JP7324549B2 - Ferromagnetic grain-oriented high-silicon steel ultra-thin strip and its production method - Google Patents

Ferromagnetic grain-oriented high-silicon steel ultra-thin strip and its production method Download PDF

Info

Publication number
JP7324549B2
JP7324549B2 JP2022543607A JP2022543607A JP7324549B2 JP 7324549 B2 JP7324549 B2 JP 7324549B2 JP 2022543607 A JP2022543607 A JP 2022543607A JP 2022543607 A JP2022543607 A JP 2022543607A JP 7324549 B2 JP7324549 B2 JP 7324549B2
Authority
JP
Japan
Prior art keywords
silicon steel
annealing
temperature
ribbon
oriented high
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022543607A
Other languages
Japanese (ja)
Other versions
JP2023511662A (en
Inventor
王波
張迪
孫会蘭
郭志紅
朱立光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hebei University of Science and Technology
Original Assignee
Hebei University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hebei University of Science and Technology filed Critical Hebei University of Science and Technology
Publication of JP2023511662A publication Critical patent/JP2023511662A/en
Application granted granted Critical
Publication of JP7324549B2 publication Critical patent/JP7324549B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/68Temporary coatings or embedding materials applied before or during heat treatment
    • C21D1/70Temporary coatings or embedding materials applied before or during heat treatment while heating or quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • C21D1/773Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material under reduced pressure or vacuum
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1227Warm rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1233Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
    • C21D8/1283Application of a separating or insulating coating
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)
  • Continuous Casting (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Description

関連出願の相互参照
本特許出願は、2021年02月01日に提出された、中国特許出願番号が「CN202110137389.4」の優先権を主張する。先行出願の開示内容は全体の引用により本願に組み込まれる。
CROSS-REFERENCE TO RELATED APPLICATIONS This patent application claims priority from Chinese Patent Application No. CN202110137389.4, filed on Feb. 01, 2021. The disclosure of the prior application is incorporated herein by reference in its entirety.

本願は、電磁鋼製造分野に属し、より具体的には、強磁性方向性高ケイ素鋼極薄帯及びその製造方法に関する。 The present application belongs to the field of electromagnetic steel production, and more specifically relates to a ferromagnetic oriented high silicon steel ultra-thin strip and its production method.

方向性ケイ素鋼は、重要な軟磁性材料であり、変圧器鉄心の重要な製造原料であり、電力業界の発展に不可欠な材料の1つでもある。高ケイ素鋼の低鉄損及び低磁歪係数特性は、高速高周波モータ、オーディオ、高周波トランス、チョークコイル及び高周波での磁気シールドなどの高周波機器において、顕著な優位性を示す。また、一般的な冷間圧延方向性ケイ素鋼の代わりに高ケイ素鋼を採用し、電子と電気素子の動作周波数と感度を向上させることができるだけでなく、また電気機器の重量と体積を大幅に軽減することができ、電気機器が作業時に静かで騒音がなく、エネルギー消費を節約し、効率化、省エネルギー化、軽量化及び静かで騒音がないことの間の矛盾を効果的に解決する。 Grain-oriented silicon steel is an important soft magnetic material, an important manufacturing raw material for transformer cores, and also one of the essential materials for the development of the power industry. The low iron loss and low magnetostriction coefficient characteristics of high silicon steel show significant advantages in high-frequency equipment such as high-speed high-frequency motors, audio equipment, high-frequency transformers, choke coils and high-frequency magnetic shields. In addition, the use of high silicon steel instead of the common cold rolled oriented silicon steel can not only improve the operating frequency and sensitivity of electronic and electrical elements, but also greatly reduce the weight and volume of electrical equipment. The electrical equipment is quiet and noiseless when working, saving energy consumption, effectively solving the contradiction between efficiency, energy saving, light weight and quietness.

薄帯連続鋳造法は、液状合金を用いて薄帯材を直接生産することができ、極めて潜在力を有する短フロー金属薄帯材の製造プロセスであり、鋳込過程において鋳込ロールを結晶器とし、合金液が鋳込ロールと直接接触し、製造された方向性ケイ素鋼の凝固組織及びテクスチャーは、伝統的な連続鋳造片と顕著に異なり、製造された方向性ケイ素鋼は、亜急速凝固の特性を有し、第2相粒子の粗化過程を十分に抑制することができ、方向性ケイ素鋼鋳造片の高温加熱の弊害を根本的に解決し、方向性ケイ素鋼の製造に必要な抑制剤の微細、均一、分散分布に有利な条件を提供し、当該技術は、既に低炭素鋼、高速度鋼などのプロセスの生産に応用されることに成功するが、方向性高ケイ素鋼の生産において、凝固組織の制御、抑制剤の析出、冷間加工塑性などの面においてより高く要求され、これらの問題は克服しにくいため、従来技術における方向性高ケイ素鋼は依然として純粋度が低く、安定性が悪く、磁気誘導強度が低く及び鉄損が高いという欠陥が存在する。 The continuous ribbon casting method can directly produce ribbon materials using a liquid alloy, and is a very potential short-flow metal ribbon manufacturing process. The alloy liquid is in direct contact with the casting roll, the solidification structure and texture of the produced oriented silicon steel are significantly different from the traditional continuous cast slab, and the produced oriented silicon steel is sub-rapidly solidified. It can sufficiently suppress the coarsening process of the second phase particles, fundamentally solve the harmful effects of high-temperature heating of grain-oriented silicon steel cast pieces, and is necessary for the production of grain-oriented silicon steel It provides favorable conditions for fine, uniform, and dispersed distribution of inhibitors, and the technology has already been successfully applied to the production of low-carbon steel, high-speed steel, and other processes, but not for oriented high-silicon steel. In the production, the solidification structure control, inhibitor precipitation, cold working plasticity and other aspects are more demanding, and these problems are difficult to overcome. There are defects of poor stability, low magnetic induction strength and high iron loss.

従来技術において、強磁性方向性高ケイ素鋼に存在する純粋度が低く、安定性が悪く、磁気特性が悪いという技術的問題に対し、本願は、強磁性方向性高ケイ素鋼極薄帯及びその製造方法を提供する。 In view of the technical problems of low purity, poor stability, and poor magnetic properties of ferromagnetic grain-oriented high silicon steel in the prior art, the present application provides a ferromagnetic grain-oriented high silicon steel ultra-thin strip and its A manufacturing method is provided.

上記目的を達成するために、本願の実施例は、以下の技術的解決手段を採用する。 To achieve the above objectives, the embodiments of the present application adopt the following technical solutions.

第1の態様において、本願の実施例は、強磁性方向性高ケイ素鋼極薄帯を提供し、以下の質量百分率の元素:
C:0.0045%~0.0060%、Si:4.5%~5.0%、Mn:0.23%~0.32%、S:0.02%~0.03%、Bi:0.03%~0.08%、Als:0.027%~0.035%、Cu:0.02%~0.03%、N:0.008%~0.010%、P<0.005%、残部の鉄を含み、そのうち前記Cu元素、前記S元素、前記N元素は、溶錬時に硫黄窒素及び銅を含有する多核配位化合物の方式で前記強磁性方向性高ケイ素鋼極薄帯に添加する。
In a first aspect, embodiments of the present application provide ferromagnetic grain-oriented high silicon steel ultrathin strips comprising the following mass percentage elements:
C: 0.0045% to 0.0060%, Si: 4.5% to 5.0%, Mn: 0.23% to 0.32%, S: 0.02% to 0.03%, Bi: 0.03% to 0.08%, Als: 0.027% to 0.035%, Cu: 0.02% to 0.03%, N: 0.008% to 0.010%, P<0. 005%, the balance of which contains iron, of which the Cu element, the S element, and the N element are formed into the ferromagnetic grain-oriented high-silicon steel ultra-thin in the form of polynuclear coordination compounds containing sulfur, nitrogen, and copper during smelting Add to band.

理解されるように、前記Alsとは、酸可溶性アルミニウムであり、硫黄窒素及び銅を含有する多核配位化合物の方式で強磁性方向性高ケイ素鋼極薄帯に添加することとは、製造過程において合金原料に硫黄元素、窒素元素、銅元素で構成される配位化合物を添加することである。強磁性方向性高ケイ素鋼極薄帯は、上記質量百分率の元素で得られた方向性高ケイ素鋼帯が厚さの小さい極薄帯であり、良好な強磁性を有することが理解される。 As can be understood, Als is acid-soluble aluminum, and adding it to the ferromagnetic grain-oriented high silicon steel ultrathin strip in the form of a polynuclear coordination compound containing sulfur nitrogen and copper means that the manufacturing process In the above, a coordination compound composed of sulfur element, nitrogen element, and copper element is added to the alloy raw material. It is understood that the ferromagnetic grain-oriented high-silicon steel ultra-thin strip is a thin-thick grain-oriented high-silicon steel strip obtained with the above mass percentage of elements and has good ferromagnetism.

理解されるように、各元素の質量百分率は、上記範囲区間の任意の値であってもよい。 As will be appreciated, the mass percentage of each element can be any value in the above range interval.

第2の態様において、本願の実施例は、上記強磁性方向性高ケイ素鋼極薄帯の製造方法をさらに提供し、具体的には、
S1において、前記強磁性方向性高ケイ素鋼極薄帯における各元素の質量百分率に応じて原料を準備し、前記Bi元素及び前記硫黄窒素及び銅を含有する多核配位化合物以外の原料を混合して溶錬し、合金原料が完全に溶融した後に合金溶液を得、前記合金溶液の表面に高純度窒素ガスを流すと同時に、前記硫黄窒素及び銅を含有する多核配位化合物を添加し、続いて前記Bi元素を添加し、ケイ素鉄母合金溶液になり、そのうち前記Bi元素は、Bi粉末の方式で前記合金溶液に添加することができるステップと、
S2において、前記ケイ素鉄母合金溶液の温度を1100~1200℃に制御し、連続的に流れる高純度窒素ガスにおいて高速単ロールによるメルトスピニング(single-roller melt-spinning)を行い、前記高速単ロールによるメルトスピニング過程におけるロールの線速度を20~30m/sに制御し、0.20~0.25mm厚さのケイ素鋼薄帯を製造するステップと、
S3において、前記ケイ素鋼薄帯をアウトロールした後に500~600℃まで水冷し、0.14~0.17mmまで温間圧延し、加熱して真空アニールを行い、さらに0.09~0.12mmまで冷間圧延し、加熱して純水素ガス二次アニールを行い、さらに室温まで空冷し、アニール分離層を塗布した後に加熱して浄化ガスアニールを行い、前記強磁性方向性高ケイ素鋼極薄帯を得るステップと、を含む。
In a second aspect, the embodiments of the present application further provide a method for producing the ferromagnetic grain-oriented high-silicon steel ultrathin strip, specifically comprising:
In S1, raw materials are prepared according to the mass percentage of each element in the ferromagnetic grain-oriented high-silicon steel ultrathin strip, and the raw materials other than the Bi element and the polynuclear coordination compound containing sulfur, nitrogen, and copper are mixed. After the alloy raw material is completely melted, an alloy solution is obtained, and at the same time high-purity nitrogen gas is flowed over the surface of the alloy solution, the polynuclear coordination compound containing sulfur nitrogen and copper is added, followed by adding the element Bi to form a silicon-iron master alloy solution, wherein the element Bi can be added to the alloy solution in the form of Bi powder;
In S2, the temperature of the silicon-iron master alloy solution is controlled to 1100-1200° C., high-speed single-roller melt-spinning is performed in continuously flowing high-purity nitrogen gas, and the high-speed single roll is A step of controlling the linear velocity of the roll in the melt spinning process to 20 to 30 m / s to produce a silicon steel ribbon with a thickness of 0.20 to 0.25 mm;
In S3, the silicon steel ribbon is out-rolled, water-cooled to 500 to 600° C., warm-rolled to 0.14 to 0.17 mm, heated and vacuum annealed, and further 0.09 to 0.12 mm. Then, the steel is cold-rolled, heated to perform pure hydrogen gas secondary annealing, further air-cooled to room temperature, coated with an annealing separation layer, heated and subjected to purification gas annealing, and the ferromagnetic grain-oriented high silicon steel ultrathin obtaining a strip.

理解されるように、高速単ロールによるメルトスピニング過程においてメルトスピニング装置を用いて行い、ロールの線速度を制御し、メルトスピニング過程の高速操作を保証し、且つ、当該過程において、深過冷却急速凝固の効果を実現することができ、深過冷却とは、核生成を抑制することで、ケイ素鉄母合金溶液が大きい過冷却度において依然として液状を維持することである。S1において合金原料が完全に溶融した後に合金溶液を得、ここでの合金原料とは、Bi元素、硫黄窒素及び銅を含有する多核配位化合物以外の他の原料である。S1において合金溶液の表面に高純度窒素ガスを流し、S2においても高純度窒素ガスの雰囲気にある。S3において、まずケイ素鋼薄帯をメルトスピニング装置から取り出し、続いてアウトロールした後のケイ素鋼薄帯に対して水冷処理、温間圧延処理、加熱且つ真空アニール処理、冷間圧延処理、加熱且つ純水素ガス二次アニール処理、空冷処理、塗布処理、加熱且つ浄化ガスアニール処理を順次行い、そのうち、浄化ガスアニールにおいて、S3ステップにおいて浄化ガスアニール前に行われる二次アニールは水素ガス雰囲気で行われるため、アニール過程において少量の水素元素が鋼帯に混在し、鋼の品質に影響を与え、そのため二次アニール後に鋼帯に介在する水素ガス及び他のガスを浄化する必要があり、アニール分離層は鋼帯表面を保護し、鋼帯から溢れたガスが鋼帯表面とさらに反応することを回避し、それにより鋼帯の表面の品質を保証するためである。鋼帯構造にドープされた少量のガスを浄化するために行われるアニールステップは、即ち浄化ガスアニールであり、当該浄化ガスアニールステップは、通常、真空又は負圧環境で行われ、本分野の通常プロセスに属する。空冷とは、大気中で冷却することである。 It is understood that the high-speed single-roll melt spinning process is carried out using melt spinning equipment to control the linear velocity of the rolls, to ensure high speed operation of the melt spinning process, and in the process, deep supercooling rapid The effect of solidification can be realized, and deep supercooling means that the silicon-iron master alloy solution remains liquid at a large degree of supercooling by suppressing nucleation. An alloy solution is obtained after the alloying raw materials are completely melted in S1, where the alloying raw materials are other raw materials other than polynuclear coordination compounds containing Bi element, sulfur nitrogen and copper. In S1, high-purity nitrogen gas is flowed over the surface of the alloy solution, and in S2, the atmosphere is of high-purity nitrogen gas. In S3, first, the silicon steel ribbon is taken out from the melt spinning apparatus, and then the silicon steel ribbon after outrolling is subjected to water cooling treatment, warm rolling treatment, heating and vacuum annealing treatment, cold rolling treatment, heating and Pure hydrogen gas secondary annealing treatment, air cooling treatment, coating treatment, heating, and purification gas annealing treatment are sequentially performed. Therefore, in the annealing process, a small amount of hydrogen elements will be mixed in the steel strip, affecting the quality of the steel. The layer protects the surface of the steel strip and prevents the gas overflowing from the steel strip from further reacting with the surface of the steel strip, thereby ensuring the quality of the surface of the steel strip. The annealing step performed to purify the small amount of gas doped into the steel strip structure is a purge gas anneal, which is usually performed in a vacuum or negative pressure environment and is commonly used in the field. Belong to a process. Air cooling is cooling in the air.

理解されるように、S2、S3において、数値は、上記範囲区間の任意の値であってもよい。 It will be appreciated that in S2, S3 the numerical values can be any value in the range interval above.

可能な実現形態において、S1において、合金原料の溶錬は、溶錬炉において行われ、高温アーク溶錬炉を選択することができる。 In a possible implementation, in S1, the smelting of the alloy raw material is carried out in a smelting furnace, and a high temperature arc smelting furnace can be selected.

可能な実現形態において、S1において、前記混合溶錬の温度は1300~1500℃である。当該範囲の溶錬温度であれば、合金原料を十分に溶融し、均一に混合することができ、メルトスピニング過程において構造と性質が均一なケイ素鋼薄帯を形成する。理解されるように、溶錬温度は、上記範囲区間の任意の値であってもよい。当然ながら、他の可能な実現形態において、さらに他の溶錬温度を採用することができ、これに限定されるものではない。 In a possible implementation, in S1, the temperature of said mixed smelting is 1300-1500°C. If the melting temperature is within this range, the alloy raw materials can be sufficiently melted and uniformly mixed, and a silicon steel ribbon having a uniform structure and properties can be formed in the melt spinning process. As will be appreciated, the smelting temperature may be any value in the above range interval. Of course, still other smelting temperatures can be employed in other possible implementations, and are not limited to this.

可能な実現形態において、S3において、前記真空アニールの温度は850~1050℃であり、前記真空アニールの時間は2~5minである。当該範囲の真空アニール温度及びアニール時間は、ケイ素鋼薄帯内の余分なC元素、Si元素の酸化物をケイ素鋼薄帯表面に析出させて酸化物層を形成し、冷間圧延過程において除去され、ケイ素鋼薄帯の加工性と靭性をさらに高める。理解されるように、上記アニール温度及びアニール時間は、上記範囲区間の任意の値であってもよい。当然ながら、他の可能な実施形態において、さらに他のアニール温度及びアニール時間を採用することができ、これに限定されるものではない。 In a possible implementation, in S3, the vacuum annealing temperature is 850-1050° C., and the vacuum annealing time is 2-5 min. The vacuum annealing temperature and annealing time within the above ranges are such that excess oxides of C element and Si element in the silicon steel ribbon are precipitated on the surface of the silicon steel ribbon to form an oxide layer, which is removed during the cold rolling process. This further enhances the workability and toughness of the silicon steel ribbon. As will be appreciated, the annealing temperature and annealing time may be any value in the range interval. Of course, still other annealing temperatures and annealing times may be employed in other possible embodiments, and are not limited to this.

可能な実現形態において、前記真空アニール前に温間圧延が完了した前記ケイ素鋼薄帯を20~25℃/hの昇温速度でアニール温度まで昇温する。ここで、アニール温度とは、真空アニールのアニール温度である。当該範囲の昇温速度は、ケイ素鋼薄帯層間の温度勾配を低減し、ケイ素鋼薄帯表面C、Siの酸化物の生成に寄与し、表面酸化物層の均一性を向上させ、真空アニール過程におけるテクスチャー及び組織の形成にも最適な動力学条件を提供する。理解されるように、上記昇温速度は、上記範囲区間の任意の値であってもよい。当然ながら、他の可能な実現形態において、さらに他の昇温速度を採用することができ、これに限定されるものではない。 In a possible realization, the silicon steel ribbon, which has been warm-rolled, is heated to the annealing temperature at a heating rate of 20-25° C./h before the vacuum annealing. Here, the annealing temperature is the annealing temperature for vacuum annealing. A heating rate within this range reduces the temperature gradient between the silicon steel ribbon layers, contributes to the generation of oxides on the silicon steel ribbon surface C and Si, improves the uniformity of the surface oxide layer, and vacuum annealing. It also provides optimal kinetic conditions for texture and tissue formation in the process. As will be appreciated, the heating rate may be any value in the range interval. Of course, still other heating rates can be employed in other possible implementations, and are not limited to this.

可能な実現形態において、S3において、前記純水素ガス二次アニールの温度は1000~1150℃であり、前記純水素ガス二次アニールの時間は2~5minである。当該範囲の純水素ガス二次アニール温度及びアニール時間は、ケイ素鋼薄帯におけるGoss結晶粒が十分に他の結晶粒を飲み込み、異常成長が発生し、完全な二次再結晶テクスチャーを形成し、二次アニール後のケイ素鋼薄帯の磁気特性を向上させることを保証することができる。理解されるように、上記アニール温度及びアニール時間は、上記範囲区間の任意の値であってもよい。当然ながら、他の可能な実施形態において、さらに他のアニール温度及びアニール時間を採用することができ、これに限定されるものではない。 In a possible implementation mode, in S3, the temperature of the pure hydrogen gas secondary annealing is 1000-1150° C., and the time of the pure hydrogen gas secondary annealing is 2-5 min. When the pure hydrogen gas secondary annealing temperature and annealing time are within the above ranges, the Goss grains in the silicon steel ribbon sufficiently swallow other grains, abnormal growth occurs, and a complete secondary recrystallized texture is formed. It can be ensured that the magnetic properties of the silicon steel ribbon after secondary annealing are improved. As will be appreciated, the annealing temperature and annealing time may be any value in the range interval. Of course, still other annealing temperatures and annealing times may be employed in other possible embodiments, and are not limited to this.

可能な実現形態において、前記純水素ガス二次アニール前に冷間圧延が完了した前記ケイ素鋼薄帯を20~25℃/hの昇温速度でアニール温度まで昇温する。ここで、アニール温度とは、純水素ガス二次アニールのアニール温度である。当該範囲の昇温速度は、ケイ素鋼薄帯層間の温度勾配を低減し、組織におけるGoss結晶粒が他の結晶粒を飲み込むことに適切な条件を提供し、ケイ素鋼薄帯内の組織の均一性を向上させ、ケイ素鋼薄帯の磁気特性を向上させる。理解されるように、上記昇温速度は、上記範囲区間の任意の値であってもよい。当然ながら、他の可能な実現形態において、さらに他の昇温速度を採用することができ、これに限定されるものではない。 In a possible embodiment, the cold-rolled silicon steel ribbon is heated to the annealing temperature at a rate of 20-25° C./h before the pure hydrogen gas secondary annealing. Here, the annealing temperature is the annealing temperature of pure hydrogen gas secondary annealing. A heating rate within this range reduces the temperature gradient between the layers of the silicon steel ribbon, provides suitable conditions for the Goss grains in the structure to swallow other grains, and makes the structure in the silicon steel ribbon uniform. improve the magnetic properties of the silicon steel ribbon. As will be appreciated, the heating rate may be any value in the range interval. Of course, still other heating rates can be employed in other possible implementations, and are not limited to this.

可能な実現形態において、S3において、前記浄化ガスアニールの温度は950~1200℃であり、前記浄化ガスアニールの時間は3~5minである。理解されるように、上記アニール温度及びアニール時間は、上記範囲区間の任意の値であってもよい。当然ながら、他の可能な実施形態において、さらに他のアニール温度及びアニール時間を採用することができ、これに限定されるものではない。 In a possible implementation, in S3, the temperature of said purge gas anneal is 950-1200° C. and the time of said purge gas anneal is 3-5 min. As will be appreciated, the annealing temperature and annealing time may be any value in the range interval. Of course, still other annealing temperatures and annealing times may be employed in other possible embodiments, and are not limited to this.

可能な実現形態において、前記浄化ガスアニール前に前記アニール分離層を塗布した前記ケイ素鋼薄帯を35~40℃/hの昇温速度でアニール温度まで昇温する。ここで、アニール温度とは、浄化ガスアニールのアニール温度である。理解されるように、上記昇温速度は、上記範囲区間の任意の値であってもよい。当然ながら、他の可能な実現形態において、さらに他の昇温速度を採用することができ、これに限定されるものではない。 In a possible implementation, the silicon steel ribbon coated with the annealing separation layer is heated to the annealing temperature at a heating rate of 35-40° C./h before the purge gas annealing. Here, the annealing temperature is the annealing temperature for purification gas annealing. As will be appreciated, the heating rate may be any value in the range interval. Of course, still other heating rates can be employed in other possible implementations, and are not limited to this.

可能な実現形態において、S3において、前記アニール分離層の成分は、リン酸二水素アルミニウム、スチレンアクリルエマルジョン、グリセリン及びシランカップリング剤の混合物であり、前記混合物における各成分の質量百分含有量は、リン酸二水素アルミニウム:10~15%、スチレンアクリルエマルジョン:20~40%、グリセリン:25~35%、シランカップリング剤:10~30%である。なお、上記質量百分含有量において初期値を略記し、実際には、リン酸二水素アルミニウム:10%~15%、スチレンアクリルエマルジョン:20%~40%、グリセリン:25%~35%、シランカップリング剤:10%~30%である。当該アニール分離層に用いられる混合物は、ケイ素鋼薄帯表面の耐酸化性及びケイ素鋼薄帯のパンチ性能を最大限に向上させ、後続製品の製造過程における各層の間の接着を防止し、品質を向上させることができる。理解されるように、上記質量百分率は、上記範囲区間の任意の値であってもよい。当然ながら、他の可能な実現形態において、さらに他の成分及び質量百分率を採用することができ、これに限定されるものではない。 In a possible implementation, in S3, the components of the annealed separation layer are a mixture of aluminum dihydrogen phosphate, styrene acrylic emulsion, glycerin and a silane coupling agent, and the mass percentage content of each component in the mixture is , aluminum dihydrogen phosphate: 10-15%, styrene acrylic emulsion: 20-40%, glycerin: 25-35%, silane coupling agent: 10-30%. In addition, the initial value is abbreviated in the above percentage content by mass, and in fact, aluminum dihydrogen phosphate: 10% to 15%, styrene acrylic emulsion: 20% to 40%, glycerin: 25% to 35%, silane Coupling agent: 10% to 30%. The mixture used for the annealed separation layer maximizes the oxidation resistance of the silicon steel strip surface and the punching performance of the silicon steel strip, prevents adhesion between layers in the manufacturing process of subsequent products, and improves quality. can be improved. As will be appreciated, the weight percentage may be any value in the range interval. Of course, still other components and weight percentages can be employed in other possible implementations, and are not limited to this.

可能な実現形態において、S3において、具体的に以下のステップを含み、前記ケイ素鋼薄帯をアウトロールした後に500~600℃まで水冷し、第1の薄帯を得、前記第1の薄帯を0.14~0.17mmまで温間圧延し、第2の薄帯を得、前記第2の薄帯を加熱して真空アニールを行い、第3の薄帯を得、さらに前記第3の薄帯を0.09~0.12mmまで冷間圧延し、第4の薄帯を得、前記第4の薄帯を加熱して純水素ガス二次アニールを行い、第5の薄帯を得、さらに前記第5の薄帯を室温まで空冷し、第6の薄帯を得、前記第6の薄帯にアニール分離層を塗布し、第7の薄帯を得、前記第7の薄帯を加熱して浄化ガスアニールを行い、前記強磁性方向性高ケイ素鋼極薄帯を得ることができる。 In a possible implementation, in S3, specifically including the following steps, water cooling to 500-600° C. after outrolling the silicon steel ribbon to obtain a first ribbon; is warm-rolled to 0.14 to 0.17 mm to obtain a second ribbon, the second ribbon is heated and vacuum annealed to obtain a third ribbon, and the third ribbon is obtained. The ribbon is cold-rolled to 0.09 to 0.12 mm to obtain a fourth ribbon, and the fourth ribbon is heated and subjected to pure hydrogen gas secondary annealing to obtain a fifth ribbon. Furthermore, the fifth ribbon is air-cooled to room temperature to obtain a sixth ribbon, the annealing separation layer is applied to the sixth ribbon, the seventh ribbon is obtained, and the seventh ribbon is obtained. is heated to carry out purification gas annealing to obtain the ferromagnetic grain-oriented high silicon steel ultra-thin strip.

従来技術に対し、本願は、強磁性方向性高ケイ素鋼極薄帯の原料成分を設計することで、硫黄窒素及び銅を含有する多核配位化合物及びBi元素を合金抑制剤として採用し、そのうち硫黄窒素及び銅を含有する多核配位化合物は、合金にCu元素、S元素及びN元素を導入するとともに、高い元素吸収率を保証し、また合金中の他の金属と反応してCuS、AlN、MnSなどの物質を生成することができ、当該類の物質は、鋳込の初期の固液凝固過程に析出することができ、粒界に分布されたBi元素とともに初回再結晶した結晶粒の成長を抑制することができ、それによりGoss結晶粒の2次結晶の発生を促進し、製造された強磁性方向性高ケイ素鋼極薄帯は、結晶粒が細かく、テクスチャーが均一で、高い磁気誘導強度、低鉄損の優れた磁気特性を有する。 In contrast to the prior art, the present application adopts polynuclear coordination compounds containing sulfur nitrogen and copper and Bi elements as alloy inhibitors by designing raw material components for ferromagnetic grain-oriented high-silicon steel ultra-thin strips. A polynuclear coordination compound containing sulfur nitrogen and copper introduces Cu, S and N elements into the alloy, guarantees high element absorption, and reacts with other metals in the alloy to form CuS, AlN , MnS, etc., which can be precipitated during the initial solid-liquid solidification process of casting. The growth can be suppressed, thereby promoting the occurrence of secondary crystals of Goss grains, and the produced ferromagnetic oriented high silicon steel ultrathin ribbon has fine grains, uniform texture, and high magnetism. It has excellent magnetic properties of inductive strength and low iron loss.

従来技術に比べ、本願にて提供される強磁性方向性高ケイ素鋼極薄帯の製造方法は、合金の溶錬及びメルトスピニング過程においていずれも高純度窒素ガスを流し、高温窒化作用でAlN抑制剤の生成を促進し、テクスチャーの生成及び合金組織の均一性を向上させることができるだけでなく、さらに合金表面の酸化を阻止することができ、それとともに硫黄窒素及び銅を含有する多核配位化合物及びビスマス元素を添加し、銅元素及びビスマス元素の収率を保証する。高純度窒素ガスは、メルトスピニング過程において冷却ガスとしてケイ素鋼薄帯の自由面を急速に降温し、結晶粒の形成を加速することができ、また、3回の異なる再結晶アニール過程を経て、表面アニール分離層の塗布を結合し、ケイ素鋼薄帯の構造をさらに安定化させ、ケイ素鋼薄帯の磁気特性、純粋度、表面耐酸化性及びパンチ性能を向上させる。 Compared with the prior art, the manufacturing method of the ferromagnetic oriented high silicon steel ultra-thin strip provided by the present application is characterized by flowing high-purity nitrogen gas in both the smelting and melt spinning processes of the alloy, and inhibiting AlN by high-temperature nitriding. A polynuclear coordination compound containing sulfur nitrogen and copper, which can not only promote the formation of agents, improve the formation of texture and the uniformity of alloy structure, but also prevent the oxidation of the alloy surface. and elemental bismuth are added to ensure the yield of elemental copper and elemental bismuth. High-purity nitrogen gas can be used as a cooling gas in the melt spinning process to rapidly lower the temperature of the free surface of the silicon steel ribbon and accelerate the formation of crystal grains. Combining the application of the surface annealing separation layer, further stabilize the structure of the silicon steel ribbon, and improve the magnetic properties, purity, surface oxidation resistance and punching performance of the silicon steel ribbon.

本願にて提供される強磁性方向性高ケイ素鋼極薄帯の製造方法は、連続鋳造、圧延、高温アニール、表面改質などの一体化プロセス経路により、さらに深過冷却急速凝固の優位性を発揮し、生産した強磁性方向性高ケイ素鋼極薄帯は、純粋度が高く、安定性がよく、優れた磁気特性の特徴を有する。 The manufacturing method of the ferromagnetic grain-oriented high silicon steel ultra-thin strip provided in the present application has the superiority of deep supercooling and rapid solidification through integrated process routes such as continuous casting, rolling, high temperature annealing, and surface modification. The produced ferromagnetic oriented high-silicon steel ultra-thin strip has the characteristics of high purity, good stability and excellent magnetic properties.

本願が解決しようとする技術的問題、技術的解決手段及び有益な効果をより明確にするために、以下、実施例を結合し、本願をさらに詳細に説明する。理解すべきものとして、ここで説明した具体的な実施例は、本願を解釈するためのみに用いられ、本願を限定するものではない。 In order to make the technical problems, technical solutions and beneficial effects to be solved by the present application clearer, the following will combine examples to describe the present application in more detail. It should be understood that the specific examples described herein are used only for the purpose of interpreting the present application and are not intended to limit the present application.

[実施例1]
本実施例は、強磁性方向性高ケイ素鋼極薄帯を提供し、以下の質量百分率の元素:C:0.0045%、Si:4.5%、Mn:0.23%、S:0.02%、Bi:0.03%、Als:0.027%、Cu:0.02%、N:0.008%、P:0.004%、残部のFeを含み、そのうちCu元素、S元素、N元素は、溶錬時に硫黄窒素及び銅を含有する多核配位化合物の方式で強磁性方向性高ケイ素鋼極薄帯に添加し、具体的にはN,N-ジ-n-ブチルジチオカルバミン酸銅を選択することができる。
[Example 1]
This example provides a ferromagnetic grain-oriented high silicon steel ultra-thin strip, with the following mass percentage elements: C: 0.0045%, Si: 4.5%, Mn: 0.23%, S: 0 .02%, Bi: 0.03%, Als: 0.027%, Cu: 0.02%, N: 0.008%, P: 0.004%, the balance containing Fe, of which Cu element, S The element N element is added to the ferromagnetic grain-oriented high silicon steel ultrathin strip in the form of a polynuclear coordination compound containing sulfur nitrogen and copper during smelting, specifically N,N-di-n-butyl. Copper dithiocarbamate can be selected.

本実施例は、さらに強磁性方向性高ケイ素鋼極薄帯の製造方法を提供し、具体的には、
S1において、強磁性方向性高ケイ素鋼極薄帯における各元素の質量百分率に応じて合金原料を準備し、Bi元素及び硫黄窒素及び銅を含有する多核配位化合物以外の原料を混合し、高温アーク溶錬炉に置き、1300℃まで加熱して溶錬し、合金原料が完全に溶融した後に合金溶液を得、合金溶液の表面に高純度窒素ガスを流すと同時に、N,N-ジ-n-ブチルジチオカルバミン酸銅を添加し、続いてBi元素を添加し、ケイ素鉄母合金溶液を得、全体の溶錬過程は30minを続け、そのうちBi元素はBi粉末の方式で合金溶液に添加することができるステップと、
S2において、ケイ素鉄母合金溶液の温度を1100℃に制御し、連続的に流れる高純度窒素ガスの雰囲気において高速極冷単ロールによるメルトスピニングを行い、高速極冷単ロールによるメルトスピニング過程におけるロールの線速度を20m/sに制御し、0.25mm厚さのケイ素鋼薄帯を製造するステップと、
S3において、まずケイ素鋼薄帯をメルトスピニング装置のロールから取り出し、続いてアウトロールした後のケイ素鋼薄帯を500℃まで水冷し、0.17mmまで温間圧延し、20℃/hの加熱速度で850℃まで加熱した後に真空アニールを2min行い、さらに0.12mmの厚さまで冷間圧延し、続いて20℃/hの加熱速度で1000℃まで加熱した後に純水素ガス二次アニールを2min行い、さらに室温まで空冷し、アニール分離層を塗布した後に、35℃/hの加熱速度で950℃まで加熱し、続いて浄化ガスアニールを行い、浄化ガスアニール3min後に強磁性方向性高ケイ素鋼極薄帯を得、アニール分離層の成分は質量百分率が10%のリン酸二水素アルミニウム、40%のスチレンアクリルエマルジョン、35%のグリセリン及び15%のシランカップリング剤で構成される混合物であるステップと、を含む。
This embodiment further provides a method for producing a ferromagnetic oriented high-silicon steel ultra-thin strip, specifically:
In S1, alloy raw materials are prepared according to the mass percentage of each element in the ferromagnetic grain-oriented high-silicon steel ultra-thin strip, mixed with raw materials other than polynuclear coordination compounds containing Bi element, sulfur nitrogen and copper, and heated at high temperature. It is placed in an arc smelting furnace, heated to 1300° C. and smelted to obtain an alloy solution after the alloy raw materials are completely melted. Add copper n-butyldithiocarbamate, then add Bi element to obtain silicon-iron master alloy solution, the whole smelting process continues for 30min, in which Bi element is added to the alloy solution in the form of Bi powder. a step that can
In S2, the temperature of the silicon-iron mother alloy solution is controlled to 1100° C., melt spinning is performed with a high-speed extremely cold single roll in an atmosphere of continuously flowing high-purity nitrogen gas, and the roll in the melt spinning process with a high-speed extremely cold single roll A step of controlling the linear velocity of 20 m / s to produce a silicon steel ribbon with a thickness of 0.25 mm;
In S3, first, the silicon steel ribbon is taken out from the roll of the melt spinning apparatus, then the silicon steel ribbon after being out-rolled is water-cooled to 500°C, warm-rolled to 0.17 mm, and heated at 20°C/h. After heating to 850 ° C. at a speed of 850 ° C., vacuum annealing is performed for 2 minutes, and cold rolling is performed to a thickness of 0.12 mm. After further air cooling to room temperature, after coating the annealing separation layer, heating to 950° C. at a heating rate of 35° C./h, followed by purification gas annealing, after 3 minutes of purification gas annealing, ferromagnetic grain oriented high silicon steel An ultrathin strip is obtained, and the components of the annealed separating layer are a mixture composed of 10% by weight aluminum dihydrogen phosphate, 40% styrene-acrylic emulsion, 35% glycerin and 15% silane coupling agent. and a step.

[実施例2]
本実施例は、強磁性方向性高ケイ素鋼極薄帯を提供し、以下の質量百分率の元素:C:0.0060%、Si:5.0%、Mn:0.32%、S:0.03%、Bi:0.08%、Als:0.035%、Cu:0.03%、N:0.0010%、P:0.002%、残部のFeを含み、そのうちCu元素、S元素、N元素は、溶錬時に硫黄窒素及び銅を含有する多核配位化合物の方式で強磁性方向性高ケイ素鋼極薄帯に添加し、具体的にはビス(1-窒素複素環基)ジチオカルバミン酸銅(II)を選択することができる。
[Example 2]
This example provides a ferromagnetic oriented high-silicon steel ultra-thin strip, with the following mass percentage elements: C: 0.0060%, Si: 5.0%, Mn: 0.32%, S: 0 0.03%, Bi: 0.08%, Als: 0.035%, Cu: 0.03%, N: 0.0010%, P: 0.002%, the balance containing Fe, of which Cu element, S The element N element is added to the ferromagnetic oriented high silicon steel ultrathin strip in the form of a multinuclear coordination compound containing sulfur nitrogen and copper during smelting, specifically bis(1-nitrogen heterocyclic group). Copper (II) dithiocarbamate can be selected.

本実施例は、さらに強磁性方向性高ケイ素鋼極薄帯の製造方法を提供し、具体的には、
S1において、強磁性方向性高ケイ素鋼極薄帯における各元素の質量百分率に応じて合金原料を準備し、Bi元素及び硫黄窒素及び銅を含有する多核配位化合物以外の原料を混合し、高温アーク溶錬炉に置き、1500℃まで加熱して溶錬し、合金原料が溶融した後に合金溶液を得、合金溶液の表面に高純度窒素ガスを流すと同時に、ビス(1-窒素複素環基)ジチオカルバミン酸銅(II)を添加し、続いてBi元素を添加し、ケイ素鉄母合金溶液を得、全体の溶錬過程は120minを続け、そのうちBi元素はBi粉末の方式で合金溶液に添加することができるステップと、
S2において、ケイ素鉄母合金溶液の温度を1200℃に制御し、連続的に流れる高純度窒素ガスの雰囲気において高速極冷単ロールによるメルトスピニングを行い、高速極冷単ロールによるメルトスピニング過程におけるロールの線速度を30m/sに制御し、0.20mm厚さのケイ素鋼薄帯を製造するステップと、
S3において、まずケイ素鋼薄帯をメルトスピニング装置のロールから取り出し、続いてアウトロールした後のケイ素鋼薄帯を600℃まで水冷し、0.14mmまで温間圧延し、20℃/hの加熱速度で1050℃まで加熱した後に真空アニールを5min行い、さらに0.09mmの厚さまで冷間圧延し、続いて25℃/hの加熱速度で1150℃まで加熱した後に純水素ガス二次アニールを5min行い、さらに室温まで空冷し、アニール分離層を塗布した後に、40℃/hの速度で1200℃まで加熱し、続いて浄化ガスアニールを行い、浄化ガスアニール5min後に強磁性方向性高ケイ素鋼極薄帯を得、アニール分離層の成分は質量百分率が15%のリン酸二水素アルミニウム、30%のスチレンアクリルエマルジョン、25%のグリセリン及び30%のシランカップリング剤で構成される混合物であるステップと、を含む。
This embodiment further provides a method for producing a ferromagnetic oriented high-silicon steel ultra-thin strip, specifically:
In S1, alloy raw materials are prepared according to the mass percentage of each element in the ferromagnetic grain-oriented high-silicon steel ultra-thin strip, mixed with raw materials other than polynuclear coordination compounds containing Bi element, sulfur nitrogen and copper, and heated at high temperature. Place it in an arc smelting furnace, heat it to 1500 ° C. and smelt it, obtain an alloy solution after the alloy raw material is melted, flow high-purity nitrogen gas on the surface of the alloy solution, and at the same time, bis(1-nitrogen heterocyclic group ) Add copper (II) dithiocarbamate, then add Bi element to obtain silicon-iron mother alloy solution, the whole smelting process lasts 120min, during which Bi element is added to the alloy solution in the form of Bi powder. a step that can be
In S2, the temperature of the silicon-iron master alloy solution is controlled to 1200° C., melt spinning is performed with a high-speed extremely cold single roll in an atmosphere of continuously flowing high-purity nitrogen gas, and the roll in the melt spinning process with a high-speed extremely cold single roll A step of controlling the linear velocity of 30 m / s to produce a silicon steel ribbon with a thickness of 0.20 mm;
In S3, first, the silicon steel ribbon is taken out from the roll of the melt spinning apparatus, then the silicon steel ribbon after being out-rolled is water-cooled to 600°C, warm-rolled to 0.14 mm, and heated at 20°C/h. After heating to 1050° C. at a speed of 1050° C., vacuum annealing is performed for 5 minutes, followed by cold rolling to a thickness of 0.09 mm. Then air-cool to room temperature, apply an annealed separation layer, heat to 1200° C. at a rate of 40° C./h, and then perform purification gas annealing. obtaining a ribbon, the components of the annealed separation layer being a mixture composed of 15% aluminum dihydrogen phosphate, 30% styrene-acrylic emulsion, 25% glycerin and 30% silane coupling agent in mass percentages; and including.

[実施例3]
本実施例は、強磁性方向性高ケイ素鋼極薄帯を提供し、以下の質量百分率の元素:C:0.0050%、Si:4.5%、Mn:0.28%、S:0.02%、Bi:0.05%、Als:0.030%、Cu:0.02%、N:0.008%、P:0.004%、残部のFeを含み、そのうちCu元素、S元素、N元素は、溶錬時に硫黄窒素及び銅を含有する多核配位化合物の方式で強磁性方向性高ケイ素鋼極薄帯に添加し、具体的には{Cu(NH}SOを選択することができる。
[Example 3]
This example provides a ferromagnetic oriented high-silicon steel ultrathin strip with the following mass percentage elements: C: 0.0050%, Si: 4.5%, Mn: 0.28%, S: 0 0.02%, Bi: 0.05%, Als: 0.030%, Cu: 0.02%, N: 0.008%, P: 0.004%, the balance containing Fe, of which Cu element, S The element, N element, is added to the ferromagnetic grain-oriented high silicon steel ultrathin ribbon in the form of a polynuclear coordination compound containing sulfur nitrogen and copper during smelting, specifically {Cu(NH 3 ) 4 }SO 4 can be selected.

本実施例は、さらに強磁性方向性高ケイ素鋼極薄帯の製造方法を提供し、具体的には、
S1において、強磁性方向性高ケイ素鋼極薄帯における各元素の質量百分率に応じて合金原料を準備し、Bi元素及び硫黄窒素及び銅を含有する多核配位化合物以外の原料を混合し、高温アーク溶錬炉に置き、1400℃まで加熱して溶錬し、合金原料が十分に溶融した後に合金溶液を得、合金溶液の表面に高純度窒素ガスを流すと同時に、{Cu(NH}SOを添加し、続いてBi元素を添加し、ケイ素鉄母合金溶液を得、全体の溶錬過程は60minを続け、そのうちBi元素はBi粉末の方式で合金溶液に添加することができるステップと、
S2において、ケイ素鉄母合金溶液の温度を1150℃に制御し、連続的に流れる高純度窒素ガスの雰囲気において高速極冷単ロールによるメルトスピニングを行い、高速極冷単ロールによるメルトスピニング過程におけるロールの線速度を25m/sに制御し、0.22mm厚さのケイ素鋼薄帯を製造するステップと、
S3において、まずケイ素鋼薄帯をメルトスピニング装置のロールから取り出し、続いてアウトロールした後のケイ素鋼薄帯を500℃まで水冷し、0.15mmの厚さまで温間圧延し、20℃/hの加熱速度で950℃まで加熱した後に真空アニールを2min行い、さらに0.10mmの厚さまで冷間圧延し、続いて25℃/hの加熱速度で1080℃まで加熱した後に純水素ガス二次アニールを2min行い、さらに室温まで空冷し、アニール分離層を塗布した後に、35℃/hの加熱速度で1080℃まで加熱し、続いて浄化ガスアニールを行い、浄化ガスアニール3min後に強磁性方向性高ケイ素鋼極薄帯を得、アニール分離層の成分は質量百分率が15%のリン酸二水素アルミニウム、20%のスチレンアクリルエマルジョン、35%のグリセリン及び30%のシランカップリング剤で構成される混合物であるステップと、を含む。
This embodiment further provides a method for producing a ferromagnetic oriented high-silicon steel ultra-thin strip, specifically:
In S1, alloy raw materials are prepared according to the mass percentage of each element in the ferromagnetic grain-oriented high-silicon steel ultra-thin strip, mixed with raw materials other than polynuclear coordination compounds containing Bi element, sulfur nitrogen and copper, and heated at high temperature. Placed in an arc smelting furnace, heated to 1400 ° C. to smelt, obtain an alloy solution after the alloy raw materials are sufficiently melted, flow high-purity nitrogen gas on the surface of the alloy solution, and at the same time {Cu(NH 3 ) 4 } SO4 is added, followed by Bi element, to obtain silicon-iron mother alloy solution, the whole smelting process lasts 60min, during which Bi element can be added to the alloy solution in the form of Bi powder. possible steps and
In S2, the temperature of the silicon-iron master alloy solution is controlled to 1150° C., melt spinning is performed with a high-speed extremely cold single roll in an atmosphere of continuously flowing high-purity nitrogen gas, and the roll in the melt spinning process with a high-speed extremely cold single roll A step of controlling the linear velocity of 25 m / s to produce a silicon steel ribbon with a thickness of 0.22 mm;
In S3, first, the silicon steel ribbon is taken out from the roll of the melt spinning device, then the silicon steel ribbon after being out-rolled is water-cooled to 500°C, warm-rolled to a thickness of 0.15 mm, and rolled at 20°C/h. After heating to 950 ° C. at a heating rate of 2 minutes, vacuum annealing is performed for 2 minutes, cold rolling to a thickness of 0.10 mm, followed by heating to 1080 ° C. at a heating rate of 25 ° C./h, and pure hydrogen gas secondary annealing. was further air-cooled to room temperature, and after coating the annealed separation layer, it was heated to 1080° C. at a heating rate of 35° C./h, followed by purification gas annealing. A silicon steel ultra-thin strip is obtained, and the components of the annealed separation layer are a mixture composed of 15% by weight aluminum dihydrogen phosphate, 20% styrene acrylic emulsion, 35% glycerin and 30% silane coupling agent. and

[対照例1]
本対照例は、強磁性方向性高ケイ素鋼極薄帯及び強磁性方向性高ケイ素鋼極薄帯の製造方法を提供し、強磁性方向性高ケイ素鋼極薄帯におけるCu元素、S元素、N元素を溶錬時に一般的な合金原料の方式で強磁性方向性高ケイ素鋼極薄帯に添加する以外、他の成分及び製造プロセスは、実施例3と同じである。
[Control Example 1]
This comparative example provides a ferromagnetic grain-oriented high silicon steel ultra-thin strip and a method for producing a ferromagnetic grain-oriented high-silicon steel ultra-thin strip. Except that the N element is added to the ferromagnetic grain-oriented high silicon steel ultrathin strip in the usual way of alloying raw materials during smelting, the other components and manufacturing process are the same as those in Example 3.

[対照例2]
本対照例は、強磁性方向性高ケイ素鋼極薄帯及び強磁性方向性高ケイ素鋼極薄帯の製造方法を提供し、強磁性方向性高ケイ素鋼極薄帯がBi元素を含まない以外、他の成分及び製造プロセスは、実施例3と同じである。
[Control Example 2]
This comparative example provides a ferromagnetic grain-oriented high silicon steel ultra-thin strip and a method for producing a ferromagnetic grain-oriented high-silicon steel ultra-thin strip, except that the ferromagnetic grain-oriented high-silicon steel ultra-thin strip does not contain the element Bi. , other ingredients and manufacturing process are the same as in Example 3.

[対照例3]
本対照例は、強磁性方向性高ケイ素鋼極薄帯及び強磁性方向性高ケイ素鋼極薄帯の製造方法を提供し、強磁性方向性高ケイ素鋼極薄帯の製造方法において、真空アニール温度が1100℃であり、純水素ガス二次アニール温度が1200℃であり、浄化ガスアニール温度が1250℃である以外、他の成分及び製造プロセスは、実施例3と同じである。
[Control Example 3]
This comparative example provides a ferromagnetic grain-oriented high silicon steel ultra-thin strip and a method for producing a ferromagnetic grain-oriented high silicon steel ultra-thin strip. Other components and manufacturing processes are the same as in Example 3, except that the temperature is 1100°C, the pure hydrogen gas secondary annealing temperature is 1200°C, and the purge gas annealing temperature is 1250°C.

[対照例4]
本対照例は、強磁性方向性高ケイ素鋼極薄帯及び強磁性方向性高ケイ素鋼極薄帯の製造方法を提供し、強磁性方向性高ケイ素鋼極薄帯の製造方法において、真空アニール前のケイ素鋼薄帯の加熱速度が35℃/hであり、純水素ガス二次アニール前のケイ素鋼薄帯の加熱速度が35℃/hである以外、他の成分及び製造プロセスは、実施例3と同じである。
[Control Example 4]
This comparative example provides a ferromagnetic grain-oriented high silicon steel ultra-thin strip and a method for producing a ferromagnetic grain-oriented high silicon steel ultra-thin strip. Except that the heating rate of the silicon steel ribbon before is 35° C./h, and the heating rate of the silicon steel ribbon before the pure hydrogen gas secondary annealing is 35° C./h, the other ingredients and manufacturing process are Same as example 3.

[対照例5]
本対照例は、強磁性方向性高ケイ素鋼極薄帯及び強磁性方向性高ケイ素鋼極薄帯の製造方法を提供し、強磁性方向性高ケイ素鋼極薄帯の製造方法において、S3において塗布されたアニール分離層の成分が酸化マグネシウムである以外、他の成分及び製造プロセスは、実施例3と同じである。
[Control Example 5]
This comparative example provides a ferromagnetic grain-oriented high silicon steel ultra-thin strip and a method for producing a ferromagnetic grain-oriented high silicon steel ultra-thin strip. Other components and manufacturing processes are the same as in Example 3, except that the component of the applied annealed isolation layer is magnesium oxide.

検出例において、実施例及び対照例で得られた高ケイ素鋼極薄帯の磁気誘導強度及び鉄損をそれぞれ検出し、試験結果は表1に示すとおりである。 In the detection example, the magnetic induction strength and iron loss of the high-silicon steel ultrathin strips obtained in the examples and the control examples were detected, respectively, and the test results are shown in Table 1.

表1における検出データから分かるように、本願の実施例で得られた強磁性方向性高ケイ素鋼極薄帯の結晶粒が細かく、組織が均一であり、磁気誘導性能B800>1.90Tであり、鉄損P1.7/50値が0.90W/kgよりも小さく、P1.0/400値が8.5W/kgよりも小さく、優れた磁気誘導性能を有する。 As can be seen from the detection data in Table 1, the ferromagnetic oriented high-silicon steel ultrathin strips obtained in the examples of the present application have fine crystal grains, a uniform structure, and magnetic induction performance B800>1.90T. , the iron loss P1.7/50 value is less than 0.90 W/kg, the P1.0/400 value is less than 8.5 W/kg, and has excellent magnetic induction performance.

以上の記載は、本願の好適な実施例に過ぎず、本願を限定するものではなく、本願の精神と原則内で行われたいかなる修正、均等置換及び改良などは、いずれも本願の保護範囲内に含まれるべきである。 The above descriptions are only preferred embodiments of the present application, not limiting the present application, and any modifications, equivalent substitutions and improvements made within the spirit and principle of the present application shall all fall within the protection scope of the present application. should be included in

Claims (3)

以下の質量百分率の元素:C:0.0045%~0.0060%、Si:4.5%~5.0%、Mn:0.23%~0.32%、S:0.02%~0.03%、Bi:0.03%~0.08%、Als:0.027%~0.035%、Cu:0.02%~0.03%、N:0.008%~0.010%、P<0.005%、残部の鉄及び不可避的不純物からなる強磁性方向性高ケイ素鋼極薄帯の製造方法であって、
以下のステップS1からS3を含み、
S1において、前記強磁性方向性高ケイ素鋼極薄帯における各元素の質量百分率に応じて原料を準備し、そのうち、Cu元素、S元素及びN元素は、硫黄窒素及び銅を含有する多核配位化合物として準備され、前記Bi元素及び前記硫黄窒素及び銅を含有する多核配位化合物以外の原料を混合して溶錬し、合金原料が完全に溶融した後に合金溶液を得、前記合金溶液の表面に高純度窒素ガスを流すと同時に、前記硫黄窒素及び銅を含有する多核配位化合物を添加し、続いて前記Bi元素を添加することで、ケイ素鉄母合金溶液が調製され、
S2において、前記ケイ素鉄母合金溶液の温度を1100~1200℃に制御し、連続的に流れる高純度窒素ガスの雰囲気において高速単ロールによるメルトスピニングを行い、前記高速単ロールによるメルトスピニング過程におけるロールの線速度を20~30m/sに制御することで、0.20~0.25mm厚さのケイ素鋼薄帯が製造され、
S3において、前記ケイ素鋼薄帯をアウトロールした後に500~600℃まで水冷し、0.14~0.17mmまで温間圧延し、850~1050℃に加熱して真空アニールを2~5min行い、さらに0.09~0.12mmまで冷間圧延し、1000~1150℃に加熱して純水素ガス二次アニールを2~5min行い、さらに室温まで空冷し、アニール分離層を塗布した後に950~1200℃に加熱して浄化ガスアニールを3~5min行い、前記強磁性方向性高ケイ素鋼極薄帯が得られ、前記真空アニール前に温間圧延が完了したケイ素鋼薄帯を20~25℃/hの昇温速度で真空アニールの温度まで昇温し、前記純水素ガス二次アニール前に冷間圧延が完了したケイ素鋼薄帯を20~25℃/hの昇温速度で純水素ガス二次アニールの温度まで昇温し、前記アニール分離層の成分は、リン酸二水素アルミニウム、スチレンアクリルエマルジョン、グリセリン及びシランカップリング剤の混合物であり、前記混合物における各成分の質量百分含有量は、リン酸二水素アルミニウム:10~15%、スチレンアクリルエマルジョン:20~40%、グリセリン:25~35%、シランカップリング剤:10~30%である、
強磁性方向性高ケイ素鋼極薄帯の製造方法。
The following mass percentage elements: C: 0.0045% to 0.0060%, Si: 4.5% to 5.0%, Mn: 0.23% to 0.32%, S: 0.02% to 0.03%, Bi: 0.03% to 0.08%, Als: 0.027% to 0.035%, Cu: 0.02% to 0.03%, N: 0.008% to 0.03% 010%, P<0.005%, the balance being iron and unavoidable impurities .
including the following steps S1 to S3;
In S1, raw materials are prepared according to the mass percentage of each element in the ferromagnetic grain-oriented high-silicon steel ultrathin strip, among which Cu element, S element and N element are polynuclear coordination containing sulfur nitrogen and copper A raw material prepared as a compound and other than the polynuclear coordination compound containing the Bi element and the sulfur nitrogen and copper is mixed and smelted to obtain an alloy solution after the alloy raw material is completely melted, and the surface of the alloy solution is obtained. At the same time, the polynuclear coordination compound containing sulfur nitrogen and copper is added, and then the Bi element is added to prepare a silicon-iron master alloy solution,
In S2, the temperature of the silicon-iron mother alloy solution is controlled to 1100 to 1200° C., melt spinning is performed with a high-speed single roll in an atmosphere of continuously flowing high-purity nitrogen gas, and the rolls in the melt spinning process with the high-speed single roll By controlling the linear velocity of 20 to 30 m / s, a silicon steel ribbon with a thickness of 0.20 to 0.25 mm is produced,
In S3, the silicon steel ribbon is out-rolled, water-cooled to 500 to 600° C., warm-rolled to 0.14 to 0.17 mm, heated to 850 to 1050° C., vacuum annealed for 2 to 5 minutes, Furthermore, it is cold rolled to 0.09 to 0.12 mm, heated to 1000 to 1150 ° C., subjected to pure hydrogen gas secondary annealing for 2 to 5 minutes, further air-cooled to room temperature, and after applying an annealed separation layer to 950 to 1200 The ferromagnetic grain-oriented high silicon steel ultra-thin ribbon is obtained by heating to 90° C. and performing purification gas annealing for 3 to 5 minutes. The temperature is raised to the vacuum annealing temperature at a heating rate of 20 to 25° C./h. The temperature is raised to the temperature of the next annealing, and the components of the annealing separation layer are a mixture of aluminum dihydrogen phosphate, styrene acrylic emulsion, glycerin and a silane coupling agent, and the mass percentage content of each component in the mixture is , aluminum dihydrogen phosphate: 10 to 15%, styrene acrylic emulsion: 20 to 40%, glycerin: 25 to 35%, silane coupling agent: 10 to 30%,
A method for producing a ferromagnetic grain-oriented high-silicon steel ultra-thin strip.
S1において、前記溶錬の温度は1300~1500℃である、
ことを特徴とする請求項1に記載の強磁性方向性高ケイ素鋼極薄帯の製造方法。
In S1, the melting temperature is 1300 to 1500 ° C.
The method for producing a ferromagnetic grain-oriented high-silicon steel ultra-thin ribbon according to claim 1, characterized in that:
前記浄化ガスアニール前に前記アニール分離層を塗布したケイ素鋼薄帯を35~40℃/hの昇温速度で浄化ガスアニールの温度まで昇温する、
ことを特徴とする請求項1に記載の強磁性方向性高ケイ素鋼極薄帯の製造方法。
Before the purification gas annealing, the silicon steel ribbon coated with the annealing separation layer is heated to the purification gas annealing temperature at a temperature rising rate of 35 to 40 ° C./h.
The method for producing a ferromagnetic grain-oriented high-silicon steel ultra-thin ribbon according to claim 1, characterized in that:
JP2022543607A 2021-02-01 2021-12-23 Ferromagnetic grain-oriented high-silicon steel ultra-thin strip and its production method Active JP7324549B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN202110137389.4A CN112962028B (en) 2021-02-01 2021-02-01 Strong magnetic orientation high-silicon steel ultra-thin strip and preparation method thereof
CN202110137389.4 2021-02-01
PCT/CN2021/140773 WO2022161048A1 (en) 2021-02-01 2021-12-23 Strongly magnetic oriented high-silicon steel ultrathin strip and preparation method therefor

Publications (2)

Publication Number Publication Date
JP2023511662A JP2023511662A (en) 2023-03-22
JP7324549B2 true JP7324549B2 (en) 2023-08-10

Family

ID=76272356

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022543607A Active JP7324549B2 (en) 2021-02-01 2021-12-23 Ferromagnetic grain-oriented high-silicon steel ultra-thin strip and its production method

Country Status (4)

Country Link
JP (1) JP7324549B2 (en)
CN (1) CN112962028B (en)
WO (1) WO2022161048A1 (en)
ZA (1) ZA202207101B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112962028B (en) * 2021-02-01 2022-01-18 河北科技大学 Strong magnetic orientation high-silicon steel ultra-thin strip and preparation method thereof
CN114293089B (en) * 2021-12-31 2022-06-21 河北科技大学 Soft magnetic high silicon steel ultra-thin strip and preparation method thereof
CN114686645B (en) * 2022-06-01 2022-08-30 河北科技大学 Method for refining grain structure of oriented silicon steel by RH refining process

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001047194A (en) 1999-08-12 2001-02-20 Kawasaki Steel Corp Production of high magnetic flux density grain oriented silicon steel sheet having extremely low iron loss
CN103911545A (en) 2014-04-14 2014-07-09 国家电网公司 Preparation method of electrical steel strip with strong goss texture occupation rate and high magnetic induction orientation

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0649542A (en) * 1992-07-29 1994-02-22 Nippon Steel Corp Production of high magnetic flux density grain-oriented silicon steel sheet
JPH07179942A (en) * 1993-12-24 1995-07-18 Nippon Steel Corp Production of grain-oriented silicon steel sheet
JPH07258737A (en) * 1994-03-18 1995-10-09 Nippon Steel Corp Production of grain-oriented magnetic steel sheet having high magnetic flux density
JPH08225842A (en) * 1995-02-15 1996-09-03 Nippon Steel Corp Production of grain-oriented silicon steel sheet
JP6004183B2 (en) * 2013-02-28 2016-10-05 Jfeスチール株式会社 Method for producing grain-oriented electrical steel sheet
CN108456767B (en) * 2017-12-21 2019-12-17 东北大学 Preparation method of oriented high-silicon steel ultrathin strip
CN109097677B (en) * 2018-08-07 2020-07-31 东北大学 High magnetic induction oriented high silicon steel sheet thin strip and preparation method thereof
CN112962028B (en) * 2021-02-01 2022-01-18 河北科技大学 Strong magnetic orientation high-silicon steel ultra-thin strip and preparation method thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001047194A (en) 1999-08-12 2001-02-20 Kawasaki Steel Corp Production of high magnetic flux density grain oriented silicon steel sheet having extremely low iron loss
CN103911545A (en) 2014-04-14 2014-07-09 国家电网公司 Preparation method of electrical steel strip with strong goss texture occupation rate and high magnetic induction orientation

Also Published As

Publication number Publication date
CN112962028A (en) 2021-06-15
ZA202207101B (en) 2022-07-27
CN112962028B (en) 2022-01-18
JP2023511662A (en) 2023-03-22
WO2022161048A1 (en) 2022-08-04

Similar Documents

Publication Publication Date Title
JP7324549B2 (en) Ferromagnetic grain-oriented high-silicon steel ultra-thin strip and its production method
RU2590741C2 (en) Non-textured siliceous steel and manufacturing method thereof
JP2017501296A (en) Method for producing oriented high silicon steel
WO2011007771A1 (en) Method for producing grain-oriented electromagnetic steel plate
CN103635596A (en) Method for producing a grain-oriented electrical steel strip or sheet intended for electrotechnical applications
JPWO2014104394A1 (en) Method for producing grain-oriented electrical steel sheet
JPH0686631B2 (en) Method for manufacturing unidirectional electrical steel sheet with high magnetic flux density
CN111778452A (en) Non-oriented electrical steel plate with excellent magnetic property and smelting method thereof
CN112522609B (en) High magnetic induction oriented silicon steel containing composite inhibitor and production method thereof
JP3359449B2 (en) Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet
JP2000129352A (en) Production of grain oriented silicon steel sheet high in magnetic flux density
CN114694908A (en) Low-temperature-resistant nanocrystalline magnetically soft alloy iron core, manufacturing method and application
CN109652741B (en) Grain-oriented pure iron and production method thereof
CN109652635B (en) Method for producing grain-oriented pure iron based on two-stage normalization
CN108823372B (en) Oriented high-silicon steel thin strip and preparation method of efficient annealing mode thereof
JP2023526128A (en) Low-cost non-oriented electrical steel sheet with extremely low aluminum content and method for producing the same
KR950002895B1 (en) Ultrahigh-silicon directional electrical steel sheet and production thereof
CN108950434B (en) Iron-based amorphous strip with low excitation power and preparation method thereof
CN105385937B (en) Reduction preparing method for high-magnetic-induction grain-oriented silicon steel ultra-thin belt
JP3105525B2 (en) Melting method of silicon steel material
JPH05295440A (en) Production of grain-oriented silicon steel sheet using rapidly solidified thin cast slab
JP6863310B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JPS62188756A (en) Grain-oriented foil of high saturation magnetic flux density and its production
JPS6148761B2 (en)
JP3023620B2 (en) Method of manufacturing thin slab for unidirectional electrical steel sheet

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220715

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220715

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20220715

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230627

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230724

R150 Certificate of patent or registration of utility model

Ref document number: 7324549

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150