JP7329109B1 - Motor rotor core structure - Google Patents
Motor rotor core structure Download PDFInfo
- Publication number
- JP7329109B1 JP7329109B1 JP2022114383A JP2022114383A JP7329109B1 JP 7329109 B1 JP7329109 B1 JP 7329109B1 JP 2022114383 A JP2022114383 A JP 2022114383A JP 2022114383 A JP2022114383 A JP 2022114383A JP 7329109 B1 JP7329109 B1 JP 7329109B1
- Authority
- JP
- Japan
- Prior art keywords
- hole
- iron core
- rotor core
- inner diameter
- core structure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000004888 barrier function Effects 0.000 claims abstract description 45
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 26
- 230000008878 coupling Effects 0.000 claims abstract description 15
- 238000010168 coupling process Methods 0.000 claims abstract description 15
- 238000005859 coupling reaction Methods 0.000 claims abstract description 15
- 229910000976 Electrical steel Inorganic materials 0.000 claims abstract description 11
- 230000002093 peripheral effect Effects 0.000 claims description 3
- 238000010030 laminating Methods 0.000 claims description 2
- 239000000696 magnetic material Substances 0.000 claims description 2
- 150000003376 silicon Chemical class 0.000 claims description 2
- 230000000149 penetrating effect Effects 0.000 claims 2
- 239000004020 conductor Substances 0.000 abstract description 2
- 238000003780 insertion Methods 0.000 abstract description 2
- 230000037431 insertion Effects 0.000 abstract description 2
- 238000003475 lamination Methods 0.000 abstract 1
- 238000004891 communication Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 229910000831 Steel Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/64—Electric machine technologies in electromobility
Landscapes
- Iron Core Of Rotating Electric Machines (AREA)
Abstract
【課題】 モータの回転子鉄心構造を提供することを課題とする。【解決手段】 本発明により提供されるモータの回転子鉄心構造は、回転モータの回転子鉄心において、モータ回転軸を円の中心とする円周方向に沿って、鉄心上に互いに間隔を置いた複数の貫通穴状の空間が順次設けられ、前記貫通穴状の空間が回転子内の磁路の障壁となると共に非導磁性の材料で作製された複数のストレート棒状の結合要素の挿通のために用いられ、前記鉄心を構成するための複数の珪素鋼板間の積層状態が前記結合要素によって固定されることで、鉄心全体の剛性を向上させ、高速回転の遠心力による珪素鋼板の変形又は損傷の可能性を低減することを主な技術的特徴とする。【選択図】 図3An object of the present invention is to provide a rotor core structure for a motor. SOLUTION: A motor rotor core structure provided by the present invention is a rotor core structure of a rotary motor in which rotor cores are spaced from each other on the core along a circumferential direction with the motor rotation axis as the center of the circle. A plurality of through-hole-shaped spaces are provided in sequence, and the through-hole-shaped spaces serve as barriers to the magnetic path in the rotor, and for the insertion of a plurality of straight rod-shaped coupling elements made of a non-magnetically conductive material. The lamination state of a plurality of silicon steel plates for forming the iron core is fixed by the connecting element, thereby improving the rigidity of the entire iron core, and deformation or damage of the silicon steel plates due to the centrifugal force of high-speed rotation. The main technical feature is to reduce the possibility of [Selection drawing] Fig. 3
Description
本発明は、モータ技術に関し、特に、モータの回転子鉄心構造に関する。 TECHNICAL FIELD The present invention relates to motor technology, and more particularly to a rotor core structure of a motor.
高速回転時の遠心力によりスピンドルモータ回転子に生じる応力を抑えるため、特許文献1において、回転子磁石溝側磁気障壁孔の形状設計を通じて、磁気障壁孔の外径側の穴壁の滑らかな円弧状を利用し、遠心力によって当前記部分と回転子外径面との間の最も狭い領域に作用する最大応力を減少し、回転子が高速回転時、応力集中による損傷があっても、上記最も狭い領域に制限されることで、固定子側へ飛散することを防ぐ。 In order to suppress the stress generated in the spindle motor rotor due to the centrifugal force during high-speed rotation, in Patent Document 1, through the shape design of the rotor magnet groove side magnetic barrier hole, the hole wall on the outer diameter side of the magnetic barrier hole is smooth circle. By using the arc shape, the maximum stress acting on the narrowest area between the part and the outer diameter surface of the rotor due to centrifugal force is reduced, and even if the rotor is damaged due to stress concentration when the rotor rotates at high speed, the above By being restricted to the narrowest area, scattering to the stator side is prevented.
同時に特許文献1では、貫通穴が新しい応力集中点になり、回転子の強度が低下するため、回転子を貫通する貫通穴を用いて貫通ボルトの挿通と結合を提供することを推奨しないことも明確に指摘した。スピンドルモータについて、従来技術のスピンドルの直径を大きくすることで、剛性を向上させて良好な加工精度を得る技術手段も、スピンドル周辺側を囲む回転子要素の半径方向における厚さの相対的な減少につながり、回転子は限られる半径方向の厚さの範囲内で、上記貫通穴を増設して貫通ボルトで鉄心珪素鋼板間の固結の目的を達成することが困難である。 At the same time, US Pat. No. 6,200,003 also does not recommend using through-holes through the rotor to provide through-bolt insertion and coupling, as the through-holes become new stress concentration points and reduce the strength of the rotor. clearly pointed out. Regarding the spindle motor, the technical means of increasing the diameter of the spindle of the prior art to improve the rigidity and obtain good machining accuracy is also a relative reduction in the radial thickness of the rotor element surrounding the peripheral side of the spindle. As a result, it is difficult to extend the above-mentioned through-holes and achieve the purpose of consolidating the iron core silicon steel plates with through-bolts within the limited range of radial thickness of the rotor.
本発明の主な目的は、回転子鉄心の構造的剛性を向上し、モータ回転子がスピンドルモータの高速回転ニーズを特に満たさせることができるモータの回転子鉄心構造を提供することである。 SUMMARY OF THE INVENTION The main object of the present invention is to provide a motor rotor core structure that can improve the structural rigidity of the rotor core and make the motor rotor particularly meet the high-speed rotation needs of the spindle motor.
故に、上記目的を達成するため、本発明により提供されるモータの回転子鉄心構造は、回転モータの回転子鉄心において、モータ回転軸を円の中心とする円周方向に沿って、鉄心上に互いに間隔を置いた複数の貫通穴状の空間が順次設けられ、前記貫通穴状の空間が回転子内の磁路の障壁となると共に非導磁性の材料で作製された複数のストレート棒状の結合要素の挿通のために用いられ、前記鉄心を構成するための複数の珪素鋼板間の積層状態が前記結合要素によって固定されることで、鉄心全体の剛性を向上させ、高速回転の遠心力による珪素鋼板の変形又は損傷の可能性を低減することを主な技術的特徴とする。 Therefore, in order to achieve the above object, a rotor core structure for a motor provided by the present invention provides a rotor core structure for a rotary motor in which a rotor core is formed on the core along the circumferential direction with the motor rotation axis as the center of the circle. A plurality of through-hole-like spaces spaced apart from each other are sequentially provided, and the through-hole-like spaces serve as barriers for magnetic paths in the rotor, and a plurality of straight bar-like couplings made of a non-magnetically conductive material. By fixing the laminated state of a plurality of silicon steel plates used for inserting elements and constituting the iron core by the coupling elements, the rigidity of the entire iron core is improved, and the silicon steel is strengthened by the centrifugal force of high-speed rotation. The main technical feature is to reduce the possibility of deformation or damage to the steel plate.
さらに、上記複数の貫通穴状の空間は、各々貫通穴状の磁気障壁空間と、前記磁気障壁空間と連通する貫通穴とを含み、各前記貫通穴状の空間が各々前記回転子鉄心の磁石溝の上記円周方向における両側に位置され、単一の磁石溝両側にある貫通穴状の空間は上記円周の直径を鏡像軸として互いに鏡像化され、磁気障壁空間を介して磁石溝と連通する。 Further, each of the plurality of through-hole-shaped spaces includes a through-hole-shaped magnetic barrier space and a through-hole communicating with the magnetic barrier space, and each of the through-hole-shaped spaces is connected to the magnet of the rotor core. The through-hole-like spaces located on both sides of the groove in the circumferential direction and on both sides of the single magnet groove are mirror images of each other with the diameter of the circumference as the mirror image axis, and communicate with the magnet groove through the magnetic barrier space. do.
ここで、磁気障壁空間は、第1側により磁石溝と連通し、第2側を通じて貫通穴と連通し、磁気障壁空間の第1側の内径が第2側の内径よりも大きく、上記の円周の半径方向断面で内径変化が等しい磁気障壁の具体的な形状は、三角形の平面幾何学的形状であり得る。 Here, the magnetic barrier space communicates with the magnet groove through the first side and communicates with the through hole through the second side, the inner diameter of the magnetic barrier space on the first side being larger than the inner diameter on the second side, and the circular A specific shape for a magnetic barrier with equal inner diameter variations in radial cross-section around the circumference can be a triangular planar geometry.
同時に、磁気障壁空間の第2側の内径も貫通穴の内径より小さいので、貫通穴を挿通する結合要素は、磁気障壁空間と貫通穴との間の連通部位を経由して磁気障壁空間に半径方向に変位することはないことで、結合要素を拘束と位置決めする効果を奏する。 At the same time, the inner diameter of the second side of the magnetic barrier space is also smaller than the inner diameter of the through-hole, so that the coupling element inserted through the through-hole is radially into the magnetic barrier space via the communicating portion between the magnetic barrier space and the through-hole. The lack of directional displacement has the effect of constraining and positioning the coupling element.
磁気障壁空間と磁石溝との間の連通部位の内径は、磁気障壁空間の第1側の内径より小さく、また磁石溝の上記円周半径方向における溝空間の高さよりも小さいので、磁石溝に嵌め込まれる磁石が磁石溝と磁気障壁空間との間の連通部位を経由して磁気障壁空間に変位することはないことで、磁石溝にある磁石を拘束と位置決めする効果を奏する。 The inner diameter of the communicating portion between the magnetic barrier space and the magnet groove is smaller than the inner diameter of the first side of the magnetic barrier space, and is also smaller than the height of the groove space in the radial direction of the circumference of the magnet groove. Since the fitted magnet is prevented from being displaced into the magnetic barrier space via the communicating portion between the magnet groove and the magnetic barrier space, the effect of constraining and positioning the magnet in the magnet groove is achieved.
以下、本発明の好ましい実施例を通じて説明するモータの回転子鉄心構造は、高速回転を使用目的としたスピンドルモータの回転子要素を例として取り上げるが、スピンドルモータ全体技術において、本発明の技術的特徴の開示を妨げない部分については、以下の説明で記述しないが、これらの省略した部分は本発明の属する技術分野における通常の知識を有する者が本発明の出願前に知っている従来技術に属し、その省略も本発明の主な技術的特徴の開示の完全性に影響を及ぼさない。 The rotor core structure of the motor described below through preferred embodiments of the present invention takes the rotor element of the spindle motor for the purpose of high-speed rotation as an example. The parts that do not interfere with the disclosure of the present invention are not described in the following description, but these omitted parts belong to the prior art known to those who have ordinary knowledge in the technical field to which the present invention belongs before the filing of the present invention. , its omission does not affect the completeness of the disclosure of the main technical features of the present invention.
図1及び図2に示すように、本発明の好ましい実施例で提供されるモータの回転子鉄心構造10は、主に鉄心20と、穴の形を呈する複数の磁石溝30と、対になった複数の磁気障壁空間40と、複数の貫通穴50と、複数の結合要素60とを含む。 As shown in FIGS. 1 and 2, the rotor core structure 10 of the motor provided in the preferred embodiment of the present invention mainly consists of a core 20 and a plurality of hole-shaped magnet grooves 30 paired together. a plurality of magnetic barrier spaces 40 , a plurality of through holes 50 and a plurality of coupling elements 60 .
前記鉄心20は、複数の環状珪素鋼板を順番に同軸に積層してから成る円筒形管状物で、管状内側管壁で画定された内径環面21と、管状外側管壁で画定された外径環面22とを有し、前記内径環面21の半径方向における断面形状は円形を呈し、前記外径環面22の半径方向における断面形状が円形であり得、本実施例で開示するように2つの弧度が異なる複数の第1円弧221と複数の第2円弧222が交互に連結されてから成ることもでき、前記外径環面22の曲率中心を前記内径環面21の円の中心に同軸又は平行である。 The iron core 20 is a cylindrical tubular body formed by sequentially laminating a plurality of annular silicon steel plates coaxially. and an annular surface 22, the radial cross-sectional shape of the inner diameter annular surface 21 may be circular, and the radial cross-sectional shape of the outer diameter annular surface 22 may be circular, as disclosed in this embodiment. A plurality of first circular arcs 221 and a plurality of second circular arcs 222 with two different arc degrees may be alternately connected, and the center of curvature of the outer ring surface 22 may be the center of the circle of the inner ring surface 21. Coaxial or parallel.
各前記磁石溝30は、前記内径環面21の円の中心軸方向に沿って前記鉄心に各々貫設されて、前記内径環面21と前記外径環面22との間に介在することで、各前記磁石溝30の溝空間を介して磁石(図示せず)を収容し、各前記磁石溝30の溝壁を介して収容された磁石を位置決めし、磁石が前記鉄心20内部に密に嵌め込まれる。ただし、前記磁石溝30の具体的な形状は、本出願の技術的特徴ではないため、本明細書において詳細に描写しない。 Each of the magnet grooves 30 penetrates the iron core along the central axis direction of the circle of the inner diameter ring surface 21 and is interposed between the inner diameter ring surface 21 and the outer diameter ring surface 22. , a magnet (not shown) is accommodated through the groove space of each magnet groove 30, the accommodated magnet is positioned through the groove wall of each magnet groove 30, and the magnets are tightly packed inside the iron core 20. be fitted. However, the specific shape of the magnet groove 30 is not a technical feature of the present application, so it will not be described in detail in this specification.
前記磁気障壁空間40は、前記内径環面21の直径を鏡像軸とし、対になって各前記磁石溝30の両側に隣り合い、前記内径環面21の円の中心軸方向に沿って延びて前記鉄心20上の穴状構造に貫設され、かつ各々第1側41により隣り合う磁石溝30と連通する。 The magnetic barrier spaces 40 are adjacent to each of the magnet grooves 30 in pairs with the diameter of the inner ring surface 21 as the mirror image axis, and extend along the central axis direction of the circle of the inner ring surface 21. It penetrates through the hole-like structure on the iron core 20 and communicates with adjacent magnet grooves 30 by first sides 41 respectively.
前記貫通穴50は、それぞれ前記内径環面21の円の中心軸方向に沿って延びて前記鉄心20に貫設され、対になった各前記磁気障壁空間40の第2側42と対ごとに連通する。 The through-holes 50 extend along the central axis direction of the circle of the inner ring surface 21 and penetrate through the iron core 20, and are paired with the second sides 42 of the magnetic barrier spaces 40 that are paired. communicate.
図4を参照すると、各前記結合要素60は、非導磁性の材料(ステンレス鋼材又はアルミ材など)で作製されたストレート棒状胴体部61を各々備え、各前記貫通穴50にそれぞれ挿通され、軸部両端を前記鉄心20の管軸両端の端面から突き出て、両端部(図示せず)が前記鉄心20の管軸両端の外側に位置し、前記胴体部61の軸部両端と各々固着することで、前記珪素鋼板に力を加えて前記珪素鋼板間の積層状態を維持し、同時に非導磁性の物理的性質により前記貫通穴50の穴空間が磁路への妨害作用を維持できるようさせる。 Referring to FIG. 4, each of the coupling elements 60 has a straight rod-like body 61 made of a non-magnetic material (such as stainless steel or aluminum), and is inserted into each through-hole 50 to form a shaft. Both ends of the core 20 protrude from the end surfaces of both ends of the tube shaft of the iron core 20, and both ends (not shown) are positioned outside the both ends of the tube shaft of the iron core 20 and fixed to both ends of the shaft of the body 61, respectively. and force is applied to the silicon steel plates to maintain the laminated state between the silicon steel plates, and at the same time, the physical properties of non-magnetic conductivity allow the hole space of the through hole 50 to maintain the effect of interfering with the magnetic path.
各前記磁石溝30と磁気障壁空間40と貫通穴50との間の結合空間形態を説明するため、図3を参照すると、磁石溝30の一側にある磁気障壁空間40は、前記第1側41の一部により前記磁石溝30と連通し、前記一部の連通領域411の内径が前記第1側41の内径より小さく、同時に前記磁気障壁空間40は前記第2側42の一部により前記貫通穴50の一部と連結して形成された連絡通路421の内径も前記貫通穴50の内径Dより小さくすることで、上記の内径差を介して前記磁石溝30、前記磁気障壁空間40及び前記貫通穴50が互いに連通すると同時に、前記磁石溝30に嵌め込まれた磁石、及び前記貫通穴50に挿通された胴体部61が前記連通領域411又は連絡通路421を経由して前記磁気障壁空間40に変位することを防ぐことができる。 In order to describe the coupling space form between each magnet groove 30, the magnetic barrier space 40 and the through hole 50, please refer to FIG. 41 communicates with the magnet groove 30 , the inner diameter of the communication area 411 is smaller than the inner diameter of the first side 41 , and the magnetic barrier space 40 is defined by the second side 42 . By making the inner diameter of the connecting passage 421 formed by connecting with a part of the through hole 50 smaller than the inner diameter D of the through hole 50, the magnet groove 30, the magnetic barrier space 40 and At the same time when the through holes 50 communicate with each other, the magnets fitted in the magnet grooves 30 and the body portion 61 inserted into the through holes 50 are connected to the magnetic barrier space 40 via the communication region 411 or the communication passage 421 . can be prevented from being displaced to
ここで、本実施例における前記貫通穴50の具体的な形状は、半径方向断面上に円形を呈し、前記胴体部61の半径方向における断面形状がそれを補完する円形を呈することで、前記胴体部61の周辺側の胴体壁部が前記貫通穴50の穴壁に対応してフィットされ、前記胴体部61と前記貫通穴50と間の挿嵌を安定させることができる。その他の実施例において、前記貫通穴の形状は、楕円形又は多角形などの本実施例の平面幾何学的形状とは異なることができる。 Here, the specific shape of the through hole 50 in this embodiment is such that the cross section in the radial direction has a circular shape, and the cross sectional shape in the radial direction of the body portion 61 has a complementary circular shape. The body wall portion on the peripheral side of the portion 61 is fitted correspondingly to the hole wall of the through hole 50, so that the fitting between the body portion 61 and the through hole 50 can be stabilized. In other embodiments, the shape of the through-holes can be different from the planar geometric shape of this embodiment, such as elliptical or polygonal.
また、前記磁気障壁空間40の半径方向における断面形状は、三角形を呈し、それぞれ前記第1側41で三角形の第1辺を画定し、磁気障壁空間40の前記内径環面21に近い内側穴壁43で三角形の第2辺を画定し、磁気障壁空間40の前記外径環面21に近い外側穴壁44で三角形の第3辺を画定し、前記連絡通路421を前記第3辺の範囲内に位置させる。 In addition, the cross-sectional shape of the magnetic barrier space 40 in the radial direction is triangular, and the first side 41 defines a first side of the triangle. The second side of the triangle is defined by 43, the third side of the triangle is defined by the outer hole wall 44 near the outer diameter ring surface 21 of the magnetic barrier space 40, and the connecting passage 421 is formed within the range of the third side. be positioned at
上記の構成要素の構成により、前記モータの回転子鉄心構造10は、前記貫通穴50を介して結合要素60を挿通させることから積層された珪素鋼板を密に結合して良好な固定効果を奏し、鉄心の剛性を向上させ、また前記結合要素60の非導磁特性を限定するため、前記貫通穴50と前記磁気障壁空間40から形成される磁気障壁効果を維持させることができ、前記モータの回転子鉄心構造10は鉄心強度及び電磁特性を兼ね備えることができ、従来技術と比較して明らかな進歩を遂げる。 Due to the configuration of the components described above, the rotor core structure 10 of the motor has the coupling element 60 inserted through the through-hole 50, so that the laminated silicon steel plates are closely coupled to achieve a good fixing effect. , the magnetic barrier effect formed by the through hole 50 and the magnetic barrier space 40 can be maintained in order to improve the rigidity of the core and limit the non-magnetic property of the coupling element 60, so that the motor The rotor core structure 10 can combine core strength and electromagnetic properties, making a clear advance over the prior art.
さらに、図3を参照すると、前記モータの回転子鉄心構造10により良い機械的性質を得させるため、本出願は前記磁気障壁空間40及び前記貫通穴50の寸法をさらに研究し、下表1に示すデータは本出願が従来技術と比較して安全率の点で良好な性能を有することを証明している。 Further, referring to FIG. 3, in order to obtain better mechanical properties from the rotor core structure 10 of the motor, the present application further studies the dimensions of the magnetic barrier space 40 and the through holes 50, and the dimensions are shown in Table 1 below. The data presented demonstrate that the present application has good performance in terms of safety factor compared to the prior art.
上表において、
Bは、第1夾角で、前記鉄心20の半径方向上の前記磁気障壁空間の内側穴壁43と隣接する前記磁石溝30の前記内径環面21に近い内側溝面31との間にある夾角として定義され、
Cは、第2夾角で、前記鉄心20の半径方向上の前記磁気障壁空間の内側穴壁43と外側穴壁44との間にある内角として定義される。
In the table above:
B is a first included angle between the inner hole wall 43 of the magnetic barrier space on the radial direction of the iron core 20 and the inner groove surface 31 near the inner ring surface 21 of the adjacent magnet groove 30; is defined as
C is a second included angle and is defined as the interior angle between the inner hole wall 43 and the outer hole wall 44 of the magnetic barrier space above the core 20 in the radial direction.
前記磁気障壁空間40と連通する磁石溝30との間は、150°≦B≦190°及び16°≦C≦35°を満たし、
前記貫通穴50は、次の式(I)を満たす。
150°≦B≦190° and 16°≦C≦35° are satisfied between the magnetic barrier space 40 and the communicating magnet groove 30, and
The through hole 50 satisfies the following formula (I).
式中、Dは、前記貫通穴50の直径、Roは前記第2円弧222の半径である。前記磁気障壁空間40及び連通する前記貫通穴50は、次の式(II)を満たす。 where D is the diameter of the through-hole 50 and Ro is the radius of the second arc 222 . The magnetic barrier space 40 and the communicating through hole 50 satisfy the following formula (II).
式中、Fは、磁気障壁の幅で、互いに連通する各前記磁気障壁空間40と各前記貫通穴50の前記第1側41と前記貫通穴50の曲率中心位置との間の直線距離として定義され;Roは、前記第2円弧222の半径である。 where F is the width of the magnetic barrier, defined as the linear distance between each magnetic barrier space 40 communicating with each other, the first side 41 of each through hole 50 and the center of curvature of the through hole 50; and Ro is the radius of said second arc 222;
上記表1に示すように、前記モータの回転子鉄心構造10は、安全率を1.01以上に上げることができ、高速回転時の前記鉄心20の剛性を向上させることで、遠心力の作用下で発生する可能性のある変形又は損傷を低減できる。 As shown in Table 1 above, the rotor core structure 10 of the motor can increase the safety factor to 1.01 or more, and by improving the rigidity of the core 20 during high-speed rotation, the action of centrifugal force deformation or damage that may occur underneath can be reduced.
10 モータの回転子鉄心構造
20 鉄心
21 内径環面
22 外径環面
221 第1円弧
222 第2円弧
30 磁石溝
40 磁気障壁空間
41 第1側
411 連通領域
42 第2側
421 連絡通路
43 内側穴壁
44 外側穴壁
50 貫通穴
60 結合要素
61 胴体部
B 第1夾角
C 第2夾角
D 貫通穴の内径
F 磁気障壁の幅
Ro 第2円弧の半径
10 Motor Rotor Core Structure 20 Iron Core 21 Inner Circular Surface 22 Outer Circular Surface 221 First Arc 222 Second Arc 30 Magnet Groove 40 Magnetic Barrier Space 41 First Side 411 Communication Area 42 Second Side 421 Communication Passage 43 Inner Hole wall 44 outer hole wall 50 through hole 60 coupling element 61 body portion B first included angle C second included angle D inner diameter of through hole F width of magnetic barrier Ro radius of second arc
Claims (9)
互いに間隔を置いて、それぞれ前記鉄心(20)の内径環面(21)と外径環面(22)との間に介在し、前記鉄心の内径環面(21)の曲率中心の軸方向に平行に延びて前記鉄心(20)を貫通する複数の磁石溝(30)と、
各々前記鉄心(20)の内径環面(21)の曲率中心の軸方向に平行に延びて前記鉄心(20)を貫通し、かつ各前記磁石溝(30)の半径方向における両側と間隔をそれぞれ置く複数の対になった貫通穴(50)と、
前記鉄心(20)の内径環面(21)の曲率中心の軸方向に平行に延びて前記鉄心(20)をそれぞれ貫通し、各前記磁石溝(30)の両側と各前記対になった貫通穴(50)との間にそれぞれ介在され、第1側(41)により前記磁石溝(30)と連通し、第2側(42)により前記貫通穴(50)と連通する穴の形を呈し、対になった複数の磁気障壁空間(40)と、
それぞれ各前記貫通穴(50)を挿通して固定され、前記鉄心(20)の軸方向の両端に互いに向き合う力を加え、かつ前記積層する珪素鋼板に作用する非導磁性の材料で作製され、ストレート棒状を呈する結合要素(60)と、を含むモータの回転子鉄心構造(10)であって、
各前記貫通穴(50)の穴壁は、穴空間内を挿通する各前記結合要素(60)の外周面に密着し、
各前記第1側(41)の内径は、各前記第2側(42)の内径よりも大きく、
各前記第1側(41)の内径は、各前記第1側(41)と各前記磁石溝(30)との間の連通領域の内径より大きく、
各前記第2側(42)と前記貫通穴(50)とが連絡する通路の内径は、各前記貫通穴(50)の内径より小さい、
モータの回転子鉄心構造。 It has an inner ring surface (21) and an outer ring surface (22), wherein the outer ring surface (22) comprises a plurality of first circular arcs (221) and a plurality of second circular arcs (222) having different arc degrees. An iron core (20) having an annular shape and formed by sequentially laminating a plurality of annular silicon steel plates, each of which is alternately connected to each other;
spaced apart from each other, interposed between the inner diameter annular surface (21) and the outer diameter annular surface (22) of the iron core (20), respectively, in the axial direction of the curvature center of the inner diameter annular surface (21) of the iron core (20) a plurality of magnet grooves (30) extending in parallel and penetrating the iron core (20);
each extends in parallel with the axial direction of the center of curvature of the inner diameter ring surface (21) of the iron core (20), penetrates the iron core (20), and is spaced from both sides in the radial direction of each of the magnet grooves (30). a plurality of paired through holes (50) for placing;
Extending parallel to the axial direction of the center of curvature of the inner diameter ring surface (21) of the iron core (20) and respectively penetrating the iron core (20), each pair of through holes on both sides of each of the magnet grooves (30) holes (50) respectively interposed therebetween, communicating with said magnet groove (30) by a first side (41) and communicating with said through hole (50) by a second side (42). , a plurality of paired magnetic barrier spaces (40);
Each is inserted through each of the through holes (50) and fixed, applies a force facing each other to both ends of the iron core (20) in the axial direction, and is made of a non-magnetic material that acts on the laminated silicon steel plates, A rotor core structure (10) for a motor, comprising a coupling element (60) having a straight bar shape,
the hole wall of each through hole (50) is in close contact with the outer peripheral surface of each of the coupling elements (60) passing through the hole space;
the inner diameter of each said first side (41) is greater than the inner diameter of each said second side (42);
the inner diameter of each said first side (41) is greater than the inner diameter of the communicating region between each said first side (41) and each said magnet groove (30);
the inner diameter of the passage connecting each said second side (42) and said through hole (50) is smaller than the inner diameter of each said through hole (50);
Motor rotor core structure.
(I)
[式中、
Dは、前記貫通穴(50)の穴径であり、
Roは、前記第2円弧(222)の半径であり、
Fは、互いに連通する各前記磁気障壁空間(40)と各前記貫通穴(50)の前記第1側(41)と前記貫通穴(50)の曲率中心位置との間の直線距離である。 The through hole (50) according to claim 1, wherein the through hole (50) satisfies the following formula (I), and each of the through holes (50) communicating with each of the magnetic barrier spaces (40) satisfies the following formula (II): Motor rotor core structure.
(I)
[In the formula,
D is the hole diameter of the through hole (50),
Ro is the radius of said second arc (222);
F is the linear distance between each said magnetic barrier space (40) communicating with each other and said first side (41) of each said through hole (50) and the curvature center position of said through hole (50);
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022114383A JP7329109B1 (en) | 2022-07-15 | 2022-07-15 | Motor rotor core structure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022114383A JP7329109B1 (en) | 2022-07-15 | 2022-07-15 | Motor rotor core structure |
Publications (2)
Publication Number | Publication Date |
---|---|
JP7329109B1 true JP7329109B1 (en) | 2023-08-17 |
JP2024011988A JP2024011988A (en) | 2024-01-25 |
Family
ID=87563134
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2022114383A Active JP7329109B1 (en) | 2022-07-15 | 2022-07-15 | Motor rotor core structure |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7329109B1 (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080296991A1 (en) | 2007-05-31 | 2008-12-04 | Lg Electronics Inc. | Synchronous reluctance motor |
US20100264775A1 (en) | 2009-04-17 | 2010-10-21 | Siemens Aktiengesellschaft | Rotor for an electrical machine |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100517938B1 (en) * | 2003-11-19 | 2005-09-30 | 엘지전자 주식회사 | Rotor assembly structure of synchronous reluctance motor |
KR20200133865A (en) * | 2019-05-20 | 2020-12-01 | 현대로템 주식회사 | Rotor for permanent magnet motor |
-
2022
- 2022-07-15 JP JP2022114383A patent/JP7329109B1/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080296991A1 (en) | 2007-05-31 | 2008-12-04 | Lg Electronics Inc. | Synchronous reluctance motor |
US20100264775A1 (en) | 2009-04-17 | 2010-10-21 | Siemens Aktiengesellschaft | Rotor for an electrical machine |
Also Published As
Publication number | Publication date |
---|---|
JP2024011988A (en) | 2024-01-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6592296B2 (en) | Brushless DC motor and its rotor | |
CN100477446C (en) | Rotating electric machine | |
JP7334046B2 (en) | Rotors for rotating electrical machines | |
US9088199B2 (en) | Motor | |
JP5087583B2 (en) | Electric motor and method of manufacturing electric motor | |
WO2016080284A1 (en) | Induction motor | |
JP2017055651A (en) | Single phase permanent magnet motor | |
CN113169596B (en) | Rotor and rotating electrical machine including the same | |
CA2832370C (en) | Axial bearing device having increased iron filling | |
JP7329109B1 (en) | Motor rotor core structure | |
US11322999B2 (en) | Electric motor | |
JP2015192550A (en) | Stator and stator core | |
JP4966992B2 (en) | Rotor and method for manufacturing rotor | |
JP7413042B2 (en) | Outer diameter side magnet field and magnetic gear | |
JP5256835B2 (en) | Rotating electric machine stator and rotating electric machine | |
US20020135258A1 (en) | Laminated rotor for eddy-current brake and device including such a rotor | |
US20240048010A1 (en) | Iron core structure of motor rotor | |
JP5542112B2 (en) | Rotor | |
CN117335589A (en) | Motor rotor core structure | |
TW202401954A (en) | Motor rotor core structure | |
TW202011672A (en) | Cage rotor and rotary motor | |
JP7402283B1 (en) | Improved structure of high frequency rotation mechanism | |
US20230198324A1 (en) | Rotor for rotary electric machine | |
JP2020022236A (en) | motor | |
JP7436764B1 (en) | Coil units, coil assemblies and energy converters |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20220715 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20230711 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20230804 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7329109 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |