) is referred to as a "second joint portion 22". In FIG. 1 , the first joint portion 21 and the second joint portion 22 are hatched. The first joint portion 21 is an overlapping joint portion in which the first member 11 and the second member 12 are overlapped and joined. At the first joint portion 21 , the second member 12 is positioned radially outward of the first member 11 (that is, radially around the central axis of the first member 11 ). The second joint portion 22 is, for example, a butt joint portion in which the second members 12 are butted and joined. Alternatively, the second joint portion 22 may be a lap joint portion in which the second members 12 are overlapped and joined.

防食構造1では、第1接合部21および第2接合部22のうち少なくとも一方は、摩擦攪拌接合(FSW:Friction Stir Welding)にて接合される。摩擦攪拌接合により接合される接合部を「対象接合部」と呼ぶと、第1接合部21および第2接合部22のうち少なくとも一方である対象接合部は、摩擦攪拌接合により形成される。本実施の形態では、上下2つの第1接合部21、および、第2接合部22が、摩擦攪拌接合により形成される。各第1接合部21では、第1部材11と第2部材12とが攪拌され、隙間が生じないように一体化される。また、第2接合部22では、第2部材12同士が攪拌され、隙間が生じないように一体化される。 In the anti-corrosion structure 1, at least one of the first joint portion 21 and the second joint portion 22 is joined by friction stir welding (FSW). When a joint portion joined by friction stir welding is called a “target joint portion”, the target joint portion, which is at least one of the first joint portion 21 and the second joint portion 22, is formed by friction stir welding. In this embodiment, the upper and lower first joints 21 and the second joints 22 are formed by friction stir welding. At each first joint portion 21, the first member 11 and the second member 12 are agitated and integrated so as not to form a gap. Also, at the second joint portion 22, the second members 12 are agitated and integrated so as not to form a gap.

防食構造1では、第2部材12の非接合部23(すなわち、第1接合部21および第2接合部22以外の部位)の板厚は特に限定されないが、例えば1mm以下であり、好ましくは0.5mm以下である。第1部材11の非接合部(すなわち、第1接合部21以外の部位)の板厚も特に限定されないが、例えば、6mm~30mmである。 In the anti-corrosion structure 1, the plate thickness of the non-joint portion 23 of the second member 12 (that is, the portion other than the first joint portion 21 and the second joint portion 22) is not particularly limited, but is, for example, 1 mm or less, preferably 0 .5 mm or less. The plate thickness of the non-joint portion of the first member 11 (that is, the portion other than the first joint portion 21) is also not particularly limited, but is, for example, 6 mm to 30 mm.

第1接合部21の幅(すなわち、図1中の上下方向の幅)は、例えば5mm以上であり、好ましくは8mm以上である。第1接合部21の幅の上限は特に限定されないが、現実的には20mm以下である。第1接合部21の幅方向とは、第1接合部21が形成される際に、摩擦攪拌接合が進行する方向に略垂直な方向である。また、第1接合部21の幅方向とは、第1接合部21の上下の端縁に略垂直な方向である。第1接合部21の端縁とは、防食構造1において径方向外側に露出している第1部材11の外側面と第2部材12の外側面との境界線である。 The width of the first joint portion 21 (that is, the width in the vertical direction in FIG. 1) is, for example, 5 mm or more, preferably 8 mm or more. Although the upper limit of the width of the first joint portion 21 is not particularly limited, it is practically 20 mm or less. The width direction of the first joint portion 21 is a direction substantially perpendicular to the direction in which the friction stir welding proceeds when the first joint portion 21 is formed. Further, the width direction of the first joint portion 21 is a direction substantially perpendicular to the upper and lower edges of the first joint portion 21 . The edge of the first joint portion 21 is a boundary line between the outer surface of the first member 11 and the outer surface of the second member 12 that are exposed radially outward in the anticorrosive structure 1 .

第2接合部22の幅(すなわち、図1中の左右方向の幅)は、例えば5mm以上であり、好ましくは8mm以上である。第2接合部22の幅の上限は特に限定されないが、現実的には20mm以下である。第2接合部22の幅方向とは、第2接合部22が形成される際に、摩擦攪拌接合が進行する方向に略垂直な方向である。また、第2接合部22の幅方向とは、第2接合部22の左右の端縁に略垂直な方向である。第2接合部22が重ね合わせ接合部である場合、第2接合部22の幅方向において、第2部材12同士が重なっている部位の幅は、第2接合部22の幅と同じ、または、第2接合部22の幅よりも大きい。 The width of the second joint portion 22 (that is, the width in the horizontal direction in FIG. 1) is, for example, 5 mm or more, preferably 8 mm or more. Although the upper limit of the width of the second joint portion 22 is not particularly limited, it is practically 20 mm or less. The width direction of the second joint portion 22 is a direction substantially perpendicular to the direction in which the friction stir welding proceeds when the second joint portion 22 is formed. Further, the width direction of the second joint portion 22 is a direction substantially perpendicular to the left and right edges of the second joint portion 22 . When the second joint portion 22 is an overlapping joint portion, the width of the portion where the second members 12 overlap each other in the width direction of the second joint portion 22 is the same as the width of the second joint portion 22, or It is larger than the width of the second joint portion 22 .

図2は、防食構造1の製造の流れを示す図である。防食構造1が製造される際には、まず、上述の筒状または柱状の第1部材11が準備される(ステップS11)。続いて、板状の上記第2部材12が、第1部材11の飛沫干満帯部において第1部材11の外側面に被覆され、第1部材11に接合される(ステップS12)。ステップS12における第1部材11と第2部材12との接合部である第1接合部21、および、第2部材12同士の接合部である第2接合部22は、上述のように、隙間が生じないように摩擦攪拌接合によって形成される。 FIG. 2 is a diagram showing the flow of manufacturing the anticorrosion structure 1. As shown in FIG. When the anti-corrosion structure 1 is manufactured, first, the cylindrical or columnar first member 11 is prepared (step S11). Subsequently, the plate-like second member 12 covers the outer surface of the first member 11 at the splash ebb and flow zone of the first member 11 and is joined to the first member 11 (step S12). The first joint portion 21, which is the joint portion between the first member 11 and the second member 12 in step S12, and the second joint portion 22, which is the joint portion between the second members 12, have gaps as described above. It is formed by friction stir welding so that it does not occur.

当該摩擦攪拌接合では、先端に略円柱状の突起(すなわち、プローブ)が設けられたツールを回転させ、第1接合部21または第2接合部22となる予定の部位(以下、「接合対象部位」とも呼ぶ。)に対して、当該ツールが比較的強い力で押しつけられる。このとき、プローブのおよそ全体が接合対象部位に貫入される。そして、ツールが接合対象部位に沿って相対移動されることにより、ツール近傍の接合対象部位が攪拌されて塑性流動し、接合される2つの部材が一体化する。 In the friction stir welding, a tool provided with a substantially cylindrical projection (that is, a probe) at the tip is rotated, and a portion to be the first joint portion 21 or the second joint portion 22 (hereinafter referred to as "joining target portion ”) is pressed with a relatively strong force. At this time, approximately the entire probe penetrates into the site to be joined. Then, by relatively moving the tool along the parts to be welded, the parts to be welded in the vicinity of the tool are agitated and plastically flowed, and the two members to be welded are integrated.

図3は、防食構造1の第1接合部21近傍の部位を示す縦断面図である。図3では、第2部材12の上側の第1接合部21の断面を示す。第2部材12の下側の第1接合部21の断面も、図3に示すものと略同じである。 FIG. 3 is a vertical cross-sectional view showing the vicinity of the first joint 21 of the anticorrosion structure 1. As shown in FIG. FIG. 3 shows a cross section of the first joint 21 on the upper side of the second member 12 . The cross section of the first joint portion 21 on the lower side of the second member 12 is also substantially the same as that shown in FIG.

第1接合部21の外表面(すなわち、第2部材12の外側面)は、第1接合部21の幅方向において、第2部材12の非接合部23から離れて上方に向かうに従って、第1部材11の外側面に近づく。図3に示す例では、第1接合部21の上端縁において、第2部材12の端縁の厚さは、実質的に0mmである。換言すれば、第1接合部21の上端縁において、第2部材12の外側面の径方向の位置は、第1部材11の外側面の径方向の位置と実質的に同じである。なお、第2部材12の端縁の厚さは、100μm以下であれば、実質的に0mmと見なされる。 The outer surface of the first joint portion 21 (that is, the outer surface of the second member 12) becomes the first The outer surface of member 11 is approached. In the example shown in FIG. 3 , the thickness of the edge of the second member 12 is substantially 0 mm at the upper edge of the first joint portion 21 . In other words, the radial position of the outer surface of the second member 12 is substantially the same as the radial position of the outer surface of the first member 11 at the upper edge of the first joint portion 21 . Note that if the thickness of the edge of the second member 12 is 100 μm or less, it is considered to be substantially 0 mm.

第1接合部21の外表面の幅方向における傾斜は、例えば1/5以下であり、好ましくは1/10以下である。当該傾斜は、図3中において、第1部材11の外側面を示す直線L1を基準として、第1接合部21の外表面の幅方向両端を結ぶ仮想的直線L2の傾斜である。換言すれば、第1接合部21の幅方向の両端における第2部材12の厚さの差を、第1接合部21の幅方向の幅で除算した値である。 The inclination of the outer surface of the first joint portion 21 in the width direction is, for example, ⅕ or less, preferably 1/10 or less. The inclination is the inclination of an imaginary straight line L2 connecting both ends in the width direction of the outer surface of the first joint portion 21 with respect to the straight line L1 indicating the outer surface of the first member 11 in FIG. In other words, it is a value obtained by dividing the difference in thickness of the second member 12 at both ends of the first joint portion 21 in the width direction by the width of the first joint portion 21 in the width direction.

防食構造1では、第2接合部22が第2部材12同士の重ね合わせ接合である場合、第2接合部22の外表面の幅方向における傾斜は、上述の第1接合部21の傾斜と同様に、例えば1/5以下であり、好ましくは1/10以下である。第2接合部22の外表面の幅方向における傾斜は、第2接合部22の幅方向中央における第1部材11の外側面の接線を基準として、第2接合部22の外表面の幅方向両端を結ぶ仮想的直線の傾斜である。 In the anti-corrosion structure 1, when the second joint portion 22 is a lap joint of the second members 12, the inclination of the outer surface of the second joint portion 22 in the width direction is the same as the inclination of the first joint portion 21 described above. is, for example, 1/5 or less, preferably 1/10 or less. The inclination of the outer surface of the second joint portion 22 in the width direction is based on the tangent line of the outer surface of the first member 11 at the center of the second joint portion 22 in the width direction. is the slope of an imaginary straight line connecting

防食構造1では、第1接合部21が摩擦攪拌接合により形成されることにより、第1接合部21における第2部材12の平均ビッカース硬さが、非接合部23における第2部材12の平均ビッカース硬さ(以下、「基準硬さ」とも呼ぶ。)よりも大きくなる。例えば、第1接合部21における第2部材12の平均ビッカース硬さは、基準硬さの1.2倍以上であり、好ましくは1.5倍以上である。仮に、第1部材11と第2部材12とをレーザ溶接またはプラズマ溶接にて接合すると、第2部材12の平均ビッカース硬さは、通常、基準硬さよりも小さくなる。したがって、第1接合部21が摩擦攪拌接合により形成されることにより、第1接合部21における第2部材12の平均ビッカース硬さは、レーザ溶接またはプラズマ溶接により第1接合部21が形成される場合に比べて、大幅に大きくなる。上述の平均ビッカース硬さは、マイクロビッカース硬度計により測定可能である。 In the anti-corrosion structure 1, the first joint portion 21 is formed by friction stir welding, so that the average Vickers hardness of the second member 12 at the first joint portion 21 is equal to the average Vickers hardness of the second member 12 at the non-joint portion 23. hardness (hereinafter also referred to as “reference hardness”). For example, the average Vickers hardness of the second member 12 at the first joint portion 21 is 1.2 times or more, preferably 1.5 times or more, the reference hardness. If the first member 11 and the second member 12 are joined by laser welding or plasma welding, the average Vickers hardness of the second member 12 is usually smaller than the reference hardness. Therefore, by forming the first joint 21 by friction stir welding, the average Vickers hardness of the second member 12 at the first joint 21 is the same as that of the first joint 21 formed by laser welding or plasma welding. significantly larger than the case. The above average Vickers hardness can be measured with a micro Vickers hardness tester.

また、防食構造1では、第2接合部22が摩擦攪拌接合により形成されることにより、第2接合部22における各第2部材12の平均ビッカース硬さが、基準硬さよりも大きくなる。当該各第2部材12の平均ビッカース硬さとは、第2接合部22が重ね合わせ接合により形成されている場合、重ね合わせの外側および内側(すなわち、上側および下側)の第2部材12のそれぞれの平均ビッカース硬さである。また、第2接合部22が突き合わせ接合により形成されている場合、上述の各第2部材12の平均ビッカース硬さとは、突き合わせ部の両側の第2部材12の平均ビッカース硬さである。 In addition, in the anti-corrosion structure 1, the average Vickers hardness of each of the second members 12 in the second joints 22 is higher than the reference hardness because the second joints 22 are formed by friction stir welding. The average Vickers hardness of each of the second members 12 is, when the second joint portion 22 is formed by overlapping joints, the second members 12 on the outside and inside (that is, the upper side and the lower side) of the overlap. is the average Vickers hardness of . Further, when the second joint portion 22 is formed by butt joint, the above-described average Vickers hardness of each second member 12 is the average Vickers hardness of the second members 12 on both sides of the butt joint.

第2接合部22における各第2部材12の平均ビッカース硬さは、例えば、基準硬さの1.2倍以上であり、好ましくは1.5倍以上である。仮に、第2部材12同士をレーザ溶接またはプラズマ溶接にて接合すると、各第2部材12の平均ビッカース硬さは、通常、基準硬さよりも小さくなる。したがって、第2接合部22が摩擦攪拌接合により形成されることにより、第2接合部22における各第2部材12の平均ビッカース硬さは、レーザ溶接またはプラズマ溶接により第2接合部22が形成される場合に比べて、大幅に大きくなる。 The average Vickers hardness of each second member 12 in the second joint portion 22 is, for example, 1.2 times or more, preferably 1.5 times or more, the reference hardness. If the second members 12 are joined together by laser welding or plasma welding, the average Vickers hardness of each second member 12 is usually smaller than the reference hardness. Therefore, by forming the second joints 22 by friction stir welding, the average Vickers hardness of each of the second members 12 in the second joints 22 is reduced by laser welding or plasma welding. significantly larger than in the case of

次に、表1および表2を参照しつつ、第1接合部21および第2接合部22に対応する実験例1~3について説明する。表1および表2中の平均ビッカース硬さは、試験荷重を50kgfとし、荷重保持時間を15秒として、マイクロビッカース硬度計にて測定を行った。後述する接合部の平均ビッカース硬さは、接合部の幅方向(上述の幅方向に対応する方向)の略全幅に亘ってマイクロビッカース硬度計にて測定を行い、測定値の算術平均として求めた。また、後述する非接合部の平均ビッカース硬さは、非接合部の所定幅の部位(例えば、接合部と同じ幅の部位)について、上記幅方向の略全幅に亘ってマイクロビッカース硬度計にて測定を行い、測定値の算術平均として求めた。 Next, Experimental Examples 1 to 3 corresponding to the first joint portion 21 and the second joint portion 22 will be described with reference to Tables 1 and 2. The average Vickers hardness in Tables 1 and 2 was measured with a micro Vickers hardness tester under a test load of 50 kgf and a load holding time of 15 seconds. The average Vickers hardness of the joint, which will be described later, was measured with a micro Vickers hardness meter over substantially the entire width of the joint in the width direction (the direction corresponding to the width direction described above), and was obtained as the arithmetic average of the measured values. . In addition, the average Vickers hardness of the non-joint portion, which will be described later, is measured with a micro Vickers hardness meter over substantially the entire width in the width direction of a portion of the non-joint portion having a predetermined width (for example, a portion having the same width as the joint portion). Measurements were taken and calculated as the arithmetic mean of the measurements.

Figure 0007336100000001
Figure 0007336100000001

Figure 0007336100000002
Figure 0007336100000002

実験例1は、第1接合部21に対応する実験である。実験例1では、炭素鋼製の第1部材11上に耐海水性ステンレス鋼製の第2部材12を重ね合わせ、摩擦攪拌接合により接合した。上部材(すなわち、径方向外側の部材)である第2部材12としてSUS312Lを使用し、下部材(すなわち、径方向内側の部材)である第1部材11としてSS400を使用した。上部材(SUS312L)では、接合部の平均ビッカース硬さは283HVであり、非接合部の平均ビッカース硬さは186HVであった。また、上部材における非接合部の平均ビッカース硬さに対する接合部の平均ビッカース硬さの割合(以下、「硬さ比」とも呼ぶ。)は、1.52であった。一方、下部材(SS400)では、接合部の平均ビッカース硬さは208HVであり、非接合部の平均ビッカース硬さは119HVであり、硬さ比は、1.75であった。 Experimental Example 1 is an experiment corresponding to the first joint portion 21 . In Experimental Example 1, a second member 12 made of seawater-resistant stainless steel was superimposed on a first member 11 made of carbon steel and joined by friction stir welding. SUS312L was used as the second member 12, which is the upper member (that is, the radially outer member), and SS400 was used as the first member 11, which is the lower member (that is, the radially inner member). In the upper member (SUS312L), the average Vickers hardness of the joined portion was 283 HV, and the average Vickers hardness of the non-joined portion was 186 HV. Also, the ratio of the average Vickers hardness of the joint portion to the average Vickers hardness of the non-joint portion of the upper member (hereinafter also referred to as "hardness ratio") was 1.52. On the other hand, in the lower member (SS400), the average Vickers hardness of the joined portion was 208 HV, the average Vickers hardness of the non-joined portion was 119 HV, and the hardness ratio was 1.75.

実験例2は、第2接合部22に対応する実験である。実験例2では、耐海水性ステンレス鋼製の第2部材12上に第2部材12を重ね合わせ、摩擦攪拌接合により接合した。上部材および下部材である第2部材12として、SUS312Lを使用した。上部材(SUS312L)では、接合部の平均ビッカース硬さは337HVであり、非接合部の平均ビッカース硬さは190HVであり、硬さ比は、1.77であった。一方、下部材(SUS312L)では、接合部の平均ビッカース硬さは291HVであり、非接合部の平均ビッカース硬さは188HVであり、硬さ比は、1.55であった。 Experimental example 2 is an experiment corresponding to the second joint portion 22 . In Experimental Example 2, the second member 12 was superimposed on the second member 12 made of seawater-resistant stainless steel and joined by friction stir welding. SUS312L was used as the second member 12, which is the upper member and the lower member. In the upper member (SUS312L), the average Vickers hardness of the joined portion was 337 HV, the average Vickers hardness of the non-joined portion was 190 HV, and the hardness ratio was 1.77. On the other hand, in the lower member (SUS312L), the average Vickers hardness of the joined portion was 291 HV, the average Vickers hardness of the non-joined portion was 188 HV, and the hardness ratio was 1.55.

実験例3は、第2接合部22に対応する実験である。実験例3では、耐海水性ステンレス鋼製の第2部材12同士を突き合わせ、摩擦攪拌接合により接合した。突き合わせた2つの第2部材12として、SUS312Lを使用した。接合部の平均ビッカース硬さは278HVであり、非接合部の平均ビッカース硬さは182HVであり、硬さ比は、1.53であった。 Experimental Example 3 is an experiment corresponding to the second joint portion 22 . In Experimental Example 3, the second members 12 made of seawater-resistant stainless steel were butted against each other and joined by friction stir welding. SUS312L was used as the two butted second members 12 . The average Vickers hardness of the bonded portion was 278 HV, the average Vickers hardness of the non-bonded portion was 182 HV, and the hardness ratio was 1.53.

以上に説明したように、水上構造物の飛沫干満帯部に配置される防食構造1は、炭素鋼製の筒状または柱状の第1部材11と、耐海水性ステンレス鋼製の筒状の第2部材12と、を備える。第2部材12は、第1部材11の飛沫干満帯部において、第1部材11の外側面を被覆して第1部材11に接合される。第1部材11と第2部材12との接合部(すなわち、第1接合部21)、および、第2部材12同士の接合部(すなわち、第2部材12)のうち、少なくとも一方である対象接合部は、摩擦攪拌接合により形成される。 As described above, the anti-corrosion structure 1 arranged in the splash tidal zone of the floating structure includes the cylindrical or columnar first member 11 made of carbon steel and the cylindrical first member 11 made of seawater-resistant stainless steel. two members 12; The second member 12 is joined to the first member 11 while covering the outer surface of the first member 11 at the splash ebb and flow zone of the first member 11 . A target joint that is at least one of a joint between the first member 11 and the second member 12 (that is, the first joint 21) and a joint between the second members 12 (that is, the second member 12) The part is formed by friction stir welding.

これにより、レーザ溶接やプラズマ溶接等による接合に比べて、対象接合部に隙間が生じることを抑制することができる。その結果、耐海水性ステンレス鋼製の第2部材12により被覆された炭素鋼製の第1部材11の隙間腐食を抑制することができる。また、対象接合部における応力集中を抑制することができるため、レーザ溶接やプラズマ溶接等による接合に比べて、対象接合部の疲労強度を増大させることができる。 As a result, it is possible to suppress the occurrence of gaps in the target joints compared to joining by laser welding, plasma welding, or the like. As a result, crevice corrosion of the carbon steel first member 11 coated with the seawater resistant stainless steel second member 12 can be suppressed. Moreover, since stress concentration at the target joint can be suppressed, the fatigue strength of the target joint can be increased compared to joining by laser welding, plasma welding, or the like.

防食構造1では、レーザ溶接やプラズマ溶接等による接合に比べて、対象接合部に対する入熱量を低減することができる。これにより、対象接合部において、入熱に起因する鋭敏化による耐食性低下を抑制することができる。また、対象接合部において、残留応力による応力腐食を抑制することもできる。さらに、対象接合部および周囲の部位における熱歪が抑制されるため、熱歪の矯正作業量を低減することもできる。 In the anti-corrosion structure 1, the amount of heat input to the target joint can be reduced compared to joining by laser welding, plasma welding, or the like. As a result, deterioration in corrosion resistance due to sensitization caused by heat input can be suppressed in the target joint. In addition, stress corrosion due to residual stress can be suppressed at the target joint. Furthermore, since thermal strain is suppressed in the target joint portion and the surrounding portion, it is also possible to reduce the amount of thermal strain correction work.

防食構造1では、レーザ溶接やプラズマ溶接等による接合とは異なり、耐海水性ステンレス鋼製の第2部材12の対象接合部における硬度が、非接合部23における硬度(すなわち、接合前の硬度)よりも低下することを防止または抑制することができる(表1および表2参照)。その結果、防食構造1の強度低下を防止または抑制することができる。 In the anti-corrosion structure 1, unlike joining by laser welding, plasma welding, or the like, the hardness at the target joining portion of the second member 12 made of seawater-resistant stainless steel is the hardness at the non-joining portion 23 (that is, the hardness before joining). can be prevented or suppressed from lowering than (see Tables 1 and 2). As a result, a decrease in strength of the anticorrosion structure 1 can be prevented or suppressed.

上述のように、対象接合部における第2部材12の平均ビッカース硬さは、非接合部23における第2部材12の平均ビッカース硬さの1.2倍以上であることが好ましい。このように、対象接合部における第2部材12の硬度を摩擦攪拌接合によって増大させることにより、防食構造1の強度を増大させることができる。より好ましくは、対象接合部における第2部材12の平均ビッカース硬さは、非接合部23における第2部材12の平均ビッカース硬さの1.5倍以上である。これにより、防食構造1の強度をさらに増大させることができる。 As described above, the average Vickers hardness of the second member 12 at the target joint portion is preferably 1.2 times or more the average Vickers hardness of the second member 12 at the non-joint portion 23 . Thus, the strength of the anti-corrosion structure 1 can be increased by increasing the hardness of the second member 12 at the target joint portion by friction stir welding. More preferably, the average Vickers hardness of the second member 12 at the target joint portion is 1.5 times or more the average Vickers hardness of the second member 12 at the non-joint portion 23 . Thereby, the strength of the anticorrosion structure 1 can be further increased.

上述のように、防食構造1では、対象接合部に対する入熱による悪影響(例えば、耐食性低下、応力腐食および熱歪)を抑制することができるため、第2部材12が比較的薄い場合に特に適している。具体的には、防食構造1は、第2部材12の非接合部23の板厚が1mm以下である場合に特に適している。 As described above, the anti-corrosion structure 1 is particularly suitable when the second member 12 is relatively thin because it is possible to suppress adverse effects (for example, deterioration of corrosion resistance, stress corrosion, and thermal strain) due to heat input to the target joint. ing. Specifically, the anti-corrosion structure 1 is particularly suitable when the plate thickness of the non-joint portion 23 of the second member 12 is 1 mm or less.

上述のように、対象接合部が重ね合わせ接合部である場合、当該対象接合部において外側に位置する第2部材12の端縁の厚さは0mmであることが好ましい。これにより、当該端縁において、外側に位置する第2部材12と内側に位置する部材(すなわち、第1部材11または第2部材12)との継ぎ目を滑らかにすることができる。その結果、対象接合部における応力集中をさらに抑制することができるため、疲労強度をさらに増大させることができる。 As described above, when the target joint is a lap joint, the thickness of the outer edge of the second member 12 at the target joint is preferably 0 mm. As a result, the joint between the outer second member 12 and the inner member (that is, the first member 11 or the second member 12) can be smoothed at the edge. As a result, the stress concentration in the target joint can be further suppressed, so the fatigue strength can be further increased.

上述のように、対象接合部が重ね合わせ接合部である場合、当該対象接合部の幅方向における対象接合部の外表面の傾斜は、1/5以下であることが好ましい。このように、対象接合部の外表面の傾斜を小さくすることにより、当該対象接合部の端縁において、外側に位置する第2部材12と内側に位置する部材(すなわち、第1部材11または第2部材12)との継ぎ目を滑らかにすることができる。その結果、対象接合部における応力集中をさらに抑制することができるため、対象接合部の疲労強度をさらに増大させることができる。当該傾斜は、さらに好ましくは1/10であり、これにより、対象接合部の疲労強度をより一層増大させることができる。 As described above, when the target joint is a lap joint, the inclination of the outer surface of the target joint in the width direction of the target joint is preferably ⅕ or less. In this way, by reducing the inclination of the outer surface of the target joint portion, the second member 12 positioned on the outside and the member positioned on the inside (that is, the first member 11 or the second member 11) The seam between the two members 12) can be smoothed. As a result, the stress concentration in the target joint can be further suppressed, so that the fatigue strength of the target joint can be further increased. The slope is more preferably 1/10, which can further increase the fatigue strength of the target joint.

上述の防食構造1の製造方法は、炭素鋼製の筒状または柱状の第1部材11(ステップS11)を準備する工程と、耐海水性ステンレス鋼製の第2部材12を、第1部材11の飛沫干満帯部において、第1部材11の外側面に被覆させて第1部材11に接合する工程(ステップS12)と、を備える。そして、ステップS12において、第1部材11と第2部材12との接合部(すなわち、第1接合部21)、および、第2部材12同士の接合部(すなわち、第2接合部22)のうち少なくとも一方である対象接合部は、摩擦攪拌接合により形成される。 The method for manufacturing the anti-corrosion structure 1 described above comprises a step of preparing a cylindrical or columnar first member 11 (step S11) made of carbon steel; and a step of covering the outer surface of the first member 11 and joining it to the first member 11 in the splash ebb and flow zone (step S12). Then, in step S12, the joint portion between the first member 11 and the second member 12 (that is, the first joint portion 21) and the joint portion between the second members 12 (that is, the second joint portion 22) At least one of the target joints is formed by friction stir welding.

これにより、上述のように、レーザ溶接やプラズマ溶接等による接合に比べて、第1部材11の隙間腐食を抑制することができるとともに、対象接合部の疲労強度を増大させることもできる。また、レーザ溶接やプラズマ溶接等による接合に比べて、対象接合部に対する入熱による悪影響(例えば、耐食性低下、応力腐食および熱歪)を低減することができる。さらに、第2部材12の対象接合部における硬度が、非接合部23における硬度(すなわち、接合前の硬度)よりも低下することを防止または抑制することができる。 As a result, as described above, crevice corrosion of the first member 11 can be suppressed and the fatigue strength of the target joint portion can be increased as compared to joining by laser welding, plasma welding, or the like. In addition, compared to joining by laser welding, plasma welding, or the like, it is possible to reduce adverse effects (for example, deterioration of corrosion resistance, stress corrosion, and thermal strain) due to heat input to the target joint. Furthermore, it is possible to prevent or suppress the hardness of the target joint portion of the second member 12 from being lower than the hardness of the non-joint portion 23 (that is, the hardness before joining).

上述の防食構造1および防食構造1の製造方法では、様々な変更が可能である。 Various modifications are possible in the anti-corrosion structure 1 and the method of manufacturing the anti-corrosion structure 1 described above.

例えば、第1部材11の外側面に接合される第2部材12は、1枚の薄板状部材を湾曲させたものであってもよく、複数の板材(例えば、略矩形の板材)を摩擦攪拌接合で板継ぎすることによって薄板状部材とした後に湾曲させたものであってもよい。複数の板材を板継ぎする場合、隣接する板材同士の接合部は、板材同士を突き合わせて接合した突き合わせ接合部である。これにより、複数の板材の板継ぎ部についても、上記第2接合部22と略同様に疲労強度を増大させることができる。なお、複数の板材を摩擦攪拌接合で板継ぎする工程(すなわち、第2部材12を準備する工程)は、ステップS11とステップS12との間で行われてもよく、ステップS11と並行して行われてもよく、ステップS11よりも前に行われてもよい。 For example, the second member 12 that is joined to the outer surface of the first member 11 may be a single thin plate member that is curved, and a plurality of plate materials (for example, substantially rectangular plate materials) are friction-stirred. It may be a thin plate-shaped member formed by jointing plates and then curved. When joining a plurality of plate materials, the joints between adjacent plate materials are butt joints in which the plate materials are butted and joined. As a result, the fatigue strength of the plate-jointed portions of a plurality of plate materials can be increased substantially in the same manner as the second joint portion 22 described above. Note that the step of joining a plurality of plate materials by friction stir welding (that is, the step of preparing the second member 12) may be performed between steps S11 and S12, and may be performed in parallel with step S11. may be performed before step S11.

例えば、対象接合部における第2部材12の平均ビッカース硬さは、非接合部23における第2部材12の平均ビッカース硬さの1.2倍未満であってもよく、1.0倍未満であってもよい。 For example, the average Vickers hardness of the second member 12 at the target joint portion may be less than 1.2 times, or less than 1.0 times, the average Vickers hardness of the second member 12 at the non-joint portion 23. may

対象接合部が重ね合わせ接合部である場合、当該対象接合部の幅方向における当該対象接合部の外表面の傾斜は、1/5よりも大きくてもよい。また、当該対象接合部において外側に位置する第2部材12の端縁の厚さは、実質的に0mmよりも厚く(例えば、100μmよりも厚く)てもよい。 If the target joint is a lap joint, the inclination of the outer surface of the target joint in the width direction of the target joint may be greater than 1/5. In addition, the thickness of the edge of the second member 12 located outside the target joint may be substantially thicker than 0 mm (for example, thicker than 100 μm).

第2部材12の非接合部23の板厚は、1mmよりも厚くてもよい。 The plate thickness of the non-joint portion 23 of the second member 12 may be thicker than 1 mm.

上記実施の形態および各変形例における構成は、相互に矛盾しない限り適宜組み合わされてよい。 The configurations in the above embodiment and each modified example may be combined as appropriate as long as they do not contradict each other.

1 防食構造
11 第1部材
12 第2部材
21 第1接合部
22 第2接合部
23 非接合部
S11~S12 ステップ
1 anti-corrosion structure 11 first member 12 second member 21 first joint portion 22 second joint portion 23 non-joint portion S11 to S12 Steps

Claims (6)

水上構造物の飛沫干満帯部に配置される防食構造であって、
炭素鋼製の筒状または柱状の第1部材と、
前記第1部材の飛沫干満帯部において前記第1部材の外側面を被覆して前記第1部材に接合される耐海水性ステンレス鋼製の筒状の第2部材と、
を備え、
前記第1部材と前記第2部材との接合部、および、前記第2部材同士の接合部のうち少なくとも一方である対象接合部は、摩擦攪拌接合により形成され
前記対象接合部は、重ね合わせ接合部であり、
前記対象接合部において外側に位置する前記第2部材の端縁の厚さは0mmであることを特徴とする防食構造。
An anti-corrosion structure arranged in a splash tidal zone of a water structure,
a tubular or columnar first member made of carbon steel;
a cylindrical second member made of seawater-resistant stainless steel that covers the outer surface of the first member in the splash ebb and flow zone of the first member and is joined to the first member;
with
At least one of the joint between the first member and the second member and the joint between the second members is formed by friction stir welding ,
The target joint is a lap joint,
The anti-corrosion structure , wherein the thickness of the edge of the second member located outside the target joint is 0 mm .
水上構造物の飛沫干満帯部に配置される防食構造であって、 An anti-corrosion structure arranged in a splash tidal zone of a water structure,
炭素鋼製の筒状または柱状の第1部材と、 a tubular or columnar first member made of carbon steel;
前記第1部材の飛沫干満帯部において前記第1部材の外側面を被覆して前記第1部材に接合される耐海水性ステンレス鋼製の筒状の第2部材と、 a cylindrical second member made of seawater-resistant stainless steel that covers the outer surface of the first member in the splash ebb and flow zone of the first member and is joined to the first member;
を備え、with
前記第1部材と前記第2部材との接合部、および、前記第2部材同士の接合部のうち少なくとも一方である対象接合部は、摩擦攪拌接合により形成され、 At least one of the joint between the first member and the second member and the joint between the second members is formed by friction stir welding,
前記対象接合部は、重ね合わせ接合部であり、 The target joint is a lap joint,
前記対象接合部の幅方向における前記対象接合部の外表面の傾斜は、1/5以下であることを特徴とする防食構造。 The anti-corrosion structure, wherein the inclination of the outer surface of the target joint in the width direction of the target joint is ⅕ or less.
請求項1または2に記載の防食構造であって、
前記第2部材の非接合部の板厚は、1mm以下であることを特徴とする防食構造。
The anticorrosion structure according to claim 1 or 2 ,
The anti-corrosion structure, wherein the non-joint portion of the second member has a plate thickness of 1 mm or less.
請求項1ないしのいずれか1つに記載の防食構造であって、
前記対象接合部における前記第2部材の平均ビッカース硬さは、非接合部における前記第2部材の平均ビッカース硬さの1.2倍以上であることを特徴とする防食構造。
The anticorrosion structure according to any one of claims 1 to 3 ,
The anti-corrosion structure, wherein the average Vickers hardness of the second member at the target joint is 1.2 times or more the average Vickers hardness of the second member at the non-joint.
水上構造物の飛沫干満帯部に配置される防食構造の製造方法であって、
a)炭素鋼製の筒状または柱状の第1部材を準備する工程と、
b)耐海水性ステンレス鋼製の第2部材を、前記第1部材の飛沫干満帯部において前記第1部材の外側面に被覆させて前記第1部材に接合する工程と、
を備え、
前記b)工程において、前記第1部材と前記第2部材との接合部、および、前記第2部材同士の接合部のうち少なくとも一方である対象接合部は、摩擦攪拌接合により形成され
前記対象接合部は、重ね合わせ接合部であり、
前記対象接合部において外側に位置する前記第2部材の端縁の厚さは0mmであることを特徴とする防食構造の製造方法。
A method for manufacturing an anti-corrosion structure to be placed in a splash tidal zone of a water structure, comprising:
a) providing a tubular or columnar first member made of carbon steel;
b) bonding a second member made of seawater resistant stainless steel to the outer surface of the first member at the splash zone of the first member and joining the first member;
with
In the step b), at least one of the joint between the first member and the second member and the joint between the second members is formed by friction stir welding ,
The target joint is a lap joint,
A method of manufacturing an anti-corrosion structure , wherein the thickness of the edge of the second member located outside the target joint is 0 mm .
水上構造物の飛沫干満帯部に配置される防食構造の製造方法であって、 A method for manufacturing an anti-corrosion structure to be placed in a splash tidal zone of a water structure, comprising:
a)炭素鋼製の筒状または柱状の第1部材を準備する工程と、 a) providing a tubular or columnar first member made of carbon steel;
b)耐海水性ステンレス鋼製の第2部材を、前記第1部材の飛沫干満帯部において前記第1部材の外側面に被覆させて前記第1部材に接合する工程と、 b) bonding a second member made of seawater resistant stainless steel to the outer surface of the first member at the splash zone of the first member and joining the first member;
を備え、with
前記b)工程において、前記第1部材と前記第2部材との接合部、および、前記第2部材同士の接合部のうち少なくとも一方である対象接合部は、摩擦攪拌接合により形成され、 In the step b), at least one of the joint between the first member and the second member and the joint between the second members is formed by friction stir welding,
前記対象接合部は、重ね合わせ接合部であり、 The target joint is a lap joint,
前記対象接合部の幅方向における前記対象接合部の外表面の傾斜は、1/5以下であることを特徴とする防食構造の製造方法。 A method of manufacturing an anti-corrosion structure, wherein the inclination of the outer surface of the target joint in the width direction of the target joint is ⅕ or less.
JP2019206774A 2019-11-15 2019-11-15 Anti-corrosion structure and method for manufacturing anti-corrosion structure Active JP7336100B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019206774A JP7336100B2 (en) 2019-11-15 2019-11-15 Anti-corrosion structure and method for manufacturing anti-corrosion structure
PCT/JP2020/033837 WO2021095333A1 (en) 2019-11-15 2020-09-07 Anti-corrosion structure and anti-corrosion structure production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019206774A JP7336100B2 (en) 2019-11-15 2019-11-15 Anti-corrosion structure and method for manufacturing anti-corrosion structure

Publications (2)

Publication Number Publication Date
JP2021079389A JP2021079389A (en) 2021-05-27
JP7336100B2 true JP7336100B2 (en) 2023-08-31

Family

ID=75912195

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019206774A Active JP7336100B2 (en) 2019-11-15 2019-11-15 Anti-corrosion structure and method for manufacturing anti-corrosion structure

Country Status (2)

Country Link
JP (1) JP7336100B2 (en)
WO (1) WO2021095333A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004131843A (en) 2002-09-18 2004-04-30 Jfe Steel Kk Construction member for structure, and its production method
JP2005021931A (en) 2003-06-30 2005-01-27 Tokyu Car Corp Lap joining method for plate material and lap joining structure
JP2006026721A (en) 2004-07-21 2006-02-02 Mitsubishi Heavy Ind Ltd Passage built-in mount and its production method
WO2010004657A1 (en) 2008-07-11 2010-01-14 三菱日立製鉄機械株式会社 Method and apparatus for bonding metal plates

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3869894B2 (en) * 1996-12-17 2007-01-17 新日鉄エンジニアリング株式会社 Method for coating thin metal sheet on metal substrate surface

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004131843A (en) 2002-09-18 2004-04-30 Jfe Steel Kk Construction member for structure, and its production method
JP2005021931A (en) 2003-06-30 2005-01-27 Tokyu Car Corp Lap joining method for plate material and lap joining structure
JP2006026721A (en) 2004-07-21 2006-02-02 Mitsubishi Heavy Ind Ltd Passage built-in mount and its production method
WO2010004657A1 (en) 2008-07-11 2010-01-14 三菱日立製鉄機械株式会社 Method and apparatus for bonding metal plates

Also Published As

Publication number Publication date
JP2021079389A (en) 2021-05-27
WO2021095333A1 (en) 2021-05-20

Similar Documents

Publication Publication Date Title
CN100516616C (en) Integrally formed flanged metal pipe and method of manufacturing thereof
EP3389919B1 (en) Method for connection and tubular connection assembly for improved fatigue performance of metallic risers
US10648607B2 (en) Process for lining a steel pipe for the subsea transport of fluids
JP6813589B2 (en) Support structure used for wind power plants
JP7336100B2 (en) Anti-corrosion structure and method for manufacturing anti-corrosion structure
US11655929B2 (en) Reducing the risk of corrosion in pipelines
JP2013158774A (en) Welding method, weld bonding structure and stainless steel welded structure
JP6743005B2 (en) Fluid conduit element and method for manufacturing a fluid conduit element
NO20170106A1 (en) Bi-metallic mechanically lined pipe with metallurgical bonding at its ends; method of manufacturing such bi-metallic lined pipe
JP4929096B2 (en) Overlay welding method for piping
JP3530395B2 (en) Welding methods, welded joints and welded structures
JP2012170964A (en) Welding method and welding joint of high-chrome steel
RU2410593C2 (en) Procedure for connecting pipes with internal coating
US10119473B2 (en) Component, gas turbine component and method of forming
RU2803617C1 (en) Method for manufacturing welded butt joints of multilayer thin-walled structures of sound-absorbing panels
JP5979907B2 (en) Joint structure and joint method
US11185949B2 (en) Method of manufacturing structural component for joining with another structural component by stress protected groove weld
CN216009964U (en) Corrugated pipe inner insert welding and outer insert welding corrosion-resistant connecting structure applied to expansion joint
RU2611609C2 (en) Circumferential welding joint of main pipe, method for fabrication of circumferential welding joint of main pipe and main pipe
JP4695973B2 (en) Anticorrosion structure of connected coated steel pipes
KR101763161B1 (en) Welded construction
JP6897110B2 (en) Welding method for diffusion joints
US20210323099A1 (en) Method for thermally connecting two workpiece sections
JP2019013956A (en) Method for manufacturing dissimilar metal joined body and method for joining dissimilar metal material
JPH07204841A (en) Preventing method for bent shape defect of penetration welding bead route toe part provided with asymmetric throat

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20191209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20191209

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220805

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230501

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230720

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230809

R150 Certificate of patent or registration of utility model

Ref document number: 7336100

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150