JP7333558B2 - Solid Lewis acid catalyst molded body - Google Patents

Solid Lewis acid catalyst molded body Download PDF

Info

Publication number
JP7333558B2
JP7333558B2 JP2019165744A JP2019165744A JP7333558B2 JP 7333558 B2 JP7333558 B2 JP 7333558B2 JP 2019165744 A JP2019165744 A JP 2019165744A JP 2019165744 A JP2019165744 A JP 2019165744A JP 7333558 B2 JP7333558 B2 JP 7333558B2
Authority
JP
Japan
Prior art keywords
lewis acid
solid lewis
acid catalyst
titanium
titanium oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019165744A
Other languages
Japanese (ja)
Other versions
JP2021041344A (en
Inventor
亨和 原
哲也 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Soda Co Ltd
Tokyo Institute of Technology NUC
Original Assignee
Nippon Soda Co Ltd
Tokyo Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Soda Co Ltd, Tokyo Institute of Technology NUC filed Critical Nippon Soda Co Ltd
Priority to JP2019165744A priority Critical patent/JP7333558B2/en
Publication of JP2021041344A publication Critical patent/JP2021041344A/en
Application granted granted Critical
Publication of JP7333558B2 publication Critical patent/JP7333558B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Landscapes

  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Furan Compounds (AREA)
  • Catalysts (AREA)

Description

本発明は、固体ルイス酸触媒成形体、および糖質化合物からヒドロキシメチルフルフラールを製造する方法に関する。 The present invention relates to a solid Lewis acid catalyst shaped article and a method for producing hydroxymethylfurfural from a carbohydrate compound.

ヒドロキシメチルフルフラールはグルコースを原料として合成できる重要な化学品の中間物質であるが、その合成経路は非常に複雑である。原料であるグルコースは酸触媒の存在下で骨格異性化してフルクトースへと変換される。生成したフルクトースは酸触媒との脱水反応によりヒドロキシメチルフルフラールへと変化するが、ヒドロキシメチルフルフラールは反応系内の酸触媒によって更に逐次的に加水分解されて、有機酸(ギ酸、レブリン酸)になる。そのためにヒドロキシメチルフルフラールを高選択的に製造するための新規な触媒が望まれている。 Hydroxymethylfurfural is an important chemical intermediate that can be synthesized from glucose, but its synthetic route is very complicated. Glucose, a raw material, undergoes skeletal isomerization in the presence of an acid catalyst and is converted to fructose. The fructose produced changes to hydroxymethylfurfural through a dehydration reaction with an acid catalyst, but hydroxymethylfurfural is further hydrolyzed sequentially by the acid catalyst in the reaction system to become organic acids (formic acid, levulinic acid). . Therefore, a novel catalyst for producing hydroxymethylfurfural with high selectivity is desired.

特許文献1は、アモルファス含水チタン酸化物を、リン酸で処理することにより、含水チタン酸化物の表面にリン酸残基が共有結合したリン酸化チタン酸化物が得られ、このリン酸化チタン酸化物が、固体ルイス酸触媒として優れた性能を発揮し得ることを開示している。 In Patent Document 1, by treating an amorphous hydrous titanium oxide with phosphoric acid, a phosphorylated titanium oxide in which a phosphoric acid residue is covalently bonded to the surface of the hydrous titanium oxide is obtained. discloses that it can exhibit excellent performance as a solid Lewis acid catalyst.

特許文献2は、表面がリン酸処理された第13族元素酸化物からなる水中又は水溶液中におけるグルコースからフルクトースへのヒドリド異性化反応用固体触媒を開示している。さらに、特許文献2は、背景技術の欄において、グルコース水溶液から5-ヒドロキシメチルフルフラールを製造する方法においてリン酸/TiO2やリン酸/Nb2Oを触媒とする反応が知られている旨を教えている。 Patent Document 2 discloses a solid catalyst for the hydride isomerization reaction of glucose to fructose in water or an aqueous solution, which consists of an oxide of group 13 element whose surface is treated with phosphoric acid. Furthermore, Patent Document 2 mentions in the Background Art column that a reaction using phosphoric acid/TiO 2 or phosphoric acid/Nb 2 O as a catalyst is known in a method for producing 5-hydroxymethylfurfural from an aqueous glucose solution. Teaching.

非特許文献1は、酸化チタンをリン酸水溶液に加えて室温で48時間撹拌し、酸化チタンの表面水酸基にリン酸を固定してなる、リン酸固定酸化チタンを開示している。そして、リン酸固定酸化チタンが、水溶液内でトリオースからの乳酸合成、またはキシロースからのフルフラール合成に高い触媒活性を有していたと述べている。 Non-Patent Document 1 discloses phosphate-fixed titanium oxide obtained by adding titanium oxide to a phosphoric acid aqueous solution and stirring at room temperature for 48 hours to fix phosphoric acid on the surface hydroxyl groups of titanium oxide. They also stated that phosphate-fixed titanium oxide had high catalytic activity in aqueous solution for lactic acid synthesis from triose or furfural synthesis from xylose.

非特許文献2は、1,3-ジヒドロキシアセトンを乳酸へ変換する反応において、リン酸処理した酸化チタンは、水存在下で機能するルイス酸サイトによって、高い触媒活性を示したと述べている。 Non-Patent Document 2 states that in the reaction of converting 1,3-dihydroxyacetone to lactic acid, phosphoric acid-treated titanium oxide exhibited high catalytic activity due to Lewis acid sites that function in the presence of water.

WO2012/108472A1WO2012/108472A1 WO2015/137339A1WO2015/137339A1 特開2000-63110号公報JP-A-2000-63110

中島ら「酸化チタンの水中ルイス酸特性」第42回石油・石油化学討論会(秋田)抄録 セッションID:1D03Nakajima et al., "Lewis Acid Properties of Titanium Dioxide in Water," Abstracts from the 42nd Petroleum and Petrochemical Symposium (Akita) Session ID: 1D03 中島ら「固体ルイス酸による水溶液内でのトリオ-スからの乳酸合成」第44回石油・石油化学討論会(旭川大会)抄録 セッションID:1D08Nakajima et al., "Lactic Acid Synthesis from Triose in Aqueous Solution with Solid Lewis Acid," 44th Petroleum and Petrochemical Symposium (Asahikawa Meeting) Abstract Session ID: 1D08

本発明の課題は、固体ルイス酸触媒成形体、および糖質化合物からヒドロキシメチルフルフラールを製造する方法を提供することである。 An object of the present invention is to provide a solid Lewis acid catalyst molded article and a method for producing hydroxymethylfurfural from a sugar compound.

上記課題を解決すべく検討した結果、以下の形態を包含する本発明を完成するに至った。 As a result of investigations to solve the above problems, the present invention including the following aspects has been completed.

〔1〕 チタン酸化物にリン酸残基が共有結合してなる固体ルイス酸、およびバインダを含有する、固体ルイス酸触媒成形体。 [1] A solid Lewis acid catalyst molded article containing a solid Lewis acid obtained by covalently bonding a phosphoric acid residue to a titanium oxide, and a binder.

〔2〕 バインダが、ポリテトラフルオロエチレン、酸化アルミニウム、シリコーン、シリカ、パーメチルシラン、およびカーボンブラックからなる群から選ばれる少なくとも一つである、〔1〕に記載の固体ルイス酸触媒成形体。
〔3〕 バインダの量が、固体ルイス酸100質量部に対して10~100質量部である、〔1〕または〔2〕に記載の固体ルイス酸触媒成形体。
〔4〕 チタン酸化物がアモルファス含水チタン酸化物である、〔1〕~〔3〕のいずれかひとつに記載の固体ルイス酸触媒成形体。
〔5〕 チタン酸化物がチタン酸化物前駆体の加水分解生成物である、〔1〕~〔4〕のいずれかひとつに記載の固体ルイス酸触媒成形体。
〔6〕 チタン酸化物前駆体が、チタン塩化物、チタン硫酸塩、およびチタンアルコキシドからなる群から選ばれる少なくともひとつである、〔5〕に記載の固体ルイス酸触媒成形体。
[2] The solid Lewis acid catalyst shaped article according to [1], wherein the binder is at least one selected from the group consisting of polytetrafluoroethylene, aluminum oxide, silicone, silica, permethylsilane, and carbon black.
[3] The molded solid Lewis acid catalyst according to [1] or [2], wherein the amount of the binder is 10 to 100 parts by mass per 100 parts by mass of the solid Lewis acid.
[4] The shaped solid Lewis acid catalyst according to any one of [1] to [3], wherein the titanium oxide is an amorphous hydrous titanium oxide.
[5] The shaped solid Lewis acid catalyst according to any one of [1] to [4], wherein the titanium oxide is a hydrolysis product of a titanium oxide precursor.
[6] The shaped solid Lewis acid catalyst according to [5], wherein the titanium oxide precursor is at least one selected from the group consisting of titanium chlorides, titanium sulfates and titanium alkoxides.

〔7〕 前記〔1〕~〔6〕のいずれかひとつに記載の固体ルイス酸触媒成形体の存在下に、溶媒中にて、糖質化合物を反応させることを含む、ヒドロキシメチルフルフラールを製造する方法。
〔8〕 反応で得られた液を活性炭と接触させることをさらに含む、〔7〕に記載の方法。
[7] Producing hydroxymethylfurfural, comprising reacting a carbohydrate compound in a solvent in the presence of the shaped solid Lewis acid catalyst according to any one of [1] to [6] above. Method.
[8] The method of [7], further comprising contacting the liquid obtained by the reaction with activated carbon.

本発明の固体ルイス酸触媒成形体は、十分な強度を有し、長時間の反応においても崩壊しない。本発明の固体ルイス酸触媒成形体を用いると、糖質化合物からヒドロキシメチルフルフラールを高収率で得ることができる。 The solid Lewis acid catalyst molded body of the present invention has sufficient strength and does not collapse even in long-term reaction. Hydroxymethylfurfural can be obtained in a high yield from a sugar compound using the solid Lewis acid catalyst shaped article of the present invention.

本発明の固体ルイス酸触媒成形体は、固体ルイス酸およびバインダを含有するものである。 The solid Lewis acid catalyst molded article of the present invention contains a solid Lewis acid and a binder.

本発明に用いられる固体ルイス酸は、チタン酸化物にリン酸残基が共有結合してなるものである。 The solid Lewis acid used in the present invention is obtained by covalently bonding a phosphoric acid residue to a titanium oxide.

チタン酸化物は、アモルファス含水チタン酸化物であることが好ましい。チタン酸化物は、チタン酸化物前駆体の加水分解生成物であることができる。チタン酸化物前駆体としては、水酸化チタン、チタン酸、三塩化チタン、四塩化チタン、四臭化チタン、硫酸チタン、オキシ硫酸チタンのような無機チタン化合物; テトライソプロポキシチタン、テトラn-ブトキシチタン、テトラキス(2-エチルヘキシルオキシ)チタン、テトラステアリルオ キシチタンのようなチタンアルコキシド化合物; チタンアシレート化合物; ジイソプロポキシビス(アセチルアセトナト)チタン、イソプロポキシ(2-エチル 1,3-ヘキサンジオラト)チタン、ヒドロキシビス (ラクタト)チタンのようなチタンキレート化合物;シュウ酸チタン、四酢酸チタンなどの有機チタン化合物;水溶性チタン錯体などを挙げることができる。本発明において、チタン酸化物は、チタン塩化物、チタン硫酸塩、またはチタンアルコキシドの加水分解生成物であることが好ましい。 The titanium oxide is preferably amorphous hydrous titanium oxide. Titanium oxide can be a hydrolysis product of a titanium oxide precursor. Titanium oxide precursors include inorganic titanium compounds such as titanium hydroxide, titanic acid, titanium trichloride, titanium tetrachloride, titanium tetrabromide, titanium sulfate, titanium oxysulfate; tetraisopropoxytitanium, tetra-n-butoxy titanium alkoxide compounds such as titanium, tetrakis(2-ethylhexyloxy)titanium, tetrastearyloxytitanium; titanium acylate compounds; diisopropoxybis(acetylacetonato)titanium, isopropoxy(2-ethyl 1,3-hexanedio titanium chelate compounds such as lacto)titanium and hydroxybis(lactato)titanium; organic titanium compounds such as titanium oxalate and titanium tetraacetate; and water-soluble titanium complexes. In the present invention, titanium oxide is preferably a hydrolysis product of titanium chloride, titanium sulfate, or titanium alkoxide.

チタン酸化物、特にアモルファス含水チタン酸化物は、塩化チタン、硫酸チタンまたはチタンアルコキシドを、酸または塩基の存在下で、加水分解することによって得ることができる。チタンアルコキシド中のアルコキシ基は、それを構成する炭素原子の数が、好ましくは1~6、より好ましくは2~4である。アルコキシ基は直鎖状、分岐状、または環状のいずれでもよい。
加水分解反応において用いられる酸としては、塩酸、硫酸、硝酸等を挙げることができる。加水分解反応において用いられる塩基としては、アンモニア、水酸化ナトリウム、水酸化カリウム等を挙げることができる。
加水分解反応時の温度は、好ましくは10~100℃、より好ましくは20~30℃である。加水分解反応に要する時間は、反応温度や反応スケールなどに応じて適宜設定できるが、好ましくは0.5時間~48時間、より好ましくは10時間~24時間である。
Titanium oxide, especially amorphous hydrous titanium oxide, can be obtained by hydrolyzing titanium chloride, titanium sulfate or titanium alkoxide in the presence of an acid or a base. The number of carbon atoms constituting the alkoxy group in the titanium alkoxide is preferably 1-6, more preferably 2-4. Alkoxy groups can be straight, branched, or cyclic.
Acids used in the hydrolysis reaction include hydrochloric acid, sulfuric acid, nitric acid and the like. Examples of the base used in the hydrolysis reaction include ammonia, sodium hydroxide, potassium hydroxide and the like.
The temperature during the hydrolysis reaction is preferably 10 to 100°C, more preferably 20 to 30°C. The time required for the hydrolysis reaction can be appropriately set depending on the reaction temperature, reaction scale, etc., but it is preferably 0.5 hours to 48 hours, more preferably 10 hours to 24 hours.

チタン酸化物が、含水であるか否かは、赤外分光光度計による表面測定や、真空下での加熱脱水処理による重量減少等により確認することができる。また、チタン酸化物が、アモルファスであるか否かは、X線回折により調べることができる。なお、本発明でいう「アモルファス」は、X線回折により確認できるアモルファス部分を含むことを意味し、チタン酸化物の全体がアモルファスであるもののみならず、一部がアモルファスであるものも包含する。なお、X線回折により確認されるアモルファスのパターンは、具体的には明確な結晶回折パターンが存在せず、ブロードな波浪パターンを指す。 Whether or not the titanium oxide contains water can be confirmed by surface measurement using an infrared spectrophotometer, weight reduction due to heat dehydration under vacuum, and the like. Moreover, it can be checked by X-ray diffraction whether the titanium oxide is amorphous or not. The term "amorphous" as used in the present invention means including an amorphous portion that can be confirmed by X-ray diffraction, and includes not only titanium oxide that is entirely amorphous, but also partially amorphous. . The amorphous pattern confirmed by X-ray diffraction specifically refers to a broad wave pattern without a clear crystal diffraction pattern.

リン酸残基は、チタン酸化物をリン酸で処理することによって、チタン酸化物に共有結合させることができる。
リン酸処理は、チタン酸化物をリン酸水溶液に浸漬し、撹拌することにより行うことができる。この際の温度は、好ましくは10℃以上100℃未満、より好ましくは20℃以上30℃以下である。反応時間は、反応温度や反応スケール等に応じて適宜設定できるが、好ましくは1時間~96時間、より好ましくは24時間~72時間である。特許文献3に記載のように、酸化チタンとリン酸水溶液から成る混合物を密閉状態で100℃以上の温度に加熱すると、リン酸チタンが得られるようである。
Phosphate residues can be covalently attached to titanium oxides by treating the titanium oxides with phosphoric acid.
The phosphoric acid treatment can be performed by immersing titanium oxide in an aqueous solution of phosphoric acid and stirring. The temperature at this time is preferably 10° C. or higher and lower than 100° C., more preferably 20° C. or higher and 30° C. or lower. The reaction time can be appropriately set according to the reaction temperature, reaction scale, etc., preferably 1 hour to 96 hours, more preferably 24 hours to 72 hours. As described in Patent Document 3, titanium phosphate appears to be obtained when a mixture of titanium oxide and an aqueous solution of phosphoric acid is heated in a sealed state to a temperature of 100° C. or higher.

本発明に用いられる固体ルイス酸は、FT-IRスペクトルにおいて、P-O結合の伸縮振動に由来するシグナル(ピーク)が1000cm-1近傍に出現する。
なお、リン酸処理する前のチタン酸化物においては、1000cm-1近傍にピークは全く出現しない。1000cm-1近傍ピークは、チタン酸化物の骨格表面の水酸基(Ti-OH)にリン酸が共有結合していること、すなわち、Ti-O-PO(OH)2の化学構造が形成されていることを示す。
In the FT-IR spectrum of the solid Lewis acid used in the present invention, a signal (peak) derived from PO bond stretching vibration appears in the vicinity of 1000 cm −1 .
Incidentally, in the titanium oxide before the phosphoric acid treatment, no peak appears in the vicinity of 1000 cm −1 . The peak near 1000 cm −1 indicates that phosphoric acid is covalently bonded to the hydroxyl group (Ti—OH) on the surface of the titanium oxide skeleton, that is, the chemical structure of Ti—O—PO(OH) 2 is formed. indicates that

本発明に用いられる固体ルイス酸は、金属元素がドープされていてもよいし、金属元素を含む化合物で被覆されていてもよい。金属元素としては、アルミニウム、ガリウム、インジウム、タリウム、マグネシウム、マンガン、カルシウム、ニオブ、タンタル、ジルコニウム、ケイ素、亜鉛、セリウム、鉄、タングステン、モリブデン、ヴァナジウムなどを挙げることができる。 The solid Lewis acid used in the present invention may be doped with a metal element or coated with a compound containing a metal element. Metal elements include aluminum, gallium, indium, thallium, magnesium, manganese, calcium, niobium, tantalum, zirconium, silicon, zinc, cerium, iron, tungsten, molybdenum, and vanadium.

本発明に用いられるバインダとしては、例えば、モルデナイト、シャバサイト、エリオナイト、フェリエライト、フォージャサイト、レビン、ZSM-5、ゼオライトA、ゼオライトβ、FU-1、Rho、ZK-5、RUB-3、RUB-13、NU-3、NU-4、NU-5、NU-10、NU-13、NU-23、MCM-22などの結晶質アルミノシリケートモレキュラーシーブ;SAPO-5、SAPO-11、SAPO-17、SAPO -18、SAPO-26、SAPO-31、SAPO- 33、SAPO-34、SAPO-35、SAPO-4 2、SAPO-43、SAPO-44、SAPO-47、SAPO-56などの結晶質シリコアルミノホスフェートモレキュラーシーブ;カオリナイト、セリサイト、タルク、雲母(白雲 母、金雲母、黒雲母、紅雲母、バナジン雲母、クロム雲母、フッ素雲母等)、モンモリロナイト、セピオライト、アタパルジャイト、スメクタイトなどのの粘土化合物類;;シリカ、アルミナ(酸化アルミニウム)、チタニア、ジルコニア、イットリア;ポリテトラフルオロエチレン、シリコーン、パーメチルシラン、カーボンブラックなどを挙げることができる。これらのうち、ポリテトラフルオロエチレン、酸化アルミニウム、シリコーン、シリカ、パーメチルシラン、およびカーボンブラックからなる群から選ばれる少なくとも一つが好ましい。 Examples of binders used in the present invention include mordenite, chabasite, erionite, ferrierite, faujasite, levine, ZSM-5, zeolite A, zeolite β, FU-1, Rho, ZK-5, RUB- 3, crystalline aluminosilicate molecular sieves such as RUB-13, NU-3, NU-4, NU-5, NU-10, NU-13, NU-23, MCM-22; SAPO-5, SAPO-11, SAPO-17, SAPO-18, SAPO-26, SAPO-31, SAPO-33, SAPO-34, SAPO-35, SAPO-42, SAPO-43, SAPO-44, SAPO-47, SAPO-56, etc. Crystalline silicoaluminophosphate molecular sieves; silica, alumina (aluminum oxide), titania, zirconia, yttria; polytetrafluoroethylene, silicone, permethylsilane, carbon black and the like. Among these, at least one selected from the group consisting of polytetrafluoroethylene, aluminum oxide, silicone, silica, permethylsilane, and carbon black is preferred.

バインダの量は、触媒成形体を製造できる限り特に限定されないが、固体ルイス酸100質量部に対して、好ましくは10~100質量部、より好ましくは10~50質量部、さらに好ましくは10~20質量部である。 The amount of the binder is not particularly limited as long as the molded catalyst can be produced. part by mass.

本発明の固体ルイス酸触媒成形体は、その製法において特に限定されない。本発明の固体ルイス酸触媒成形体は、例えば、バインダと固体ルイス酸とを、必要に応じて水とともに、混練し、成形し、乾燥し、必要に応じて焼成することによって得ることができる。混練は、加圧下に行うことが好ましい。混練は作業性の点からニーダー等の混練機を用いて連続的に行うのが好ましい。 The production method of the solid Lewis acid catalyst molded article of the present invention is not particularly limited. The solid Lewis acid catalyst molded article of the present invention can be obtained, for example, by kneading a binder and a solid Lewis acid together with water if necessary, molding, drying, and calcining if necessary. Kneading is preferably performed under pressure. From the viewpoint of workability, the kneading is preferably carried out continuously using a kneader such as a kneader.

本発明の固体ルイス酸触媒成形体は、要望に応じて、粉末、顆粒、ペレット、薄膜、ナノチューブなどの形状を有することができる。
混練物の成形は、所望の形状にすることができる方法であれば、特に限定されない。例えば、押出成形法、圧縮成形法(例えば、打錠成形法など)、圧延成形法、噴霧乾燥法などによって成形を行うことができる。
乾燥は水分の除去ができる限り、その条件は制限されないが、例えば、80℃~150℃の温度範囲で、1~10時間で行うことができる。
乾燥後、所望のサイズに揃えて、必要に応じて、焼成を行う。焼成温度、時間は固体ルイス酸触媒成形体の種類によって異なる。焼成は、例えば、400℃~700℃で1~10時間の条件で行いことができる。
The solid Lewis acid catalyst shaped bodies of the present invention can have forms such as powders, granules, pellets, thin films, nanotubes, etc., as desired.
The molding of the kneaded product is not particularly limited as long as it can be formed into a desired shape. For example, molding can be performed by an extrusion molding method, a compression molding method (for example, a tablet molding method, etc.), a roll molding method, a spray drying method, or the like.
The drying conditions are not limited as long as water can be removed.
After drying, it is arranged in a desired size and, if necessary, baked. The calcination temperature and time vary depending on the type of solid Lewis acid catalyst molded article. Firing can be performed, for example, at 400° C. to 700° C. for 1 to 10 hours.

本発明の固体ルイス酸触媒成形体は、テトラエトキシシランなどのバインダ前駆体と前述のチタン酸化物前駆体とリン酸またはそれの前駆体とを混ぜ合わせて液状またはスラリー状にし、これをキャスティング、スラッシュ成形、塗布などし、次いで加水分解させることによって、またはテトラエトキシシランなどのバインダ前駆体と前述のチタン酸化物前駆体とを混ぜ合わせて液状またはスラリー状にし、これをキャスティング、スラッシュ成形、塗布などし、次いで加水分解させ、これにリン酸処理を施すことによっても得ることができる。 The solid Lewis acid catalyst molded article of the present invention is obtained by mixing a binder precursor such as tetraethoxysilane, the titanium oxide precursor described above, and phosphoric acid or a precursor thereof to form a liquid or slurry, which is then cast, by slush molding, coating, etc., followed by hydrolysis, or by mixing a binder precursor such as tetraethoxysilane with the aforementioned titanium oxide precursor to form a liquid or slurry, which is then cast, slush molded, and coated. etc., followed by hydrolysis and phosphoric acid treatment.

本発明の固体ルイス酸触媒成形体は、水中においても失活しないので、水中における化学反応を触媒するために使用できる。本発明の固体ルイス酸触媒成形体によって触媒し得る化学反応としては、脱水反応、アリル化反応、アルドール縮合反応、マイケル付加反応、アルキル化反応、異性化反応、加水分解反応等を挙げることができる。 The shaped solid Lewis acid catalyst of the present invention is not deactivated even in water, so it can be used to catalyze chemical reactions in water. Chemical reactions that can be catalyzed by the shaped solid Lewis acid catalyst of the present invention include dehydration reactions, allylation reactions, aldol condensation reactions, Michael addition reactions, alkylation reactions, isomerization reactions, hydrolysis reactions, and the like. .

好ましい化学反応の例として、糖類の骨格異性化とその後の脱水反応やアルデヒドのアリル化反応等を挙げることができる。具体例としては、グルコースなどの糖質化合物からヒドロキシメチルフルフラールを生成する反応や、アルデヒドとアリル金属、より具体的にはベンズアルデヒドとテトラアリル錫との反応等を挙げることができる。なお、ルイス酸として機能することは、-190℃において一酸化炭素(CO)分子が固体ルイス酸触媒成形体のルイス酸サイトに吸着するか否かを、IRを測定することによって確認できる。ルイス酸サイトに吸着した場合には2200~2165cm-1の領域にピークが出現する。 Examples of preferred chemical reactions include skeletal isomerization of sugars followed by dehydration reaction, allylation reaction of aldehydes, and the like. Specific examples include the reaction of producing hydroxymethylfurfural from a carbohydrate compound such as glucose, the reaction of aldehyde and allyl metal, more specifically the reaction of benzaldehyde and tetraallyl tin, and the like. The ability to function as a Lewis acid can be confirmed by IR measurement to determine whether or not carbon monoxide (CO) molecules are adsorbed to the Lewis acid sites of the solid Lewis acid catalyst molded article at -190°C. A peak appears in the region of 2200 to 2165 cm -1 when adsorbed on the Lewis acid site.

本発明の固体ルイス酸触媒成形体を用いた反応は、バッチ式で行ってもよいし、フロー式で行ってもよいが、フロー式で行うことが好ましい。フロー式においては、フローマイクロ反応(マイクロリアクタ)を用いることが好ましい。本発明の固体ルイス酸触媒成形体の充填された流路に原料を流し込むことで化学反応を行う。フローマイクロ反応においてはフロー効果やマイクロミキシング効果によって反応収率の向上、反応条件の緩和、操作の簡便化などの効果が期待できる。 The reaction using the shaped solid Lewis acid catalyst of the present invention may be carried out in a batch system or in a flow system, but is preferably carried out in a flow system. In the flow system, it is preferable to use a flow microreaction (microreactor). A chemical reaction is carried out by pouring raw materials into the channel filled with the shaped solid Lewis acid catalyst of the present invention. In the flow microreaction, the flow effect and the micromixing effect are expected to improve the reaction yield, relax the reaction conditions, and simplify the operation.

本発明のヒドロキシメチルフルフラールの製造方法は、固体ルイス酸触媒成形体の存在下に、溶媒中にて、糖質化合物を反応させることを含む。この反応において用いられる溶媒として水が好ましい。糖質化合物としては、グルコースなどを挙げることができる。反応時の温度は、好ましくは80℃~180℃、より好ましくは110℃~130℃である。反応に要する時間は、反応温度に応じて適宜選択されるが、好ましくは10分間~24時間、より好ましくは2時間~6時間である。反応に供される糖質化合物の量は、固体ルイス酸触媒成形体中の固体ルイス酸1質量部に対して、好ましくは0.0002~200質量部、より好ましくは0.025~2質量部である。 The method for producing hydroxymethylfurfural of the present invention includes reacting a carbohydrate compound in the presence of a solid Lewis acid catalyst shaped article in a solvent. Water is preferred as the solvent used in this reaction. Glucose etc. can be mentioned as a carbohydrate compound. The temperature during the reaction is preferably 80°C to 180°C, more preferably 110°C to 130°C. The time required for the reaction is appropriately selected according to the reaction temperature, preferably 10 minutes to 24 hours, more preferably 2 hours to 6 hours. The amount of the carbohydrate compound to be subjected to the reaction is preferably 0.0002 to 200 parts by mass, more preferably 0.025 to 2 parts by mass, per 1 part by mass of the solid Lewis acid in the solid Lewis acid catalyst molded article. is.

本発明のヒドロキシメチルフルフラールの製造方法においては、糖質化合物の加熱によってメイラード反応が進行しやすくなる。メイラード反応生成物が固体ルイス酸触媒成形体を被覆して活性を低下させることがある。ヒドロキシメチルフルフラールの収率を向上させるために、公知のメイラード反応抑制剤、メイラード反応生成物分解剤などを用いることができる。メイラード反応抑制剤としては、モノスルフィド化合物、カテキン類、トコフェノール類、トコフェロール類とアスコルビン酸とをリン酸エステルを介して結合させた化合物などを挙げることができる。メイラード反応生成物分解剤としては、リボフラビン誘導体、フラビンアデニンモノヌクレオチド、フラビンアデニンジヌクレオチド、サンショウ軟エキス、ウコン抽出液、サフランチンキ、ハッカ軟エキス、ショウガ抽出液、ニンジン抽出液、ハス葉エキス、アカショウマエキス、コレウスフォルスコリエキス、黄杞葉エキス、ヒハツエキス、サンショウ花パウダー、ヒキオコシエキス、シークワーサーエキス、葛根エキス、プーアール茶エキス、甘草エキス、黒米エキス、月見草エキス、グァバ葉エキス、ビワ葉エキス、タマネギ外皮エキス、青花エキス、クワ葉エキス、タラの芽エキス、チョロギエキス、白インゲン豆エキス、羅布麻エキス、クマザサエキス、ニガウリエキス、キクイモエキス、大麦若葉エキス、褐藻類エキス、コンニャク芋エキス、コーヒー豆エキス、ブドウ種子エキス、リンゴエキス、オリーブ葉エキス、コンブエキス、アシタバパウダー、カテキン、キンカン軟エキス、枳実エキス、キンカンエキス、シトラスエキス、ユズパウダー、陳皮エキスなどを挙げることができる。 In the method for producing hydroxymethylfurfural of the present invention, heating the carbohydrate compound facilitates the progress of the Maillard reaction. Maillard reaction products can coat solid Lewis acid catalyst compacts and reduce their activity. In order to improve the yield of hydroxymethylfurfural, known Maillard reaction inhibitors, Maillard reaction product decomposing agents, and the like can be used. Examples of Maillard reaction inhibitors include monosulfide compounds, catechins, tocopherols, compounds obtained by binding tocopherols and ascorbic acid via a phosphate ester, and the like. Examples of Maillard reaction product decomposing agents include riboflavin derivatives, flavin adenine mononucleotide, flavin adenine dinucleotide, Japanese pepper soft extract, turmeric extract, saffron tincture, mint soft extract, ginger extract, carrot extract, lotus leaf extract, Red Pepper Extract, Coleus Forskohlii Extract, Yellow Leaf Extract, Hihatsu Extract, Japanese Peppermint Flower Powder, Hikiokoshi Extract, Shikwasa Extract, Kudzu Root Extract, Pu-erh Tea Extract, Licorice Extract, Black Rice Extract, Evening Primrose Extract, Guava Leaf Extract, Loquat Leaf Extract, Onion Peel extract, blue flower extract, mulberry leaf extract, cod bud extract, Chinese artichoke extract, white kidney bean extract, Raffia hemp extract, kumazasa extract, bitter gourd extract, Jerusalem artichoke extract, young barley leaf extract, brown algae extract, konjac potato extract, coffee bean extract , grape seed extract, apple extract, olive leaf extract, kelp extract, Angelica keiskei powder, catechin, kumquat soft extract, kumquat extract, kumquat extract, citrus extract, yuzu powder, chimpi extract, and the like.

本発明のヒドロキシメチルフルフラールの製造方法においては、前述の糖質化合物の反応で得られた液を活性炭と接触させることが好ましい。活性炭との接触によって副生成物を除去して、ヒドロキシメチルフルフラールの純度を高めることができる。 In the method for producing hydroxymethylfurfural of the present invention, it is preferable to bring the liquid obtained by the above-described reaction of the carbohydrate compound into contact with activated carbon. By-products can be removed by contact with activated carbon to increase the purity of hydroxymethylfurfural.

次に、実施例を参照して、本発明をより詳細に説明する。なお、本発明の範囲は、実施例によって限定されない。 The invention will now be described in more detail with reference to examples. In addition, the scope of the present invention is not limited by the examples.

製造例
チタンテトライソプロポキシド20mlを蒸留水100mlに加え、室温下で3時間攪拌した。これから白色沈殿物をろ過によって取り出し、1.0M塩酸水溶液200mlに添加し、1時間攪拌して、酸化物骨格の縮合を促進させた。このろ過、添加および撹拌(縮合)をさらに2回(合計3回)繰り返した。得られた沈殿物を中性になるまで蒸留水で洗浄し、次いで80℃のオーブンで乾燥させて、アモルファス含水チタン酸化物を得た。
このアモルファス含水チタン酸化物をリン酸水溶液(0.1M)に添加し、室温下で48時間撹拌した。白色固形物を濾過によって取り出し、中性になるまで蒸留水で洗浄して、固体ルイス酸を得た。
Production Example 20 ml of titanium tetraisopropoxide was added to 100 ml of distilled water and stirred at room temperature for 3 hours. A white precipitate was removed from this by filtration, added to 200 ml of a 1.0 M hydrochloric acid aqueous solution, and stirred for 1 hour to promote condensation of the oxide skeleton. This filtration, addition and stirring (condensation) was repeated two more times (3 times total). The resulting precipitate was washed with distilled water until it became neutral and then dried in an oven at 80° C. to obtain an amorphous hydrous titanium oxide.
This amorphous hydrous titanium oxide was added to an aqueous phosphoric acid solution (0.1 M) and stirred at room temperature for 48 hours. A white solid was removed by filtration and washed with distilled water until neutral to obtain a solid Lewis acid.

実施例1
固体ルイス酸1g(乾燥重量)にポリテトラフルオロエチレン0.3gを加え、混ぜ合わせた。これを加圧プレスしてシートを得た。このシートを粉砕した。粉砕物を目開き90μmの篩で分級し、篩上に、粉末状の固体ルイス酸触媒成形体1を得た。
Example 1
0.3 g of polytetrafluoroethylene was added to 1 g (dry weight) of solid Lewis acid and mixed. This was pressurized to obtain a sheet. This sheet was crushed. The pulverized material was classified with a sieve having an opening of 90 μm, and a powdery solid Lewis acid catalyst compact 1 was obtained on the sieve.

実施例2
固体ルイス酸1g(乾燥重量)にシリカゾル(スノーテックスC:日産化学社製)0.3gおよび蒸留水3mlを加え、超音波撹拌機で混ぜ合わせた。これを100℃で一晩乾燥させた。得られた乾燥物をスパチュラで砕いた。これを目開き90μmの篩で分級し、篩上に、粉末状の固体ルイス酸触媒成形体2を得た。
Example 2
To 1 g (dry weight) of solid Lewis acid, 0.3 g of silica sol (Snowtex C: manufactured by Nissan Chemical Industries, Ltd.) and 3 ml of distilled water were added and mixed with an ultrasonic stirrer. It was dried overnight at 100°C. The dried product obtained was crushed with a spatula. This was classified with a sieve having an opening of 90 μm, and a powdery solid Lewis acid catalyst compact 2 was obtained on the sieve.

実施例3
固体ルイス酸1g(乾燥重量)に酸化アルミニウム0.15g、ポリジメチルシラン0.15gおよびヘキサン5mlを加え、超音波撹拌機で混ぜ合わせた。これを室温で一晩乾燥させた。得られた乾燥物をスパチュラで砕いた。これを目開き90μmの篩で分級し、篩上に、粉末状の固体ルイス酸触媒成形体3を得た。
Example 3
0.15 g of aluminum oxide, 0.15 g of polydimethylsilane and 5 ml of hexane were added to 1 g (dry weight) of solid Lewis acid and mixed with an ultrasonic stirrer. It was dried overnight at room temperature. The dried product obtained was crushed with a spatula. This was classified with a sieve having an opening of 90 μm, and a powdery solid Lewis acid catalyst molded body 3 was obtained on the sieve.

実施例4
シリコーン混和物(シロプレン RTV-2K 1406;バイエル社製)0.2gにヘキサン3mlを添加し、超音波撹拌機で混ぜ合わせた。これに固体ルイス酸1g(乾燥重量)およびシリコーン用硬化剤(シロプレン R-14;バイエル社製)20μlを添加し、超音波撹拌機で混ぜ合わせた。これを室温で一晩乾燥させた。得られた乾燥物をスパチュラで砕いた。これを目開き90μmの篩で分級し、篩上に、粉末状の固体ルイス酸触媒成形体4を得た。
Example 4
3 ml of hexane was added to 0.2 g of a silicone compound (Siloprene RTV-2K 1406; manufactured by Bayer) and mixed with an ultrasonic stirrer. 1 g (dry weight) of a solid Lewis acid and 20 μl of a curing agent for silicone (Siloprene R-14; manufactured by Bayer AG) were added thereto and mixed with an ultrasonic stirrer. It was dried overnight at room temperature. The dried product obtained was crushed with a spatula. This was classified with a sieve having an opening of 90 μm, and a powdery solid Lewis acid catalyst compact 4 was obtained on the sieve.

実施例5
4mmφ×5cmのステンレス製カラム(MiChS社製)に固体ルイス酸触媒成形体1を0.757g充填した。温度120℃に設定されたカラムに500mMグルコース水溶液を40μl/分にて流した。カラムを通過して排出された水溶液Aとs-ブチルフェノールとをマイクロミキサー(βミキサー;MiChS社製)にて混ぜ合わせ、水層6.3mlおよび有機層7.7mlからなる液を得た。この液を分析した。
水層には、ヒドロキシメチルフルフラール15.3mM、グルコース157.7mM、フルクトース9.9mM、およびセロビオース0.9mMが含まれていた。
有機層には、ヒドロキシメチルフルフラール126.5mMが含まれていた。有機層からは、グルコース、フルクトース、およびセロビオースが検出されなかった。
グルコースからヒドロキシメチルフルフラールへの転換率は71.6%、選択率は42.8%であった。
Example 5
0.757 g of solid Lewis acid catalyst molded article 1 was packed in a 4 mmφ×5 cm stainless steel column (manufactured by MiChS). A 500 mM glucose aqueous solution was passed through the column set at a temperature of 120° C. at 40 μl/min. Aqueous solution A discharged through the column and s-butylphenol were mixed with a micromixer (β mixer; manufactured by MiChS) to obtain a liquid consisting of 6.3 ml of an aqueous layer and 7.7 ml of an organic layer. This liquid was analyzed.
The aqueous layer contained 15.3 mM hydroxymethylfurfural, 157.7 mM glucose, 9.9 mM fructose, and 0.9 mM cellobiose.
The organic layer contained 126.5 mM hydroxymethylfurfural. Glucose, fructose and cellobiose were not detected in the organic layer.
The conversion of glucose to hydroxymethylfurfural was 71.6% and the selectivity was 42.8%.

実施例6
4mmφ×5cmのステンレス製カラム(MiChS社製)に固体ルイス酸触媒成形体2を1.077g充填した。温度110℃に設定されたカラムに595mMグルコース水溶液を40μl/分にて流した。カラムを通過して排出された水溶液Bとs-ブチルフェノールとをマイクロミキサー(βミキサー;MiChS社製)にて混ぜ合わせ、水層13.8mlおよび有機層13.8mlからなる液を得た。この液を分析した。
水層には、ヒドロキシメチルフルフラール13.2mM、グルコース237.2mM、フルクトース15.1mM、およびセロビオース1.3mMが含まれていた。
有機層には、ヒドロキシメチルフルフラール128.0mMが含まれていた。有機層からは、グルコース、フルクトース、およびセロビオースが検出されなかった。
グルコースからヒドロキシメチルフルフラールへの転換率は59.3%、選択率は40.9%であった。
Example 6
1.077 g of solid Lewis acid catalyst molded body 2 was packed in a 4 mmφ×5 cm stainless steel column (manufactured by MiChS). A 595 mM aqueous glucose solution was passed through the column set at a temperature of 110° C. at 40 μl/min. Aqueous solution B discharged through the column and s-butylphenol were mixed with a micromixer (β mixer; manufactured by MiChS) to obtain a liquid consisting of 13.8 ml of an aqueous layer and 13.8 ml of an organic layer. This liquid was analyzed.
The aqueous layer contained 13.2 mM hydroxymethylfurfural, 237.2 mM glucose, 15.1 mM fructose, and 1.3 mM cellobiose.
The organic layer contained 128.0 mM hydroxymethylfurfural. Glucose, fructose and cellobiose were not detected in the organic layer.
The conversion of glucose to hydroxymethylfurfural was 59.3% and the selectivity was 40.9%.

実施例7
4mmφ×5cmのステンレス製カラム(MiChS社製)に固体ルイス酸触媒成形体2を0.855g充填した。温度110℃に設定されたカラムに525mMグルコース水溶液を40μl/分にて流した。カラムを通過して排出された水溶液Cを分析した。
水溶液Cには、ヒドロキシメチルフルフラール32.3mM、グルコース442.7mM、フルクトース24.7mM、およびセロビオース0.5mMが含まれていた。
Example 7
0.855 g of the solid Lewis acid catalyst molded body 2 was packed in a 4 mmφ×5 cm stainless steel column (manufactured by MiChS). A 525 mM aqueous glucose solution was passed through the column set at a temperature of 110° C. at 40 μl/min. Aqueous solution C discharged through the column was analyzed.
Aqueous solution C contained 32.3 mM hydroxymethylfurfural, 442.7 mM glucose, 24.7 mM fructose, and 0.5 mM cellobiose.

実施例8
4mmφ×5cmのステンレス製カラム(MiChS社製)に固体ルイス酸触媒成形体3を0.809g充填した。温度110℃に設定されたカラムに10質量%グルコース水溶液を40μl/分にて流した。カラムを通過して排出された水溶液Dを分析した。
水溶液Dには、ヒドロキシメチルフルフラール76.5mM、グルコース386.5mM、フルクトース24.6mM、およびセロビオース0.9mMが含まれていた。
グルコースからヒドロキシメチルフルフラールへの転換率は30.4%、選択率は45.2%であった。
Example 8
0.809 g of the solid Lewis acid catalyst molded body 3 was packed in a 4 mmφ×5 cm stainless steel column (manufactured by MiChS). A 10% by mass glucose aqueous solution was passed through the column set at a temperature of 110° C. at 40 μl/min. Aqueous solution D discharged through the column was analyzed.
Aqueous solution D contained 76.5 mM hydroxymethylfurfural, 386.5 mM glucose, 24.6 mM fructose, and 0.9 mM cellobiose.
The conversion of glucose to hydroxymethylfurfural was 30.4% and the selectivity was 45.2%.

実施例9
4mmφ×5cmのステンレス製カラム(MiChS社製)に固体ルイス酸触媒成形体4を1.206g充填した。温度110℃に設定されたカラムに10質量%グルコース水溶液を40μl/分にて流した。カラムを通過して排出された水溶液Eを分析した。
水溶液Eには、ヒドロキシメチルフルフラール35.1mM、グルコース421.3mM、フルクトース11.3mM、およびセロビオース48.3mMが含まれていた。
Example 9
1.206 g of the solid Lewis acid catalyst molded body 4 was packed in a 4 mmφ×5 cm stainless steel column (manufactured by MiChS). A 10% by mass glucose aqueous solution was passed through the column set at a temperature of 110° C. at 40 μl/min. The aqueous solution E discharged through the column was analyzed.
Aqueous solution E contained 35.1 mM hydroxymethylfurfural, 421.3 mM glucose, 11.3 mM fructose, and 48.3 mM cellobiose.

実施例10
4mmφ×5cmのステンレス製カラム(MiChS社製)に固体ルイス酸触媒成形体4を1.1898g充填した。温度110℃に設定されたカラムに575.6mMグルコース水溶液を40μl/分にて流した。カラムを通過して排出された水溶液Fを分析した。
水溶液Fには、ヒドロキシメチルフルフラール22.5mM、グルコース523.3mM、フルクトース7.1mM、およびセロビオース8.8mMが含まれていた。
10mmφのクロマト管に活性炭(富士フイルム和光社製、嵩比重0.182)1.8gを充填した。これに水溶液Fを50ml流した。次いで蒸留水20mlを流した。最後にメタノール20mlを流した。クロマト管を通過して排出されたのメタノールにはヒドロキシメチルフルフラール93%と、グルコース、フルクトースおよびセロビオースの合計7%とが含まれていた。
Example 10
1.1898 g of the solid Lewis acid catalyst molded body 4 was packed in a 4 mmφ×5 cm stainless steel column (manufactured by MiChS). A 575.6 mM glucose aqueous solution was passed through the column set at a temperature of 110° C. at 40 μl/min. The aqueous solution F discharged through the column was analyzed.
Aqueous solution F contained 22.5 mM hydroxymethylfurfural, 523.3 mM glucose, 7.1 mM fructose, and 8.8 mM cellobiose.
A 10 mmφ chromatography tube was filled with 1.8 g of activated carbon (manufactured by Fuji Film Wako, bulk specific gravity 0.182). 50 ml of the aqueous solution F was poured into this. Then, 20 ml of distilled water was passed through. Finally, 20 ml of methanol was flowed. The methanol discharged through the chromatographic tube contained 93% hydroxymethylfurfural and a total of 7% glucose, fructose and cellobiose.

比較例
試験管に固体ルイス酸0.25gと10質量%グルコース水溶液1mlとs-ブチルフェノール3mlを入れ、試験管を110℃で3時間撹拌させた。反応後、試験管からs-ブチルフェノール層3mlと水溶液層1mlを得た。この液を分析した。
水溶液層には、ヒドロキシメチルフルフラール4.64 mM、グルコース387.53mM、フルクトース18.34mM、およびセロビオース2.13mMが含まれていた。
s-ブチルフェノール層には、ヒドロキシメチルフルフラール24.27mMが含まれていた。有機層からは、グルコース、フルクトース、およびセロビオースが検出されなかった。
グルコースからヒドロキシメチルフルフラールへの転換率は23.7%であった。
Comparative Example A test tube was charged with 0.25 g of a solid Lewis acid, 1 ml of a 10% by mass glucose aqueous solution, and 3 ml of s-butylphenol, and the test tube was stirred at 110° C. for 3 hours. After the reaction, 3 ml of s-butylphenol layer and 1 ml of aqueous solution layer were obtained from the test tube. This liquid was analyzed.
The aqueous layer contained 4.64 mM hydroxymethylfurfural, 387.53 mM glucose, 18.34 mM fructose, and 2.13 mM cellobiose.
The s-butylphenol layer contained 24.27 mM hydroxymethylfurfural. Glucose, fructose and cellobiose were not detected in the organic layer.
The conversion of glucose to hydroxymethylfurfural was 23.7%.

Claims (7)

チタン酸化物にリン酸残基が共有結合してなる固体ルイス酸、および
バインダ
を含有し、
バインダが、ポリテトラフルオロエチレン、酸化アルミニウム、シリコーンおよびパーメチルシランからなる群から選ばれる少なくとも一つである、
固体ルイス酸触媒成形体。
Containing a solid Lewis acid formed by covalently bonding a phosphoric acid residue to a titanium oxide, and a binder ,
the binder is at least one selected from the group consisting of polytetrafluoroethylene, aluminum oxide, silicone and permethylsilane ;
Solid Lewis acid catalyst shaped bodies.
バインダの量が、固体ルイス酸100質量部に対して10~100質量部である、請求項に記載の固体ルイス酸触媒成形体。 2. The solid Lewis acid catalyst molded article according to claim 1 , wherein the amount of the binder is 10 to 100 parts by mass with respect to 100 parts by mass of the solid Lewis acid. チタン酸化物がアモルファス含水チタン酸化物である、請求項1または2に記載の固体ルイス酸触媒成形体。 3. The shaped solid Lewis acid catalyst according to claim 1, wherein the titanium oxide is an amorphous hydrous titanium oxide. チタン酸化物がチタン酸化物前駆体の加水分解生成物である、請求項1~のいずれかひとつに記載の固体ルイス酸触媒成形体。 Solid Lewis acid catalyst shaped body according to any one of claims 1 to 3 , wherein the titanium oxide is a hydrolysis product of a titanium oxide precursor. チタン酸化物前駆体が、チタン塩化物、チタン硫酸塩、およびチタンアルコキシドからなる群から選ばれる少なくともひとつである、請求項に記載の固体ルイス酸触媒成形体。 5. The shaped solid Lewis acid catalyst according to claim 4 , wherein the titanium oxide precursor is at least one selected from the group consisting of titanium chlorides, titanium sulfates and titanium alkoxides. 請求項1~のいずれかひとつに記載の固体ルイス酸触媒成形体の存在下に、溶媒中にて、糖質化合物を反応させることを含む、ヒドロキシメチルフルフラールを製造する方法。 A method for producing hydroxymethylfurfural, which comprises reacting a sugar compound in a solvent in the presence of the solid Lewis acid catalyst molded article according to any one of claims 1 to 5 . 反応で得られた液を活性炭と接触させることをさらに含む、請求項に記載の方法。 7. The method of claim 6 , further comprising contacting the liquid resulting from the reaction with activated carbon.
JP2019165744A 2019-09-11 2019-09-11 Solid Lewis acid catalyst molded body Active JP7333558B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019165744A JP7333558B2 (en) 2019-09-11 2019-09-11 Solid Lewis acid catalyst molded body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019165744A JP7333558B2 (en) 2019-09-11 2019-09-11 Solid Lewis acid catalyst molded body

Publications (2)

Publication Number Publication Date
JP2021041344A JP2021041344A (en) 2021-03-18
JP7333558B2 true JP7333558B2 (en) 2023-08-25

Family

ID=74863496

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019165744A Active JP7333558B2 (en) 2019-09-11 2019-09-11 Solid Lewis acid catalyst molded body

Country Status (1)

Country Link
JP (1) JP7333558B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012108472A1 (en) 2011-02-08 2012-08-16 財団法人神奈川科学技術アカデミー Amorphous hydrous titanium oxide and solid lewis acid catalyst containing same
JP2013006142A (en) 2011-06-23 2013-01-10 Toshiba Corp Catalyst for hydrolysis of plant-base material, and method of manufacturing saccharide
JP2013203665A (en) 2012-03-27 2013-10-07 Kao Corp Manufacturing method for 5-hydroxymethylfurfural
WO2019112038A1 (en) 2017-12-08 2019-06-13 日本食品化工株式会社 Method producing for 5-hydroxymethyl-2-furfural with suppressed by-product formation

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8906726D0 (en) * 1989-03-23 1989-05-10 Shell Int Research Titania extrudates
DE3913938A1 (en) * 1989-04-27 1990-10-31 Degussa PRESSLINGS BASED ON PYROGEN-PRODUCED TITANIUM DIOXIDE, METHOD FOR THE PRODUCTION THEREOF AND THEIR USE
DE19612783A1 (en) * 1996-03-29 1997-10-02 Degussa Phosphoric acid catalyst and its use

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012108472A1 (en) 2011-02-08 2012-08-16 財団法人神奈川科学技術アカデミー Amorphous hydrous titanium oxide and solid lewis acid catalyst containing same
JP2013006142A (en) 2011-06-23 2013-01-10 Toshiba Corp Catalyst for hydrolysis of plant-base material, and method of manufacturing saccharide
JP2013203665A (en) 2012-03-27 2013-10-07 Kao Corp Manufacturing method for 5-hydroxymethylfurfural
WO2019112038A1 (en) 2017-12-08 2019-06-13 日本食品化工株式会社 Method producing for 5-hydroxymethyl-2-furfural with suppressed by-product formation

Also Published As

Publication number Publication date
JP2021041344A (en) 2021-03-18

Similar Documents

Publication Publication Date Title
JP6417009B2 (en) Catalyst for glycerol dehydration reaction, method for producing the same, and method for producing acrolein
EP3142785B1 (en) Process for the production of alkenols and use thereof for the production of 1,3-butadiene
KR101743760B1 (en) Method for manufacturing of SSZ-13 zeolite catalyst and the SSZ-13 zeolite catalyst thereby
JP2017527620A (en) Method for preparing 2-alkoxycyclohexanol
CN104923209B (en) A kind of solid catalyst for acetone self-condensation reaction and its preparation method and application
JP6668207B2 (en) Catalyst for acrylic acid production
CN104245650A (en) Catalyst and process for the production of acetic acid and dimetyhl ether
RU2671215C2 (en) Method and catalyst for producing pyridine and alkyl derivatives thereof
Arias et al. Chemicals from biomass: synthesis of biologically active furanochalcones by claisen–schmidt condensation of biomass-derived 5-hydroxymethylfurfural (HMF) with acetophenones
JP2021506561A (en) Synthesis of MoVNbTe shell catalysts for oxidative dehydrogenation of ethane to ethylene
CN110227558A (en) It is a kind of to be used to prepare acetal/ketone solid acid catalyst and its preparation method and application
JP7333558B2 (en) Solid Lewis acid catalyst molded body
CN108117472B (en) Method for preparing benzene ring-containing compound from pinacol
JP6653871B2 (en) Catalyst for producing methacrylic acid, method for producing the same, and method for producing methacrylic acid
Samantaray et al. SO42−/TiO2-SiO2 mixed oxide catalyst: 2. Effect of the fluoride ion and calcination temperature on esterification of acetic acid
Fang et al. On the role of Zr to facilitate the synthesis of diesel and jet fuel range intermediates from biomass-derived carbonyl compounds over aluminum phosphate
JP6504774B2 (en) Catalyst for producing acrylic acid and method for producing acrylic acid using the catalyst
CN110317128A (en) The method for preparing propylene glycol monomethyl ether
JPH10258233A (en) Preparation of catalyst for synthesizing of unsaturated aldehyde and unsaturated carboxylic acid
JP4225530B2 (en) Process for producing methacrolein and methacrylic acid synthesis catalyst
WO2014024782A2 (en) Catalyst for production of acrylic acid from glycerin, and method for producing same
Molaei et al. Microwave Assisted Multi-component Synthesis of 4Hchromene Derivatives by Nano-coconut Shell-BF3 as a New Heterogeneous Catalyst
KR20070097541A (en) Method for preparing acrylic acid involving a partial oxidation of propane into propylene
JP7082998B2 (en) Method for producing cyclohexanone dimer
JP5807286B2 (en) Aldol condensation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230414

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230718

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230804

R150 Certificate of patent or registration of utility model

Ref document number: 7333558

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350